[I/OAT]: Structure changes for TCP recv offload to I/OAT
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/config.h>
44 #include <linux/list.h>
45 #include <linux/timer.h>
46 #include <linux/cache.h>
47 #include <linux/module.h>
48 #include <linux/netdevice.h>
49 #include <linux/skbuff.h> /* struct sk_buff */
50 #include <linux/security.h>
51
52 #include <linux/filter.h>
53
54 #include <asm/atomic.h>
55 #include <net/dst.h>
56 #include <net/checksum.h>
57
58 /*
59 * This structure really needs to be cleaned up.
60 * Most of it is for TCP, and not used by any of
61 * the other protocols.
62 */
63
64 /* Define this to get the SOCK_DBG debugging facility. */
65 #define SOCK_DEBUGGING
66 #ifdef SOCK_DEBUGGING
67 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
68 printk(KERN_DEBUG msg); } while (0)
69 #else
70 #define SOCK_DEBUG(sk, msg...) do { } while (0)
71 #endif
72
73 /* This is the per-socket lock. The spinlock provides a synchronization
74 * between user contexts and software interrupt processing, whereas the
75 * mini-semaphore synchronizes multiple users amongst themselves.
76 */
77 struct sock_iocb;
78 typedef struct {
79 spinlock_t slock;
80 struct sock_iocb *owner;
81 wait_queue_head_t wq;
82 } socket_lock_t;
83
84 #define sock_lock_init(__sk) \
85 do { spin_lock_init(&((__sk)->sk_lock.slock)); \
86 (__sk)->sk_lock.owner = NULL; \
87 init_waitqueue_head(&((__sk)->sk_lock.wq)); \
88 } while(0)
89
90 struct sock;
91 struct proto;
92
93 /**
94 * struct sock_common - minimal network layer representation of sockets
95 * @skc_family: network address family
96 * @skc_state: Connection state
97 * @skc_reuse: %SO_REUSEADDR setting
98 * @skc_bound_dev_if: bound device index if != 0
99 * @skc_node: main hash linkage for various protocol lookup tables
100 * @skc_bind_node: bind hash linkage for various protocol lookup tables
101 * @skc_refcnt: reference count
102 * @skc_hash: hash value used with various protocol lookup tables
103 * @skc_prot: protocol handlers inside a network family
104 *
105 * This is the minimal network layer representation of sockets, the header
106 * for struct sock and struct inet_timewait_sock.
107 */
108 struct sock_common {
109 unsigned short skc_family;
110 volatile unsigned char skc_state;
111 unsigned char skc_reuse;
112 int skc_bound_dev_if;
113 struct hlist_node skc_node;
114 struct hlist_node skc_bind_node;
115 atomic_t skc_refcnt;
116 unsigned int skc_hash;
117 struct proto *skc_prot;
118 };
119
120 /**
121 * struct sock - network layer representation of sockets
122 * @__sk_common: shared layout with inet_timewait_sock
123 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
124 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
125 * @sk_lock: synchronizer
126 * @sk_rcvbuf: size of receive buffer in bytes
127 * @sk_sleep: sock wait queue
128 * @sk_dst_cache: destination cache
129 * @sk_dst_lock: destination cache lock
130 * @sk_policy: flow policy
131 * @sk_rmem_alloc: receive queue bytes committed
132 * @sk_receive_queue: incoming packets
133 * @sk_wmem_alloc: transmit queue bytes committed
134 * @sk_write_queue: Packet sending queue
135 * @sk_async_wait_queue: DMA copied packets
136 * @sk_omem_alloc: "o" is "option" or "other"
137 * @sk_wmem_queued: persistent queue size
138 * @sk_forward_alloc: space allocated forward
139 * @sk_allocation: allocation mode
140 * @sk_sndbuf: size of send buffer in bytes
141 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
142 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
143 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
144 * @sk_lingertime: %SO_LINGER l_linger setting
145 * @sk_backlog: always used with the per-socket spinlock held
146 * @sk_callback_lock: used with the callbacks in the end of this struct
147 * @sk_error_queue: rarely used
148 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
149 * @sk_err: last error
150 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
151 * @sk_ack_backlog: current listen backlog
152 * @sk_max_ack_backlog: listen backlog set in listen()
153 * @sk_priority: %SO_PRIORITY setting
154 * @sk_type: socket type (%SOCK_STREAM, etc)
155 * @sk_protocol: which protocol this socket belongs in this network family
156 * @sk_peercred: %SO_PEERCRED setting
157 * @sk_rcvlowat: %SO_RCVLOWAT setting
158 * @sk_rcvtimeo: %SO_RCVTIMEO setting
159 * @sk_sndtimeo: %SO_SNDTIMEO setting
160 * @sk_filter: socket filtering instructions
161 * @sk_protinfo: private area, net family specific, when not using slab
162 * @sk_timer: sock cleanup timer
163 * @sk_stamp: time stamp of last packet received
164 * @sk_socket: Identd and reporting IO signals
165 * @sk_user_data: RPC layer private data
166 * @sk_sndmsg_page: cached page for sendmsg
167 * @sk_sndmsg_off: cached offset for sendmsg
168 * @sk_send_head: front of stuff to transmit
169 * @sk_security: used by security modules
170 * @sk_write_pending: a write to stream socket waits to start
171 * @sk_state_change: callback to indicate change in the state of the sock
172 * @sk_data_ready: callback to indicate there is data to be processed
173 * @sk_write_space: callback to indicate there is bf sending space available
174 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
175 * @sk_backlog_rcv: callback to process the backlog
176 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
177 */
178 struct sock {
179 /*
180 * Now struct inet_timewait_sock also uses sock_common, so please just
181 * don't add nothing before this first member (__sk_common) --acme
182 */
183 struct sock_common __sk_common;
184 #define sk_family __sk_common.skc_family
185 #define sk_state __sk_common.skc_state
186 #define sk_reuse __sk_common.skc_reuse
187 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
188 #define sk_node __sk_common.skc_node
189 #define sk_bind_node __sk_common.skc_bind_node
190 #define sk_refcnt __sk_common.skc_refcnt
191 #define sk_hash __sk_common.skc_hash
192 #define sk_prot __sk_common.skc_prot
193 unsigned char sk_shutdown : 2,
194 sk_no_check : 2,
195 sk_userlocks : 4;
196 unsigned char sk_protocol;
197 unsigned short sk_type;
198 int sk_rcvbuf;
199 socket_lock_t sk_lock;
200 wait_queue_head_t *sk_sleep;
201 struct dst_entry *sk_dst_cache;
202 struct xfrm_policy *sk_policy[2];
203 rwlock_t sk_dst_lock;
204 atomic_t sk_rmem_alloc;
205 atomic_t sk_wmem_alloc;
206 atomic_t sk_omem_alloc;
207 struct sk_buff_head sk_receive_queue;
208 struct sk_buff_head sk_write_queue;
209 struct sk_buff_head sk_async_wait_queue;
210 int sk_wmem_queued;
211 int sk_forward_alloc;
212 gfp_t sk_allocation;
213 int sk_sndbuf;
214 int sk_route_caps;
215 int sk_rcvlowat;
216 unsigned long sk_flags;
217 unsigned long sk_lingertime;
218 /*
219 * The backlog queue is special, it is always used with
220 * the per-socket spinlock held and requires low latency
221 * access. Therefore we special case it's implementation.
222 */
223 struct {
224 struct sk_buff *head;
225 struct sk_buff *tail;
226 } sk_backlog;
227 struct sk_buff_head sk_error_queue;
228 struct proto *sk_prot_creator;
229 rwlock_t sk_callback_lock;
230 int sk_err,
231 sk_err_soft;
232 unsigned short sk_ack_backlog;
233 unsigned short sk_max_ack_backlog;
234 __u32 sk_priority;
235 struct ucred sk_peercred;
236 long sk_rcvtimeo;
237 long sk_sndtimeo;
238 struct sk_filter *sk_filter;
239 void *sk_protinfo;
240 struct timer_list sk_timer;
241 struct timeval sk_stamp;
242 struct socket *sk_socket;
243 void *sk_user_data;
244 struct page *sk_sndmsg_page;
245 struct sk_buff *sk_send_head;
246 __u32 sk_sndmsg_off;
247 int sk_write_pending;
248 void *sk_security;
249 void (*sk_state_change)(struct sock *sk);
250 void (*sk_data_ready)(struct sock *sk, int bytes);
251 void (*sk_write_space)(struct sock *sk);
252 void (*sk_error_report)(struct sock *sk);
253 int (*sk_backlog_rcv)(struct sock *sk,
254 struct sk_buff *skb);
255 void (*sk_destruct)(struct sock *sk);
256 };
257
258 /*
259 * Hashed lists helper routines
260 */
261 static inline struct sock *__sk_head(const struct hlist_head *head)
262 {
263 return hlist_entry(head->first, struct sock, sk_node);
264 }
265
266 static inline struct sock *sk_head(const struct hlist_head *head)
267 {
268 return hlist_empty(head) ? NULL : __sk_head(head);
269 }
270
271 static inline struct sock *sk_next(const struct sock *sk)
272 {
273 return sk->sk_node.next ?
274 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
275 }
276
277 static inline int sk_unhashed(const struct sock *sk)
278 {
279 return hlist_unhashed(&sk->sk_node);
280 }
281
282 static inline int sk_hashed(const struct sock *sk)
283 {
284 return !sk_unhashed(sk);
285 }
286
287 static __inline__ void sk_node_init(struct hlist_node *node)
288 {
289 node->pprev = NULL;
290 }
291
292 static __inline__ void __sk_del_node(struct sock *sk)
293 {
294 __hlist_del(&sk->sk_node);
295 }
296
297 static __inline__ int __sk_del_node_init(struct sock *sk)
298 {
299 if (sk_hashed(sk)) {
300 __sk_del_node(sk);
301 sk_node_init(&sk->sk_node);
302 return 1;
303 }
304 return 0;
305 }
306
307 /* Grab socket reference count. This operation is valid only
308 when sk is ALREADY grabbed f.e. it is found in hash table
309 or a list and the lookup is made under lock preventing hash table
310 modifications.
311 */
312
313 static inline void sock_hold(struct sock *sk)
314 {
315 atomic_inc(&sk->sk_refcnt);
316 }
317
318 /* Ungrab socket in the context, which assumes that socket refcnt
319 cannot hit zero, f.e. it is true in context of any socketcall.
320 */
321 static inline void __sock_put(struct sock *sk)
322 {
323 atomic_dec(&sk->sk_refcnt);
324 }
325
326 static __inline__ int sk_del_node_init(struct sock *sk)
327 {
328 int rc = __sk_del_node_init(sk);
329
330 if (rc) {
331 /* paranoid for a while -acme */
332 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
333 __sock_put(sk);
334 }
335 return rc;
336 }
337
338 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
339 {
340 hlist_add_head(&sk->sk_node, list);
341 }
342
343 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
344 {
345 sock_hold(sk);
346 __sk_add_node(sk, list);
347 }
348
349 static __inline__ void __sk_del_bind_node(struct sock *sk)
350 {
351 __hlist_del(&sk->sk_bind_node);
352 }
353
354 static __inline__ void sk_add_bind_node(struct sock *sk,
355 struct hlist_head *list)
356 {
357 hlist_add_head(&sk->sk_bind_node, list);
358 }
359
360 #define sk_for_each(__sk, node, list) \
361 hlist_for_each_entry(__sk, node, list, sk_node)
362 #define sk_for_each_from(__sk, node) \
363 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
364 hlist_for_each_entry_from(__sk, node, sk_node)
365 #define sk_for_each_continue(__sk, node) \
366 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
367 hlist_for_each_entry_continue(__sk, node, sk_node)
368 #define sk_for_each_safe(__sk, node, tmp, list) \
369 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
370 #define sk_for_each_bound(__sk, node, list) \
371 hlist_for_each_entry(__sk, node, list, sk_bind_node)
372
373 /* Sock flags */
374 enum sock_flags {
375 SOCK_DEAD,
376 SOCK_DONE,
377 SOCK_URGINLINE,
378 SOCK_KEEPOPEN,
379 SOCK_LINGER,
380 SOCK_DESTROY,
381 SOCK_BROADCAST,
382 SOCK_TIMESTAMP,
383 SOCK_ZAPPED,
384 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
385 SOCK_DBG, /* %SO_DEBUG setting */
386 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
387 SOCK_NO_LARGESEND, /* whether to sent large segments or not */
388 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
389 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
390 };
391
392 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
393 {
394 nsk->sk_flags = osk->sk_flags;
395 }
396
397 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
398 {
399 __set_bit(flag, &sk->sk_flags);
400 }
401
402 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
403 {
404 __clear_bit(flag, &sk->sk_flags);
405 }
406
407 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
408 {
409 return test_bit(flag, &sk->sk_flags);
410 }
411
412 static inline void sk_acceptq_removed(struct sock *sk)
413 {
414 sk->sk_ack_backlog--;
415 }
416
417 static inline void sk_acceptq_added(struct sock *sk)
418 {
419 sk->sk_ack_backlog++;
420 }
421
422 static inline int sk_acceptq_is_full(struct sock *sk)
423 {
424 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
425 }
426
427 /*
428 * Compute minimal free write space needed to queue new packets.
429 */
430 static inline int sk_stream_min_wspace(struct sock *sk)
431 {
432 return sk->sk_wmem_queued / 2;
433 }
434
435 static inline int sk_stream_wspace(struct sock *sk)
436 {
437 return sk->sk_sndbuf - sk->sk_wmem_queued;
438 }
439
440 extern void sk_stream_write_space(struct sock *sk);
441
442 static inline int sk_stream_memory_free(struct sock *sk)
443 {
444 return sk->sk_wmem_queued < sk->sk_sndbuf;
445 }
446
447 extern void sk_stream_rfree(struct sk_buff *skb);
448
449 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
450 {
451 skb->sk = sk;
452 skb->destructor = sk_stream_rfree;
453 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
454 sk->sk_forward_alloc -= skb->truesize;
455 }
456
457 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
458 {
459 skb_truesize_check(skb);
460 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
461 sk->sk_wmem_queued -= skb->truesize;
462 sk->sk_forward_alloc += skb->truesize;
463 __kfree_skb(skb);
464 }
465
466 /* The per-socket spinlock must be held here. */
467 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
468 {
469 if (!sk->sk_backlog.tail) {
470 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
471 } else {
472 sk->sk_backlog.tail->next = skb;
473 sk->sk_backlog.tail = skb;
474 }
475 skb->next = NULL;
476 }
477
478 #define sk_wait_event(__sk, __timeo, __condition) \
479 ({ int rc; \
480 release_sock(__sk); \
481 rc = __condition; \
482 if (!rc) { \
483 *(__timeo) = schedule_timeout(*(__timeo)); \
484 } \
485 lock_sock(__sk); \
486 rc = __condition; \
487 rc; \
488 })
489
490 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
491 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
492 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
493 extern int sk_stream_error(struct sock *sk, int flags, int err);
494 extern void sk_stream_kill_queues(struct sock *sk);
495
496 extern int sk_wait_data(struct sock *sk, long *timeo);
497
498 struct request_sock_ops;
499 struct timewait_sock_ops;
500
501 /* Networking protocol blocks we attach to sockets.
502 * socket layer -> transport layer interface
503 * transport -> network interface is defined by struct inet_proto
504 */
505 struct proto {
506 void (*close)(struct sock *sk,
507 long timeout);
508 int (*connect)(struct sock *sk,
509 struct sockaddr *uaddr,
510 int addr_len);
511 int (*disconnect)(struct sock *sk, int flags);
512
513 struct sock * (*accept) (struct sock *sk, int flags, int *err);
514
515 int (*ioctl)(struct sock *sk, int cmd,
516 unsigned long arg);
517 int (*init)(struct sock *sk);
518 int (*destroy)(struct sock *sk);
519 void (*shutdown)(struct sock *sk, int how);
520 int (*setsockopt)(struct sock *sk, int level,
521 int optname, char __user *optval,
522 int optlen);
523 int (*getsockopt)(struct sock *sk, int level,
524 int optname, char __user *optval,
525 int __user *option);
526 int (*compat_setsockopt)(struct sock *sk,
527 int level,
528 int optname, char __user *optval,
529 int optlen);
530 int (*compat_getsockopt)(struct sock *sk,
531 int level,
532 int optname, char __user *optval,
533 int __user *option);
534 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
535 struct msghdr *msg, size_t len);
536 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
537 struct msghdr *msg,
538 size_t len, int noblock, int flags,
539 int *addr_len);
540 int (*sendpage)(struct sock *sk, struct page *page,
541 int offset, size_t size, int flags);
542 int (*bind)(struct sock *sk,
543 struct sockaddr *uaddr, int addr_len);
544
545 int (*backlog_rcv) (struct sock *sk,
546 struct sk_buff *skb);
547
548 /* Keeping track of sk's, looking them up, and port selection methods. */
549 void (*hash)(struct sock *sk);
550 void (*unhash)(struct sock *sk);
551 int (*get_port)(struct sock *sk, unsigned short snum);
552
553 /* Memory pressure */
554 void (*enter_memory_pressure)(void);
555 atomic_t *memory_allocated; /* Current allocated memory. */
556 atomic_t *sockets_allocated; /* Current number of sockets. */
557 /*
558 * Pressure flag: try to collapse.
559 * Technical note: it is used by multiple contexts non atomically.
560 * All the sk_stream_mem_schedule() is of this nature: accounting
561 * is strict, actions are advisory and have some latency.
562 */
563 int *memory_pressure;
564 int *sysctl_mem;
565 int *sysctl_wmem;
566 int *sysctl_rmem;
567 int max_header;
568
569 kmem_cache_t *slab;
570 unsigned int obj_size;
571
572 atomic_t *orphan_count;
573
574 struct request_sock_ops *rsk_prot;
575 struct timewait_sock_ops *twsk_prot;
576
577 struct module *owner;
578
579 char name[32];
580
581 struct list_head node;
582 #ifdef SOCK_REFCNT_DEBUG
583 atomic_t socks;
584 #endif
585 struct {
586 int inuse;
587 u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
588 } stats[NR_CPUS];
589 };
590
591 extern int proto_register(struct proto *prot, int alloc_slab);
592 extern void proto_unregister(struct proto *prot);
593
594 #ifdef SOCK_REFCNT_DEBUG
595 static inline void sk_refcnt_debug_inc(struct sock *sk)
596 {
597 atomic_inc(&sk->sk_prot->socks);
598 }
599
600 static inline void sk_refcnt_debug_dec(struct sock *sk)
601 {
602 atomic_dec(&sk->sk_prot->socks);
603 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
604 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
605 }
606
607 static inline void sk_refcnt_debug_release(const struct sock *sk)
608 {
609 if (atomic_read(&sk->sk_refcnt) != 1)
610 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
611 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
612 }
613 #else /* SOCK_REFCNT_DEBUG */
614 #define sk_refcnt_debug_inc(sk) do { } while (0)
615 #define sk_refcnt_debug_dec(sk) do { } while (0)
616 #define sk_refcnt_debug_release(sk) do { } while (0)
617 #endif /* SOCK_REFCNT_DEBUG */
618
619 /* Called with local bh disabled */
620 static __inline__ void sock_prot_inc_use(struct proto *prot)
621 {
622 prot->stats[smp_processor_id()].inuse++;
623 }
624
625 static __inline__ void sock_prot_dec_use(struct proto *prot)
626 {
627 prot->stats[smp_processor_id()].inuse--;
628 }
629
630 /* With per-bucket locks this operation is not-atomic, so that
631 * this version is not worse.
632 */
633 static inline void __sk_prot_rehash(struct sock *sk)
634 {
635 sk->sk_prot->unhash(sk);
636 sk->sk_prot->hash(sk);
637 }
638
639 /* About 10 seconds */
640 #define SOCK_DESTROY_TIME (10*HZ)
641
642 /* Sockets 0-1023 can't be bound to unless you are superuser */
643 #define PROT_SOCK 1024
644
645 #define SHUTDOWN_MASK 3
646 #define RCV_SHUTDOWN 1
647 #define SEND_SHUTDOWN 2
648
649 #define SOCK_SNDBUF_LOCK 1
650 #define SOCK_RCVBUF_LOCK 2
651 #define SOCK_BINDADDR_LOCK 4
652 #define SOCK_BINDPORT_LOCK 8
653
654 /* sock_iocb: used to kick off async processing of socket ios */
655 struct sock_iocb {
656 struct list_head list;
657
658 int flags;
659 int size;
660 struct socket *sock;
661 struct sock *sk;
662 struct scm_cookie *scm;
663 struct msghdr *msg, async_msg;
664 struct iovec async_iov;
665 struct kiocb *kiocb;
666 };
667
668 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
669 {
670 return (struct sock_iocb *)iocb->private;
671 }
672
673 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
674 {
675 return si->kiocb;
676 }
677
678 struct socket_alloc {
679 struct socket socket;
680 struct inode vfs_inode;
681 };
682
683 static inline struct socket *SOCKET_I(struct inode *inode)
684 {
685 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
686 }
687
688 static inline struct inode *SOCK_INODE(struct socket *socket)
689 {
690 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
691 }
692
693 extern void __sk_stream_mem_reclaim(struct sock *sk);
694 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
695
696 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
697
698 static inline int sk_stream_pages(int amt)
699 {
700 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
701 }
702
703 static inline void sk_stream_mem_reclaim(struct sock *sk)
704 {
705 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
706 __sk_stream_mem_reclaim(sk);
707 }
708
709 static inline void sk_stream_writequeue_purge(struct sock *sk)
710 {
711 struct sk_buff *skb;
712
713 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
714 sk_stream_free_skb(sk, skb);
715 sk_stream_mem_reclaim(sk);
716 }
717
718 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
719 {
720 return (int)skb->truesize <= sk->sk_forward_alloc ||
721 sk_stream_mem_schedule(sk, skb->truesize, 1);
722 }
723
724 static inline int sk_stream_wmem_schedule(struct sock *sk, int size)
725 {
726 return size <= sk->sk_forward_alloc ||
727 sk_stream_mem_schedule(sk, size, 0);
728 }
729
730 /* Used by processes to "lock" a socket state, so that
731 * interrupts and bottom half handlers won't change it
732 * from under us. It essentially blocks any incoming
733 * packets, so that we won't get any new data or any
734 * packets that change the state of the socket.
735 *
736 * While locked, BH processing will add new packets to
737 * the backlog queue. This queue is processed by the
738 * owner of the socket lock right before it is released.
739 *
740 * Since ~2.3.5 it is also exclusive sleep lock serializing
741 * accesses from user process context.
742 */
743 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner)
744
745 extern void FASTCALL(lock_sock(struct sock *sk));
746 extern void FASTCALL(release_sock(struct sock *sk));
747
748 /* BH context may only use the following locking interface. */
749 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
750 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
751
752 extern struct sock *sk_alloc(int family,
753 gfp_t priority,
754 struct proto *prot, int zero_it);
755 extern void sk_free(struct sock *sk);
756 extern struct sock *sk_clone(const struct sock *sk,
757 const gfp_t priority);
758
759 extern struct sk_buff *sock_wmalloc(struct sock *sk,
760 unsigned long size, int force,
761 gfp_t priority);
762 extern struct sk_buff *sock_rmalloc(struct sock *sk,
763 unsigned long size, int force,
764 gfp_t priority);
765 extern void sock_wfree(struct sk_buff *skb);
766 extern void sock_rfree(struct sk_buff *skb);
767
768 extern int sock_setsockopt(struct socket *sock, int level,
769 int op, char __user *optval,
770 int optlen);
771
772 extern int sock_getsockopt(struct socket *sock, int level,
773 int op, char __user *optval,
774 int __user *optlen);
775 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
776 unsigned long size,
777 int noblock,
778 int *errcode);
779 extern void *sock_kmalloc(struct sock *sk, int size,
780 gfp_t priority);
781 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
782 extern void sk_send_sigurg(struct sock *sk);
783
784 /*
785 * Functions to fill in entries in struct proto_ops when a protocol
786 * does not implement a particular function.
787 */
788 extern int sock_no_bind(struct socket *,
789 struct sockaddr *, int);
790 extern int sock_no_connect(struct socket *,
791 struct sockaddr *, int, int);
792 extern int sock_no_socketpair(struct socket *,
793 struct socket *);
794 extern int sock_no_accept(struct socket *,
795 struct socket *, int);
796 extern int sock_no_getname(struct socket *,
797 struct sockaddr *, int *, int);
798 extern unsigned int sock_no_poll(struct file *, struct socket *,
799 struct poll_table_struct *);
800 extern int sock_no_ioctl(struct socket *, unsigned int,
801 unsigned long);
802 extern int sock_no_listen(struct socket *, int);
803 extern int sock_no_shutdown(struct socket *, int);
804 extern int sock_no_getsockopt(struct socket *, int , int,
805 char __user *, int __user *);
806 extern int sock_no_setsockopt(struct socket *, int, int,
807 char __user *, int);
808 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
809 struct msghdr *, size_t);
810 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
811 struct msghdr *, size_t, int);
812 extern int sock_no_mmap(struct file *file,
813 struct socket *sock,
814 struct vm_area_struct *vma);
815 extern ssize_t sock_no_sendpage(struct socket *sock,
816 struct page *page,
817 int offset, size_t size,
818 int flags);
819
820 /*
821 * Functions to fill in entries in struct proto_ops when a protocol
822 * uses the inet style.
823 */
824 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
825 char __user *optval, int __user *optlen);
826 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
827 struct msghdr *msg, size_t size, int flags);
828 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
829 char __user *optval, int optlen);
830 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
831 int optname, char __user *optval, int __user *optlen);
832 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
833 int optname, char __user *optval, int optlen);
834
835 extern void sk_common_release(struct sock *sk);
836
837 /*
838 * Default socket callbacks and setup code
839 */
840
841 /* Initialise core socket variables */
842 extern void sock_init_data(struct socket *sock, struct sock *sk);
843
844 /**
845 * sk_filter - run a packet through a socket filter
846 * @sk: sock associated with &sk_buff
847 * @skb: buffer to filter
848 * @needlock: set to 1 if the sock is not locked by caller.
849 *
850 * Run the filter code and then cut skb->data to correct size returned by
851 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
852 * than pkt_len we keep whole skb->data. This is the socket level
853 * wrapper to sk_run_filter. It returns 0 if the packet should
854 * be accepted or -EPERM if the packet should be tossed.
855 *
856 */
857
858 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock)
859 {
860 int err;
861
862 err = security_sock_rcv_skb(sk, skb);
863 if (err)
864 return err;
865
866 if (sk->sk_filter) {
867 struct sk_filter *filter;
868
869 if (needlock)
870 bh_lock_sock(sk);
871
872 filter = sk->sk_filter;
873 if (filter) {
874 unsigned int pkt_len = sk_run_filter(skb, filter->insns,
875 filter->len);
876 if (!pkt_len)
877 err = -EPERM;
878 else
879 skb_trim(skb, pkt_len);
880 }
881
882 if (needlock)
883 bh_unlock_sock(sk);
884 }
885 return err;
886 }
887
888 /**
889 * sk_filter_release: Release a socket filter
890 * @sk: socket
891 * @fp: filter to remove
892 *
893 * Remove a filter from a socket and release its resources.
894 */
895
896 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
897 {
898 unsigned int size = sk_filter_len(fp);
899
900 atomic_sub(size, &sk->sk_omem_alloc);
901
902 if (atomic_dec_and_test(&fp->refcnt))
903 kfree(fp);
904 }
905
906 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
907 {
908 atomic_inc(&fp->refcnt);
909 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
910 }
911
912 /*
913 * Socket reference counting postulates.
914 *
915 * * Each user of socket SHOULD hold a reference count.
916 * * Each access point to socket (an hash table bucket, reference from a list,
917 * running timer, skb in flight MUST hold a reference count.
918 * * When reference count hits 0, it means it will never increase back.
919 * * When reference count hits 0, it means that no references from
920 * outside exist to this socket and current process on current CPU
921 * is last user and may/should destroy this socket.
922 * * sk_free is called from any context: process, BH, IRQ. When
923 * it is called, socket has no references from outside -> sk_free
924 * may release descendant resources allocated by the socket, but
925 * to the time when it is called, socket is NOT referenced by any
926 * hash tables, lists etc.
927 * * Packets, delivered from outside (from network or from another process)
928 * and enqueued on receive/error queues SHOULD NOT grab reference count,
929 * when they sit in queue. Otherwise, packets will leak to hole, when
930 * socket is looked up by one cpu and unhasing is made by another CPU.
931 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
932 * (leak to backlog). Packet socket does all the processing inside
933 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
934 * use separate SMP lock, so that they are prone too.
935 */
936
937 /* Ungrab socket and destroy it, if it was the last reference. */
938 static inline void sock_put(struct sock *sk)
939 {
940 if (atomic_dec_and_test(&sk->sk_refcnt))
941 sk_free(sk);
942 }
943
944 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb);
945
946 /* Detach socket from process context.
947 * Announce socket dead, detach it from wait queue and inode.
948 * Note that parent inode held reference count on this struct sock,
949 * we do not release it in this function, because protocol
950 * probably wants some additional cleanups or even continuing
951 * to work with this socket (TCP).
952 */
953 static inline void sock_orphan(struct sock *sk)
954 {
955 write_lock_bh(&sk->sk_callback_lock);
956 sock_set_flag(sk, SOCK_DEAD);
957 sk->sk_socket = NULL;
958 sk->sk_sleep = NULL;
959 write_unlock_bh(&sk->sk_callback_lock);
960 }
961
962 static inline void sock_graft(struct sock *sk, struct socket *parent)
963 {
964 write_lock_bh(&sk->sk_callback_lock);
965 sk->sk_sleep = &parent->wait;
966 parent->sk = sk;
967 sk->sk_socket = parent;
968 write_unlock_bh(&sk->sk_callback_lock);
969 }
970
971 extern int sock_i_uid(struct sock *sk);
972 extern unsigned long sock_i_ino(struct sock *sk);
973
974 static inline struct dst_entry *
975 __sk_dst_get(struct sock *sk)
976 {
977 return sk->sk_dst_cache;
978 }
979
980 static inline struct dst_entry *
981 sk_dst_get(struct sock *sk)
982 {
983 struct dst_entry *dst;
984
985 read_lock(&sk->sk_dst_lock);
986 dst = sk->sk_dst_cache;
987 if (dst)
988 dst_hold(dst);
989 read_unlock(&sk->sk_dst_lock);
990 return dst;
991 }
992
993 static inline void
994 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
995 {
996 struct dst_entry *old_dst;
997
998 old_dst = sk->sk_dst_cache;
999 sk->sk_dst_cache = dst;
1000 dst_release(old_dst);
1001 }
1002
1003 static inline void
1004 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1005 {
1006 write_lock(&sk->sk_dst_lock);
1007 __sk_dst_set(sk, dst);
1008 write_unlock(&sk->sk_dst_lock);
1009 }
1010
1011 static inline void
1012 __sk_dst_reset(struct sock *sk)
1013 {
1014 struct dst_entry *old_dst;
1015
1016 old_dst = sk->sk_dst_cache;
1017 sk->sk_dst_cache = NULL;
1018 dst_release(old_dst);
1019 }
1020
1021 static inline void
1022 sk_dst_reset(struct sock *sk)
1023 {
1024 write_lock(&sk->sk_dst_lock);
1025 __sk_dst_reset(sk);
1026 write_unlock(&sk->sk_dst_lock);
1027 }
1028
1029 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1030
1031 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1032
1033 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1034 {
1035 __sk_dst_set(sk, dst);
1036 sk->sk_route_caps = dst->dev->features;
1037 if (sk->sk_route_caps & NETIF_F_TSO) {
1038 if (sock_flag(sk, SOCK_NO_LARGESEND) || dst->header_len)
1039 sk->sk_route_caps &= ~NETIF_F_TSO;
1040 }
1041 }
1042
1043 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
1044 {
1045 sk->sk_wmem_queued += skb->truesize;
1046 sk->sk_forward_alloc -= skb->truesize;
1047 }
1048
1049 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1050 struct sk_buff *skb, struct page *page,
1051 int off, int copy)
1052 {
1053 if (skb->ip_summed == CHECKSUM_NONE) {
1054 int err = 0;
1055 unsigned int csum = csum_and_copy_from_user(from,
1056 page_address(page) + off,
1057 copy, 0, &err);
1058 if (err)
1059 return err;
1060 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1061 } else if (copy_from_user(page_address(page) + off, from, copy))
1062 return -EFAULT;
1063
1064 skb->len += copy;
1065 skb->data_len += copy;
1066 skb->truesize += copy;
1067 sk->sk_wmem_queued += copy;
1068 sk->sk_forward_alloc -= copy;
1069 return 0;
1070 }
1071
1072 /*
1073 * Queue a received datagram if it will fit. Stream and sequenced
1074 * protocols can't normally use this as they need to fit buffers in
1075 * and play with them.
1076 *
1077 * Inlined as it's very short and called for pretty much every
1078 * packet ever received.
1079 */
1080
1081 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1082 {
1083 sock_hold(sk);
1084 skb->sk = sk;
1085 skb->destructor = sock_wfree;
1086 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1087 }
1088
1089 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1090 {
1091 skb->sk = sk;
1092 skb->destructor = sock_rfree;
1093 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1094 }
1095
1096 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1097 unsigned long expires);
1098
1099 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1100
1101 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1102
1103 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1104 {
1105 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1106 number of warnings when compiling with -W --ANK
1107 */
1108 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1109 (unsigned)sk->sk_rcvbuf)
1110 return -ENOMEM;
1111 skb_set_owner_r(skb, sk);
1112 skb_queue_tail(&sk->sk_error_queue, skb);
1113 if (!sock_flag(sk, SOCK_DEAD))
1114 sk->sk_data_ready(sk, skb->len);
1115 return 0;
1116 }
1117
1118 /*
1119 * Recover an error report and clear atomically
1120 */
1121
1122 static inline int sock_error(struct sock *sk)
1123 {
1124 int err;
1125 if (likely(!sk->sk_err))
1126 return 0;
1127 err = xchg(&sk->sk_err, 0);
1128 return -err;
1129 }
1130
1131 static inline unsigned long sock_wspace(struct sock *sk)
1132 {
1133 int amt = 0;
1134
1135 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1136 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1137 if (amt < 0)
1138 amt = 0;
1139 }
1140 return amt;
1141 }
1142
1143 static inline void sk_wake_async(struct sock *sk, int how, int band)
1144 {
1145 if (sk->sk_socket && sk->sk_socket->fasync_list)
1146 sock_wake_async(sk->sk_socket, how, band);
1147 }
1148
1149 #define SOCK_MIN_SNDBUF 2048
1150 #define SOCK_MIN_RCVBUF 256
1151
1152 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1153 {
1154 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1155 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1156 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1157 }
1158 }
1159
1160 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1161 int size, int mem,
1162 gfp_t gfp)
1163 {
1164 struct sk_buff *skb;
1165 int hdr_len;
1166
1167 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1168 skb = alloc_skb_fclone(size + hdr_len, gfp);
1169 if (skb) {
1170 skb->truesize += mem;
1171 if (sk_stream_wmem_schedule(sk, skb->truesize)) {
1172 skb_reserve(skb, hdr_len);
1173 return skb;
1174 }
1175 __kfree_skb(skb);
1176 } else {
1177 sk->sk_prot->enter_memory_pressure();
1178 sk_stream_moderate_sndbuf(sk);
1179 }
1180 return NULL;
1181 }
1182
1183 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1184 int size,
1185 gfp_t gfp)
1186 {
1187 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1188 }
1189
1190 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1191 {
1192 struct page *page = NULL;
1193
1194 page = alloc_pages(sk->sk_allocation, 0);
1195 if (!page) {
1196 sk->sk_prot->enter_memory_pressure();
1197 sk_stream_moderate_sndbuf(sk);
1198 }
1199 return page;
1200 }
1201
1202 #define sk_stream_for_retrans_queue(skb, sk) \
1203 for (skb = (sk)->sk_write_queue.next; \
1204 (skb != (sk)->sk_send_head) && \
1205 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1206 skb = skb->next)
1207
1208 /*from STCP for fast SACK Process*/
1209 #define sk_stream_for_retrans_queue_from(skb, sk) \
1210 for (; (skb != (sk)->sk_send_head) && \
1211 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1212 skb = skb->next)
1213
1214 /*
1215 * Default write policy as shown to user space via poll/select/SIGIO
1216 */
1217 static inline int sock_writeable(const struct sock *sk)
1218 {
1219 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1220 }
1221
1222 static inline gfp_t gfp_any(void)
1223 {
1224 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1225 }
1226
1227 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1228 {
1229 return noblock ? 0 : sk->sk_rcvtimeo;
1230 }
1231
1232 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1233 {
1234 return noblock ? 0 : sk->sk_sndtimeo;
1235 }
1236
1237 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1238 {
1239 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1240 }
1241
1242 /* Alas, with timeout socket operations are not restartable.
1243 * Compare this to poll().
1244 */
1245 static inline int sock_intr_errno(long timeo)
1246 {
1247 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1248 }
1249
1250 static __inline__ void
1251 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1252 {
1253 struct timeval stamp;
1254
1255 skb_get_timestamp(skb, &stamp);
1256 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1257 /* Race occurred between timestamp enabling and packet
1258 receiving. Fill in the current time for now. */
1259 if (stamp.tv_sec == 0)
1260 do_gettimeofday(&stamp);
1261 skb_set_timestamp(skb, &stamp);
1262 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval),
1263 &stamp);
1264 } else
1265 sk->sk_stamp = stamp;
1266 }
1267
1268 /**
1269 * sk_eat_skb - Release a skb if it is no longer needed
1270 * @sk: socket to eat this skb from
1271 * @skb: socket buffer to eat
1272 *
1273 * This routine must be called with interrupts disabled or with the socket
1274 * locked so that the sk_buff queue operation is ok.
1275 */
1276 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
1277 {
1278 __skb_unlink(skb, &sk->sk_receive_queue);
1279 __kfree_skb(skb);
1280 }
1281
1282 extern void sock_enable_timestamp(struct sock *sk);
1283 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1284
1285 /*
1286 * Enable debug/info messages
1287 */
1288
1289 #ifdef CONFIG_NETDEBUG
1290 #define NETDEBUG(fmt, args...) printk(fmt,##args)
1291 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0)
1292 #else
1293 #define NETDEBUG(fmt, args...) do { } while (0)
1294 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0)
1295 #endif
1296
1297 /*
1298 * Macros for sleeping on a socket. Use them like this:
1299 *
1300 * SOCK_SLEEP_PRE(sk)
1301 * if (condition)
1302 * schedule();
1303 * SOCK_SLEEP_POST(sk)
1304 *
1305 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1306 * and when the last use of them in DECnet has gone, I'm intending to
1307 * remove them.
1308 */
1309
1310 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1311 DECLARE_WAITQUEUE(wait, tsk); \
1312 tsk->state = TASK_INTERRUPTIBLE; \
1313 add_wait_queue((sk)->sk_sleep, &wait); \
1314 release_sock(sk);
1315
1316 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1317 remove_wait_queue((sk)->sk_sleep, &wait); \
1318 lock_sock(sk); \
1319 }
1320
1321 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1322 {
1323 if (valbool)
1324 sock_set_flag(sk, bit);
1325 else
1326 sock_reset_flag(sk, bit);
1327 }
1328
1329 extern __u32 sysctl_wmem_max;
1330 extern __u32 sysctl_rmem_max;
1331
1332 #ifdef CONFIG_NET
1333 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
1334 #else
1335 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
1336 {
1337 return -ENODEV;
1338 }
1339 #endif
1340
1341 extern void sk_init(void);
1342
1343 #ifdef CONFIG_SYSCTL
1344 extern struct ctl_table core_table[];
1345 #endif
1346
1347 extern int sysctl_optmem_max;
1348
1349 extern __u32 sysctl_wmem_default;
1350 extern __u32 sysctl_rmem_default;
1351
1352 #endif /* _SOCK_H */
This page took 0.099479 seconds and 5 git commands to generate.