net, rds, Replace xlist in net/rds/xlist.h with llist
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/module.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57
58 #include <linux/filter.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61
62 #include <linux/atomic.h>
63 #include <net/dst.h>
64 #include <net/checksum.h>
65
66 /*
67 * This structure really needs to be cleaned up.
68 * Most of it is for TCP, and not used by any of
69 * the other protocols.
70 */
71
72 /* Define this to get the SOCK_DBG debugging facility. */
73 #define SOCK_DEBUGGING
74 #ifdef SOCK_DEBUGGING
75 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
76 printk(KERN_DEBUG msg); } while (0)
77 #else
78 /* Validate arguments and do nothing */
79 static inline void __attribute__ ((format (printf, 2, 3)))
80 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
81 {
82 }
83 #endif
84
85 /* This is the per-socket lock. The spinlock provides a synchronization
86 * between user contexts and software interrupt processing, whereas the
87 * mini-semaphore synchronizes multiple users amongst themselves.
88 */
89 typedef struct {
90 spinlock_t slock;
91 int owned;
92 wait_queue_head_t wq;
93 /*
94 * We express the mutex-alike socket_lock semantics
95 * to the lock validator by explicitly managing
96 * the slock as a lock variant (in addition to
97 * the slock itself):
98 */
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 struct lockdep_map dep_map;
101 #endif
102 } socket_lock_t;
103
104 struct sock;
105 struct proto;
106 struct net;
107
108 /**
109 * struct sock_common - minimal network layer representation of sockets
110 * @skc_daddr: Foreign IPv4 addr
111 * @skc_rcv_saddr: Bound local IPv4 addr
112 * @skc_hash: hash value used with various protocol lookup tables
113 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
114 * @skc_family: network address family
115 * @skc_state: Connection state
116 * @skc_reuse: %SO_REUSEADDR setting
117 * @skc_bound_dev_if: bound device index if != 0
118 * @skc_bind_node: bind hash linkage for various protocol lookup tables
119 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
120 * @skc_prot: protocol handlers inside a network family
121 * @skc_net: reference to the network namespace of this socket
122 * @skc_node: main hash linkage for various protocol lookup tables
123 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
124 * @skc_tx_queue_mapping: tx queue number for this connection
125 * @skc_refcnt: reference count
126 *
127 * This is the minimal network layer representation of sockets, the header
128 * for struct sock and struct inet_timewait_sock.
129 */
130 struct sock_common {
131 /* skc_daddr and skc_rcv_saddr must be grouped :
132 * cf INET_MATCH() and INET_TW_MATCH()
133 */
134 __be32 skc_daddr;
135 __be32 skc_rcv_saddr;
136
137 union {
138 unsigned int skc_hash;
139 __u16 skc_u16hashes[2];
140 };
141 unsigned short skc_family;
142 volatile unsigned char skc_state;
143 unsigned char skc_reuse;
144 int skc_bound_dev_if;
145 union {
146 struct hlist_node skc_bind_node;
147 struct hlist_nulls_node skc_portaddr_node;
148 };
149 struct proto *skc_prot;
150 #ifdef CONFIG_NET_NS
151 struct net *skc_net;
152 #endif
153 /*
154 * fields between dontcopy_begin/dontcopy_end
155 * are not copied in sock_copy()
156 */
157 /* private: */
158 int skc_dontcopy_begin[0];
159 /* public: */
160 union {
161 struct hlist_node skc_node;
162 struct hlist_nulls_node skc_nulls_node;
163 };
164 int skc_tx_queue_mapping;
165 atomic_t skc_refcnt;
166 /* private: */
167 int skc_dontcopy_end[0];
168 /* public: */
169 };
170
171 /**
172 * struct sock - network layer representation of sockets
173 * @__sk_common: shared layout with inet_timewait_sock
174 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
175 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
176 * @sk_lock: synchronizer
177 * @sk_rcvbuf: size of receive buffer in bytes
178 * @sk_wq: sock wait queue and async head
179 * @sk_dst_cache: destination cache
180 * @sk_dst_lock: destination cache lock
181 * @sk_policy: flow policy
182 * @sk_receive_queue: incoming packets
183 * @sk_wmem_alloc: transmit queue bytes committed
184 * @sk_write_queue: Packet sending queue
185 * @sk_async_wait_queue: DMA copied packets
186 * @sk_omem_alloc: "o" is "option" or "other"
187 * @sk_wmem_queued: persistent queue size
188 * @sk_forward_alloc: space allocated forward
189 * @sk_allocation: allocation mode
190 * @sk_sndbuf: size of send buffer in bytes
191 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
192 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
193 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
194 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
195 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
196 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
197 * @sk_gso_max_size: Maximum GSO segment size to build
198 * @sk_lingertime: %SO_LINGER l_linger setting
199 * @sk_backlog: always used with the per-socket spinlock held
200 * @sk_callback_lock: used with the callbacks in the end of this struct
201 * @sk_error_queue: rarely used
202 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
203 * IPV6_ADDRFORM for instance)
204 * @sk_err: last error
205 * @sk_err_soft: errors that don't cause failure but are the cause of a
206 * persistent failure not just 'timed out'
207 * @sk_drops: raw/udp drops counter
208 * @sk_ack_backlog: current listen backlog
209 * @sk_max_ack_backlog: listen backlog set in listen()
210 * @sk_priority: %SO_PRIORITY setting
211 * @sk_type: socket type (%SOCK_STREAM, etc)
212 * @sk_protocol: which protocol this socket belongs in this network family
213 * @sk_peer_pid: &struct pid for this socket's peer
214 * @sk_peer_cred: %SO_PEERCRED setting
215 * @sk_rcvlowat: %SO_RCVLOWAT setting
216 * @sk_rcvtimeo: %SO_RCVTIMEO setting
217 * @sk_sndtimeo: %SO_SNDTIMEO setting
218 * @sk_rxhash: flow hash received from netif layer
219 * @sk_filter: socket filtering instructions
220 * @sk_protinfo: private area, net family specific, when not using slab
221 * @sk_timer: sock cleanup timer
222 * @sk_stamp: time stamp of last packet received
223 * @sk_socket: Identd and reporting IO signals
224 * @sk_user_data: RPC layer private data
225 * @sk_sndmsg_page: cached page for sendmsg
226 * @sk_sndmsg_off: cached offset for sendmsg
227 * @sk_send_head: front of stuff to transmit
228 * @sk_security: used by security modules
229 * @sk_mark: generic packet mark
230 * @sk_classid: this socket's cgroup classid
231 * @sk_write_pending: a write to stream socket waits to start
232 * @sk_state_change: callback to indicate change in the state of the sock
233 * @sk_data_ready: callback to indicate there is data to be processed
234 * @sk_write_space: callback to indicate there is bf sending space available
235 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
236 * @sk_backlog_rcv: callback to process the backlog
237 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
238 */
239 struct sock {
240 /*
241 * Now struct inet_timewait_sock also uses sock_common, so please just
242 * don't add nothing before this first member (__sk_common) --acme
243 */
244 struct sock_common __sk_common;
245 #define sk_node __sk_common.skc_node
246 #define sk_nulls_node __sk_common.skc_nulls_node
247 #define sk_refcnt __sk_common.skc_refcnt
248 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
249
250 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
251 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
252 #define sk_hash __sk_common.skc_hash
253 #define sk_family __sk_common.skc_family
254 #define sk_state __sk_common.skc_state
255 #define sk_reuse __sk_common.skc_reuse
256 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
257 #define sk_bind_node __sk_common.skc_bind_node
258 #define sk_prot __sk_common.skc_prot
259 #define sk_net __sk_common.skc_net
260 socket_lock_t sk_lock;
261 struct sk_buff_head sk_receive_queue;
262 /*
263 * The backlog queue is special, it is always used with
264 * the per-socket spinlock held and requires low latency
265 * access. Therefore we special case it's implementation.
266 * Note : rmem_alloc is in this structure to fill a hole
267 * on 64bit arches, not because its logically part of
268 * backlog.
269 */
270 struct {
271 atomic_t rmem_alloc;
272 int len;
273 struct sk_buff *head;
274 struct sk_buff *tail;
275 } sk_backlog;
276 #define sk_rmem_alloc sk_backlog.rmem_alloc
277 int sk_forward_alloc;
278 #ifdef CONFIG_RPS
279 __u32 sk_rxhash;
280 #endif
281 atomic_t sk_drops;
282 int sk_rcvbuf;
283
284 struct sk_filter __rcu *sk_filter;
285 struct socket_wq __rcu *sk_wq;
286
287 #ifdef CONFIG_NET_DMA
288 struct sk_buff_head sk_async_wait_queue;
289 #endif
290
291 #ifdef CONFIG_XFRM
292 struct xfrm_policy *sk_policy[2];
293 #endif
294 unsigned long sk_flags;
295 struct dst_entry *sk_dst_cache;
296 spinlock_t sk_dst_lock;
297 atomic_t sk_wmem_alloc;
298 atomic_t sk_omem_alloc;
299 int sk_sndbuf;
300 struct sk_buff_head sk_write_queue;
301 kmemcheck_bitfield_begin(flags);
302 unsigned int sk_shutdown : 2,
303 sk_no_check : 2,
304 sk_userlocks : 4,
305 sk_protocol : 8,
306 sk_type : 16;
307 kmemcheck_bitfield_end(flags);
308 int sk_wmem_queued;
309 gfp_t sk_allocation;
310 int sk_route_caps;
311 int sk_route_nocaps;
312 int sk_gso_type;
313 unsigned int sk_gso_max_size;
314 int sk_rcvlowat;
315 unsigned long sk_lingertime;
316 struct sk_buff_head sk_error_queue;
317 struct proto *sk_prot_creator;
318 rwlock_t sk_callback_lock;
319 int sk_err,
320 sk_err_soft;
321 unsigned short sk_ack_backlog;
322 unsigned short sk_max_ack_backlog;
323 __u32 sk_priority;
324 struct pid *sk_peer_pid;
325 const struct cred *sk_peer_cred;
326 long sk_rcvtimeo;
327 long sk_sndtimeo;
328 void *sk_protinfo;
329 struct timer_list sk_timer;
330 ktime_t sk_stamp;
331 struct socket *sk_socket;
332 void *sk_user_data;
333 struct page *sk_sndmsg_page;
334 struct sk_buff *sk_send_head;
335 __u32 sk_sndmsg_off;
336 int sk_write_pending;
337 #ifdef CONFIG_SECURITY
338 void *sk_security;
339 #endif
340 __u32 sk_mark;
341 u32 sk_classid;
342 void (*sk_state_change)(struct sock *sk);
343 void (*sk_data_ready)(struct sock *sk, int bytes);
344 void (*sk_write_space)(struct sock *sk);
345 void (*sk_error_report)(struct sock *sk);
346 int (*sk_backlog_rcv)(struct sock *sk,
347 struct sk_buff *skb);
348 void (*sk_destruct)(struct sock *sk);
349 };
350
351 /*
352 * Hashed lists helper routines
353 */
354 static inline struct sock *sk_entry(const struct hlist_node *node)
355 {
356 return hlist_entry(node, struct sock, sk_node);
357 }
358
359 static inline struct sock *__sk_head(const struct hlist_head *head)
360 {
361 return hlist_entry(head->first, struct sock, sk_node);
362 }
363
364 static inline struct sock *sk_head(const struct hlist_head *head)
365 {
366 return hlist_empty(head) ? NULL : __sk_head(head);
367 }
368
369 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
370 {
371 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
372 }
373
374 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
375 {
376 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
377 }
378
379 static inline struct sock *sk_next(const struct sock *sk)
380 {
381 return sk->sk_node.next ?
382 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
383 }
384
385 static inline struct sock *sk_nulls_next(const struct sock *sk)
386 {
387 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
388 hlist_nulls_entry(sk->sk_nulls_node.next,
389 struct sock, sk_nulls_node) :
390 NULL;
391 }
392
393 static inline int sk_unhashed(const struct sock *sk)
394 {
395 return hlist_unhashed(&sk->sk_node);
396 }
397
398 static inline int sk_hashed(const struct sock *sk)
399 {
400 return !sk_unhashed(sk);
401 }
402
403 static __inline__ void sk_node_init(struct hlist_node *node)
404 {
405 node->pprev = NULL;
406 }
407
408 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
409 {
410 node->pprev = NULL;
411 }
412
413 static __inline__ void __sk_del_node(struct sock *sk)
414 {
415 __hlist_del(&sk->sk_node);
416 }
417
418 /* NB: equivalent to hlist_del_init_rcu */
419 static __inline__ int __sk_del_node_init(struct sock *sk)
420 {
421 if (sk_hashed(sk)) {
422 __sk_del_node(sk);
423 sk_node_init(&sk->sk_node);
424 return 1;
425 }
426 return 0;
427 }
428
429 /* Grab socket reference count. This operation is valid only
430 when sk is ALREADY grabbed f.e. it is found in hash table
431 or a list and the lookup is made under lock preventing hash table
432 modifications.
433 */
434
435 static inline void sock_hold(struct sock *sk)
436 {
437 atomic_inc(&sk->sk_refcnt);
438 }
439
440 /* Ungrab socket in the context, which assumes that socket refcnt
441 cannot hit zero, f.e. it is true in context of any socketcall.
442 */
443 static inline void __sock_put(struct sock *sk)
444 {
445 atomic_dec(&sk->sk_refcnt);
446 }
447
448 static __inline__ int sk_del_node_init(struct sock *sk)
449 {
450 int rc = __sk_del_node_init(sk);
451
452 if (rc) {
453 /* paranoid for a while -acme */
454 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
455 __sock_put(sk);
456 }
457 return rc;
458 }
459 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
460
461 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
462 {
463 if (sk_hashed(sk)) {
464 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
465 return 1;
466 }
467 return 0;
468 }
469
470 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
471 {
472 int rc = __sk_nulls_del_node_init_rcu(sk);
473
474 if (rc) {
475 /* paranoid for a while -acme */
476 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
477 __sock_put(sk);
478 }
479 return rc;
480 }
481
482 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
483 {
484 hlist_add_head(&sk->sk_node, list);
485 }
486
487 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
488 {
489 sock_hold(sk);
490 __sk_add_node(sk, list);
491 }
492
493 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
494 {
495 sock_hold(sk);
496 hlist_add_head_rcu(&sk->sk_node, list);
497 }
498
499 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
500 {
501 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
502 }
503
504 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
505 {
506 sock_hold(sk);
507 __sk_nulls_add_node_rcu(sk, list);
508 }
509
510 static __inline__ void __sk_del_bind_node(struct sock *sk)
511 {
512 __hlist_del(&sk->sk_bind_node);
513 }
514
515 static __inline__ void sk_add_bind_node(struct sock *sk,
516 struct hlist_head *list)
517 {
518 hlist_add_head(&sk->sk_bind_node, list);
519 }
520
521 #define sk_for_each(__sk, node, list) \
522 hlist_for_each_entry(__sk, node, list, sk_node)
523 #define sk_for_each_rcu(__sk, node, list) \
524 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
525 #define sk_nulls_for_each(__sk, node, list) \
526 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
527 #define sk_nulls_for_each_rcu(__sk, node, list) \
528 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
529 #define sk_for_each_from(__sk, node) \
530 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
531 hlist_for_each_entry_from(__sk, node, sk_node)
532 #define sk_nulls_for_each_from(__sk, node) \
533 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
534 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
535 #define sk_for_each_safe(__sk, node, tmp, list) \
536 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
537 #define sk_for_each_bound(__sk, node, list) \
538 hlist_for_each_entry(__sk, node, list, sk_bind_node)
539
540 /* Sock flags */
541 enum sock_flags {
542 SOCK_DEAD,
543 SOCK_DONE,
544 SOCK_URGINLINE,
545 SOCK_KEEPOPEN,
546 SOCK_LINGER,
547 SOCK_DESTROY,
548 SOCK_BROADCAST,
549 SOCK_TIMESTAMP,
550 SOCK_ZAPPED,
551 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
552 SOCK_DBG, /* %SO_DEBUG setting */
553 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
554 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
555 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
556 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
557 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
558 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
559 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
560 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
561 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
562 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
563 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
564 SOCK_FASYNC, /* fasync() active */
565 SOCK_RXQ_OVFL,
566 SOCK_ZEROCOPY, /* buffers from userspace */
567 };
568
569 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
570 {
571 nsk->sk_flags = osk->sk_flags;
572 }
573
574 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
575 {
576 __set_bit(flag, &sk->sk_flags);
577 }
578
579 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
580 {
581 __clear_bit(flag, &sk->sk_flags);
582 }
583
584 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
585 {
586 return test_bit(flag, &sk->sk_flags);
587 }
588
589 static inline void sk_acceptq_removed(struct sock *sk)
590 {
591 sk->sk_ack_backlog--;
592 }
593
594 static inline void sk_acceptq_added(struct sock *sk)
595 {
596 sk->sk_ack_backlog++;
597 }
598
599 static inline int sk_acceptq_is_full(struct sock *sk)
600 {
601 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
602 }
603
604 /*
605 * Compute minimal free write space needed to queue new packets.
606 */
607 static inline int sk_stream_min_wspace(struct sock *sk)
608 {
609 return sk->sk_wmem_queued >> 1;
610 }
611
612 static inline int sk_stream_wspace(struct sock *sk)
613 {
614 return sk->sk_sndbuf - sk->sk_wmem_queued;
615 }
616
617 extern void sk_stream_write_space(struct sock *sk);
618
619 static inline int sk_stream_memory_free(struct sock *sk)
620 {
621 return sk->sk_wmem_queued < sk->sk_sndbuf;
622 }
623
624 /* OOB backlog add */
625 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
626 {
627 /* dont let skb dst not refcounted, we are going to leave rcu lock */
628 skb_dst_force(skb);
629
630 if (!sk->sk_backlog.tail)
631 sk->sk_backlog.head = skb;
632 else
633 sk->sk_backlog.tail->next = skb;
634
635 sk->sk_backlog.tail = skb;
636 skb->next = NULL;
637 }
638
639 /*
640 * Take into account size of receive queue and backlog queue
641 */
642 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
643 {
644 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
645
646 return qsize + skb->truesize > sk->sk_rcvbuf;
647 }
648
649 /* The per-socket spinlock must be held here. */
650 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
651 {
652 if (sk_rcvqueues_full(sk, skb))
653 return -ENOBUFS;
654
655 __sk_add_backlog(sk, skb);
656 sk->sk_backlog.len += skb->truesize;
657 return 0;
658 }
659
660 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
661 {
662 return sk->sk_backlog_rcv(sk, skb);
663 }
664
665 static inline void sock_rps_record_flow(const struct sock *sk)
666 {
667 #ifdef CONFIG_RPS
668 struct rps_sock_flow_table *sock_flow_table;
669
670 rcu_read_lock();
671 sock_flow_table = rcu_dereference(rps_sock_flow_table);
672 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
673 rcu_read_unlock();
674 #endif
675 }
676
677 static inline void sock_rps_reset_flow(const struct sock *sk)
678 {
679 #ifdef CONFIG_RPS
680 struct rps_sock_flow_table *sock_flow_table;
681
682 rcu_read_lock();
683 sock_flow_table = rcu_dereference(rps_sock_flow_table);
684 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
685 rcu_read_unlock();
686 #endif
687 }
688
689 static inline void sock_rps_save_rxhash(struct sock *sk,
690 const struct sk_buff *skb)
691 {
692 #ifdef CONFIG_RPS
693 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
694 sock_rps_reset_flow(sk);
695 sk->sk_rxhash = skb->rxhash;
696 }
697 #endif
698 }
699
700 static inline void sock_rps_reset_rxhash(struct sock *sk)
701 {
702 #ifdef CONFIG_RPS
703 sock_rps_reset_flow(sk);
704 sk->sk_rxhash = 0;
705 #endif
706 }
707
708 #define sk_wait_event(__sk, __timeo, __condition) \
709 ({ int __rc; \
710 release_sock(__sk); \
711 __rc = __condition; \
712 if (!__rc) { \
713 *(__timeo) = schedule_timeout(*(__timeo)); \
714 } \
715 lock_sock(__sk); \
716 __rc = __condition; \
717 __rc; \
718 })
719
720 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
721 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
722 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
723 extern int sk_stream_error(struct sock *sk, int flags, int err);
724 extern void sk_stream_kill_queues(struct sock *sk);
725
726 extern int sk_wait_data(struct sock *sk, long *timeo);
727
728 struct request_sock_ops;
729 struct timewait_sock_ops;
730 struct inet_hashinfo;
731 struct raw_hashinfo;
732
733 /* Networking protocol blocks we attach to sockets.
734 * socket layer -> transport layer interface
735 * transport -> network interface is defined by struct inet_proto
736 */
737 struct proto {
738 void (*close)(struct sock *sk,
739 long timeout);
740 int (*connect)(struct sock *sk,
741 struct sockaddr *uaddr,
742 int addr_len);
743 int (*disconnect)(struct sock *sk, int flags);
744
745 struct sock * (*accept) (struct sock *sk, int flags, int *err);
746
747 int (*ioctl)(struct sock *sk, int cmd,
748 unsigned long arg);
749 int (*init)(struct sock *sk);
750 void (*destroy)(struct sock *sk);
751 void (*shutdown)(struct sock *sk, int how);
752 int (*setsockopt)(struct sock *sk, int level,
753 int optname, char __user *optval,
754 unsigned int optlen);
755 int (*getsockopt)(struct sock *sk, int level,
756 int optname, char __user *optval,
757 int __user *option);
758 #ifdef CONFIG_COMPAT
759 int (*compat_setsockopt)(struct sock *sk,
760 int level,
761 int optname, char __user *optval,
762 unsigned int optlen);
763 int (*compat_getsockopt)(struct sock *sk,
764 int level,
765 int optname, char __user *optval,
766 int __user *option);
767 int (*compat_ioctl)(struct sock *sk,
768 unsigned int cmd, unsigned long arg);
769 #endif
770 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
771 struct msghdr *msg, size_t len);
772 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
773 struct msghdr *msg,
774 size_t len, int noblock, int flags,
775 int *addr_len);
776 int (*sendpage)(struct sock *sk, struct page *page,
777 int offset, size_t size, int flags);
778 int (*bind)(struct sock *sk,
779 struct sockaddr *uaddr, int addr_len);
780
781 int (*backlog_rcv) (struct sock *sk,
782 struct sk_buff *skb);
783
784 /* Keeping track of sk's, looking them up, and port selection methods. */
785 void (*hash)(struct sock *sk);
786 void (*unhash)(struct sock *sk);
787 void (*rehash)(struct sock *sk);
788 int (*get_port)(struct sock *sk, unsigned short snum);
789 void (*clear_sk)(struct sock *sk, int size);
790
791 /* Keeping track of sockets in use */
792 #ifdef CONFIG_PROC_FS
793 unsigned int inuse_idx;
794 #endif
795
796 /* Memory pressure */
797 void (*enter_memory_pressure)(struct sock *sk);
798 atomic_long_t *memory_allocated; /* Current allocated memory. */
799 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
800 /*
801 * Pressure flag: try to collapse.
802 * Technical note: it is used by multiple contexts non atomically.
803 * All the __sk_mem_schedule() is of this nature: accounting
804 * is strict, actions are advisory and have some latency.
805 */
806 int *memory_pressure;
807 long *sysctl_mem;
808 int *sysctl_wmem;
809 int *sysctl_rmem;
810 int max_header;
811 bool no_autobind;
812
813 struct kmem_cache *slab;
814 unsigned int obj_size;
815 int slab_flags;
816
817 struct percpu_counter *orphan_count;
818
819 struct request_sock_ops *rsk_prot;
820 struct timewait_sock_ops *twsk_prot;
821
822 union {
823 struct inet_hashinfo *hashinfo;
824 struct udp_table *udp_table;
825 struct raw_hashinfo *raw_hash;
826 } h;
827
828 struct module *owner;
829
830 char name[32];
831
832 struct list_head node;
833 #ifdef SOCK_REFCNT_DEBUG
834 atomic_t socks;
835 #endif
836 };
837
838 extern int proto_register(struct proto *prot, int alloc_slab);
839 extern void proto_unregister(struct proto *prot);
840
841 #ifdef SOCK_REFCNT_DEBUG
842 static inline void sk_refcnt_debug_inc(struct sock *sk)
843 {
844 atomic_inc(&sk->sk_prot->socks);
845 }
846
847 static inline void sk_refcnt_debug_dec(struct sock *sk)
848 {
849 atomic_dec(&sk->sk_prot->socks);
850 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
851 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
852 }
853
854 static inline void sk_refcnt_debug_release(const struct sock *sk)
855 {
856 if (atomic_read(&sk->sk_refcnt) != 1)
857 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
858 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
859 }
860 #else /* SOCK_REFCNT_DEBUG */
861 #define sk_refcnt_debug_inc(sk) do { } while (0)
862 #define sk_refcnt_debug_dec(sk) do { } while (0)
863 #define sk_refcnt_debug_release(sk) do { } while (0)
864 #endif /* SOCK_REFCNT_DEBUG */
865
866
867 #ifdef CONFIG_PROC_FS
868 /* Called with local bh disabled */
869 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
870 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
871 #else
872 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
873 int inc)
874 {
875 }
876 #endif
877
878
879 /* With per-bucket locks this operation is not-atomic, so that
880 * this version is not worse.
881 */
882 static inline void __sk_prot_rehash(struct sock *sk)
883 {
884 sk->sk_prot->unhash(sk);
885 sk->sk_prot->hash(sk);
886 }
887
888 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
889
890 /* About 10 seconds */
891 #define SOCK_DESTROY_TIME (10*HZ)
892
893 /* Sockets 0-1023 can't be bound to unless you are superuser */
894 #define PROT_SOCK 1024
895
896 #define SHUTDOWN_MASK 3
897 #define RCV_SHUTDOWN 1
898 #define SEND_SHUTDOWN 2
899
900 #define SOCK_SNDBUF_LOCK 1
901 #define SOCK_RCVBUF_LOCK 2
902 #define SOCK_BINDADDR_LOCK 4
903 #define SOCK_BINDPORT_LOCK 8
904
905 /* sock_iocb: used to kick off async processing of socket ios */
906 struct sock_iocb {
907 struct list_head list;
908
909 int flags;
910 int size;
911 struct socket *sock;
912 struct sock *sk;
913 struct scm_cookie *scm;
914 struct msghdr *msg, async_msg;
915 struct kiocb *kiocb;
916 };
917
918 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
919 {
920 return (struct sock_iocb *)iocb->private;
921 }
922
923 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
924 {
925 return si->kiocb;
926 }
927
928 struct socket_alloc {
929 struct socket socket;
930 struct inode vfs_inode;
931 };
932
933 static inline struct socket *SOCKET_I(struct inode *inode)
934 {
935 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
936 }
937
938 static inline struct inode *SOCK_INODE(struct socket *socket)
939 {
940 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
941 }
942
943 /*
944 * Functions for memory accounting
945 */
946 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
947 extern void __sk_mem_reclaim(struct sock *sk);
948
949 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
950 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
951 #define SK_MEM_SEND 0
952 #define SK_MEM_RECV 1
953
954 static inline int sk_mem_pages(int amt)
955 {
956 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
957 }
958
959 static inline int sk_has_account(struct sock *sk)
960 {
961 /* return true if protocol supports memory accounting */
962 return !!sk->sk_prot->memory_allocated;
963 }
964
965 static inline int sk_wmem_schedule(struct sock *sk, int size)
966 {
967 if (!sk_has_account(sk))
968 return 1;
969 return size <= sk->sk_forward_alloc ||
970 __sk_mem_schedule(sk, size, SK_MEM_SEND);
971 }
972
973 static inline int sk_rmem_schedule(struct sock *sk, int size)
974 {
975 if (!sk_has_account(sk))
976 return 1;
977 return size <= sk->sk_forward_alloc ||
978 __sk_mem_schedule(sk, size, SK_MEM_RECV);
979 }
980
981 static inline void sk_mem_reclaim(struct sock *sk)
982 {
983 if (!sk_has_account(sk))
984 return;
985 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
986 __sk_mem_reclaim(sk);
987 }
988
989 static inline void sk_mem_reclaim_partial(struct sock *sk)
990 {
991 if (!sk_has_account(sk))
992 return;
993 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
994 __sk_mem_reclaim(sk);
995 }
996
997 static inline void sk_mem_charge(struct sock *sk, int size)
998 {
999 if (!sk_has_account(sk))
1000 return;
1001 sk->sk_forward_alloc -= size;
1002 }
1003
1004 static inline void sk_mem_uncharge(struct sock *sk, int size)
1005 {
1006 if (!sk_has_account(sk))
1007 return;
1008 sk->sk_forward_alloc += size;
1009 }
1010
1011 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1012 {
1013 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1014 sk->sk_wmem_queued -= skb->truesize;
1015 sk_mem_uncharge(sk, skb->truesize);
1016 __kfree_skb(skb);
1017 }
1018
1019 /* Used by processes to "lock" a socket state, so that
1020 * interrupts and bottom half handlers won't change it
1021 * from under us. It essentially blocks any incoming
1022 * packets, so that we won't get any new data or any
1023 * packets that change the state of the socket.
1024 *
1025 * While locked, BH processing will add new packets to
1026 * the backlog queue. This queue is processed by the
1027 * owner of the socket lock right before it is released.
1028 *
1029 * Since ~2.3.5 it is also exclusive sleep lock serializing
1030 * accesses from user process context.
1031 */
1032 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1033
1034 /*
1035 * Macro so as to not evaluate some arguments when
1036 * lockdep is not enabled.
1037 *
1038 * Mark both the sk_lock and the sk_lock.slock as a
1039 * per-address-family lock class.
1040 */
1041 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1042 do { \
1043 sk->sk_lock.owned = 0; \
1044 init_waitqueue_head(&sk->sk_lock.wq); \
1045 spin_lock_init(&(sk)->sk_lock.slock); \
1046 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1047 sizeof((sk)->sk_lock)); \
1048 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1049 (skey), (sname)); \
1050 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1051 } while (0)
1052
1053 extern void lock_sock_nested(struct sock *sk, int subclass);
1054
1055 static inline void lock_sock(struct sock *sk)
1056 {
1057 lock_sock_nested(sk, 0);
1058 }
1059
1060 extern void release_sock(struct sock *sk);
1061
1062 /* BH context may only use the following locking interface. */
1063 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1064 #define bh_lock_sock_nested(__sk) \
1065 spin_lock_nested(&((__sk)->sk_lock.slock), \
1066 SINGLE_DEPTH_NESTING)
1067 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1068
1069 extern bool lock_sock_fast(struct sock *sk);
1070 /**
1071 * unlock_sock_fast - complement of lock_sock_fast
1072 * @sk: socket
1073 * @slow: slow mode
1074 *
1075 * fast unlock socket for user context.
1076 * If slow mode is on, we call regular release_sock()
1077 */
1078 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1079 {
1080 if (slow)
1081 release_sock(sk);
1082 else
1083 spin_unlock_bh(&sk->sk_lock.slock);
1084 }
1085
1086
1087 extern struct sock *sk_alloc(struct net *net, int family,
1088 gfp_t priority,
1089 struct proto *prot);
1090 extern void sk_free(struct sock *sk);
1091 extern void sk_release_kernel(struct sock *sk);
1092 extern struct sock *sk_clone(const struct sock *sk,
1093 const gfp_t priority);
1094
1095 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1096 unsigned long size, int force,
1097 gfp_t priority);
1098 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1099 unsigned long size, int force,
1100 gfp_t priority);
1101 extern void sock_wfree(struct sk_buff *skb);
1102 extern void sock_rfree(struct sk_buff *skb);
1103
1104 extern int sock_setsockopt(struct socket *sock, int level,
1105 int op, char __user *optval,
1106 unsigned int optlen);
1107
1108 extern int sock_getsockopt(struct socket *sock, int level,
1109 int op, char __user *optval,
1110 int __user *optlen);
1111 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1112 unsigned long size,
1113 int noblock,
1114 int *errcode);
1115 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1116 unsigned long header_len,
1117 unsigned long data_len,
1118 int noblock,
1119 int *errcode);
1120 extern void *sock_kmalloc(struct sock *sk, int size,
1121 gfp_t priority);
1122 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1123 extern void sk_send_sigurg(struct sock *sk);
1124
1125 #ifdef CONFIG_CGROUPS
1126 extern void sock_update_classid(struct sock *sk);
1127 #else
1128 static inline void sock_update_classid(struct sock *sk)
1129 {
1130 }
1131 #endif
1132
1133 /*
1134 * Functions to fill in entries in struct proto_ops when a protocol
1135 * does not implement a particular function.
1136 */
1137 extern int sock_no_bind(struct socket *,
1138 struct sockaddr *, int);
1139 extern int sock_no_connect(struct socket *,
1140 struct sockaddr *, int, int);
1141 extern int sock_no_socketpair(struct socket *,
1142 struct socket *);
1143 extern int sock_no_accept(struct socket *,
1144 struct socket *, int);
1145 extern int sock_no_getname(struct socket *,
1146 struct sockaddr *, int *, int);
1147 extern unsigned int sock_no_poll(struct file *, struct socket *,
1148 struct poll_table_struct *);
1149 extern int sock_no_ioctl(struct socket *, unsigned int,
1150 unsigned long);
1151 extern int sock_no_listen(struct socket *, int);
1152 extern int sock_no_shutdown(struct socket *, int);
1153 extern int sock_no_getsockopt(struct socket *, int , int,
1154 char __user *, int __user *);
1155 extern int sock_no_setsockopt(struct socket *, int, int,
1156 char __user *, unsigned int);
1157 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1158 struct msghdr *, size_t);
1159 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1160 struct msghdr *, size_t, int);
1161 extern int sock_no_mmap(struct file *file,
1162 struct socket *sock,
1163 struct vm_area_struct *vma);
1164 extern ssize_t sock_no_sendpage(struct socket *sock,
1165 struct page *page,
1166 int offset, size_t size,
1167 int flags);
1168
1169 /*
1170 * Functions to fill in entries in struct proto_ops when a protocol
1171 * uses the inet style.
1172 */
1173 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1174 char __user *optval, int __user *optlen);
1175 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1176 struct msghdr *msg, size_t size, int flags);
1177 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1178 char __user *optval, unsigned int optlen);
1179 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1180 int optname, char __user *optval, int __user *optlen);
1181 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1182 int optname, char __user *optval, unsigned int optlen);
1183
1184 extern void sk_common_release(struct sock *sk);
1185
1186 /*
1187 * Default socket callbacks and setup code
1188 */
1189
1190 /* Initialise core socket variables */
1191 extern void sock_init_data(struct socket *sock, struct sock *sk);
1192
1193 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1194
1195 /**
1196 * sk_filter_release - release a socket filter
1197 * @fp: filter to remove
1198 *
1199 * Remove a filter from a socket and release its resources.
1200 */
1201
1202 static inline void sk_filter_release(struct sk_filter *fp)
1203 {
1204 if (atomic_dec_and_test(&fp->refcnt))
1205 call_rcu(&fp->rcu, sk_filter_release_rcu);
1206 }
1207
1208 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1209 {
1210 unsigned int size = sk_filter_len(fp);
1211
1212 atomic_sub(size, &sk->sk_omem_alloc);
1213 sk_filter_release(fp);
1214 }
1215
1216 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218 atomic_inc(&fp->refcnt);
1219 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1220 }
1221
1222 /*
1223 * Socket reference counting postulates.
1224 *
1225 * * Each user of socket SHOULD hold a reference count.
1226 * * Each access point to socket (an hash table bucket, reference from a list,
1227 * running timer, skb in flight MUST hold a reference count.
1228 * * When reference count hits 0, it means it will never increase back.
1229 * * When reference count hits 0, it means that no references from
1230 * outside exist to this socket and current process on current CPU
1231 * is last user and may/should destroy this socket.
1232 * * sk_free is called from any context: process, BH, IRQ. When
1233 * it is called, socket has no references from outside -> sk_free
1234 * may release descendant resources allocated by the socket, but
1235 * to the time when it is called, socket is NOT referenced by any
1236 * hash tables, lists etc.
1237 * * Packets, delivered from outside (from network or from another process)
1238 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1239 * when they sit in queue. Otherwise, packets will leak to hole, when
1240 * socket is looked up by one cpu and unhasing is made by another CPU.
1241 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1242 * (leak to backlog). Packet socket does all the processing inside
1243 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1244 * use separate SMP lock, so that they are prone too.
1245 */
1246
1247 /* Ungrab socket and destroy it, if it was the last reference. */
1248 static inline void sock_put(struct sock *sk)
1249 {
1250 if (atomic_dec_and_test(&sk->sk_refcnt))
1251 sk_free(sk);
1252 }
1253
1254 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1255 const int nested);
1256
1257 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1258 {
1259 sk->sk_tx_queue_mapping = tx_queue;
1260 }
1261
1262 static inline void sk_tx_queue_clear(struct sock *sk)
1263 {
1264 sk->sk_tx_queue_mapping = -1;
1265 }
1266
1267 static inline int sk_tx_queue_get(const struct sock *sk)
1268 {
1269 return sk ? sk->sk_tx_queue_mapping : -1;
1270 }
1271
1272 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1273 {
1274 sk_tx_queue_clear(sk);
1275 sk->sk_socket = sock;
1276 }
1277
1278 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1279 {
1280 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1281 return &rcu_dereference_raw(sk->sk_wq)->wait;
1282 }
1283 /* Detach socket from process context.
1284 * Announce socket dead, detach it from wait queue and inode.
1285 * Note that parent inode held reference count on this struct sock,
1286 * we do not release it in this function, because protocol
1287 * probably wants some additional cleanups or even continuing
1288 * to work with this socket (TCP).
1289 */
1290 static inline void sock_orphan(struct sock *sk)
1291 {
1292 write_lock_bh(&sk->sk_callback_lock);
1293 sock_set_flag(sk, SOCK_DEAD);
1294 sk_set_socket(sk, NULL);
1295 sk->sk_wq = NULL;
1296 write_unlock_bh(&sk->sk_callback_lock);
1297 }
1298
1299 static inline void sock_graft(struct sock *sk, struct socket *parent)
1300 {
1301 write_lock_bh(&sk->sk_callback_lock);
1302 sk->sk_wq = parent->wq;
1303 parent->sk = sk;
1304 sk_set_socket(sk, parent);
1305 security_sock_graft(sk, parent);
1306 write_unlock_bh(&sk->sk_callback_lock);
1307 }
1308
1309 extern int sock_i_uid(struct sock *sk);
1310 extern unsigned long sock_i_ino(struct sock *sk);
1311
1312 static inline struct dst_entry *
1313 __sk_dst_get(struct sock *sk)
1314 {
1315 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1316 lockdep_is_held(&sk->sk_lock.slock));
1317 }
1318
1319 static inline struct dst_entry *
1320 sk_dst_get(struct sock *sk)
1321 {
1322 struct dst_entry *dst;
1323
1324 rcu_read_lock();
1325 dst = rcu_dereference(sk->sk_dst_cache);
1326 if (dst)
1327 dst_hold(dst);
1328 rcu_read_unlock();
1329 return dst;
1330 }
1331
1332 extern void sk_reset_txq(struct sock *sk);
1333
1334 static inline void dst_negative_advice(struct sock *sk)
1335 {
1336 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1337
1338 if (dst && dst->ops->negative_advice) {
1339 ndst = dst->ops->negative_advice(dst);
1340
1341 if (ndst != dst) {
1342 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1343 sk_reset_txq(sk);
1344 }
1345 }
1346 }
1347
1348 static inline void
1349 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1350 {
1351 struct dst_entry *old_dst;
1352
1353 sk_tx_queue_clear(sk);
1354 /*
1355 * This can be called while sk is owned by the caller only,
1356 * with no state that can be checked in a rcu_dereference_check() cond
1357 */
1358 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1359 rcu_assign_pointer(sk->sk_dst_cache, dst);
1360 dst_release(old_dst);
1361 }
1362
1363 static inline void
1364 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1365 {
1366 spin_lock(&sk->sk_dst_lock);
1367 __sk_dst_set(sk, dst);
1368 spin_unlock(&sk->sk_dst_lock);
1369 }
1370
1371 static inline void
1372 __sk_dst_reset(struct sock *sk)
1373 {
1374 __sk_dst_set(sk, NULL);
1375 }
1376
1377 static inline void
1378 sk_dst_reset(struct sock *sk)
1379 {
1380 spin_lock(&sk->sk_dst_lock);
1381 __sk_dst_reset(sk);
1382 spin_unlock(&sk->sk_dst_lock);
1383 }
1384
1385 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1386
1387 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1388
1389 static inline int sk_can_gso(const struct sock *sk)
1390 {
1391 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1392 }
1393
1394 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1395
1396 static inline void sk_nocaps_add(struct sock *sk, int flags)
1397 {
1398 sk->sk_route_nocaps |= flags;
1399 sk->sk_route_caps &= ~flags;
1400 }
1401
1402 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1403 char __user *from, char *to,
1404 int copy, int offset)
1405 {
1406 if (skb->ip_summed == CHECKSUM_NONE) {
1407 int err = 0;
1408 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1409 if (err)
1410 return err;
1411 skb->csum = csum_block_add(skb->csum, csum, offset);
1412 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1413 if (!access_ok(VERIFY_READ, from, copy) ||
1414 __copy_from_user_nocache(to, from, copy))
1415 return -EFAULT;
1416 } else if (copy_from_user(to, from, copy))
1417 return -EFAULT;
1418
1419 return 0;
1420 }
1421
1422 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1423 char __user *from, int copy)
1424 {
1425 int err, offset = skb->len;
1426
1427 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1428 copy, offset);
1429 if (err)
1430 __skb_trim(skb, offset);
1431
1432 return err;
1433 }
1434
1435 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1436 struct sk_buff *skb,
1437 struct page *page,
1438 int off, int copy)
1439 {
1440 int err;
1441
1442 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1443 copy, skb->len);
1444 if (err)
1445 return err;
1446
1447 skb->len += copy;
1448 skb->data_len += copy;
1449 skb->truesize += copy;
1450 sk->sk_wmem_queued += copy;
1451 sk_mem_charge(sk, copy);
1452 return 0;
1453 }
1454
1455 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1456 struct sk_buff *skb, struct page *page,
1457 int off, int copy)
1458 {
1459 if (skb->ip_summed == CHECKSUM_NONE) {
1460 int err = 0;
1461 __wsum csum = csum_and_copy_from_user(from,
1462 page_address(page) + off,
1463 copy, 0, &err);
1464 if (err)
1465 return err;
1466 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1467 } else if (copy_from_user(page_address(page) + off, from, copy))
1468 return -EFAULT;
1469
1470 skb->len += copy;
1471 skb->data_len += copy;
1472 skb->truesize += copy;
1473 sk->sk_wmem_queued += copy;
1474 sk_mem_charge(sk, copy);
1475 return 0;
1476 }
1477
1478 /**
1479 * sk_wmem_alloc_get - returns write allocations
1480 * @sk: socket
1481 *
1482 * Returns sk_wmem_alloc minus initial offset of one
1483 */
1484 static inline int sk_wmem_alloc_get(const struct sock *sk)
1485 {
1486 return atomic_read(&sk->sk_wmem_alloc) - 1;
1487 }
1488
1489 /**
1490 * sk_rmem_alloc_get - returns read allocations
1491 * @sk: socket
1492 *
1493 * Returns sk_rmem_alloc
1494 */
1495 static inline int sk_rmem_alloc_get(const struct sock *sk)
1496 {
1497 return atomic_read(&sk->sk_rmem_alloc);
1498 }
1499
1500 /**
1501 * sk_has_allocations - check if allocations are outstanding
1502 * @sk: socket
1503 *
1504 * Returns true if socket has write or read allocations
1505 */
1506 static inline int sk_has_allocations(const struct sock *sk)
1507 {
1508 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1509 }
1510
1511 /**
1512 * wq_has_sleeper - check if there are any waiting processes
1513 * @wq: struct socket_wq
1514 *
1515 * Returns true if socket_wq has waiting processes
1516 *
1517 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1518 * barrier call. They were added due to the race found within the tcp code.
1519 *
1520 * Consider following tcp code paths:
1521 *
1522 * CPU1 CPU2
1523 *
1524 * sys_select receive packet
1525 * ... ...
1526 * __add_wait_queue update tp->rcv_nxt
1527 * ... ...
1528 * tp->rcv_nxt check sock_def_readable
1529 * ... {
1530 * schedule rcu_read_lock();
1531 * wq = rcu_dereference(sk->sk_wq);
1532 * if (wq && waitqueue_active(&wq->wait))
1533 * wake_up_interruptible(&wq->wait)
1534 * ...
1535 * }
1536 *
1537 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1538 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1539 * could then endup calling schedule and sleep forever if there are no more
1540 * data on the socket.
1541 *
1542 */
1543 static inline bool wq_has_sleeper(struct socket_wq *wq)
1544 {
1545
1546 /*
1547 * We need to be sure we are in sync with the
1548 * add_wait_queue modifications to the wait queue.
1549 *
1550 * This memory barrier is paired in the sock_poll_wait.
1551 */
1552 smp_mb();
1553 return wq && waitqueue_active(&wq->wait);
1554 }
1555
1556 /**
1557 * sock_poll_wait - place memory barrier behind the poll_wait call.
1558 * @filp: file
1559 * @wait_address: socket wait queue
1560 * @p: poll_table
1561 *
1562 * See the comments in the wq_has_sleeper function.
1563 */
1564 static inline void sock_poll_wait(struct file *filp,
1565 wait_queue_head_t *wait_address, poll_table *p)
1566 {
1567 if (p && wait_address) {
1568 poll_wait(filp, wait_address, p);
1569 /*
1570 * We need to be sure we are in sync with the
1571 * socket flags modification.
1572 *
1573 * This memory barrier is paired in the wq_has_sleeper.
1574 */
1575 smp_mb();
1576 }
1577 }
1578
1579 /*
1580 * Queue a received datagram if it will fit. Stream and sequenced
1581 * protocols can't normally use this as they need to fit buffers in
1582 * and play with them.
1583 *
1584 * Inlined as it's very short and called for pretty much every
1585 * packet ever received.
1586 */
1587
1588 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1589 {
1590 skb_orphan(skb);
1591 skb->sk = sk;
1592 skb->destructor = sock_wfree;
1593 /*
1594 * We used to take a refcount on sk, but following operation
1595 * is enough to guarantee sk_free() wont free this sock until
1596 * all in-flight packets are completed
1597 */
1598 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1599 }
1600
1601 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1602 {
1603 skb_orphan(skb);
1604 skb->sk = sk;
1605 skb->destructor = sock_rfree;
1606 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1607 sk_mem_charge(sk, skb->truesize);
1608 }
1609
1610 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1611 unsigned long expires);
1612
1613 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1614
1615 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1616
1617 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1618
1619 /*
1620 * Recover an error report and clear atomically
1621 */
1622
1623 static inline int sock_error(struct sock *sk)
1624 {
1625 int err;
1626 if (likely(!sk->sk_err))
1627 return 0;
1628 err = xchg(&sk->sk_err, 0);
1629 return -err;
1630 }
1631
1632 static inline unsigned long sock_wspace(struct sock *sk)
1633 {
1634 int amt = 0;
1635
1636 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1637 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1638 if (amt < 0)
1639 amt = 0;
1640 }
1641 return amt;
1642 }
1643
1644 static inline void sk_wake_async(struct sock *sk, int how, int band)
1645 {
1646 if (sock_flag(sk, SOCK_FASYNC))
1647 sock_wake_async(sk->sk_socket, how, band);
1648 }
1649
1650 #define SOCK_MIN_SNDBUF 2048
1651 /*
1652 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1653 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1654 */
1655 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1656
1657 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1658 {
1659 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1660 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1661 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1662 }
1663 }
1664
1665 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1666
1667 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1668 {
1669 struct page *page = NULL;
1670
1671 page = alloc_pages(sk->sk_allocation, 0);
1672 if (!page) {
1673 sk->sk_prot->enter_memory_pressure(sk);
1674 sk_stream_moderate_sndbuf(sk);
1675 }
1676 return page;
1677 }
1678
1679 /*
1680 * Default write policy as shown to user space via poll/select/SIGIO
1681 */
1682 static inline int sock_writeable(const struct sock *sk)
1683 {
1684 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1685 }
1686
1687 static inline gfp_t gfp_any(void)
1688 {
1689 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1690 }
1691
1692 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1693 {
1694 return noblock ? 0 : sk->sk_rcvtimeo;
1695 }
1696
1697 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1698 {
1699 return noblock ? 0 : sk->sk_sndtimeo;
1700 }
1701
1702 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1703 {
1704 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1705 }
1706
1707 /* Alas, with timeout socket operations are not restartable.
1708 * Compare this to poll().
1709 */
1710 static inline int sock_intr_errno(long timeo)
1711 {
1712 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1713 }
1714
1715 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1716 struct sk_buff *skb);
1717
1718 static __inline__ void
1719 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1720 {
1721 ktime_t kt = skb->tstamp;
1722 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1723
1724 /*
1725 * generate control messages if
1726 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1727 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1728 * - software time stamp available and wanted
1729 * (SOCK_TIMESTAMPING_SOFTWARE)
1730 * - hardware time stamps available and wanted
1731 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1732 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1733 */
1734 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1735 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1736 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1737 (hwtstamps->hwtstamp.tv64 &&
1738 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1739 (hwtstamps->syststamp.tv64 &&
1740 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1741 __sock_recv_timestamp(msg, sk, skb);
1742 else
1743 sk->sk_stamp = kt;
1744 }
1745
1746 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1747 struct sk_buff *skb);
1748
1749 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1750 struct sk_buff *skb)
1751 {
1752 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
1753 (1UL << SOCK_RCVTSTAMP) | \
1754 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
1755 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
1756 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
1757 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1758
1759 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1760 __sock_recv_ts_and_drops(msg, sk, skb);
1761 else
1762 sk->sk_stamp = skb->tstamp;
1763 }
1764
1765 /**
1766 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1767 * @sk: socket sending this packet
1768 * @tx_flags: filled with instructions for time stamping
1769 *
1770 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1771 * parameters are invalid.
1772 */
1773 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1774
1775 /**
1776 * sk_eat_skb - Release a skb if it is no longer needed
1777 * @sk: socket to eat this skb from
1778 * @skb: socket buffer to eat
1779 * @copied_early: flag indicating whether DMA operations copied this data early
1780 *
1781 * This routine must be called with interrupts disabled or with the socket
1782 * locked so that the sk_buff queue operation is ok.
1783 */
1784 #ifdef CONFIG_NET_DMA
1785 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1786 {
1787 __skb_unlink(skb, &sk->sk_receive_queue);
1788 if (!copied_early)
1789 __kfree_skb(skb);
1790 else
1791 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1792 }
1793 #else
1794 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1795 {
1796 __skb_unlink(skb, &sk->sk_receive_queue);
1797 __kfree_skb(skb);
1798 }
1799 #endif
1800
1801 static inline
1802 struct net *sock_net(const struct sock *sk)
1803 {
1804 return read_pnet(&sk->sk_net);
1805 }
1806
1807 static inline
1808 void sock_net_set(struct sock *sk, struct net *net)
1809 {
1810 write_pnet(&sk->sk_net, net);
1811 }
1812
1813 /*
1814 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1815 * They should not hold a reference to a namespace in order to allow
1816 * to stop it.
1817 * Sockets after sk_change_net should be released using sk_release_kernel
1818 */
1819 static inline void sk_change_net(struct sock *sk, struct net *net)
1820 {
1821 put_net(sock_net(sk));
1822 sock_net_set(sk, hold_net(net));
1823 }
1824
1825 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1826 {
1827 if (unlikely(skb->sk)) {
1828 struct sock *sk = skb->sk;
1829
1830 skb->destructor = NULL;
1831 skb->sk = NULL;
1832 return sk;
1833 }
1834 return NULL;
1835 }
1836
1837 extern void sock_enable_timestamp(struct sock *sk, int flag);
1838 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1839 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1840
1841 /*
1842 * Enable debug/info messages
1843 */
1844 extern int net_msg_warn;
1845 #define NETDEBUG(fmt, args...) \
1846 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1847
1848 #define LIMIT_NETDEBUG(fmt, args...) \
1849 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1850
1851 extern __u32 sysctl_wmem_max;
1852 extern __u32 sysctl_rmem_max;
1853
1854 extern void sk_init(void);
1855
1856 extern int sysctl_optmem_max;
1857
1858 extern __u32 sysctl_wmem_default;
1859 extern __u32 sysctl_rmem_default;
1860
1861 #endif /* _SOCK_H */
This page took 0.073361 seconds and 5 git commands to generate.