Merge branch 'pci/resource' into next
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80 return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
91 */
92
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105
106 /* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
109 */
110 typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
114 /*
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
119 */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124
125 struct sock;
126 struct proto;
127 struct net;
128
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
131
132 /**
133 * struct sock_common - minimal network layer representation of sockets
134 * @skc_daddr: Foreign IPv4 addr
135 * @skc_rcv_saddr: Bound local IPv4 addr
136 * @skc_hash: hash value used with various protocol lookup tables
137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
138 * @skc_dport: placeholder for inet_dport/tw_dport
139 * @skc_num: placeholder for inet_num/tw_num
140 * @skc_family: network address family
141 * @skc_state: Connection state
142 * @skc_reuse: %SO_REUSEADDR setting
143 * @skc_reuseport: %SO_REUSEPORT setting
144 * @skc_bound_dev_if: bound device index if != 0
145 * @skc_bind_node: bind hash linkage for various protocol lookup tables
146 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
147 * @skc_prot: protocol handlers inside a network family
148 * @skc_net: reference to the network namespace of this socket
149 * @skc_node: main hash linkage for various protocol lookup tables
150 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
151 * @skc_tx_queue_mapping: tx queue number for this connection
152 * @skc_refcnt: reference count
153 *
154 * This is the minimal network layer representation of sockets, the header
155 * for struct sock and struct inet_timewait_sock.
156 */
157 struct sock_common {
158 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
159 * address on 64bit arches : cf INET_MATCH()
160 */
161 union {
162 __addrpair skc_addrpair;
163 struct {
164 __be32 skc_daddr;
165 __be32 skc_rcv_saddr;
166 };
167 };
168 union {
169 unsigned int skc_hash;
170 __u16 skc_u16hashes[2];
171 };
172 /* skc_dport && skc_num must be grouped as well */
173 union {
174 __portpair skc_portpair;
175 struct {
176 __be16 skc_dport;
177 __u16 skc_num;
178 };
179 };
180
181 unsigned short skc_family;
182 volatile unsigned char skc_state;
183 unsigned char skc_reuse:4;
184 unsigned char skc_reuseport:4;
185 int skc_bound_dev_if;
186 union {
187 struct hlist_node skc_bind_node;
188 struct hlist_nulls_node skc_portaddr_node;
189 };
190 struct proto *skc_prot;
191 #ifdef CONFIG_NET_NS
192 struct net *skc_net;
193 #endif
194
195 #if IS_ENABLED(CONFIG_IPV6)
196 struct in6_addr skc_v6_daddr;
197 struct in6_addr skc_v6_rcv_saddr;
198 #endif
199
200 /*
201 * fields between dontcopy_begin/dontcopy_end
202 * are not copied in sock_copy()
203 */
204 /* private: */
205 int skc_dontcopy_begin[0];
206 /* public: */
207 union {
208 struct hlist_node skc_node;
209 struct hlist_nulls_node skc_nulls_node;
210 };
211 int skc_tx_queue_mapping;
212 atomic_t skc_refcnt;
213 /* private: */
214 int skc_dontcopy_end[0];
215 /* public: */
216 };
217
218 struct cg_proto;
219 /**
220 * struct sock - network layer representation of sockets
221 * @__sk_common: shared layout with inet_timewait_sock
222 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
223 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
224 * @sk_lock: synchronizer
225 * @sk_rcvbuf: size of receive buffer in bytes
226 * @sk_wq: sock wait queue and async head
227 * @sk_rx_dst: receive input route used by early demux
228 * @sk_dst_cache: destination cache
229 * @sk_dst_lock: destination cache lock
230 * @sk_policy: flow policy
231 * @sk_receive_queue: incoming packets
232 * @sk_wmem_alloc: transmit queue bytes committed
233 * @sk_write_queue: Packet sending queue
234 * @sk_async_wait_queue: DMA copied packets
235 * @sk_omem_alloc: "o" is "option" or "other"
236 * @sk_wmem_queued: persistent queue size
237 * @sk_forward_alloc: space allocated forward
238 * @sk_napi_id: id of the last napi context to receive data for sk
239 * @sk_ll_usec: usecs to busypoll when there is no data
240 * @sk_allocation: allocation mode
241 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
242 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
243 * @sk_sndbuf: size of send buffer in bytes
244 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
245 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
246 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
247 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
248 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
249 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
250 * @sk_gso_max_size: Maximum GSO segment size to build
251 * @sk_gso_max_segs: Maximum number of GSO segments
252 * @sk_lingertime: %SO_LINGER l_linger setting
253 * @sk_backlog: always used with the per-socket spinlock held
254 * @sk_callback_lock: used with the callbacks in the end of this struct
255 * @sk_error_queue: rarely used
256 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
257 * IPV6_ADDRFORM for instance)
258 * @sk_err: last error
259 * @sk_err_soft: errors that don't cause failure but are the cause of a
260 * persistent failure not just 'timed out'
261 * @sk_drops: raw/udp drops counter
262 * @sk_ack_backlog: current listen backlog
263 * @sk_max_ack_backlog: listen backlog set in listen()
264 * @sk_priority: %SO_PRIORITY setting
265 * @sk_cgrp_prioidx: socket group's priority map index
266 * @sk_type: socket type (%SOCK_STREAM, etc)
267 * @sk_protocol: which protocol this socket belongs in this network family
268 * @sk_peer_pid: &struct pid for this socket's peer
269 * @sk_peer_cred: %SO_PEERCRED setting
270 * @sk_rcvlowat: %SO_RCVLOWAT setting
271 * @sk_rcvtimeo: %SO_RCVTIMEO setting
272 * @sk_sndtimeo: %SO_SNDTIMEO setting
273 * @sk_rxhash: flow hash received from netif layer
274 * @sk_filter: socket filtering instructions
275 * @sk_protinfo: private area, net family specific, when not using slab
276 * @sk_timer: sock cleanup timer
277 * @sk_stamp: time stamp of last packet received
278 * @sk_socket: Identd and reporting IO signals
279 * @sk_user_data: RPC layer private data
280 * @sk_frag: cached page frag
281 * @sk_peek_off: current peek_offset value
282 * @sk_send_head: front of stuff to transmit
283 * @sk_security: used by security modules
284 * @sk_mark: generic packet mark
285 * @sk_classid: this socket's cgroup classid
286 * @sk_cgrp: this socket's cgroup-specific proto data
287 * @sk_write_pending: a write to stream socket waits to start
288 * @sk_state_change: callback to indicate change in the state of the sock
289 * @sk_data_ready: callback to indicate there is data to be processed
290 * @sk_write_space: callback to indicate there is bf sending space available
291 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
292 * @sk_backlog_rcv: callback to process the backlog
293 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
294 */
295 struct sock {
296 /*
297 * Now struct inet_timewait_sock also uses sock_common, so please just
298 * don't add nothing before this first member (__sk_common) --acme
299 */
300 struct sock_common __sk_common;
301 #define sk_node __sk_common.skc_node
302 #define sk_nulls_node __sk_common.skc_nulls_node
303 #define sk_refcnt __sk_common.skc_refcnt
304 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
305
306 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
307 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
308 #define sk_hash __sk_common.skc_hash
309 #define sk_portpair __sk_common.skc_portpair
310 #define sk_num __sk_common.skc_num
311 #define sk_dport __sk_common.skc_dport
312 #define sk_addrpair __sk_common.skc_addrpair
313 #define sk_daddr __sk_common.skc_daddr
314 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
315 #define sk_family __sk_common.skc_family
316 #define sk_state __sk_common.skc_state
317 #define sk_reuse __sk_common.skc_reuse
318 #define sk_reuseport __sk_common.skc_reuseport
319 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
320 #define sk_bind_node __sk_common.skc_bind_node
321 #define sk_prot __sk_common.skc_prot
322 #define sk_net __sk_common.skc_net
323 #define sk_v6_daddr __sk_common.skc_v6_daddr
324 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
325
326 socket_lock_t sk_lock;
327 struct sk_buff_head sk_receive_queue;
328 /*
329 * The backlog queue is special, it is always used with
330 * the per-socket spinlock held and requires low latency
331 * access. Therefore we special case it's implementation.
332 * Note : rmem_alloc is in this structure to fill a hole
333 * on 64bit arches, not because its logically part of
334 * backlog.
335 */
336 struct {
337 atomic_t rmem_alloc;
338 int len;
339 struct sk_buff *head;
340 struct sk_buff *tail;
341 } sk_backlog;
342 #define sk_rmem_alloc sk_backlog.rmem_alloc
343 int sk_forward_alloc;
344 #ifdef CONFIG_RPS
345 __u32 sk_rxhash;
346 #endif
347 #ifdef CONFIG_NET_RX_BUSY_POLL
348 unsigned int sk_napi_id;
349 unsigned int sk_ll_usec;
350 #endif
351 atomic_t sk_drops;
352 int sk_rcvbuf;
353
354 struct sk_filter __rcu *sk_filter;
355 struct socket_wq __rcu *sk_wq;
356
357 #ifdef CONFIG_NET_DMA
358 struct sk_buff_head sk_async_wait_queue;
359 #endif
360
361 #ifdef CONFIG_XFRM
362 struct xfrm_policy *sk_policy[2];
363 #endif
364 unsigned long sk_flags;
365 struct dst_entry *sk_rx_dst;
366 struct dst_entry __rcu *sk_dst_cache;
367 spinlock_t sk_dst_lock;
368 atomic_t sk_wmem_alloc;
369 atomic_t sk_omem_alloc;
370 int sk_sndbuf;
371 struct sk_buff_head sk_write_queue;
372 kmemcheck_bitfield_begin(flags);
373 unsigned int sk_shutdown : 2,
374 sk_no_check : 2,
375 sk_userlocks : 4,
376 sk_protocol : 8,
377 sk_type : 16;
378 kmemcheck_bitfield_end(flags);
379 int sk_wmem_queued;
380 gfp_t sk_allocation;
381 u32 sk_pacing_rate; /* bytes per second */
382 u32 sk_max_pacing_rate;
383 netdev_features_t sk_route_caps;
384 netdev_features_t sk_route_nocaps;
385 int sk_gso_type;
386 unsigned int sk_gso_max_size;
387 u16 sk_gso_max_segs;
388 int sk_rcvlowat;
389 unsigned long sk_lingertime;
390 struct sk_buff_head sk_error_queue;
391 struct proto *sk_prot_creator;
392 rwlock_t sk_callback_lock;
393 int sk_err,
394 sk_err_soft;
395 unsigned short sk_ack_backlog;
396 unsigned short sk_max_ack_backlog;
397 __u32 sk_priority;
398 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
399 __u32 sk_cgrp_prioidx;
400 #endif
401 struct pid *sk_peer_pid;
402 const struct cred *sk_peer_cred;
403 long sk_rcvtimeo;
404 long sk_sndtimeo;
405 void *sk_protinfo;
406 struct timer_list sk_timer;
407 ktime_t sk_stamp;
408 struct socket *sk_socket;
409 void *sk_user_data;
410 struct page_frag sk_frag;
411 struct sk_buff *sk_send_head;
412 __s32 sk_peek_off;
413 int sk_write_pending;
414 #ifdef CONFIG_SECURITY
415 void *sk_security;
416 #endif
417 __u32 sk_mark;
418 u32 sk_classid;
419 struct cg_proto *sk_cgrp;
420 void (*sk_state_change)(struct sock *sk);
421 void (*sk_data_ready)(struct sock *sk, int bytes);
422 void (*sk_write_space)(struct sock *sk);
423 void (*sk_error_report)(struct sock *sk);
424 int (*sk_backlog_rcv)(struct sock *sk,
425 struct sk_buff *skb);
426 void (*sk_destruct)(struct sock *sk);
427 };
428
429 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
430
431 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
432 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
433
434 /*
435 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
436 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
437 * on a socket means that the socket will reuse everybody else's port
438 * without looking at the other's sk_reuse value.
439 */
440
441 #define SK_NO_REUSE 0
442 #define SK_CAN_REUSE 1
443 #define SK_FORCE_REUSE 2
444
445 static inline int sk_peek_offset(struct sock *sk, int flags)
446 {
447 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
448 return sk->sk_peek_off;
449 else
450 return 0;
451 }
452
453 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
454 {
455 if (sk->sk_peek_off >= 0) {
456 if (sk->sk_peek_off >= val)
457 sk->sk_peek_off -= val;
458 else
459 sk->sk_peek_off = 0;
460 }
461 }
462
463 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
464 {
465 if (sk->sk_peek_off >= 0)
466 sk->sk_peek_off += val;
467 }
468
469 /*
470 * Hashed lists helper routines
471 */
472 static inline struct sock *sk_entry(const struct hlist_node *node)
473 {
474 return hlist_entry(node, struct sock, sk_node);
475 }
476
477 static inline struct sock *__sk_head(const struct hlist_head *head)
478 {
479 return hlist_entry(head->first, struct sock, sk_node);
480 }
481
482 static inline struct sock *sk_head(const struct hlist_head *head)
483 {
484 return hlist_empty(head) ? NULL : __sk_head(head);
485 }
486
487 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
488 {
489 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
490 }
491
492 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
493 {
494 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
495 }
496
497 static inline struct sock *sk_next(const struct sock *sk)
498 {
499 return sk->sk_node.next ?
500 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
501 }
502
503 static inline struct sock *sk_nulls_next(const struct sock *sk)
504 {
505 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
506 hlist_nulls_entry(sk->sk_nulls_node.next,
507 struct sock, sk_nulls_node) :
508 NULL;
509 }
510
511 static inline bool sk_unhashed(const struct sock *sk)
512 {
513 return hlist_unhashed(&sk->sk_node);
514 }
515
516 static inline bool sk_hashed(const struct sock *sk)
517 {
518 return !sk_unhashed(sk);
519 }
520
521 static inline void sk_node_init(struct hlist_node *node)
522 {
523 node->pprev = NULL;
524 }
525
526 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
527 {
528 node->pprev = NULL;
529 }
530
531 static inline void __sk_del_node(struct sock *sk)
532 {
533 __hlist_del(&sk->sk_node);
534 }
535
536 /* NB: equivalent to hlist_del_init_rcu */
537 static inline bool __sk_del_node_init(struct sock *sk)
538 {
539 if (sk_hashed(sk)) {
540 __sk_del_node(sk);
541 sk_node_init(&sk->sk_node);
542 return true;
543 }
544 return false;
545 }
546
547 /* Grab socket reference count. This operation is valid only
548 when sk is ALREADY grabbed f.e. it is found in hash table
549 or a list and the lookup is made under lock preventing hash table
550 modifications.
551 */
552
553 static inline void sock_hold(struct sock *sk)
554 {
555 atomic_inc(&sk->sk_refcnt);
556 }
557
558 /* Ungrab socket in the context, which assumes that socket refcnt
559 cannot hit zero, f.e. it is true in context of any socketcall.
560 */
561 static inline void __sock_put(struct sock *sk)
562 {
563 atomic_dec(&sk->sk_refcnt);
564 }
565
566 static inline bool sk_del_node_init(struct sock *sk)
567 {
568 bool rc = __sk_del_node_init(sk);
569
570 if (rc) {
571 /* paranoid for a while -acme */
572 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
573 __sock_put(sk);
574 }
575 return rc;
576 }
577 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
578
579 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
580 {
581 if (sk_hashed(sk)) {
582 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
583 return true;
584 }
585 return false;
586 }
587
588 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
589 {
590 bool rc = __sk_nulls_del_node_init_rcu(sk);
591
592 if (rc) {
593 /* paranoid for a while -acme */
594 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
595 __sock_put(sk);
596 }
597 return rc;
598 }
599
600 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
601 {
602 hlist_add_head(&sk->sk_node, list);
603 }
604
605 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
606 {
607 sock_hold(sk);
608 __sk_add_node(sk, list);
609 }
610
611 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
612 {
613 sock_hold(sk);
614 hlist_add_head_rcu(&sk->sk_node, list);
615 }
616
617 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
618 {
619 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
620 }
621
622 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
623 {
624 sock_hold(sk);
625 __sk_nulls_add_node_rcu(sk, list);
626 }
627
628 static inline void __sk_del_bind_node(struct sock *sk)
629 {
630 __hlist_del(&sk->sk_bind_node);
631 }
632
633 static inline void sk_add_bind_node(struct sock *sk,
634 struct hlist_head *list)
635 {
636 hlist_add_head(&sk->sk_bind_node, list);
637 }
638
639 #define sk_for_each(__sk, list) \
640 hlist_for_each_entry(__sk, list, sk_node)
641 #define sk_for_each_rcu(__sk, list) \
642 hlist_for_each_entry_rcu(__sk, list, sk_node)
643 #define sk_nulls_for_each(__sk, node, list) \
644 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
645 #define sk_nulls_for_each_rcu(__sk, node, list) \
646 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
647 #define sk_for_each_from(__sk) \
648 hlist_for_each_entry_from(__sk, sk_node)
649 #define sk_nulls_for_each_from(__sk, node) \
650 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
651 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
652 #define sk_for_each_safe(__sk, tmp, list) \
653 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
654 #define sk_for_each_bound(__sk, list) \
655 hlist_for_each_entry(__sk, list, sk_bind_node)
656
657 static inline struct user_namespace *sk_user_ns(struct sock *sk)
658 {
659 /* Careful only use this in a context where these parameters
660 * can not change and must all be valid, such as recvmsg from
661 * userspace.
662 */
663 return sk->sk_socket->file->f_cred->user_ns;
664 }
665
666 /* Sock flags */
667 enum sock_flags {
668 SOCK_DEAD,
669 SOCK_DONE,
670 SOCK_URGINLINE,
671 SOCK_KEEPOPEN,
672 SOCK_LINGER,
673 SOCK_DESTROY,
674 SOCK_BROADCAST,
675 SOCK_TIMESTAMP,
676 SOCK_ZAPPED,
677 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
678 SOCK_DBG, /* %SO_DEBUG setting */
679 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
680 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
681 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
682 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
683 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
684 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
685 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
686 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
687 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
688 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
689 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
690 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
691 SOCK_FASYNC, /* fasync() active */
692 SOCK_RXQ_OVFL,
693 SOCK_ZEROCOPY, /* buffers from userspace */
694 SOCK_WIFI_STATUS, /* push wifi status to userspace */
695 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
696 * Will use last 4 bytes of packet sent from
697 * user-space instead.
698 */
699 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
700 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
701 };
702
703 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
704 {
705 nsk->sk_flags = osk->sk_flags;
706 }
707
708 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
709 {
710 __set_bit(flag, &sk->sk_flags);
711 }
712
713 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
714 {
715 __clear_bit(flag, &sk->sk_flags);
716 }
717
718 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
719 {
720 return test_bit(flag, &sk->sk_flags);
721 }
722
723 #ifdef CONFIG_NET
724 extern struct static_key memalloc_socks;
725 static inline int sk_memalloc_socks(void)
726 {
727 return static_key_false(&memalloc_socks);
728 }
729 #else
730
731 static inline int sk_memalloc_socks(void)
732 {
733 return 0;
734 }
735
736 #endif
737
738 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
739 {
740 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
741 }
742
743 static inline void sk_acceptq_removed(struct sock *sk)
744 {
745 sk->sk_ack_backlog--;
746 }
747
748 static inline void sk_acceptq_added(struct sock *sk)
749 {
750 sk->sk_ack_backlog++;
751 }
752
753 static inline bool sk_acceptq_is_full(const struct sock *sk)
754 {
755 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
756 }
757
758 /*
759 * Compute minimal free write space needed to queue new packets.
760 */
761 static inline int sk_stream_min_wspace(const struct sock *sk)
762 {
763 return sk->sk_wmem_queued >> 1;
764 }
765
766 static inline int sk_stream_wspace(const struct sock *sk)
767 {
768 return sk->sk_sndbuf - sk->sk_wmem_queued;
769 }
770
771 void sk_stream_write_space(struct sock *sk);
772
773 /* OOB backlog add */
774 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
775 {
776 /* dont let skb dst not refcounted, we are going to leave rcu lock */
777 skb_dst_force(skb);
778
779 if (!sk->sk_backlog.tail)
780 sk->sk_backlog.head = skb;
781 else
782 sk->sk_backlog.tail->next = skb;
783
784 sk->sk_backlog.tail = skb;
785 skb->next = NULL;
786 }
787
788 /*
789 * Take into account size of receive queue and backlog queue
790 * Do not take into account this skb truesize,
791 * to allow even a single big packet to come.
792 */
793 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
794 unsigned int limit)
795 {
796 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
797
798 return qsize > limit;
799 }
800
801 /* The per-socket spinlock must be held here. */
802 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
803 unsigned int limit)
804 {
805 if (sk_rcvqueues_full(sk, skb, limit))
806 return -ENOBUFS;
807
808 __sk_add_backlog(sk, skb);
809 sk->sk_backlog.len += skb->truesize;
810 return 0;
811 }
812
813 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
814
815 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
816 {
817 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
818 return __sk_backlog_rcv(sk, skb);
819
820 return sk->sk_backlog_rcv(sk, skb);
821 }
822
823 static inline void sock_rps_record_flow_hash(__u32 hash)
824 {
825 #ifdef CONFIG_RPS
826 struct rps_sock_flow_table *sock_flow_table;
827
828 rcu_read_lock();
829 sock_flow_table = rcu_dereference(rps_sock_flow_table);
830 rps_record_sock_flow(sock_flow_table, hash);
831 rcu_read_unlock();
832 #endif
833 }
834
835 static inline void sock_rps_reset_flow_hash(__u32 hash)
836 {
837 #ifdef CONFIG_RPS
838 struct rps_sock_flow_table *sock_flow_table;
839
840 rcu_read_lock();
841 sock_flow_table = rcu_dereference(rps_sock_flow_table);
842 rps_reset_sock_flow(sock_flow_table, hash);
843 rcu_read_unlock();
844 #endif
845 }
846
847 static inline void sock_rps_record_flow(const struct sock *sk)
848 {
849 #ifdef CONFIG_RPS
850 sock_rps_record_flow_hash(sk->sk_rxhash);
851 #endif
852 }
853
854 static inline void sock_rps_reset_flow(const struct sock *sk)
855 {
856 #ifdef CONFIG_RPS
857 sock_rps_reset_flow_hash(sk->sk_rxhash);
858 #endif
859 }
860
861 static inline void sock_rps_save_rxhash(struct sock *sk,
862 const struct sk_buff *skb)
863 {
864 #ifdef CONFIG_RPS
865 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
866 sock_rps_reset_flow(sk);
867 sk->sk_rxhash = skb->rxhash;
868 }
869 #endif
870 }
871
872 static inline void sock_rps_reset_rxhash(struct sock *sk)
873 {
874 #ifdef CONFIG_RPS
875 sock_rps_reset_flow(sk);
876 sk->sk_rxhash = 0;
877 #endif
878 }
879
880 #define sk_wait_event(__sk, __timeo, __condition) \
881 ({ int __rc; \
882 release_sock(__sk); \
883 __rc = __condition; \
884 if (!__rc) { \
885 *(__timeo) = schedule_timeout(*(__timeo)); \
886 } \
887 lock_sock(__sk); \
888 __rc = __condition; \
889 __rc; \
890 })
891
892 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
893 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
894 void sk_stream_wait_close(struct sock *sk, long timeo_p);
895 int sk_stream_error(struct sock *sk, int flags, int err);
896 void sk_stream_kill_queues(struct sock *sk);
897 void sk_set_memalloc(struct sock *sk);
898 void sk_clear_memalloc(struct sock *sk);
899
900 int sk_wait_data(struct sock *sk, long *timeo);
901
902 struct request_sock_ops;
903 struct timewait_sock_ops;
904 struct inet_hashinfo;
905 struct raw_hashinfo;
906 struct module;
907
908 /*
909 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
910 * un-modified. Special care is taken when initializing object to zero.
911 */
912 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
913 {
914 if (offsetof(struct sock, sk_node.next) != 0)
915 memset(sk, 0, offsetof(struct sock, sk_node.next));
916 memset(&sk->sk_node.pprev, 0,
917 size - offsetof(struct sock, sk_node.pprev));
918 }
919
920 /* Networking protocol blocks we attach to sockets.
921 * socket layer -> transport layer interface
922 * transport -> network interface is defined by struct inet_proto
923 */
924 struct proto {
925 void (*close)(struct sock *sk,
926 long timeout);
927 int (*connect)(struct sock *sk,
928 struct sockaddr *uaddr,
929 int addr_len);
930 int (*disconnect)(struct sock *sk, int flags);
931
932 struct sock * (*accept)(struct sock *sk, int flags, int *err);
933
934 int (*ioctl)(struct sock *sk, int cmd,
935 unsigned long arg);
936 int (*init)(struct sock *sk);
937 void (*destroy)(struct sock *sk);
938 void (*shutdown)(struct sock *sk, int how);
939 int (*setsockopt)(struct sock *sk, int level,
940 int optname, char __user *optval,
941 unsigned int optlen);
942 int (*getsockopt)(struct sock *sk, int level,
943 int optname, char __user *optval,
944 int __user *option);
945 #ifdef CONFIG_COMPAT
946 int (*compat_setsockopt)(struct sock *sk,
947 int level,
948 int optname, char __user *optval,
949 unsigned int optlen);
950 int (*compat_getsockopt)(struct sock *sk,
951 int level,
952 int optname, char __user *optval,
953 int __user *option);
954 int (*compat_ioctl)(struct sock *sk,
955 unsigned int cmd, unsigned long arg);
956 #endif
957 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
958 struct msghdr *msg, size_t len);
959 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
960 struct msghdr *msg,
961 size_t len, int noblock, int flags,
962 int *addr_len);
963 int (*sendpage)(struct sock *sk, struct page *page,
964 int offset, size_t size, int flags);
965 int (*bind)(struct sock *sk,
966 struct sockaddr *uaddr, int addr_len);
967
968 int (*backlog_rcv) (struct sock *sk,
969 struct sk_buff *skb);
970
971 void (*release_cb)(struct sock *sk);
972 void (*mtu_reduced)(struct sock *sk);
973
974 /* Keeping track of sk's, looking them up, and port selection methods. */
975 void (*hash)(struct sock *sk);
976 void (*unhash)(struct sock *sk);
977 void (*rehash)(struct sock *sk);
978 int (*get_port)(struct sock *sk, unsigned short snum);
979 void (*clear_sk)(struct sock *sk, int size);
980
981 /* Keeping track of sockets in use */
982 #ifdef CONFIG_PROC_FS
983 unsigned int inuse_idx;
984 #endif
985
986 bool (*stream_memory_free)(const struct sock *sk);
987 /* Memory pressure */
988 void (*enter_memory_pressure)(struct sock *sk);
989 atomic_long_t *memory_allocated; /* Current allocated memory. */
990 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
991 /*
992 * Pressure flag: try to collapse.
993 * Technical note: it is used by multiple contexts non atomically.
994 * All the __sk_mem_schedule() is of this nature: accounting
995 * is strict, actions are advisory and have some latency.
996 */
997 int *memory_pressure;
998 long *sysctl_mem;
999 int *sysctl_wmem;
1000 int *sysctl_rmem;
1001 int max_header;
1002 bool no_autobind;
1003
1004 struct kmem_cache *slab;
1005 unsigned int obj_size;
1006 int slab_flags;
1007
1008 struct percpu_counter *orphan_count;
1009
1010 struct request_sock_ops *rsk_prot;
1011 struct timewait_sock_ops *twsk_prot;
1012
1013 union {
1014 struct inet_hashinfo *hashinfo;
1015 struct udp_table *udp_table;
1016 struct raw_hashinfo *raw_hash;
1017 } h;
1018
1019 struct module *owner;
1020
1021 char name[32];
1022
1023 struct list_head node;
1024 #ifdef SOCK_REFCNT_DEBUG
1025 atomic_t socks;
1026 #endif
1027 #ifdef CONFIG_MEMCG_KMEM
1028 /*
1029 * cgroup specific init/deinit functions. Called once for all
1030 * protocols that implement it, from cgroups populate function.
1031 * This function has to setup any files the protocol want to
1032 * appear in the kmem cgroup filesystem.
1033 */
1034 int (*init_cgroup)(struct mem_cgroup *memcg,
1035 struct cgroup_subsys *ss);
1036 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1037 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1038 #endif
1039 };
1040
1041 /*
1042 * Bits in struct cg_proto.flags
1043 */
1044 enum cg_proto_flags {
1045 /* Currently active and new sockets should be assigned to cgroups */
1046 MEMCG_SOCK_ACTIVE,
1047 /* It was ever activated; we must disarm static keys on destruction */
1048 MEMCG_SOCK_ACTIVATED,
1049 };
1050
1051 struct cg_proto {
1052 struct res_counter memory_allocated; /* Current allocated memory. */
1053 struct percpu_counter sockets_allocated; /* Current number of sockets. */
1054 int memory_pressure;
1055 long sysctl_mem[3];
1056 unsigned long flags;
1057 /*
1058 * memcg field is used to find which memcg we belong directly
1059 * Each memcg struct can hold more than one cg_proto, so container_of
1060 * won't really cut.
1061 *
1062 * The elegant solution would be having an inverse function to
1063 * proto_cgroup in struct proto, but that means polluting the structure
1064 * for everybody, instead of just for memcg users.
1065 */
1066 struct mem_cgroup *memcg;
1067 };
1068
1069 int proto_register(struct proto *prot, int alloc_slab);
1070 void proto_unregister(struct proto *prot);
1071
1072 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1073 {
1074 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1075 }
1076
1077 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1078 {
1079 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1080 }
1081
1082 #ifdef SOCK_REFCNT_DEBUG
1083 static inline void sk_refcnt_debug_inc(struct sock *sk)
1084 {
1085 atomic_inc(&sk->sk_prot->socks);
1086 }
1087
1088 static inline void sk_refcnt_debug_dec(struct sock *sk)
1089 {
1090 atomic_dec(&sk->sk_prot->socks);
1091 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1092 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1093 }
1094
1095 static inline void sk_refcnt_debug_release(const struct sock *sk)
1096 {
1097 if (atomic_read(&sk->sk_refcnt) != 1)
1098 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1099 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1100 }
1101 #else /* SOCK_REFCNT_DEBUG */
1102 #define sk_refcnt_debug_inc(sk) do { } while (0)
1103 #define sk_refcnt_debug_dec(sk) do { } while (0)
1104 #define sk_refcnt_debug_release(sk) do { } while (0)
1105 #endif /* SOCK_REFCNT_DEBUG */
1106
1107 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1108 extern struct static_key memcg_socket_limit_enabled;
1109 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1110 struct cg_proto *cg_proto)
1111 {
1112 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1113 }
1114 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1115 #else
1116 #define mem_cgroup_sockets_enabled 0
1117 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1118 struct cg_proto *cg_proto)
1119 {
1120 return NULL;
1121 }
1122 #endif
1123
1124 static inline bool sk_stream_memory_free(const struct sock *sk)
1125 {
1126 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1127 return false;
1128
1129 return sk->sk_prot->stream_memory_free ?
1130 sk->sk_prot->stream_memory_free(sk) : true;
1131 }
1132
1133 static inline bool sk_stream_is_writeable(const struct sock *sk)
1134 {
1135 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1136 sk_stream_memory_free(sk);
1137 }
1138
1139
1140 static inline bool sk_has_memory_pressure(const struct sock *sk)
1141 {
1142 return sk->sk_prot->memory_pressure != NULL;
1143 }
1144
1145 static inline bool sk_under_memory_pressure(const struct sock *sk)
1146 {
1147 if (!sk->sk_prot->memory_pressure)
1148 return false;
1149
1150 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1151 return !!sk->sk_cgrp->memory_pressure;
1152
1153 return !!*sk->sk_prot->memory_pressure;
1154 }
1155
1156 static inline void sk_leave_memory_pressure(struct sock *sk)
1157 {
1158 int *memory_pressure = sk->sk_prot->memory_pressure;
1159
1160 if (!memory_pressure)
1161 return;
1162
1163 if (*memory_pressure)
1164 *memory_pressure = 0;
1165
1166 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1167 struct cg_proto *cg_proto = sk->sk_cgrp;
1168 struct proto *prot = sk->sk_prot;
1169
1170 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1171 cg_proto->memory_pressure = 0;
1172 }
1173
1174 }
1175
1176 static inline void sk_enter_memory_pressure(struct sock *sk)
1177 {
1178 if (!sk->sk_prot->enter_memory_pressure)
1179 return;
1180
1181 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1182 struct cg_proto *cg_proto = sk->sk_cgrp;
1183 struct proto *prot = sk->sk_prot;
1184
1185 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1186 cg_proto->memory_pressure = 1;
1187 }
1188
1189 sk->sk_prot->enter_memory_pressure(sk);
1190 }
1191
1192 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1193 {
1194 long *prot = sk->sk_prot->sysctl_mem;
1195 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1196 prot = sk->sk_cgrp->sysctl_mem;
1197 return prot[index];
1198 }
1199
1200 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1201 unsigned long amt,
1202 int *parent_status)
1203 {
1204 struct res_counter *fail;
1205 int ret;
1206
1207 ret = res_counter_charge_nofail(&prot->memory_allocated,
1208 amt << PAGE_SHIFT, &fail);
1209 if (ret < 0)
1210 *parent_status = OVER_LIMIT;
1211 }
1212
1213 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1214 unsigned long amt)
1215 {
1216 res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT);
1217 }
1218
1219 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1220 {
1221 u64 ret;
1222 ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE);
1223 return ret >> PAGE_SHIFT;
1224 }
1225
1226 static inline long
1227 sk_memory_allocated(const struct sock *sk)
1228 {
1229 struct proto *prot = sk->sk_prot;
1230 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1231 return memcg_memory_allocated_read(sk->sk_cgrp);
1232
1233 return atomic_long_read(prot->memory_allocated);
1234 }
1235
1236 static inline long
1237 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1238 {
1239 struct proto *prot = sk->sk_prot;
1240
1241 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1242 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1243 /* update the root cgroup regardless */
1244 atomic_long_add_return(amt, prot->memory_allocated);
1245 return memcg_memory_allocated_read(sk->sk_cgrp);
1246 }
1247
1248 return atomic_long_add_return(amt, prot->memory_allocated);
1249 }
1250
1251 static inline void
1252 sk_memory_allocated_sub(struct sock *sk, int amt)
1253 {
1254 struct proto *prot = sk->sk_prot;
1255
1256 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1257 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1258
1259 atomic_long_sub(amt, prot->memory_allocated);
1260 }
1261
1262 static inline void sk_sockets_allocated_dec(struct sock *sk)
1263 {
1264 struct proto *prot = sk->sk_prot;
1265
1266 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1267 struct cg_proto *cg_proto = sk->sk_cgrp;
1268
1269 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1270 percpu_counter_dec(&cg_proto->sockets_allocated);
1271 }
1272
1273 percpu_counter_dec(prot->sockets_allocated);
1274 }
1275
1276 static inline void sk_sockets_allocated_inc(struct sock *sk)
1277 {
1278 struct proto *prot = sk->sk_prot;
1279
1280 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1281 struct cg_proto *cg_proto = sk->sk_cgrp;
1282
1283 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1284 percpu_counter_inc(&cg_proto->sockets_allocated);
1285 }
1286
1287 percpu_counter_inc(prot->sockets_allocated);
1288 }
1289
1290 static inline int
1291 sk_sockets_allocated_read_positive(struct sock *sk)
1292 {
1293 struct proto *prot = sk->sk_prot;
1294
1295 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1296 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1297
1298 return percpu_counter_read_positive(prot->sockets_allocated);
1299 }
1300
1301 static inline int
1302 proto_sockets_allocated_sum_positive(struct proto *prot)
1303 {
1304 return percpu_counter_sum_positive(prot->sockets_allocated);
1305 }
1306
1307 static inline long
1308 proto_memory_allocated(struct proto *prot)
1309 {
1310 return atomic_long_read(prot->memory_allocated);
1311 }
1312
1313 static inline bool
1314 proto_memory_pressure(struct proto *prot)
1315 {
1316 if (!prot->memory_pressure)
1317 return false;
1318 return !!*prot->memory_pressure;
1319 }
1320
1321
1322 #ifdef CONFIG_PROC_FS
1323 /* Called with local bh disabled */
1324 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1325 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1326 #else
1327 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1328 int inc)
1329 {
1330 }
1331 #endif
1332
1333
1334 /* With per-bucket locks this operation is not-atomic, so that
1335 * this version is not worse.
1336 */
1337 static inline void __sk_prot_rehash(struct sock *sk)
1338 {
1339 sk->sk_prot->unhash(sk);
1340 sk->sk_prot->hash(sk);
1341 }
1342
1343 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1344
1345 /* About 10 seconds */
1346 #define SOCK_DESTROY_TIME (10*HZ)
1347
1348 /* Sockets 0-1023 can't be bound to unless you are superuser */
1349 #define PROT_SOCK 1024
1350
1351 #define SHUTDOWN_MASK 3
1352 #define RCV_SHUTDOWN 1
1353 #define SEND_SHUTDOWN 2
1354
1355 #define SOCK_SNDBUF_LOCK 1
1356 #define SOCK_RCVBUF_LOCK 2
1357 #define SOCK_BINDADDR_LOCK 4
1358 #define SOCK_BINDPORT_LOCK 8
1359
1360 /* sock_iocb: used to kick off async processing of socket ios */
1361 struct sock_iocb {
1362 struct list_head list;
1363
1364 int flags;
1365 int size;
1366 struct socket *sock;
1367 struct sock *sk;
1368 struct scm_cookie *scm;
1369 struct msghdr *msg, async_msg;
1370 struct kiocb *kiocb;
1371 };
1372
1373 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1374 {
1375 return (struct sock_iocb *)iocb->private;
1376 }
1377
1378 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1379 {
1380 return si->kiocb;
1381 }
1382
1383 struct socket_alloc {
1384 struct socket socket;
1385 struct inode vfs_inode;
1386 };
1387
1388 static inline struct socket *SOCKET_I(struct inode *inode)
1389 {
1390 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1391 }
1392
1393 static inline struct inode *SOCK_INODE(struct socket *socket)
1394 {
1395 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1396 }
1397
1398 /*
1399 * Functions for memory accounting
1400 */
1401 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1402 void __sk_mem_reclaim(struct sock *sk);
1403
1404 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1405 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1406 #define SK_MEM_SEND 0
1407 #define SK_MEM_RECV 1
1408
1409 static inline int sk_mem_pages(int amt)
1410 {
1411 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1412 }
1413
1414 static inline bool sk_has_account(struct sock *sk)
1415 {
1416 /* return true if protocol supports memory accounting */
1417 return !!sk->sk_prot->memory_allocated;
1418 }
1419
1420 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1421 {
1422 if (!sk_has_account(sk))
1423 return true;
1424 return size <= sk->sk_forward_alloc ||
1425 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1426 }
1427
1428 static inline bool
1429 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1430 {
1431 if (!sk_has_account(sk))
1432 return true;
1433 return size<= sk->sk_forward_alloc ||
1434 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1435 skb_pfmemalloc(skb);
1436 }
1437
1438 static inline void sk_mem_reclaim(struct sock *sk)
1439 {
1440 if (!sk_has_account(sk))
1441 return;
1442 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1443 __sk_mem_reclaim(sk);
1444 }
1445
1446 static inline void sk_mem_reclaim_partial(struct sock *sk)
1447 {
1448 if (!sk_has_account(sk))
1449 return;
1450 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1451 __sk_mem_reclaim(sk);
1452 }
1453
1454 static inline void sk_mem_charge(struct sock *sk, int size)
1455 {
1456 if (!sk_has_account(sk))
1457 return;
1458 sk->sk_forward_alloc -= size;
1459 }
1460
1461 static inline void sk_mem_uncharge(struct sock *sk, int size)
1462 {
1463 if (!sk_has_account(sk))
1464 return;
1465 sk->sk_forward_alloc += size;
1466 }
1467
1468 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1469 {
1470 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1471 sk->sk_wmem_queued -= skb->truesize;
1472 sk_mem_uncharge(sk, skb->truesize);
1473 __kfree_skb(skb);
1474 }
1475
1476 /* Used by processes to "lock" a socket state, so that
1477 * interrupts and bottom half handlers won't change it
1478 * from under us. It essentially blocks any incoming
1479 * packets, so that we won't get any new data or any
1480 * packets that change the state of the socket.
1481 *
1482 * While locked, BH processing will add new packets to
1483 * the backlog queue. This queue is processed by the
1484 * owner of the socket lock right before it is released.
1485 *
1486 * Since ~2.3.5 it is also exclusive sleep lock serializing
1487 * accesses from user process context.
1488 */
1489 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1490
1491 /*
1492 * Macro so as to not evaluate some arguments when
1493 * lockdep is not enabled.
1494 *
1495 * Mark both the sk_lock and the sk_lock.slock as a
1496 * per-address-family lock class.
1497 */
1498 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1499 do { \
1500 sk->sk_lock.owned = 0; \
1501 init_waitqueue_head(&sk->sk_lock.wq); \
1502 spin_lock_init(&(sk)->sk_lock.slock); \
1503 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1504 sizeof((sk)->sk_lock)); \
1505 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1506 (skey), (sname)); \
1507 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1508 } while (0)
1509
1510 void lock_sock_nested(struct sock *sk, int subclass);
1511
1512 static inline void lock_sock(struct sock *sk)
1513 {
1514 lock_sock_nested(sk, 0);
1515 }
1516
1517 void release_sock(struct sock *sk);
1518
1519 /* BH context may only use the following locking interface. */
1520 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1521 #define bh_lock_sock_nested(__sk) \
1522 spin_lock_nested(&((__sk)->sk_lock.slock), \
1523 SINGLE_DEPTH_NESTING)
1524 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1525
1526 bool lock_sock_fast(struct sock *sk);
1527 /**
1528 * unlock_sock_fast - complement of lock_sock_fast
1529 * @sk: socket
1530 * @slow: slow mode
1531 *
1532 * fast unlock socket for user context.
1533 * If slow mode is on, we call regular release_sock()
1534 */
1535 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1536 {
1537 if (slow)
1538 release_sock(sk);
1539 else
1540 spin_unlock_bh(&sk->sk_lock.slock);
1541 }
1542
1543
1544 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1545 struct proto *prot);
1546 void sk_free(struct sock *sk);
1547 void sk_release_kernel(struct sock *sk);
1548 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1549
1550 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1551 gfp_t priority);
1552 void sock_wfree(struct sk_buff *skb);
1553 void skb_orphan_partial(struct sk_buff *skb);
1554 void sock_rfree(struct sk_buff *skb);
1555 void sock_edemux(struct sk_buff *skb);
1556
1557 int sock_setsockopt(struct socket *sock, int level, int op,
1558 char __user *optval, unsigned int optlen);
1559
1560 int sock_getsockopt(struct socket *sock, int level, int op,
1561 char __user *optval, int __user *optlen);
1562 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1563 int noblock, int *errcode);
1564 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1565 unsigned long data_len, int noblock,
1566 int *errcode, int max_page_order);
1567 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1568 void sock_kfree_s(struct sock *sk, void *mem, int size);
1569 void sk_send_sigurg(struct sock *sk);
1570
1571 /*
1572 * Functions to fill in entries in struct proto_ops when a protocol
1573 * does not implement a particular function.
1574 */
1575 int sock_no_bind(struct socket *, struct sockaddr *, int);
1576 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1577 int sock_no_socketpair(struct socket *, struct socket *);
1578 int sock_no_accept(struct socket *, struct socket *, int);
1579 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1580 unsigned int sock_no_poll(struct file *, struct socket *,
1581 struct poll_table_struct *);
1582 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1583 int sock_no_listen(struct socket *, int);
1584 int sock_no_shutdown(struct socket *, int);
1585 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1586 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1587 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
1588 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
1589 int);
1590 int sock_no_mmap(struct file *file, struct socket *sock,
1591 struct vm_area_struct *vma);
1592 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1593 size_t size, int flags);
1594
1595 /*
1596 * Functions to fill in entries in struct proto_ops when a protocol
1597 * uses the inet style.
1598 */
1599 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1600 char __user *optval, int __user *optlen);
1601 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1602 struct msghdr *msg, size_t size, int flags);
1603 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1604 char __user *optval, unsigned int optlen);
1605 int compat_sock_common_getsockopt(struct socket *sock, int level,
1606 int optname, char __user *optval, int __user *optlen);
1607 int compat_sock_common_setsockopt(struct socket *sock, int level,
1608 int optname, char __user *optval, unsigned int optlen);
1609
1610 void sk_common_release(struct sock *sk);
1611
1612 /*
1613 * Default socket callbacks and setup code
1614 */
1615
1616 /* Initialise core socket variables */
1617 void sock_init_data(struct socket *sock, struct sock *sk);
1618
1619 void sk_filter_release_rcu(struct rcu_head *rcu);
1620
1621 /**
1622 * sk_filter_release - release a socket filter
1623 * @fp: filter to remove
1624 *
1625 * Remove a filter from a socket and release its resources.
1626 */
1627
1628 static inline void sk_filter_release(struct sk_filter *fp)
1629 {
1630 if (atomic_dec_and_test(&fp->refcnt))
1631 call_rcu(&fp->rcu, sk_filter_release_rcu);
1632 }
1633
1634 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1635 {
1636 atomic_sub(sk_filter_size(fp->len), &sk->sk_omem_alloc);
1637 sk_filter_release(fp);
1638 }
1639
1640 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1641 {
1642 atomic_inc(&fp->refcnt);
1643 atomic_add(sk_filter_size(fp->len), &sk->sk_omem_alloc);
1644 }
1645
1646 /*
1647 * Socket reference counting postulates.
1648 *
1649 * * Each user of socket SHOULD hold a reference count.
1650 * * Each access point to socket (an hash table bucket, reference from a list,
1651 * running timer, skb in flight MUST hold a reference count.
1652 * * When reference count hits 0, it means it will never increase back.
1653 * * When reference count hits 0, it means that no references from
1654 * outside exist to this socket and current process on current CPU
1655 * is last user and may/should destroy this socket.
1656 * * sk_free is called from any context: process, BH, IRQ. When
1657 * it is called, socket has no references from outside -> sk_free
1658 * may release descendant resources allocated by the socket, but
1659 * to the time when it is called, socket is NOT referenced by any
1660 * hash tables, lists etc.
1661 * * Packets, delivered from outside (from network or from another process)
1662 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1663 * when they sit in queue. Otherwise, packets will leak to hole, when
1664 * socket is looked up by one cpu and unhasing is made by another CPU.
1665 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1666 * (leak to backlog). Packet socket does all the processing inside
1667 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1668 * use separate SMP lock, so that they are prone too.
1669 */
1670
1671 /* Ungrab socket and destroy it, if it was the last reference. */
1672 static inline void sock_put(struct sock *sk)
1673 {
1674 if (atomic_dec_and_test(&sk->sk_refcnt))
1675 sk_free(sk);
1676 }
1677 /* Generic version of sock_put(), dealing with all sockets
1678 * (TCP_TIMEWAIT, ESTABLISHED...)
1679 */
1680 void sock_gen_put(struct sock *sk);
1681
1682 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1683
1684 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1685 {
1686 sk->sk_tx_queue_mapping = tx_queue;
1687 }
1688
1689 static inline void sk_tx_queue_clear(struct sock *sk)
1690 {
1691 sk->sk_tx_queue_mapping = -1;
1692 }
1693
1694 static inline int sk_tx_queue_get(const struct sock *sk)
1695 {
1696 return sk ? sk->sk_tx_queue_mapping : -1;
1697 }
1698
1699 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1700 {
1701 sk_tx_queue_clear(sk);
1702 sk->sk_socket = sock;
1703 }
1704
1705 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1706 {
1707 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1708 return &rcu_dereference_raw(sk->sk_wq)->wait;
1709 }
1710 /* Detach socket from process context.
1711 * Announce socket dead, detach it from wait queue and inode.
1712 * Note that parent inode held reference count on this struct sock,
1713 * we do not release it in this function, because protocol
1714 * probably wants some additional cleanups or even continuing
1715 * to work with this socket (TCP).
1716 */
1717 static inline void sock_orphan(struct sock *sk)
1718 {
1719 write_lock_bh(&sk->sk_callback_lock);
1720 sock_set_flag(sk, SOCK_DEAD);
1721 sk_set_socket(sk, NULL);
1722 sk->sk_wq = NULL;
1723 write_unlock_bh(&sk->sk_callback_lock);
1724 }
1725
1726 static inline void sock_graft(struct sock *sk, struct socket *parent)
1727 {
1728 write_lock_bh(&sk->sk_callback_lock);
1729 sk->sk_wq = parent->wq;
1730 parent->sk = sk;
1731 sk_set_socket(sk, parent);
1732 security_sock_graft(sk, parent);
1733 write_unlock_bh(&sk->sk_callback_lock);
1734 }
1735
1736 kuid_t sock_i_uid(struct sock *sk);
1737 unsigned long sock_i_ino(struct sock *sk);
1738
1739 static inline struct dst_entry *
1740 __sk_dst_get(struct sock *sk)
1741 {
1742 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1743 lockdep_is_held(&sk->sk_lock.slock));
1744 }
1745
1746 static inline struct dst_entry *
1747 sk_dst_get(struct sock *sk)
1748 {
1749 struct dst_entry *dst;
1750
1751 rcu_read_lock();
1752 dst = rcu_dereference(sk->sk_dst_cache);
1753 if (dst)
1754 dst_hold(dst);
1755 rcu_read_unlock();
1756 return dst;
1757 }
1758
1759 static inline void dst_negative_advice(struct sock *sk)
1760 {
1761 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1762
1763 if (dst && dst->ops->negative_advice) {
1764 ndst = dst->ops->negative_advice(dst);
1765
1766 if (ndst != dst) {
1767 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1768 sk_tx_queue_clear(sk);
1769 }
1770 }
1771 }
1772
1773 static inline void
1774 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1775 {
1776 struct dst_entry *old_dst;
1777
1778 sk_tx_queue_clear(sk);
1779 /*
1780 * This can be called while sk is owned by the caller only,
1781 * with no state that can be checked in a rcu_dereference_check() cond
1782 */
1783 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1784 rcu_assign_pointer(sk->sk_dst_cache, dst);
1785 dst_release(old_dst);
1786 }
1787
1788 static inline void
1789 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1790 {
1791 spin_lock(&sk->sk_dst_lock);
1792 __sk_dst_set(sk, dst);
1793 spin_unlock(&sk->sk_dst_lock);
1794 }
1795
1796 static inline void
1797 __sk_dst_reset(struct sock *sk)
1798 {
1799 __sk_dst_set(sk, NULL);
1800 }
1801
1802 static inline void
1803 sk_dst_reset(struct sock *sk)
1804 {
1805 spin_lock(&sk->sk_dst_lock);
1806 __sk_dst_reset(sk);
1807 spin_unlock(&sk->sk_dst_lock);
1808 }
1809
1810 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1811
1812 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1813
1814 static inline bool sk_can_gso(const struct sock *sk)
1815 {
1816 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1817 }
1818
1819 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1820
1821 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1822 {
1823 sk->sk_route_nocaps |= flags;
1824 sk->sk_route_caps &= ~flags;
1825 }
1826
1827 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1828 char __user *from, char *to,
1829 int copy, int offset)
1830 {
1831 if (skb->ip_summed == CHECKSUM_NONE) {
1832 int err = 0;
1833 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1834 if (err)
1835 return err;
1836 skb->csum = csum_block_add(skb->csum, csum, offset);
1837 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1838 if (!access_ok(VERIFY_READ, from, copy) ||
1839 __copy_from_user_nocache(to, from, copy))
1840 return -EFAULT;
1841 } else if (copy_from_user(to, from, copy))
1842 return -EFAULT;
1843
1844 return 0;
1845 }
1846
1847 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1848 char __user *from, int copy)
1849 {
1850 int err, offset = skb->len;
1851
1852 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1853 copy, offset);
1854 if (err)
1855 __skb_trim(skb, offset);
1856
1857 return err;
1858 }
1859
1860 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1861 struct sk_buff *skb,
1862 struct page *page,
1863 int off, int copy)
1864 {
1865 int err;
1866
1867 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1868 copy, skb->len);
1869 if (err)
1870 return err;
1871
1872 skb->len += copy;
1873 skb->data_len += copy;
1874 skb->truesize += copy;
1875 sk->sk_wmem_queued += copy;
1876 sk_mem_charge(sk, copy);
1877 return 0;
1878 }
1879
1880 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1881 struct sk_buff *skb, struct page *page,
1882 int off, int copy)
1883 {
1884 if (skb->ip_summed == CHECKSUM_NONE) {
1885 int err = 0;
1886 __wsum csum = csum_and_copy_from_user(from,
1887 page_address(page) + off,
1888 copy, 0, &err);
1889 if (err)
1890 return err;
1891 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1892 } else if (copy_from_user(page_address(page) + off, from, copy))
1893 return -EFAULT;
1894
1895 skb->len += copy;
1896 skb->data_len += copy;
1897 skb->truesize += copy;
1898 sk->sk_wmem_queued += copy;
1899 sk_mem_charge(sk, copy);
1900 return 0;
1901 }
1902
1903 /**
1904 * sk_wmem_alloc_get - returns write allocations
1905 * @sk: socket
1906 *
1907 * Returns sk_wmem_alloc minus initial offset of one
1908 */
1909 static inline int sk_wmem_alloc_get(const struct sock *sk)
1910 {
1911 return atomic_read(&sk->sk_wmem_alloc) - 1;
1912 }
1913
1914 /**
1915 * sk_rmem_alloc_get - returns read allocations
1916 * @sk: socket
1917 *
1918 * Returns sk_rmem_alloc
1919 */
1920 static inline int sk_rmem_alloc_get(const struct sock *sk)
1921 {
1922 return atomic_read(&sk->sk_rmem_alloc);
1923 }
1924
1925 /**
1926 * sk_has_allocations - check if allocations are outstanding
1927 * @sk: socket
1928 *
1929 * Returns true if socket has write or read allocations
1930 */
1931 static inline bool sk_has_allocations(const struct sock *sk)
1932 {
1933 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1934 }
1935
1936 /**
1937 * wq_has_sleeper - check if there are any waiting processes
1938 * @wq: struct socket_wq
1939 *
1940 * Returns true if socket_wq has waiting processes
1941 *
1942 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1943 * barrier call. They were added due to the race found within the tcp code.
1944 *
1945 * Consider following tcp code paths:
1946 *
1947 * CPU1 CPU2
1948 *
1949 * sys_select receive packet
1950 * ... ...
1951 * __add_wait_queue update tp->rcv_nxt
1952 * ... ...
1953 * tp->rcv_nxt check sock_def_readable
1954 * ... {
1955 * schedule rcu_read_lock();
1956 * wq = rcu_dereference(sk->sk_wq);
1957 * if (wq && waitqueue_active(&wq->wait))
1958 * wake_up_interruptible(&wq->wait)
1959 * ...
1960 * }
1961 *
1962 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1963 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1964 * could then endup calling schedule and sleep forever if there are no more
1965 * data on the socket.
1966 *
1967 */
1968 static inline bool wq_has_sleeper(struct socket_wq *wq)
1969 {
1970 /* We need to be sure we are in sync with the
1971 * add_wait_queue modifications to the wait queue.
1972 *
1973 * This memory barrier is paired in the sock_poll_wait.
1974 */
1975 smp_mb();
1976 return wq && waitqueue_active(&wq->wait);
1977 }
1978
1979 /**
1980 * sock_poll_wait - place memory barrier behind the poll_wait call.
1981 * @filp: file
1982 * @wait_address: socket wait queue
1983 * @p: poll_table
1984 *
1985 * See the comments in the wq_has_sleeper function.
1986 */
1987 static inline void sock_poll_wait(struct file *filp,
1988 wait_queue_head_t *wait_address, poll_table *p)
1989 {
1990 if (!poll_does_not_wait(p) && wait_address) {
1991 poll_wait(filp, wait_address, p);
1992 /* We need to be sure we are in sync with the
1993 * socket flags modification.
1994 *
1995 * This memory barrier is paired in the wq_has_sleeper.
1996 */
1997 smp_mb();
1998 }
1999 }
2000
2001 /*
2002 * Queue a received datagram if it will fit. Stream and sequenced
2003 * protocols can't normally use this as they need to fit buffers in
2004 * and play with them.
2005 *
2006 * Inlined as it's very short and called for pretty much every
2007 * packet ever received.
2008 */
2009
2010 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2011 {
2012 skb_orphan(skb);
2013 skb->sk = sk;
2014 skb->destructor = sock_wfree;
2015 /*
2016 * We used to take a refcount on sk, but following operation
2017 * is enough to guarantee sk_free() wont free this sock until
2018 * all in-flight packets are completed
2019 */
2020 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2021 }
2022
2023 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2024 {
2025 skb_orphan(skb);
2026 skb->sk = sk;
2027 skb->destructor = sock_rfree;
2028 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2029 sk_mem_charge(sk, skb->truesize);
2030 }
2031
2032 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2033 unsigned long expires);
2034
2035 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2036
2037 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2038
2039 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2040
2041 /*
2042 * Recover an error report and clear atomically
2043 */
2044
2045 static inline int sock_error(struct sock *sk)
2046 {
2047 int err;
2048 if (likely(!sk->sk_err))
2049 return 0;
2050 err = xchg(&sk->sk_err, 0);
2051 return -err;
2052 }
2053
2054 static inline unsigned long sock_wspace(struct sock *sk)
2055 {
2056 int amt = 0;
2057
2058 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2059 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2060 if (amt < 0)
2061 amt = 0;
2062 }
2063 return amt;
2064 }
2065
2066 static inline void sk_wake_async(struct sock *sk, int how, int band)
2067 {
2068 if (sock_flag(sk, SOCK_FASYNC))
2069 sock_wake_async(sk->sk_socket, how, band);
2070 }
2071
2072 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2073 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2074 * Note: for send buffers, TCP works better if we can build two skbs at
2075 * minimum.
2076 */
2077 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2078
2079 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2080 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2081
2082 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2083 {
2084 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2085 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2086 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2087 }
2088 }
2089
2090 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2091
2092 /**
2093 * sk_page_frag - return an appropriate page_frag
2094 * @sk: socket
2095 *
2096 * If socket allocation mode allows current thread to sleep, it means its
2097 * safe to use the per task page_frag instead of the per socket one.
2098 */
2099 static inline struct page_frag *sk_page_frag(struct sock *sk)
2100 {
2101 if (sk->sk_allocation & __GFP_WAIT)
2102 return &current->task_frag;
2103
2104 return &sk->sk_frag;
2105 }
2106
2107 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2108
2109 /*
2110 * Default write policy as shown to user space via poll/select/SIGIO
2111 */
2112 static inline bool sock_writeable(const struct sock *sk)
2113 {
2114 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2115 }
2116
2117 static inline gfp_t gfp_any(void)
2118 {
2119 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2120 }
2121
2122 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2123 {
2124 return noblock ? 0 : sk->sk_rcvtimeo;
2125 }
2126
2127 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2128 {
2129 return noblock ? 0 : sk->sk_sndtimeo;
2130 }
2131
2132 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2133 {
2134 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2135 }
2136
2137 /* Alas, with timeout socket operations are not restartable.
2138 * Compare this to poll().
2139 */
2140 static inline int sock_intr_errno(long timeo)
2141 {
2142 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2143 }
2144
2145 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2146 struct sk_buff *skb);
2147 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2148 struct sk_buff *skb);
2149
2150 static inline void
2151 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2152 {
2153 ktime_t kt = skb->tstamp;
2154 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2155
2156 /*
2157 * generate control messages if
2158 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2159 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2160 * - software time stamp available and wanted
2161 * (SOCK_TIMESTAMPING_SOFTWARE)
2162 * - hardware time stamps available and wanted
2163 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2164 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2165 */
2166 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2167 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2168 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2169 (hwtstamps->hwtstamp.tv64 &&
2170 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2171 (hwtstamps->syststamp.tv64 &&
2172 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2173 __sock_recv_timestamp(msg, sk, skb);
2174 else
2175 sk->sk_stamp = kt;
2176
2177 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2178 __sock_recv_wifi_status(msg, sk, skb);
2179 }
2180
2181 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2182 struct sk_buff *skb);
2183
2184 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2185 struct sk_buff *skb)
2186 {
2187 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2188 (1UL << SOCK_RCVTSTAMP) | \
2189 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2190 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2191 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2192 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2193
2194 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2195 __sock_recv_ts_and_drops(msg, sk, skb);
2196 else
2197 sk->sk_stamp = skb->tstamp;
2198 }
2199
2200 /**
2201 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2202 * @sk: socket sending this packet
2203 * @tx_flags: filled with instructions for time stamping
2204 *
2205 * Currently only depends on SOCK_TIMESTAMPING* flags.
2206 */
2207 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2208
2209 /**
2210 * sk_eat_skb - Release a skb if it is no longer needed
2211 * @sk: socket to eat this skb from
2212 * @skb: socket buffer to eat
2213 * @copied_early: flag indicating whether DMA operations copied this data early
2214 *
2215 * This routine must be called with interrupts disabled or with the socket
2216 * locked so that the sk_buff queue operation is ok.
2217 */
2218 #ifdef CONFIG_NET_DMA
2219 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2220 {
2221 __skb_unlink(skb, &sk->sk_receive_queue);
2222 if (!copied_early)
2223 __kfree_skb(skb);
2224 else
2225 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2226 }
2227 #else
2228 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2229 {
2230 __skb_unlink(skb, &sk->sk_receive_queue);
2231 __kfree_skb(skb);
2232 }
2233 #endif
2234
2235 static inline
2236 struct net *sock_net(const struct sock *sk)
2237 {
2238 return read_pnet(&sk->sk_net);
2239 }
2240
2241 static inline
2242 void sock_net_set(struct sock *sk, struct net *net)
2243 {
2244 write_pnet(&sk->sk_net, net);
2245 }
2246
2247 /*
2248 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2249 * They should not hold a reference to a namespace in order to allow
2250 * to stop it.
2251 * Sockets after sk_change_net should be released using sk_release_kernel
2252 */
2253 static inline void sk_change_net(struct sock *sk, struct net *net)
2254 {
2255 put_net(sock_net(sk));
2256 sock_net_set(sk, hold_net(net));
2257 }
2258
2259 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2260 {
2261 if (skb->sk) {
2262 struct sock *sk = skb->sk;
2263
2264 skb->destructor = NULL;
2265 skb->sk = NULL;
2266 return sk;
2267 }
2268 return NULL;
2269 }
2270
2271 void sock_enable_timestamp(struct sock *sk, int flag);
2272 int sock_get_timestamp(struct sock *, struct timeval __user *);
2273 int sock_get_timestampns(struct sock *, struct timespec __user *);
2274 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2275 int type);
2276
2277 /*
2278 * Enable debug/info messages
2279 */
2280 extern int net_msg_warn;
2281 #define NETDEBUG(fmt, args...) \
2282 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2283
2284 #define LIMIT_NETDEBUG(fmt, args...) \
2285 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2286
2287 extern __u32 sysctl_wmem_max;
2288 extern __u32 sysctl_rmem_max;
2289
2290 extern int sysctl_optmem_max;
2291
2292 extern __u32 sysctl_wmem_default;
2293 extern __u32 sysctl_rmem_default;
2294
2295 #endif /* _SOCK_H */
This page took 0.08097 seconds and 5 git commands to generate.