Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
65
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
71
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 return 0;
82 }
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
92 */
93
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
110 */
111 typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
115 /*
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
120 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125
126 struct sock;
127 struct proto;
128 struct net;
129
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132
133 /**
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_refcnt: reference count
154 *
155 * This is the minimal network layer representation of sockets, the header
156 * for struct sock and struct inet_timewait_sock.
157 */
158 struct sock_common {
159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 * address on 64bit arches : cf INET_MATCH()
161 */
162 union {
163 __addrpair skc_addrpair;
164 struct {
165 __be32 skc_daddr;
166 __be32 skc_rcv_saddr;
167 };
168 };
169 union {
170 unsigned int skc_hash;
171 __u16 skc_u16hashes[2];
172 };
173 /* skc_dport && skc_num must be grouped as well */
174 union {
175 __portpair skc_portpair;
176 struct {
177 __be16 skc_dport;
178 __u16 skc_num;
179 };
180 };
181
182 unsigned short skc_family;
183 volatile unsigned char skc_state;
184 unsigned char skc_reuse:4;
185 unsigned char skc_reuseport:1;
186 unsigned char skc_ipv6only:1;
187 unsigned char skc_net_refcnt:1;
188 int skc_bound_dev_if;
189 union {
190 struct hlist_node skc_bind_node;
191 struct hlist_nulls_node skc_portaddr_node;
192 };
193 struct proto *skc_prot;
194 possible_net_t skc_net;
195
196 #if IS_ENABLED(CONFIG_IPV6)
197 struct in6_addr skc_v6_daddr;
198 struct in6_addr skc_v6_rcv_saddr;
199 #endif
200
201 atomic64_t skc_cookie;
202
203 /*
204 * fields between dontcopy_begin/dontcopy_end
205 * are not copied in sock_copy()
206 */
207 /* private: */
208 int skc_dontcopy_begin[0];
209 /* public: */
210 union {
211 struct hlist_node skc_node;
212 struct hlist_nulls_node skc_nulls_node;
213 };
214 int skc_tx_queue_mapping;
215 atomic_t skc_refcnt;
216 /* private: */
217 int skc_dontcopy_end[0];
218 /* public: */
219 };
220
221 struct cg_proto;
222 /**
223 * struct sock - network layer representation of sockets
224 * @__sk_common: shared layout with inet_timewait_sock
225 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
226 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
227 * @sk_lock: synchronizer
228 * @sk_rcvbuf: size of receive buffer in bytes
229 * @sk_wq: sock wait queue and async head
230 * @sk_rx_dst: receive input route used by early demux
231 * @sk_dst_cache: destination cache
232 * @sk_dst_lock: destination cache lock
233 * @sk_policy: flow policy
234 * @sk_receive_queue: incoming packets
235 * @sk_wmem_alloc: transmit queue bytes committed
236 * @sk_write_queue: Packet sending queue
237 * @sk_omem_alloc: "o" is "option" or "other"
238 * @sk_wmem_queued: persistent queue size
239 * @sk_forward_alloc: space allocated forward
240 * @sk_napi_id: id of the last napi context to receive data for sk
241 * @sk_ll_usec: usecs to busypoll when there is no data
242 * @sk_allocation: allocation mode
243 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
244 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
245 * @sk_sndbuf: size of send buffer in bytes
246 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
247 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
248 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
249 * @sk_no_check_rx: allow zero checksum in RX packets
250 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
251 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
252 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
253 * @sk_gso_max_size: Maximum GSO segment size to build
254 * @sk_gso_max_segs: Maximum number of GSO segments
255 * @sk_lingertime: %SO_LINGER l_linger setting
256 * @sk_backlog: always used with the per-socket spinlock held
257 * @sk_callback_lock: used with the callbacks in the end of this struct
258 * @sk_error_queue: rarely used
259 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
260 * IPV6_ADDRFORM for instance)
261 * @sk_err: last error
262 * @sk_err_soft: errors that don't cause failure but are the cause of a
263 * persistent failure not just 'timed out'
264 * @sk_drops: raw/udp drops counter
265 * @sk_ack_backlog: current listen backlog
266 * @sk_max_ack_backlog: listen backlog set in listen()
267 * @sk_priority: %SO_PRIORITY setting
268 * @sk_cgrp_prioidx: socket group's priority map index
269 * @sk_type: socket type (%SOCK_STREAM, etc)
270 * @sk_protocol: which protocol this socket belongs in this network family
271 * @sk_peer_pid: &struct pid for this socket's peer
272 * @sk_peer_cred: %SO_PEERCRED setting
273 * @sk_rcvlowat: %SO_RCVLOWAT setting
274 * @sk_rcvtimeo: %SO_RCVTIMEO setting
275 * @sk_sndtimeo: %SO_SNDTIMEO setting
276 * @sk_rxhash: flow hash received from netif layer
277 * @sk_incoming_cpu: record cpu processing incoming packets
278 * @sk_txhash: computed flow hash for use on transmit
279 * @sk_filter: socket filtering instructions
280 * @sk_timer: sock cleanup timer
281 * @sk_stamp: time stamp of last packet received
282 * @sk_tsflags: SO_TIMESTAMPING socket options
283 * @sk_tskey: counter to disambiguate concurrent tstamp requests
284 * @sk_socket: Identd and reporting IO signals
285 * @sk_user_data: RPC layer private data
286 * @sk_frag: cached page frag
287 * @sk_peek_off: current peek_offset value
288 * @sk_send_head: front of stuff to transmit
289 * @sk_security: used by security modules
290 * @sk_mark: generic packet mark
291 * @sk_classid: this socket's cgroup classid
292 * @sk_cgrp: this socket's cgroup-specific proto data
293 * @sk_write_pending: a write to stream socket waits to start
294 * @sk_state_change: callback to indicate change in the state of the sock
295 * @sk_data_ready: callback to indicate there is data to be processed
296 * @sk_write_space: callback to indicate there is bf sending space available
297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
298 * @sk_backlog_rcv: callback to process the backlog
299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
300 */
301 struct sock {
302 /*
303 * Now struct inet_timewait_sock also uses sock_common, so please just
304 * don't add nothing before this first member (__sk_common) --acme
305 */
306 struct sock_common __sk_common;
307 #define sk_node __sk_common.skc_node
308 #define sk_nulls_node __sk_common.skc_nulls_node
309 #define sk_refcnt __sk_common.skc_refcnt
310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
311
312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
314 #define sk_hash __sk_common.skc_hash
315 #define sk_portpair __sk_common.skc_portpair
316 #define sk_num __sk_common.skc_num
317 #define sk_dport __sk_common.skc_dport
318 #define sk_addrpair __sk_common.skc_addrpair
319 #define sk_daddr __sk_common.skc_daddr
320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
321 #define sk_family __sk_common.skc_family
322 #define sk_state __sk_common.skc_state
323 #define sk_reuse __sk_common.skc_reuse
324 #define sk_reuseport __sk_common.skc_reuseport
325 #define sk_ipv6only __sk_common.skc_ipv6only
326 #define sk_net_refcnt __sk_common.skc_net_refcnt
327 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
328 #define sk_bind_node __sk_common.skc_bind_node
329 #define sk_prot __sk_common.skc_prot
330 #define sk_net __sk_common.skc_net
331 #define sk_v6_daddr __sk_common.skc_v6_daddr
332 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
333 #define sk_cookie __sk_common.skc_cookie
334
335 socket_lock_t sk_lock;
336 struct sk_buff_head sk_receive_queue;
337 /*
338 * The backlog queue is special, it is always used with
339 * the per-socket spinlock held and requires low latency
340 * access. Therefore we special case it's implementation.
341 * Note : rmem_alloc is in this structure to fill a hole
342 * on 64bit arches, not because its logically part of
343 * backlog.
344 */
345 struct {
346 atomic_t rmem_alloc;
347 int len;
348 struct sk_buff *head;
349 struct sk_buff *tail;
350 } sk_backlog;
351 #define sk_rmem_alloc sk_backlog.rmem_alloc
352 int sk_forward_alloc;
353 #ifdef CONFIG_RPS
354 __u32 sk_rxhash;
355 #endif
356 u16 sk_incoming_cpu;
357 /* 16bit hole
358 * Warned : sk_incoming_cpu can be set from softirq,
359 * Do not use this hole without fully understanding possible issues.
360 */
361
362 __u32 sk_txhash;
363 #ifdef CONFIG_NET_RX_BUSY_POLL
364 unsigned int sk_napi_id;
365 unsigned int sk_ll_usec;
366 #endif
367 atomic_t sk_drops;
368 int sk_rcvbuf;
369
370 struct sk_filter __rcu *sk_filter;
371 struct socket_wq __rcu *sk_wq;
372
373 #ifdef CONFIG_XFRM
374 struct xfrm_policy *sk_policy[2];
375 #endif
376 unsigned long sk_flags;
377 struct dst_entry *sk_rx_dst;
378 struct dst_entry __rcu *sk_dst_cache;
379 spinlock_t sk_dst_lock;
380 atomic_t sk_wmem_alloc;
381 atomic_t sk_omem_alloc;
382 int sk_sndbuf;
383 struct sk_buff_head sk_write_queue;
384 kmemcheck_bitfield_begin(flags);
385 unsigned int sk_shutdown : 2,
386 sk_no_check_tx : 1,
387 sk_no_check_rx : 1,
388 sk_userlocks : 4,
389 sk_protocol : 8,
390 sk_type : 16;
391 kmemcheck_bitfield_end(flags);
392 int sk_wmem_queued;
393 gfp_t sk_allocation;
394 u32 sk_pacing_rate; /* bytes per second */
395 u32 sk_max_pacing_rate;
396 netdev_features_t sk_route_caps;
397 netdev_features_t sk_route_nocaps;
398 int sk_gso_type;
399 unsigned int sk_gso_max_size;
400 u16 sk_gso_max_segs;
401 int sk_rcvlowat;
402 unsigned long sk_lingertime;
403 struct sk_buff_head sk_error_queue;
404 struct proto *sk_prot_creator;
405 rwlock_t sk_callback_lock;
406 int sk_err,
407 sk_err_soft;
408 u32 sk_ack_backlog;
409 u32 sk_max_ack_backlog;
410 __u32 sk_priority;
411 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
412 __u32 sk_cgrp_prioidx;
413 #endif
414 struct pid *sk_peer_pid;
415 const struct cred *sk_peer_cred;
416 long sk_rcvtimeo;
417 long sk_sndtimeo;
418 struct timer_list sk_timer;
419 ktime_t sk_stamp;
420 u16 sk_tsflags;
421 u32 sk_tskey;
422 struct socket *sk_socket;
423 void *sk_user_data;
424 struct page_frag sk_frag;
425 struct sk_buff *sk_send_head;
426 __s32 sk_peek_off;
427 int sk_write_pending;
428 #ifdef CONFIG_SECURITY
429 void *sk_security;
430 #endif
431 __u32 sk_mark;
432 #ifdef CONFIG_CGROUP_NET_CLASSID
433 u32 sk_classid;
434 #endif
435 struct cg_proto *sk_cgrp;
436 void (*sk_state_change)(struct sock *sk);
437 void (*sk_data_ready)(struct sock *sk);
438 void (*sk_write_space)(struct sock *sk);
439 void (*sk_error_report)(struct sock *sk);
440 int (*sk_backlog_rcv)(struct sock *sk,
441 struct sk_buff *skb);
442 void (*sk_destruct)(struct sock *sk);
443 };
444
445 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
446
447 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
448 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
449
450 /*
451 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
452 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
453 * on a socket means that the socket will reuse everybody else's port
454 * without looking at the other's sk_reuse value.
455 */
456
457 #define SK_NO_REUSE 0
458 #define SK_CAN_REUSE 1
459 #define SK_FORCE_REUSE 2
460
461 static inline int sk_peek_offset(struct sock *sk, int flags)
462 {
463 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
464 return sk->sk_peek_off;
465 else
466 return 0;
467 }
468
469 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
470 {
471 if (sk->sk_peek_off >= 0) {
472 if (sk->sk_peek_off >= val)
473 sk->sk_peek_off -= val;
474 else
475 sk->sk_peek_off = 0;
476 }
477 }
478
479 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
480 {
481 if (sk->sk_peek_off >= 0)
482 sk->sk_peek_off += val;
483 }
484
485 /*
486 * Hashed lists helper routines
487 */
488 static inline struct sock *sk_entry(const struct hlist_node *node)
489 {
490 return hlist_entry(node, struct sock, sk_node);
491 }
492
493 static inline struct sock *__sk_head(const struct hlist_head *head)
494 {
495 return hlist_entry(head->first, struct sock, sk_node);
496 }
497
498 static inline struct sock *sk_head(const struct hlist_head *head)
499 {
500 return hlist_empty(head) ? NULL : __sk_head(head);
501 }
502
503 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
504 {
505 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
506 }
507
508 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
509 {
510 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
511 }
512
513 static inline struct sock *sk_next(const struct sock *sk)
514 {
515 return sk->sk_node.next ?
516 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
517 }
518
519 static inline struct sock *sk_nulls_next(const struct sock *sk)
520 {
521 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
522 hlist_nulls_entry(sk->sk_nulls_node.next,
523 struct sock, sk_nulls_node) :
524 NULL;
525 }
526
527 static inline bool sk_unhashed(const struct sock *sk)
528 {
529 return hlist_unhashed(&sk->sk_node);
530 }
531
532 static inline bool sk_hashed(const struct sock *sk)
533 {
534 return !sk_unhashed(sk);
535 }
536
537 static inline void sk_node_init(struct hlist_node *node)
538 {
539 node->pprev = NULL;
540 }
541
542 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
543 {
544 node->pprev = NULL;
545 }
546
547 static inline void __sk_del_node(struct sock *sk)
548 {
549 __hlist_del(&sk->sk_node);
550 }
551
552 /* NB: equivalent to hlist_del_init_rcu */
553 static inline bool __sk_del_node_init(struct sock *sk)
554 {
555 if (sk_hashed(sk)) {
556 __sk_del_node(sk);
557 sk_node_init(&sk->sk_node);
558 return true;
559 }
560 return false;
561 }
562
563 /* Grab socket reference count. This operation is valid only
564 when sk is ALREADY grabbed f.e. it is found in hash table
565 or a list and the lookup is made under lock preventing hash table
566 modifications.
567 */
568
569 static inline void sock_hold(struct sock *sk)
570 {
571 atomic_inc(&sk->sk_refcnt);
572 }
573
574 /* Ungrab socket in the context, which assumes that socket refcnt
575 cannot hit zero, f.e. it is true in context of any socketcall.
576 */
577 static inline void __sock_put(struct sock *sk)
578 {
579 atomic_dec(&sk->sk_refcnt);
580 }
581
582 static inline bool sk_del_node_init(struct sock *sk)
583 {
584 bool rc = __sk_del_node_init(sk);
585
586 if (rc) {
587 /* paranoid for a while -acme */
588 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
589 __sock_put(sk);
590 }
591 return rc;
592 }
593 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
594
595 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
596 {
597 if (sk_hashed(sk)) {
598 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
599 return true;
600 }
601 return false;
602 }
603
604 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
605 {
606 bool rc = __sk_nulls_del_node_init_rcu(sk);
607
608 if (rc) {
609 /* paranoid for a while -acme */
610 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
611 __sock_put(sk);
612 }
613 return rc;
614 }
615
616 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
617 {
618 hlist_add_head(&sk->sk_node, list);
619 }
620
621 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
622 {
623 sock_hold(sk);
624 __sk_add_node(sk, list);
625 }
626
627 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
628 {
629 sock_hold(sk);
630 hlist_add_head_rcu(&sk->sk_node, list);
631 }
632
633 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
634 {
635 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
636 }
637
638 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
639 {
640 sock_hold(sk);
641 __sk_nulls_add_node_rcu(sk, list);
642 }
643
644 static inline void __sk_del_bind_node(struct sock *sk)
645 {
646 __hlist_del(&sk->sk_bind_node);
647 }
648
649 static inline void sk_add_bind_node(struct sock *sk,
650 struct hlist_head *list)
651 {
652 hlist_add_head(&sk->sk_bind_node, list);
653 }
654
655 #define sk_for_each(__sk, list) \
656 hlist_for_each_entry(__sk, list, sk_node)
657 #define sk_for_each_rcu(__sk, list) \
658 hlist_for_each_entry_rcu(__sk, list, sk_node)
659 #define sk_nulls_for_each(__sk, node, list) \
660 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
661 #define sk_nulls_for_each_rcu(__sk, node, list) \
662 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
663 #define sk_for_each_from(__sk) \
664 hlist_for_each_entry_from(__sk, sk_node)
665 #define sk_nulls_for_each_from(__sk, node) \
666 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
667 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
668 #define sk_for_each_safe(__sk, tmp, list) \
669 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
670 #define sk_for_each_bound(__sk, list) \
671 hlist_for_each_entry(__sk, list, sk_bind_node)
672
673 /**
674 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
675 * @tpos: the type * to use as a loop cursor.
676 * @pos: the &struct hlist_node to use as a loop cursor.
677 * @head: the head for your list.
678 * @offset: offset of hlist_node within the struct.
679 *
680 */
681 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
682 for (pos = (head)->first; \
683 (!is_a_nulls(pos)) && \
684 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
685 pos = pos->next)
686
687 static inline struct user_namespace *sk_user_ns(struct sock *sk)
688 {
689 /* Careful only use this in a context where these parameters
690 * can not change and must all be valid, such as recvmsg from
691 * userspace.
692 */
693 return sk->sk_socket->file->f_cred->user_ns;
694 }
695
696 /* Sock flags */
697 enum sock_flags {
698 SOCK_DEAD,
699 SOCK_DONE,
700 SOCK_URGINLINE,
701 SOCK_KEEPOPEN,
702 SOCK_LINGER,
703 SOCK_DESTROY,
704 SOCK_BROADCAST,
705 SOCK_TIMESTAMP,
706 SOCK_ZAPPED,
707 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
708 SOCK_DBG, /* %SO_DEBUG setting */
709 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
710 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
711 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
712 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
713 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
714 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
715 SOCK_FASYNC, /* fasync() active */
716 SOCK_RXQ_OVFL,
717 SOCK_ZEROCOPY, /* buffers from userspace */
718 SOCK_WIFI_STATUS, /* push wifi status to userspace */
719 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
720 * Will use last 4 bytes of packet sent from
721 * user-space instead.
722 */
723 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
724 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
725 };
726
727 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
728 {
729 nsk->sk_flags = osk->sk_flags;
730 }
731
732 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
733 {
734 __set_bit(flag, &sk->sk_flags);
735 }
736
737 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
738 {
739 __clear_bit(flag, &sk->sk_flags);
740 }
741
742 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
743 {
744 return test_bit(flag, &sk->sk_flags);
745 }
746
747 #ifdef CONFIG_NET
748 extern struct static_key memalloc_socks;
749 static inline int sk_memalloc_socks(void)
750 {
751 return static_key_false(&memalloc_socks);
752 }
753 #else
754
755 static inline int sk_memalloc_socks(void)
756 {
757 return 0;
758 }
759
760 #endif
761
762 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
763 {
764 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
765 }
766
767 static inline void sk_acceptq_removed(struct sock *sk)
768 {
769 sk->sk_ack_backlog--;
770 }
771
772 static inline void sk_acceptq_added(struct sock *sk)
773 {
774 sk->sk_ack_backlog++;
775 }
776
777 static inline bool sk_acceptq_is_full(const struct sock *sk)
778 {
779 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
780 }
781
782 /*
783 * Compute minimal free write space needed to queue new packets.
784 */
785 static inline int sk_stream_min_wspace(const struct sock *sk)
786 {
787 return sk->sk_wmem_queued >> 1;
788 }
789
790 static inline int sk_stream_wspace(const struct sock *sk)
791 {
792 return sk->sk_sndbuf - sk->sk_wmem_queued;
793 }
794
795 void sk_stream_write_space(struct sock *sk);
796
797 /* OOB backlog add */
798 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
799 {
800 /* dont let skb dst not refcounted, we are going to leave rcu lock */
801 skb_dst_force(skb);
802
803 if (!sk->sk_backlog.tail)
804 sk->sk_backlog.head = skb;
805 else
806 sk->sk_backlog.tail->next = skb;
807
808 sk->sk_backlog.tail = skb;
809 skb->next = NULL;
810 }
811
812 /*
813 * Take into account size of receive queue and backlog queue
814 * Do not take into account this skb truesize,
815 * to allow even a single big packet to come.
816 */
817 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
818 {
819 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
820
821 return qsize > limit;
822 }
823
824 /* The per-socket spinlock must be held here. */
825 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
826 unsigned int limit)
827 {
828 if (sk_rcvqueues_full(sk, limit))
829 return -ENOBUFS;
830
831 __sk_add_backlog(sk, skb);
832 sk->sk_backlog.len += skb->truesize;
833 return 0;
834 }
835
836 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
837
838 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
839 {
840 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
841 return __sk_backlog_rcv(sk, skb);
842
843 return sk->sk_backlog_rcv(sk, skb);
844 }
845
846 static inline void sk_incoming_cpu_update(struct sock *sk)
847 {
848 sk->sk_incoming_cpu = raw_smp_processor_id();
849 }
850
851 static inline void sock_rps_record_flow_hash(__u32 hash)
852 {
853 #ifdef CONFIG_RPS
854 struct rps_sock_flow_table *sock_flow_table;
855
856 rcu_read_lock();
857 sock_flow_table = rcu_dereference(rps_sock_flow_table);
858 rps_record_sock_flow(sock_flow_table, hash);
859 rcu_read_unlock();
860 #endif
861 }
862
863 static inline void sock_rps_record_flow(const struct sock *sk)
864 {
865 #ifdef CONFIG_RPS
866 sock_rps_record_flow_hash(sk->sk_rxhash);
867 #endif
868 }
869
870 static inline void sock_rps_save_rxhash(struct sock *sk,
871 const struct sk_buff *skb)
872 {
873 #ifdef CONFIG_RPS
874 if (unlikely(sk->sk_rxhash != skb->hash))
875 sk->sk_rxhash = skb->hash;
876 #endif
877 }
878
879 static inline void sock_rps_reset_rxhash(struct sock *sk)
880 {
881 #ifdef CONFIG_RPS
882 sk->sk_rxhash = 0;
883 #endif
884 }
885
886 #define sk_wait_event(__sk, __timeo, __condition) \
887 ({ int __rc; \
888 release_sock(__sk); \
889 __rc = __condition; \
890 if (!__rc) { \
891 *(__timeo) = schedule_timeout(*(__timeo)); \
892 } \
893 sched_annotate_sleep(); \
894 lock_sock(__sk); \
895 __rc = __condition; \
896 __rc; \
897 })
898
899 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
900 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
901 void sk_stream_wait_close(struct sock *sk, long timeo_p);
902 int sk_stream_error(struct sock *sk, int flags, int err);
903 void sk_stream_kill_queues(struct sock *sk);
904 void sk_set_memalloc(struct sock *sk);
905 void sk_clear_memalloc(struct sock *sk);
906
907 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
908
909 struct request_sock_ops;
910 struct timewait_sock_ops;
911 struct inet_hashinfo;
912 struct raw_hashinfo;
913 struct module;
914
915 /*
916 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
917 * un-modified. Special care is taken when initializing object to zero.
918 */
919 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
920 {
921 if (offsetof(struct sock, sk_node.next) != 0)
922 memset(sk, 0, offsetof(struct sock, sk_node.next));
923 memset(&sk->sk_node.pprev, 0,
924 size - offsetof(struct sock, sk_node.pprev));
925 }
926
927 /* Networking protocol blocks we attach to sockets.
928 * socket layer -> transport layer interface
929 */
930 struct proto {
931 void (*close)(struct sock *sk,
932 long timeout);
933 int (*connect)(struct sock *sk,
934 struct sockaddr *uaddr,
935 int addr_len);
936 int (*disconnect)(struct sock *sk, int flags);
937
938 struct sock * (*accept)(struct sock *sk, int flags, int *err);
939
940 int (*ioctl)(struct sock *sk, int cmd,
941 unsigned long arg);
942 int (*init)(struct sock *sk);
943 void (*destroy)(struct sock *sk);
944 void (*shutdown)(struct sock *sk, int how);
945 int (*setsockopt)(struct sock *sk, int level,
946 int optname, char __user *optval,
947 unsigned int optlen);
948 int (*getsockopt)(struct sock *sk, int level,
949 int optname, char __user *optval,
950 int __user *option);
951 #ifdef CONFIG_COMPAT
952 int (*compat_setsockopt)(struct sock *sk,
953 int level,
954 int optname, char __user *optval,
955 unsigned int optlen);
956 int (*compat_getsockopt)(struct sock *sk,
957 int level,
958 int optname, char __user *optval,
959 int __user *option);
960 int (*compat_ioctl)(struct sock *sk,
961 unsigned int cmd, unsigned long arg);
962 #endif
963 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
964 size_t len);
965 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
966 size_t len, int noblock, int flags,
967 int *addr_len);
968 int (*sendpage)(struct sock *sk, struct page *page,
969 int offset, size_t size, int flags);
970 int (*bind)(struct sock *sk,
971 struct sockaddr *uaddr, int addr_len);
972
973 int (*backlog_rcv) (struct sock *sk,
974 struct sk_buff *skb);
975
976 void (*release_cb)(struct sock *sk);
977
978 /* Keeping track of sk's, looking them up, and port selection methods. */
979 void (*hash)(struct sock *sk);
980 void (*unhash)(struct sock *sk);
981 void (*rehash)(struct sock *sk);
982 int (*get_port)(struct sock *sk, unsigned short snum);
983 void (*clear_sk)(struct sock *sk, int size);
984
985 /* Keeping track of sockets in use */
986 #ifdef CONFIG_PROC_FS
987 unsigned int inuse_idx;
988 #endif
989
990 bool (*stream_memory_free)(const struct sock *sk);
991 /* Memory pressure */
992 void (*enter_memory_pressure)(struct sock *sk);
993 atomic_long_t *memory_allocated; /* Current allocated memory. */
994 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
995 /*
996 * Pressure flag: try to collapse.
997 * Technical note: it is used by multiple contexts non atomically.
998 * All the __sk_mem_schedule() is of this nature: accounting
999 * is strict, actions are advisory and have some latency.
1000 */
1001 int *memory_pressure;
1002 long *sysctl_mem;
1003 int *sysctl_wmem;
1004 int *sysctl_rmem;
1005 int max_header;
1006 bool no_autobind;
1007
1008 struct kmem_cache *slab;
1009 unsigned int obj_size;
1010 int slab_flags;
1011
1012 struct percpu_counter *orphan_count;
1013
1014 struct request_sock_ops *rsk_prot;
1015 struct timewait_sock_ops *twsk_prot;
1016
1017 union {
1018 struct inet_hashinfo *hashinfo;
1019 struct udp_table *udp_table;
1020 struct raw_hashinfo *raw_hash;
1021 } h;
1022
1023 struct module *owner;
1024
1025 char name[32];
1026
1027 struct list_head node;
1028 #ifdef SOCK_REFCNT_DEBUG
1029 atomic_t socks;
1030 #endif
1031 #ifdef CONFIG_MEMCG_KMEM
1032 /*
1033 * cgroup specific init/deinit functions. Called once for all
1034 * protocols that implement it, from cgroups populate function.
1035 * This function has to setup any files the protocol want to
1036 * appear in the kmem cgroup filesystem.
1037 */
1038 int (*init_cgroup)(struct mem_cgroup *memcg,
1039 struct cgroup_subsys *ss);
1040 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1041 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1042 #endif
1043 };
1044
1045 /*
1046 * Bits in struct cg_proto.flags
1047 */
1048 enum cg_proto_flags {
1049 /* Currently active and new sockets should be assigned to cgroups */
1050 MEMCG_SOCK_ACTIVE,
1051 /* It was ever activated; we must disarm static keys on destruction */
1052 MEMCG_SOCK_ACTIVATED,
1053 };
1054
1055 struct cg_proto {
1056 struct page_counter memory_allocated; /* Current allocated memory. */
1057 struct percpu_counter sockets_allocated; /* Current number of sockets. */
1058 int memory_pressure;
1059 long sysctl_mem[3];
1060 unsigned long flags;
1061 /*
1062 * memcg field is used to find which memcg we belong directly
1063 * Each memcg struct can hold more than one cg_proto, so container_of
1064 * won't really cut.
1065 *
1066 * The elegant solution would be having an inverse function to
1067 * proto_cgroup in struct proto, but that means polluting the structure
1068 * for everybody, instead of just for memcg users.
1069 */
1070 struct mem_cgroup *memcg;
1071 };
1072
1073 int proto_register(struct proto *prot, int alloc_slab);
1074 void proto_unregister(struct proto *prot);
1075
1076 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1077 {
1078 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1079 }
1080
1081 #ifdef SOCK_REFCNT_DEBUG
1082 static inline void sk_refcnt_debug_inc(struct sock *sk)
1083 {
1084 atomic_inc(&sk->sk_prot->socks);
1085 }
1086
1087 static inline void sk_refcnt_debug_dec(struct sock *sk)
1088 {
1089 atomic_dec(&sk->sk_prot->socks);
1090 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1091 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1092 }
1093
1094 static inline void sk_refcnt_debug_release(const struct sock *sk)
1095 {
1096 if (atomic_read(&sk->sk_refcnt) != 1)
1097 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1098 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1099 }
1100 #else /* SOCK_REFCNT_DEBUG */
1101 #define sk_refcnt_debug_inc(sk) do { } while (0)
1102 #define sk_refcnt_debug_dec(sk) do { } while (0)
1103 #define sk_refcnt_debug_release(sk) do { } while (0)
1104 #endif /* SOCK_REFCNT_DEBUG */
1105
1106 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1107 extern struct static_key memcg_socket_limit_enabled;
1108 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1109 struct cg_proto *cg_proto)
1110 {
1111 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1112 }
1113 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1114 #else
1115 #define mem_cgroup_sockets_enabled 0
1116 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1117 struct cg_proto *cg_proto)
1118 {
1119 return NULL;
1120 }
1121 #endif
1122
1123 static inline bool sk_stream_memory_free(const struct sock *sk)
1124 {
1125 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1126 return false;
1127
1128 return sk->sk_prot->stream_memory_free ?
1129 sk->sk_prot->stream_memory_free(sk) : true;
1130 }
1131
1132 static inline bool sk_stream_is_writeable(const struct sock *sk)
1133 {
1134 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1135 sk_stream_memory_free(sk);
1136 }
1137
1138
1139 static inline bool sk_has_memory_pressure(const struct sock *sk)
1140 {
1141 return sk->sk_prot->memory_pressure != NULL;
1142 }
1143
1144 static inline bool sk_under_memory_pressure(const struct sock *sk)
1145 {
1146 if (!sk->sk_prot->memory_pressure)
1147 return false;
1148
1149 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1150 return !!sk->sk_cgrp->memory_pressure;
1151
1152 return !!*sk->sk_prot->memory_pressure;
1153 }
1154
1155 static inline void sk_leave_memory_pressure(struct sock *sk)
1156 {
1157 int *memory_pressure = sk->sk_prot->memory_pressure;
1158
1159 if (!memory_pressure)
1160 return;
1161
1162 if (*memory_pressure)
1163 *memory_pressure = 0;
1164
1165 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1166 struct cg_proto *cg_proto = sk->sk_cgrp;
1167 struct proto *prot = sk->sk_prot;
1168
1169 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1170 cg_proto->memory_pressure = 0;
1171 }
1172
1173 }
1174
1175 static inline void sk_enter_memory_pressure(struct sock *sk)
1176 {
1177 if (!sk->sk_prot->enter_memory_pressure)
1178 return;
1179
1180 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1181 struct cg_proto *cg_proto = sk->sk_cgrp;
1182 struct proto *prot = sk->sk_prot;
1183
1184 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1185 cg_proto->memory_pressure = 1;
1186 }
1187
1188 sk->sk_prot->enter_memory_pressure(sk);
1189 }
1190
1191 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1192 {
1193 long *prot = sk->sk_prot->sysctl_mem;
1194 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1195 prot = sk->sk_cgrp->sysctl_mem;
1196 return prot[index];
1197 }
1198
1199 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1200 unsigned long amt,
1201 int *parent_status)
1202 {
1203 page_counter_charge(&prot->memory_allocated, amt);
1204
1205 if (page_counter_read(&prot->memory_allocated) >
1206 prot->memory_allocated.limit)
1207 *parent_status = OVER_LIMIT;
1208 }
1209
1210 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1211 unsigned long amt)
1212 {
1213 page_counter_uncharge(&prot->memory_allocated, amt);
1214 }
1215
1216 static inline long
1217 sk_memory_allocated(const struct sock *sk)
1218 {
1219 struct proto *prot = sk->sk_prot;
1220
1221 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1222 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1223
1224 return atomic_long_read(prot->memory_allocated);
1225 }
1226
1227 static inline long
1228 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1229 {
1230 struct proto *prot = sk->sk_prot;
1231
1232 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1233 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1234 /* update the root cgroup regardless */
1235 atomic_long_add_return(amt, prot->memory_allocated);
1236 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1237 }
1238
1239 return atomic_long_add_return(amt, prot->memory_allocated);
1240 }
1241
1242 static inline void
1243 sk_memory_allocated_sub(struct sock *sk, int amt)
1244 {
1245 struct proto *prot = sk->sk_prot;
1246
1247 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1248 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1249
1250 atomic_long_sub(amt, prot->memory_allocated);
1251 }
1252
1253 static inline void sk_sockets_allocated_dec(struct sock *sk)
1254 {
1255 struct proto *prot = sk->sk_prot;
1256
1257 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1258 struct cg_proto *cg_proto = sk->sk_cgrp;
1259
1260 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1261 percpu_counter_dec(&cg_proto->sockets_allocated);
1262 }
1263
1264 percpu_counter_dec(prot->sockets_allocated);
1265 }
1266
1267 static inline void sk_sockets_allocated_inc(struct sock *sk)
1268 {
1269 struct proto *prot = sk->sk_prot;
1270
1271 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1272 struct cg_proto *cg_proto = sk->sk_cgrp;
1273
1274 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1275 percpu_counter_inc(&cg_proto->sockets_allocated);
1276 }
1277
1278 percpu_counter_inc(prot->sockets_allocated);
1279 }
1280
1281 static inline int
1282 sk_sockets_allocated_read_positive(struct sock *sk)
1283 {
1284 struct proto *prot = sk->sk_prot;
1285
1286 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1287 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1288
1289 return percpu_counter_read_positive(prot->sockets_allocated);
1290 }
1291
1292 static inline int
1293 proto_sockets_allocated_sum_positive(struct proto *prot)
1294 {
1295 return percpu_counter_sum_positive(prot->sockets_allocated);
1296 }
1297
1298 static inline long
1299 proto_memory_allocated(struct proto *prot)
1300 {
1301 return atomic_long_read(prot->memory_allocated);
1302 }
1303
1304 static inline bool
1305 proto_memory_pressure(struct proto *prot)
1306 {
1307 if (!prot->memory_pressure)
1308 return false;
1309 return !!*prot->memory_pressure;
1310 }
1311
1312
1313 #ifdef CONFIG_PROC_FS
1314 /* Called with local bh disabled */
1315 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1316 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1317 #else
1318 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1319 int inc)
1320 {
1321 }
1322 #endif
1323
1324
1325 /* With per-bucket locks this operation is not-atomic, so that
1326 * this version is not worse.
1327 */
1328 static inline void __sk_prot_rehash(struct sock *sk)
1329 {
1330 sk->sk_prot->unhash(sk);
1331 sk->sk_prot->hash(sk);
1332 }
1333
1334 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1335
1336 /* About 10 seconds */
1337 #define SOCK_DESTROY_TIME (10*HZ)
1338
1339 /* Sockets 0-1023 can't be bound to unless you are superuser */
1340 #define PROT_SOCK 1024
1341
1342 #define SHUTDOWN_MASK 3
1343 #define RCV_SHUTDOWN 1
1344 #define SEND_SHUTDOWN 2
1345
1346 #define SOCK_SNDBUF_LOCK 1
1347 #define SOCK_RCVBUF_LOCK 2
1348 #define SOCK_BINDADDR_LOCK 4
1349 #define SOCK_BINDPORT_LOCK 8
1350
1351 struct socket_alloc {
1352 struct socket socket;
1353 struct inode vfs_inode;
1354 };
1355
1356 static inline struct socket *SOCKET_I(struct inode *inode)
1357 {
1358 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1359 }
1360
1361 static inline struct inode *SOCK_INODE(struct socket *socket)
1362 {
1363 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1364 }
1365
1366 /*
1367 * Functions for memory accounting
1368 */
1369 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1370 void __sk_mem_reclaim(struct sock *sk, int amount);
1371
1372 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1373 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1374 #define SK_MEM_SEND 0
1375 #define SK_MEM_RECV 1
1376
1377 static inline int sk_mem_pages(int amt)
1378 {
1379 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1380 }
1381
1382 static inline bool sk_has_account(struct sock *sk)
1383 {
1384 /* return true if protocol supports memory accounting */
1385 return !!sk->sk_prot->memory_allocated;
1386 }
1387
1388 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1389 {
1390 if (!sk_has_account(sk))
1391 return true;
1392 return size <= sk->sk_forward_alloc ||
1393 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1394 }
1395
1396 static inline bool
1397 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1398 {
1399 if (!sk_has_account(sk))
1400 return true;
1401 return size<= sk->sk_forward_alloc ||
1402 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1403 skb_pfmemalloc(skb);
1404 }
1405
1406 static inline void sk_mem_reclaim(struct sock *sk)
1407 {
1408 if (!sk_has_account(sk))
1409 return;
1410 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1411 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1412 }
1413
1414 static inline void sk_mem_reclaim_partial(struct sock *sk)
1415 {
1416 if (!sk_has_account(sk))
1417 return;
1418 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1419 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1420 }
1421
1422 static inline void sk_mem_charge(struct sock *sk, int size)
1423 {
1424 if (!sk_has_account(sk))
1425 return;
1426 sk->sk_forward_alloc -= size;
1427 }
1428
1429 static inline void sk_mem_uncharge(struct sock *sk, int size)
1430 {
1431 if (!sk_has_account(sk))
1432 return;
1433 sk->sk_forward_alloc += size;
1434 }
1435
1436 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1437 {
1438 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1439 sk->sk_wmem_queued -= skb->truesize;
1440 sk_mem_uncharge(sk, skb->truesize);
1441 __kfree_skb(skb);
1442 }
1443
1444 /* Used by processes to "lock" a socket state, so that
1445 * interrupts and bottom half handlers won't change it
1446 * from under us. It essentially blocks any incoming
1447 * packets, so that we won't get any new data or any
1448 * packets that change the state of the socket.
1449 *
1450 * While locked, BH processing will add new packets to
1451 * the backlog queue. This queue is processed by the
1452 * owner of the socket lock right before it is released.
1453 *
1454 * Since ~2.3.5 it is also exclusive sleep lock serializing
1455 * accesses from user process context.
1456 */
1457 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1458
1459 static inline void sock_release_ownership(struct sock *sk)
1460 {
1461 sk->sk_lock.owned = 0;
1462 }
1463
1464 /*
1465 * Macro so as to not evaluate some arguments when
1466 * lockdep is not enabled.
1467 *
1468 * Mark both the sk_lock and the sk_lock.slock as a
1469 * per-address-family lock class.
1470 */
1471 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1472 do { \
1473 sk->sk_lock.owned = 0; \
1474 init_waitqueue_head(&sk->sk_lock.wq); \
1475 spin_lock_init(&(sk)->sk_lock.slock); \
1476 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1477 sizeof((sk)->sk_lock)); \
1478 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1479 (skey), (sname)); \
1480 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1481 } while (0)
1482
1483 void lock_sock_nested(struct sock *sk, int subclass);
1484
1485 static inline void lock_sock(struct sock *sk)
1486 {
1487 lock_sock_nested(sk, 0);
1488 }
1489
1490 void release_sock(struct sock *sk);
1491
1492 /* BH context may only use the following locking interface. */
1493 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1494 #define bh_lock_sock_nested(__sk) \
1495 spin_lock_nested(&((__sk)->sk_lock.slock), \
1496 SINGLE_DEPTH_NESTING)
1497 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1498
1499 bool lock_sock_fast(struct sock *sk);
1500 /**
1501 * unlock_sock_fast - complement of lock_sock_fast
1502 * @sk: socket
1503 * @slow: slow mode
1504 *
1505 * fast unlock socket for user context.
1506 * If slow mode is on, we call regular release_sock()
1507 */
1508 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1509 {
1510 if (slow)
1511 release_sock(sk);
1512 else
1513 spin_unlock_bh(&sk->sk_lock.slock);
1514 }
1515
1516
1517 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1518 struct proto *prot, int kern);
1519 void sk_free(struct sock *sk);
1520 void sk_destruct(struct sock *sk);
1521 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1522
1523 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1524 gfp_t priority);
1525 void sock_wfree(struct sk_buff *skb);
1526 void skb_orphan_partial(struct sk_buff *skb);
1527 void sock_rfree(struct sk_buff *skb);
1528 void sock_efree(struct sk_buff *skb);
1529 #ifdef CONFIG_INET
1530 void sock_edemux(struct sk_buff *skb);
1531 #else
1532 #define sock_edemux(skb) sock_efree(skb)
1533 #endif
1534
1535 int sock_setsockopt(struct socket *sock, int level, int op,
1536 char __user *optval, unsigned int optlen);
1537
1538 int sock_getsockopt(struct socket *sock, int level, int op,
1539 char __user *optval, int __user *optlen);
1540 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1541 int noblock, int *errcode);
1542 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1543 unsigned long data_len, int noblock,
1544 int *errcode, int max_page_order);
1545 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1546 void sock_kfree_s(struct sock *sk, void *mem, int size);
1547 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1548 void sk_send_sigurg(struct sock *sk);
1549
1550 /*
1551 * Functions to fill in entries in struct proto_ops when a protocol
1552 * does not implement a particular function.
1553 */
1554 int sock_no_bind(struct socket *, struct sockaddr *, int);
1555 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1556 int sock_no_socketpair(struct socket *, struct socket *);
1557 int sock_no_accept(struct socket *, struct socket *, int);
1558 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1559 unsigned int sock_no_poll(struct file *, struct socket *,
1560 struct poll_table_struct *);
1561 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1562 int sock_no_listen(struct socket *, int);
1563 int sock_no_shutdown(struct socket *, int);
1564 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1565 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1566 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1567 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1568 int sock_no_mmap(struct file *file, struct socket *sock,
1569 struct vm_area_struct *vma);
1570 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1571 size_t size, int flags);
1572
1573 /*
1574 * Functions to fill in entries in struct proto_ops when a protocol
1575 * uses the inet style.
1576 */
1577 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1578 char __user *optval, int __user *optlen);
1579 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1580 int flags);
1581 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1582 char __user *optval, unsigned int optlen);
1583 int compat_sock_common_getsockopt(struct socket *sock, int level,
1584 int optname, char __user *optval, int __user *optlen);
1585 int compat_sock_common_setsockopt(struct socket *sock, int level,
1586 int optname, char __user *optval, unsigned int optlen);
1587
1588 void sk_common_release(struct sock *sk);
1589
1590 /*
1591 * Default socket callbacks and setup code
1592 */
1593
1594 /* Initialise core socket variables */
1595 void sock_init_data(struct socket *sock, struct sock *sk);
1596
1597 /*
1598 * Socket reference counting postulates.
1599 *
1600 * * Each user of socket SHOULD hold a reference count.
1601 * * Each access point to socket (an hash table bucket, reference from a list,
1602 * running timer, skb in flight MUST hold a reference count.
1603 * * When reference count hits 0, it means it will never increase back.
1604 * * When reference count hits 0, it means that no references from
1605 * outside exist to this socket and current process on current CPU
1606 * is last user and may/should destroy this socket.
1607 * * sk_free is called from any context: process, BH, IRQ. When
1608 * it is called, socket has no references from outside -> sk_free
1609 * may release descendant resources allocated by the socket, but
1610 * to the time when it is called, socket is NOT referenced by any
1611 * hash tables, lists etc.
1612 * * Packets, delivered from outside (from network or from another process)
1613 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1614 * when they sit in queue. Otherwise, packets will leak to hole, when
1615 * socket is looked up by one cpu and unhasing is made by another CPU.
1616 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1617 * (leak to backlog). Packet socket does all the processing inside
1618 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1619 * use separate SMP lock, so that they are prone too.
1620 */
1621
1622 /* Ungrab socket and destroy it, if it was the last reference. */
1623 static inline void sock_put(struct sock *sk)
1624 {
1625 if (atomic_dec_and_test(&sk->sk_refcnt))
1626 sk_free(sk);
1627 }
1628 /* Generic version of sock_put(), dealing with all sockets
1629 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1630 */
1631 void sock_gen_put(struct sock *sk);
1632
1633 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1634
1635 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1636 {
1637 sk->sk_tx_queue_mapping = tx_queue;
1638 }
1639
1640 static inline void sk_tx_queue_clear(struct sock *sk)
1641 {
1642 sk->sk_tx_queue_mapping = -1;
1643 }
1644
1645 static inline int sk_tx_queue_get(const struct sock *sk)
1646 {
1647 return sk ? sk->sk_tx_queue_mapping : -1;
1648 }
1649
1650 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1651 {
1652 sk_tx_queue_clear(sk);
1653 sk->sk_socket = sock;
1654 }
1655
1656 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1657 {
1658 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1659 return &rcu_dereference_raw(sk->sk_wq)->wait;
1660 }
1661 /* Detach socket from process context.
1662 * Announce socket dead, detach it from wait queue and inode.
1663 * Note that parent inode held reference count on this struct sock,
1664 * we do not release it in this function, because protocol
1665 * probably wants some additional cleanups or even continuing
1666 * to work with this socket (TCP).
1667 */
1668 static inline void sock_orphan(struct sock *sk)
1669 {
1670 write_lock_bh(&sk->sk_callback_lock);
1671 sock_set_flag(sk, SOCK_DEAD);
1672 sk_set_socket(sk, NULL);
1673 sk->sk_wq = NULL;
1674 write_unlock_bh(&sk->sk_callback_lock);
1675 }
1676
1677 static inline void sock_graft(struct sock *sk, struct socket *parent)
1678 {
1679 write_lock_bh(&sk->sk_callback_lock);
1680 sk->sk_wq = parent->wq;
1681 parent->sk = sk;
1682 sk_set_socket(sk, parent);
1683 security_sock_graft(sk, parent);
1684 write_unlock_bh(&sk->sk_callback_lock);
1685 }
1686
1687 kuid_t sock_i_uid(struct sock *sk);
1688 unsigned long sock_i_ino(struct sock *sk);
1689
1690 static inline void sk_set_txhash(struct sock *sk)
1691 {
1692 sk->sk_txhash = prandom_u32();
1693
1694 if (unlikely(!sk->sk_txhash))
1695 sk->sk_txhash = 1;
1696 }
1697
1698 static inline void sk_rethink_txhash(struct sock *sk)
1699 {
1700 if (sk->sk_txhash)
1701 sk_set_txhash(sk);
1702 }
1703
1704 static inline struct dst_entry *
1705 __sk_dst_get(struct sock *sk)
1706 {
1707 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1708 lockdep_is_held(&sk->sk_lock.slock));
1709 }
1710
1711 static inline struct dst_entry *
1712 sk_dst_get(struct sock *sk)
1713 {
1714 struct dst_entry *dst;
1715
1716 rcu_read_lock();
1717 dst = rcu_dereference(sk->sk_dst_cache);
1718 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1719 dst = NULL;
1720 rcu_read_unlock();
1721 return dst;
1722 }
1723
1724 static inline void dst_negative_advice(struct sock *sk)
1725 {
1726 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1727
1728 sk_rethink_txhash(sk);
1729
1730 if (dst && dst->ops->negative_advice) {
1731 ndst = dst->ops->negative_advice(dst);
1732
1733 if (ndst != dst) {
1734 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1735 sk_tx_queue_clear(sk);
1736 }
1737 }
1738 }
1739
1740 static inline void
1741 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1742 {
1743 struct dst_entry *old_dst;
1744
1745 sk_tx_queue_clear(sk);
1746 /*
1747 * This can be called while sk is owned by the caller only,
1748 * with no state that can be checked in a rcu_dereference_check() cond
1749 */
1750 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1751 rcu_assign_pointer(sk->sk_dst_cache, dst);
1752 dst_release(old_dst);
1753 }
1754
1755 static inline void
1756 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1757 {
1758 struct dst_entry *old_dst;
1759
1760 sk_tx_queue_clear(sk);
1761 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1762 dst_release(old_dst);
1763 }
1764
1765 static inline void
1766 __sk_dst_reset(struct sock *sk)
1767 {
1768 __sk_dst_set(sk, NULL);
1769 }
1770
1771 static inline void
1772 sk_dst_reset(struct sock *sk)
1773 {
1774 sk_dst_set(sk, NULL);
1775 }
1776
1777 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1778
1779 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1780
1781 bool sk_mc_loop(struct sock *sk);
1782
1783 static inline bool sk_can_gso(const struct sock *sk)
1784 {
1785 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1786 }
1787
1788 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1789
1790 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1791 {
1792 sk->sk_route_nocaps |= flags;
1793 sk->sk_route_caps &= ~flags;
1794 }
1795
1796 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1797 struct iov_iter *from, char *to,
1798 int copy, int offset)
1799 {
1800 if (skb->ip_summed == CHECKSUM_NONE) {
1801 __wsum csum = 0;
1802 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1803 return -EFAULT;
1804 skb->csum = csum_block_add(skb->csum, csum, offset);
1805 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1806 if (copy_from_iter_nocache(to, copy, from) != copy)
1807 return -EFAULT;
1808 } else if (copy_from_iter(to, copy, from) != copy)
1809 return -EFAULT;
1810
1811 return 0;
1812 }
1813
1814 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1815 struct iov_iter *from, int copy)
1816 {
1817 int err, offset = skb->len;
1818
1819 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1820 copy, offset);
1821 if (err)
1822 __skb_trim(skb, offset);
1823
1824 return err;
1825 }
1826
1827 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1828 struct sk_buff *skb,
1829 struct page *page,
1830 int off, int copy)
1831 {
1832 int err;
1833
1834 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1835 copy, skb->len);
1836 if (err)
1837 return err;
1838
1839 skb->len += copy;
1840 skb->data_len += copy;
1841 skb->truesize += copy;
1842 sk->sk_wmem_queued += copy;
1843 sk_mem_charge(sk, copy);
1844 return 0;
1845 }
1846
1847 /**
1848 * sk_wmem_alloc_get - returns write allocations
1849 * @sk: socket
1850 *
1851 * Returns sk_wmem_alloc minus initial offset of one
1852 */
1853 static inline int sk_wmem_alloc_get(const struct sock *sk)
1854 {
1855 return atomic_read(&sk->sk_wmem_alloc) - 1;
1856 }
1857
1858 /**
1859 * sk_rmem_alloc_get - returns read allocations
1860 * @sk: socket
1861 *
1862 * Returns sk_rmem_alloc
1863 */
1864 static inline int sk_rmem_alloc_get(const struct sock *sk)
1865 {
1866 return atomic_read(&sk->sk_rmem_alloc);
1867 }
1868
1869 /**
1870 * sk_has_allocations - check if allocations are outstanding
1871 * @sk: socket
1872 *
1873 * Returns true if socket has write or read allocations
1874 */
1875 static inline bool sk_has_allocations(const struct sock *sk)
1876 {
1877 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1878 }
1879
1880 /**
1881 * wq_has_sleeper - check if there are any waiting processes
1882 * @wq: struct socket_wq
1883 *
1884 * Returns true if socket_wq has waiting processes
1885 *
1886 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1887 * barrier call. They were added due to the race found within the tcp code.
1888 *
1889 * Consider following tcp code paths:
1890 *
1891 * CPU1 CPU2
1892 *
1893 * sys_select receive packet
1894 * ... ...
1895 * __add_wait_queue update tp->rcv_nxt
1896 * ... ...
1897 * tp->rcv_nxt check sock_def_readable
1898 * ... {
1899 * schedule rcu_read_lock();
1900 * wq = rcu_dereference(sk->sk_wq);
1901 * if (wq && waitqueue_active(&wq->wait))
1902 * wake_up_interruptible(&wq->wait)
1903 * ...
1904 * }
1905 *
1906 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1907 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1908 * could then endup calling schedule and sleep forever if there are no more
1909 * data on the socket.
1910 *
1911 */
1912 static inline bool wq_has_sleeper(struct socket_wq *wq)
1913 {
1914 /* We need to be sure we are in sync with the
1915 * add_wait_queue modifications to the wait queue.
1916 *
1917 * This memory barrier is paired in the sock_poll_wait.
1918 */
1919 smp_mb();
1920 return wq && waitqueue_active(&wq->wait);
1921 }
1922
1923 /**
1924 * sock_poll_wait - place memory barrier behind the poll_wait call.
1925 * @filp: file
1926 * @wait_address: socket wait queue
1927 * @p: poll_table
1928 *
1929 * See the comments in the wq_has_sleeper function.
1930 */
1931 static inline void sock_poll_wait(struct file *filp,
1932 wait_queue_head_t *wait_address, poll_table *p)
1933 {
1934 if (!poll_does_not_wait(p) && wait_address) {
1935 poll_wait(filp, wait_address, p);
1936 /* We need to be sure we are in sync with the
1937 * socket flags modification.
1938 *
1939 * This memory barrier is paired in the wq_has_sleeper.
1940 */
1941 smp_mb();
1942 }
1943 }
1944
1945 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1946 {
1947 if (sk->sk_txhash) {
1948 skb->l4_hash = 1;
1949 skb->hash = sk->sk_txhash;
1950 }
1951 }
1952
1953 /*
1954 * Queue a received datagram if it will fit. Stream and sequenced
1955 * protocols can't normally use this as they need to fit buffers in
1956 * and play with them.
1957 *
1958 * Inlined as it's very short and called for pretty much every
1959 * packet ever received.
1960 */
1961
1962 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1963 {
1964 skb_orphan(skb);
1965 skb->sk = sk;
1966 skb->destructor = sock_wfree;
1967 skb_set_hash_from_sk(skb, sk);
1968 /*
1969 * We used to take a refcount on sk, but following operation
1970 * is enough to guarantee sk_free() wont free this sock until
1971 * all in-flight packets are completed
1972 */
1973 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1974 }
1975
1976 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1977 {
1978 skb_orphan(skb);
1979 skb->sk = sk;
1980 skb->destructor = sock_rfree;
1981 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1982 sk_mem_charge(sk, skb->truesize);
1983 }
1984
1985 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1986 unsigned long expires);
1987
1988 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1989
1990 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1991
1992 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1993 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1994
1995 /*
1996 * Recover an error report and clear atomically
1997 */
1998
1999 static inline int sock_error(struct sock *sk)
2000 {
2001 int err;
2002 if (likely(!sk->sk_err))
2003 return 0;
2004 err = xchg(&sk->sk_err, 0);
2005 return -err;
2006 }
2007
2008 static inline unsigned long sock_wspace(struct sock *sk)
2009 {
2010 int amt = 0;
2011
2012 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2013 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2014 if (amt < 0)
2015 amt = 0;
2016 }
2017 return amt;
2018 }
2019
2020 static inline void sk_wake_async(struct sock *sk, int how, int band)
2021 {
2022 if (sock_flag(sk, SOCK_FASYNC))
2023 sock_wake_async(sk->sk_socket, how, band);
2024 }
2025
2026 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2027 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2028 * Note: for send buffers, TCP works better if we can build two skbs at
2029 * minimum.
2030 */
2031 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2032
2033 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2034 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2035
2036 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2037 {
2038 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2039 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2040 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2041 }
2042 }
2043
2044 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2045 bool force_schedule);
2046
2047 /**
2048 * sk_page_frag - return an appropriate page_frag
2049 * @sk: socket
2050 *
2051 * If socket allocation mode allows current thread to sleep, it means its
2052 * safe to use the per task page_frag instead of the per socket one.
2053 */
2054 static inline struct page_frag *sk_page_frag(struct sock *sk)
2055 {
2056 if (sk->sk_allocation & __GFP_WAIT)
2057 return &current->task_frag;
2058
2059 return &sk->sk_frag;
2060 }
2061
2062 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2063
2064 /*
2065 * Default write policy as shown to user space via poll/select/SIGIO
2066 */
2067 static inline bool sock_writeable(const struct sock *sk)
2068 {
2069 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2070 }
2071
2072 static inline gfp_t gfp_any(void)
2073 {
2074 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2075 }
2076
2077 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2078 {
2079 return noblock ? 0 : sk->sk_rcvtimeo;
2080 }
2081
2082 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2083 {
2084 return noblock ? 0 : sk->sk_sndtimeo;
2085 }
2086
2087 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2088 {
2089 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2090 }
2091
2092 /* Alas, with timeout socket operations are not restartable.
2093 * Compare this to poll().
2094 */
2095 static inline int sock_intr_errno(long timeo)
2096 {
2097 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2098 }
2099
2100 struct sock_skb_cb {
2101 u32 dropcount;
2102 };
2103
2104 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2105 * using skb->cb[] would keep using it directly and utilize its
2106 * alignement guarantee.
2107 */
2108 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2109 sizeof(struct sock_skb_cb)))
2110
2111 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2112 SOCK_SKB_CB_OFFSET))
2113
2114 #define sock_skb_cb_check_size(size) \
2115 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2116
2117 static inline void
2118 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2119 {
2120 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2121 }
2122
2123 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2124 struct sk_buff *skb);
2125 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2126 struct sk_buff *skb);
2127
2128 static inline void
2129 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2130 {
2131 ktime_t kt = skb->tstamp;
2132 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2133
2134 /*
2135 * generate control messages if
2136 * - receive time stamping in software requested
2137 * - software time stamp available and wanted
2138 * - hardware time stamps available and wanted
2139 */
2140 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2141 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2142 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2143 (hwtstamps->hwtstamp.tv64 &&
2144 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2145 __sock_recv_timestamp(msg, sk, skb);
2146 else
2147 sk->sk_stamp = kt;
2148
2149 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2150 __sock_recv_wifi_status(msg, sk, skb);
2151 }
2152
2153 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2154 struct sk_buff *skb);
2155
2156 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2157 struct sk_buff *skb)
2158 {
2159 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2160 (1UL << SOCK_RCVTSTAMP))
2161 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2162 SOF_TIMESTAMPING_RAW_HARDWARE)
2163
2164 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2165 __sock_recv_ts_and_drops(msg, sk, skb);
2166 else
2167 sk->sk_stamp = skb->tstamp;
2168 }
2169
2170 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2171
2172 /**
2173 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2174 * @sk: socket sending this packet
2175 * @tx_flags: completed with instructions for time stamping
2176 *
2177 * Note : callers should take care of initial *tx_flags value (usually 0)
2178 */
2179 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2180 {
2181 if (unlikely(sk->sk_tsflags))
2182 __sock_tx_timestamp(sk, tx_flags);
2183 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2184 *tx_flags |= SKBTX_WIFI_STATUS;
2185 }
2186
2187 /**
2188 * sk_eat_skb - Release a skb if it is no longer needed
2189 * @sk: socket to eat this skb from
2190 * @skb: socket buffer to eat
2191 *
2192 * This routine must be called with interrupts disabled or with the socket
2193 * locked so that the sk_buff queue operation is ok.
2194 */
2195 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2196 {
2197 __skb_unlink(skb, &sk->sk_receive_queue);
2198 __kfree_skb(skb);
2199 }
2200
2201 static inline
2202 struct net *sock_net(const struct sock *sk)
2203 {
2204 return read_pnet(&sk->sk_net);
2205 }
2206
2207 static inline
2208 void sock_net_set(struct sock *sk, struct net *net)
2209 {
2210 write_pnet(&sk->sk_net, net);
2211 }
2212
2213 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2214 {
2215 if (skb->sk) {
2216 struct sock *sk = skb->sk;
2217
2218 skb->destructor = NULL;
2219 skb->sk = NULL;
2220 return sk;
2221 }
2222 return NULL;
2223 }
2224
2225 /* This helper checks if a socket is a full socket,
2226 * ie _not_ a timewait or request socket.
2227 */
2228 static inline bool sk_fullsock(const struct sock *sk)
2229 {
2230 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2231 }
2232
2233 void sock_enable_timestamp(struct sock *sk, int flag);
2234 int sock_get_timestamp(struct sock *, struct timeval __user *);
2235 int sock_get_timestampns(struct sock *, struct timespec __user *);
2236 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2237 int type);
2238
2239 bool sk_ns_capable(const struct sock *sk,
2240 struct user_namespace *user_ns, int cap);
2241 bool sk_capable(const struct sock *sk, int cap);
2242 bool sk_net_capable(const struct sock *sk, int cap);
2243
2244 extern __u32 sysctl_wmem_max;
2245 extern __u32 sysctl_rmem_max;
2246
2247 extern int sysctl_tstamp_allow_data;
2248 extern int sysctl_optmem_max;
2249
2250 extern __u32 sysctl_wmem_default;
2251 extern __u32 sysctl_rmem_default;
2252
2253 #endif /* _SOCK_H */
This page took 0.078573 seconds and 5 git commands to generate.