kernel-doc: fix new warning in net/sock.h
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/uaccess.h>
56 #include <linux/memcontrol.h>
57 #include <linux/res_counter.h>
58
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62
63 #include <linux/atomic.h>
64 #include <net/dst.h>
65 #include <net/checksum.h>
66
67 struct cgroup;
68 struct cgroup_subsys;
69 #ifdef CONFIG_NET
70 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss);
71 void mem_cgroup_sockets_destroy(struct cgroup *cgrp, struct cgroup_subsys *ss);
72 #else
73 static inline
74 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
75 {
76 return 0;
77 }
78 static inline
79 void mem_cgroup_sockets_destroy(struct cgroup *cgrp, struct cgroup_subsys *ss)
80 {
81 }
82 #endif
83 /*
84 * This structure really needs to be cleaned up.
85 * Most of it is for TCP, and not used by any of
86 * the other protocols.
87 */
88
89 /* Define this to get the SOCK_DBG debugging facility. */
90 #define SOCK_DEBUGGING
91 #ifdef SOCK_DEBUGGING
92 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
93 printk(KERN_DEBUG msg); } while (0)
94 #else
95 /* Validate arguments and do nothing */
96 static inline __printf(2, 3)
97 void SOCK_DEBUG(struct sock *sk, const char *msg, ...)
98 {
99 }
100 #endif
101
102 /* This is the per-socket lock. The spinlock provides a synchronization
103 * between user contexts and software interrupt processing, whereas the
104 * mini-semaphore synchronizes multiple users amongst themselves.
105 */
106 typedef struct {
107 spinlock_t slock;
108 int owned;
109 wait_queue_head_t wq;
110 /*
111 * We express the mutex-alike socket_lock semantics
112 * to the lock validator by explicitly managing
113 * the slock as a lock variant (in addition to
114 * the slock itself):
115 */
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117 struct lockdep_map dep_map;
118 #endif
119 } socket_lock_t;
120
121 struct sock;
122 struct proto;
123 struct net;
124
125 /**
126 * struct sock_common - minimal network layer representation of sockets
127 * @skc_daddr: Foreign IPv4 addr
128 * @skc_rcv_saddr: Bound local IPv4 addr
129 * @skc_hash: hash value used with various protocol lookup tables
130 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
131 * @skc_family: network address family
132 * @skc_state: Connection state
133 * @skc_reuse: %SO_REUSEADDR setting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_node: main hash linkage for various protocol lookup tables
140 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141 * @skc_tx_queue_mapping: tx queue number for this connection
142 * @skc_refcnt: reference count
143 *
144 * This is the minimal network layer representation of sockets, the header
145 * for struct sock and struct inet_timewait_sock.
146 */
147 struct sock_common {
148 /* skc_daddr and skc_rcv_saddr must be grouped :
149 * cf INET_MATCH() and INET_TW_MATCH()
150 */
151 __be32 skc_daddr;
152 __be32 skc_rcv_saddr;
153
154 union {
155 unsigned int skc_hash;
156 __u16 skc_u16hashes[2];
157 };
158 unsigned short skc_family;
159 volatile unsigned char skc_state;
160 unsigned char skc_reuse;
161 int skc_bound_dev_if;
162 union {
163 struct hlist_node skc_bind_node;
164 struct hlist_nulls_node skc_portaddr_node;
165 };
166 struct proto *skc_prot;
167 #ifdef CONFIG_NET_NS
168 struct net *skc_net;
169 #endif
170 /*
171 * fields between dontcopy_begin/dontcopy_end
172 * are not copied in sock_copy()
173 */
174 /* private: */
175 int skc_dontcopy_begin[0];
176 /* public: */
177 union {
178 struct hlist_node skc_node;
179 struct hlist_nulls_node skc_nulls_node;
180 };
181 int skc_tx_queue_mapping;
182 atomic_t skc_refcnt;
183 /* private: */
184 int skc_dontcopy_end[0];
185 /* public: */
186 };
187
188 struct cg_proto;
189 /**
190 * struct sock - network layer representation of sockets
191 * @__sk_common: shared layout with inet_timewait_sock
192 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
193 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
194 * @sk_lock: synchronizer
195 * @sk_rcvbuf: size of receive buffer in bytes
196 * @sk_wq: sock wait queue and async head
197 * @sk_dst_cache: destination cache
198 * @sk_dst_lock: destination cache lock
199 * @sk_policy: flow policy
200 * @sk_receive_queue: incoming packets
201 * @sk_wmem_alloc: transmit queue bytes committed
202 * @sk_write_queue: Packet sending queue
203 * @sk_async_wait_queue: DMA copied packets
204 * @sk_omem_alloc: "o" is "option" or "other"
205 * @sk_wmem_queued: persistent queue size
206 * @sk_forward_alloc: space allocated forward
207 * @sk_allocation: allocation mode
208 * @sk_sndbuf: size of send buffer in bytes
209 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
210 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
211 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
212 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
213 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
214 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
215 * @sk_gso_max_size: Maximum GSO segment size to build
216 * @sk_lingertime: %SO_LINGER l_linger setting
217 * @sk_backlog: always used with the per-socket spinlock held
218 * @sk_callback_lock: used with the callbacks in the end of this struct
219 * @sk_error_queue: rarely used
220 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
221 * IPV6_ADDRFORM for instance)
222 * @sk_err: last error
223 * @sk_err_soft: errors that don't cause failure but are the cause of a
224 * persistent failure not just 'timed out'
225 * @sk_drops: raw/udp drops counter
226 * @sk_ack_backlog: current listen backlog
227 * @sk_max_ack_backlog: listen backlog set in listen()
228 * @sk_priority: %SO_PRIORITY setting
229 * @sk_cgrp_prioidx: socket group's priority map index
230 * @sk_type: socket type (%SOCK_STREAM, etc)
231 * @sk_protocol: which protocol this socket belongs in this network family
232 * @sk_peer_pid: &struct pid for this socket's peer
233 * @sk_peer_cred: %SO_PEERCRED setting
234 * @sk_rcvlowat: %SO_RCVLOWAT setting
235 * @sk_rcvtimeo: %SO_RCVTIMEO setting
236 * @sk_sndtimeo: %SO_SNDTIMEO setting
237 * @sk_rxhash: flow hash received from netif layer
238 * @sk_filter: socket filtering instructions
239 * @sk_protinfo: private area, net family specific, when not using slab
240 * @sk_timer: sock cleanup timer
241 * @sk_stamp: time stamp of last packet received
242 * @sk_socket: Identd and reporting IO signals
243 * @sk_user_data: RPC layer private data
244 * @sk_sndmsg_page: cached page for sendmsg
245 * @sk_sndmsg_off: cached offset for sendmsg
246 * @sk_send_head: front of stuff to transmit
247 * @sk_security: used by security modules
248 * @sk_mark: generic packet mark
249 * @sk_classid: this socket's cgroup classid
250 * @sk_cgrp: this socket's cgroup-specific proto data
251 * @sk_write_pending: a write to stream socket waits to start
252 * @sk_state_change: callback to indicate change in the state of the sock
253 * @sk_data_ready: callback to indicate there is data to be processed
254 * @sk_write_space: callback to indicate there is bf sending space available
255 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
256 * @sk_backlog_rcv: callback to process the backlog
257 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
258 */
259 struct sock {
260 /*
261 * Now struct inet_timewait_sock also uses sock_common, so please just
262 * don't add nothing before this first member (__sk_common) --acme
263 */
264 struct sock_common __sk_common;
265 #define sk_node __sk_common.skc_node
266 #define sk_nulls_node __sk_common.skc_nulls_node
267 #define sk_refcnt __sk_common.skc_refcnt
268 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
269
270 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
271 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
272 #define sk_hash __sk_common.skc_hash
273 #define sk_family __sk_common.skc_family
274 #define sk_state __sk_common.skc_state
275 #define sk_reuse __sk_common.skc_reuse
276 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
277 #define sk_bind_node __sk_common.skc_bind_node
278 #define sk_prot __sk_common.skc_prot
279 #define sk_net __sk_common.skc_net
280 socket_lock_t sk_lock;
281 struct sk_buff_head sk_receive_queue;
282 /*
283 * The backlog queue is special, it is always used with
284 * the per-socket spinlock held and requires low latency
285 * access. Therefore we special case it's implementation.
286 * Note : rmem_alloc is in this structure to fill a hole
287 * on 64bit arches, not because its logically part of
288 * backlog.
289 */
290 struct {
291 atomic_t rmem_alloc;
292 int len;
293 struct sk_buff *head;
294 struct sk_buff *tail;
295 } sk_backlog;
296 #define sk_rmem_alloc sk_backlog.rmem_alloc
297 int sk_forward_alloc;
298 #ifdef CONFIG_RPS
299 __u32 sk_rxhash;
300 #endif
301 atomic_t sk_drops;
302 int sk_rcvbuf;
303
304 struct sk_filter __rcu *sk_filter;
305 struct socket_wq __rcu *sk_wq;
306
307 #ifdef CONFIG_NET_DMA
308 struct sk_buff_head sk_async_wait_queue;
309 #endif
310
311 #ifdef CONFIG_XFRM
312 struct xfrm_policy *sk_policy[2];
313 #endif
314 unsigned long sk_flags;
315 struct dst_entry *sk_dst_cache;
316 spinlock_t sk_dst_lock;
317 atomic_t sk_wmem_alloc;
318 atomic_t sk_omem_alloc;
319 int sk_sndbuf;
320 struct sk_buff_head sk_write_queue;
321 kmemcheck_bitfield_begin(flags);
322 unsigned int sk_shutdown : 2,
323 sk_no_check : 2,
324 sk_userlocks : 4,
325 sk_protocol : 8,
326 sk_type : 16;
327 kmemcheck_bitfield_end(flags);
328 int sk_wmem_queued;
329 gfp_t sk_allocation;
330 netdev_features_t sk_route_caps;
331 netdev_features_t sk_route_nocaps;
332 int sk_gso_type;
333 unsigned int sk_gso_max_size;
334 int sk_rcvlowat;
335 unsigned long sk_lingertime;
336 struct sk_buff_head sk_error_queue;
337 struct proto *sk_prot_creator;
338 rwlock_t sk_callback_lock;
339 int sk_err,
340 sk_err_soft;
341 unsigned short sk_ack_backlog;
342 unsigned short sk_max_ack_backlog;
343 __u32 sk_priority;
344 #ifdef CONFIG_CGROUPS
345 __u32 sk_cgrp_prioidx;
346 #endif
347 struct pid *sk_peer_pid;
348 const struct cred *sk_peer_cred;
349 long sk_rcvtimeo;
350 long sk_sndtimeo;
351 void *sk_protinfo;
352 struct timer_list sk_timer;
353 ktime_t sk_stamp;
354 struct socket *sk_socket;
355 void *sk_user_data;
356 struct page *sk_sndmsg_page;
357 struct sk_buff *sk_send_head;
358 __u32 sk_sndmsg_off;
359 int sk_write_pending;
360 #ifdef CONFIG_SECURITY
361 void *sk_security;
362 #endif
363 __u32 sk_mark;
364 u32 sk_classid;
365 struct cg_proto *sk_cgrp;
366 void (*sk_state_change)(struct sock *sk);
367 void (*sk_data_ready)(struct sock *sk, int bytes);
368 void (*sk_write_space)(struct sock *sk);
369 void (*sk_error_report)(struct sock *sk);
370 int (*sk_backlog_rcv)(struct sock *sk,
371 struct sk_buff *skb);
372 void (*sk_destruct)(struct sock *sk);
373 };
374
375 /*
376 * Hashed lists helper routines
377 */
378 static inline struct sock *sk_entry(const struct hlist_node *node)
379 {
380 return hlist_entry(node, struct sock, sk_node);
381 }
382
383 static inline struct sock *__sk_head(const struct hlist_head *head)
384 {
385 return hlist_entry(head->first, struct sock, sk_node);
386 }
387
388 static inline struct sock *sk_head(const struct hlist_head *head)
389 {
390 return hlist_empty(head) ? NULL : __sk_head(head);
391 }
392
393 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
394 {
395 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
396 }
397
398 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
399 {
400 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
401 }
402
403 static inline struct sock *sk_next(const struct sock *sk)
404 {
405 return sk->sk_node.next ?
406 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
407 }
408
409 static inline struct sock *sk_nulls_next(const struct sock *sk)
410 {
411 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
412 hlist_nulls_entry(sk->sk_nulls_node.next,
413 struct sock, sk_nulls_node) :
414 NULL;
415 }
416
417 static inline int sk_unhashed(const struct sock *sk)
418 {
419 return hlist_unhashed(&sk->sk_node);
420 }
421
422 static inline int sk_hashed(const struct sock *sk)
423 {
424 return !sk_unhashed(sk);
425 }
426
427 static __inline__ void sk_node_init(struct hlist_node *node)
428 {
429 node->pprev = NULL;
430 }
431
432 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
433 {
434 node->pprev = NULL;
435 }
436
437 static __inline__ void __sk_del_node(struct sock *sk)
438 {
439 __hlist_del(&sk->sk_node);
440 }
441
442 /* NB: equivalent to hlist_del_init_rcu */
443 static __inline__ int __sk_del_node_init(struct sock *sk)
444 {
445 if (sk_hashed(sk)) {
446 __sk_del_node(sk);
447 sk_node_init(&sk->sk_node);
448 return 1;
449 }
450 return 0;
451 }
452
453 /* Grab socket reference count. This operation is valid only
454 when sk is ALREADY grabbed f.e. it is found in hash table
455 or a list and the lookup is made under lock preventing hash table
456 modifications.
457 */
458
459 static inline void sock_hold(struct sock *sk)
460 {
461 atomic_inc(&sk->sk_refcnt);
462 }
463
464 /* Ungrab socket in the context, which assumes that socket refcnt
465 cannot hit zero, f.e. it is true in context of any socketcall.
466 */
467 static inline void __sock_put(struct sock *sk)
468 {
469 atomic_dec(&sk->sk_refcnt);
470 }
471
472 static __inline__ int sk_del_node_init(struct sock *sk)
473 {
474 int rc = __sk_del_node_init(sk);
475
476 if (rc) {
477 /* paranoid for a while -acme */
478 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
479 __sock_put(sk);
480 }
481 return rc;
482 }
483 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
484
485 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
486 {
487 if (sk_hashed(sk)) {
488 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
489 return 1;
490 }
491 return 0;
492 }
493
494 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
495 {
496 int rc = __sk_nulls_del_node_init_rcu(sk);
497
498 if (rc) {
499 /* paranoid for a while -acme */
500 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
501 __sock_put(sk);
502 }
503 return rc;
504 }
505
506 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
507 {
508 hlist_add_head(&sk->sk_node, list);
509 }
510
511 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
512 {
513 sock_hold(sk);
514 __sk_add_node(sk, list);
515 }
516
517 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
518 {
519 sock_hold(sk);
520 hlist_add_head_rcu(&sk->sk_node, list);
521 }
522
523 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
524 {
525 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
526 }
527
528 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
529 {
530 sock_hold(sk);
531 __sk_nulls_add_node_rcu(sk, list);
532 }
533
534 static __inline__ void __sk_del_bind_node(struct sock *sk)
535 {
536 __hlist_del(&sk->sk_bind_node);
537 }
538
539 static __inline__ void sk_add_bind_node(struct sock *sk,
540 struct hlist_head *list)
541 {
542 hlist_add_head(&sk->sk_bind_node, list);
543 }
544
545 #define sk_for_each(__sk, node, list) \
546 hlist_for_each_entry(__sk, node, list, sk_node)
547 #define sk_for_each_rcu(__sk, node, list) \
548 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
549 #define sk_nulls_for_each(__sk, node, list) \
550 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
551 #define sk_nulls_for_each_rcu(__sk, node, list) \
552 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
553 #define sk_for_each_from(__sk, node) \
554 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
555 hlist_for_each_entry_from(__sk, node, sk_node)
556 #define sk_nulls_for_each_from(__sk, node) \
557 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
558 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
559 #define sk_for_each_safe(__sk, node, tmp, list) \
560 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
561 #define sk_for_each_bound(__sk, node, list) \
562 hlist_for_each_entry(__sk, node, list, sk_bind_node)
563
564 /* Sock flags */
565 enum sock_flags {
566 SOCK_DEAD,
567 SOCK_DONE,
568 SOCK_URGINLINE,
569 SOCK_KEEPOPEN,
570 SOCK_LINGER,
571 SOCK_DESTROY,
572 SOCK_BROADCAST,
573 SOCK_TIMESTAMP,
574 SOCK_ZAPPED,
575 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
576 SOCK_DBG, /* %SO_DEBUG setting */
577 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
578 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
579 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
580 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
581 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
582 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
583 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
584 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
585 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
586 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
587 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
588 SOCK_FASYNC, /* fasync() active */
589 SOCK_RXQ_OVFL,
590 SOCK_ZEROCOPY, /* buffers from userspace */
591 SOCK_WIFI_STATUS, /* push wifi status to userspace */
592 };
593
594 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
595 {
596 nsk->sk_flags = osk->sk_flags;
597 }
598
599 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
600 {
601 __set_bit(flag, &sk->sk_flags);
602 }
603
604 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
605 {
606 __clear_bit(flag, &sk->sk_flags);
607 }
608
609 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
610 {
611 return test_bit(flag, &sk->sk_flags);
612 }
613
614 static inline void sk_acceptq_removed(struct sock *sk)
615 {
616 sk->sk_ack_backlog--;
617 }
618
619 static inline void sk_acceptq_added(struct sock *sk)
620 {
621 sk->sk_ack_backlog++;
622 }
623
624 static inline int sk_acceptq_is_full(struct sock *sk)
625 {
626 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
627 }
628
629 /*
630 * Compute minimal free write space needed to queue new packets.
631 */
632 static inline int sk_stream_min_wspace(struct sock *sk)
633 {
634 return sk->sk_wmem_queued >> 1;
635 }
636
637 static inline int sk_stream_wspace(struct sock *sk)
638 {
639 return sk->sk_sndbuf - sk->sk_wmem_queued;
640 }
641
642 extern void sk_stream_write_space(struct sock *sk);
643
644 static inline int sk_stream_memory_free(struct sock *sk)
645 {
646 return sk->sk_wmem_queued < sk->sk_sndbuf;
647 }
648
649 /* OOB backlog add */
650 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
651 {
652 /* dont let skb dst not refcounted, we are going to leave rcu lock */
653 skb_dst_force(skb);
654
655 if (!sk->sk_backlog.tail)
656 sk->sk_backlog.head = skb;
657 else
658 sk->sk_backlog.tail->next = skb;
659
660 sk->sk_backlog.tail = skb;
661 skb->next = NULL;
662 }
663
664 /*
665 * Take into account size of receive queue and backlog queue
666 * Do not take into account this skb truesize,
667 * to allow even a single big packet to come.
668 */
669 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
670 {
671 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
672
673 return qsize > sk->sk_rcvbuf;
674 }
675
676 /* The per-socket spinlock must be held here. */
677 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
678 {
679 if (sk_rcvqueues_full(sk, skb))
680 return -ENOBUFS;
681
682 __sk_add_backlog(sk, skb);
683 sk->sk_backlog.len += skb->truesize;
684 return 0;
685 }
686
687 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
688 {
689 return sk->sk_backlog_rcv(sk, skb);
690 }
691
692 static inline void sock_rps_record_flow(const struct sock *sk)
693 {
694 #ifdef CONFIG_RPS
695 struct rps_sock_flow_table *sock_flow_table;
696
697 rcu_read_lock();
698 sock_flow_table = rcu_dereference(rps_sock_flow_table);
699 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
700 rcu_read_unlock();
701 #endif
702 }
703
704 static inline void sock_rps_reset_flow(const struct sock *sk)
705 {
706 #ifdef CONFIG_RPS
707 struct rps_sock_flow_table *sock_flow_table;
708
709 rcu_read_lock();
710 sock_flow_table = rcu_dereference(rps_sock_flow_table);
711 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
712 rcu_read_unlock();
713 #endif
714 }
715
716 static inline void sock_rps_save_rxhash(struct sock *sk,
717 const struct sk_buff *skb)
718 {
719 #ifdef CONFIG_RPS
720 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
721 sock_rps_reset_flow(sk);
722 sk->sk_rxhash = skb->rxhash;
723 }
724 #endif
725 }
726
727 static inline void sock_rps_reset_rxhash(struct sock *sk)
728 {
729 #ifdef CONFIG_RPS
730 sock_rps_reset_flow(sk);
731 sk->sk_rxhash = 0;
732 #endif
733 }
734
735 #define sk_wait_event(__sk, __timeo, __condition) \
736 ({ int __rc; \
737 release_sock(__sk); \
738 __rc = __condition; \
739 if (!__rc) { \
740 *(__timeo) = schedule_timeout(*(__timeo)); \
741 } \
742 lock_sock(__sk); \
743 __rc = __condition; \
744 __rc; \
745 })
746
747 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
748 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
749 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
750 extern int sk_stream_error(struct sock *sk, int flags, int err);
751 extern void sk_stream_kill_queues(struct sock *sk);
752
753 extern int sk_wait_data(struct sock *sk, long *timeo);
754
755 struct request_sock_ops;
756 struct timewait_sock_ops;
757 struct inet_hashinfo;
758 struct raw_hashinfo;
759 struct module;
760
761 /* Networking protocol blocks we attach to sockets.
762 * socket layer -> transport layer interface
763 * transport -> network interface is defined by struct inet_proto
764 */
765 struct proto {
766 void (*close)(struct sock *sk,
767 long timeout);
768 int (*connect)(struct sock *sk,
769 struct sockaddr *uaddr,
770 int addr_len);
771 int (*disconnect)(struct sock *sk, int flags);
772
773 struct sock * (*accept) (struct sock *sk, int flags, int *err);
774
775 int (*ioctl)(struct sock *sk, int cmd,
776 unsigned long arg);
777 int (*init)(struct sock *sk);
778 void (*destroy)(struct sock *sk);
779 void (*shutdown)(struct sock *sk, int how);
780 int (*setsockopt)(struct sock *sk, int level,
781 int optname, char __user *optval,
782 unsigned int optlen);
783 int (*getsockopt)(struct sock *sk, int level,
784 int optname, char __user *optval,
785 int __user *option);
786 #ifdef CONFIG_COMPAT
787 int (*compat_setsockopt)(struct sock *sk,
788 int level,
789 int optname, char __user *optval,
790 unsigned int optlen);
791 int (*compat_getsockopt)(struct sock *sk,
792 int level,
793 int optname, char __user *optval,
794 int __user *option);
795 int (*compat_ioctl)(struct sock *sk,
796 unsigned int cmd, unsigned long arg);
797 #endif
798 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
799 struct msghdr *msg, size_t len);
800 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
801 struct msghdr *msg,
802 size_t len, int noblock, int flags,
803 int *addr_len);
804 int (*sendpage)(struct sock *sk, struct page *page,
805 int offset, size_t size, int flags);
806 int (*bind)(struct sock *sk,
807 struct sockaddr *uaddr, int addr_len);
808
809 int (*backlog_rcv) (struct sock *sk,
810 struct sk_buff *skb);
811
812 /* Keeping track of sk's, looking them up, and port selection methods. */
813 void (*hash)(struct sock *sk);
814 void (*unhash)(struct sock *sk);
815 void (*rehash)(struct sock *sk);
816 int (*get_port)(struct sock *sk, unsigned short snum);
817 void (*clear_sk)(struct sock *sk, int size);
818
819 /* Keeping track of sockets in use */
820 #ifdef CONFIG_PROC_FS
821 unsigned int inuse_idx;
822 #endif
823
824 /* Memory pressure */
825 void (*enter_memory_pressure)(struct sock *sk);
826 atomic_long_t *memory_allocated; /* Current allocated memory. */
827 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
828 /*
829 * Pressure flag: try to collapse.
830 * Technical note: it is used by multiple contexts non atomically.
831 * All the __sk_mem_schedule() is of this nature: accounting
832 * is strict, actions are advisory and have some latency.
833 */
834 int *memory_pressure;
835 long *sysctl_mem;
836 int *sysctl_wmem;
837 int *sysctl_rmem;
838 int max_header;
839 bool no_autobind;
840
841 struct kmem_cache *slab;
842 unsigned int obj_size;
843 int slab_flags;
844
845 struct percpu_counter *orphan_count;
846
847 struct request_sock_ops *rsk_prot;
848 struct timewait_sock_ops *twsk_prot;
849
850 union {
851 struct inet_hashinfo *hashinfo;
852 struct udp_table *udp_table;
853 struct raw_hashinfo *raw_hash;
854 } h;
855
856 struct module *owner;
857
858 char name[32];
859
860 struct list_head node;
861 #ifdef SOCK_REFCNT_DEBUG
862 atomic_t socks;
863 #endif
864 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
865 /*
866 * cgroup specific init/deinit functions. Called once for all
867 * protocols that implement it, from cgroups populate function.
868 * This function has to setup any files the protocol want to
869 * appear in the kmem cgroup filesystem.
870 */
871 int (*init_cgroup)(struct cgroup *cgrp,
872 struct cgroup_subsys *ss);
873 void (*destroy_cgroup)(struct cgroup *cgrp,
874 struct cgroup_subsys *ss);
875 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
876 #endif
877 };
878
879 struct cg_proto {
880 void (*enter_memory_pressure)(struct sock *sk);
881 struct res_counter *memory_allocated; /* Current allocated memory. */
882 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
883 int *memory_pressure;
884 long *sysctl_mem;
885 /*
886 * memcg field is used to find which memcg we belong directly
887 * Each memcg struct can hold more than one cg_proto, so container_of
888 * won't really cut.
889 *
890 * The elegant solution would be having an inverse function to
891 * proto_cgroup in struct proto, but that means polluting the structure
892 * for everybody, instead of just for memcg users.
893 */
894 struct mem_cgroup *memcg;
895 };
896
897 extern int proto_register(struct proto *prot, int alloc_slab);
898 extern void proto_unregister(struct proto *prot);
899
900 #ifdef SOCK_REFCNT_DEBUG
901 static inline void sk_refcnt_debug_inc(struct sock *sk)
902 {
903 atomic_inc(&sk->sk_prot->socks);
904 }
905
906 static inline void sk_refcnt_debug_dec(struct sock *sk)
907 {
908 atomic_dec(&sk->sk_prot->socks);
909 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
910 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
911 }
912
913 inline void sk_refcnt_debug_release(const struct sock *sk)
914 {
915 if (atomic_read(&sk->sk_refcnt) != 1)
916 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
917 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
918 }
919 #else /* SOCK_REFCNT_DEBUG */
920 #define sk_refcnt_debug_inc(sk) do { } while (0)
921 #define sk_refcnt_debug_dec(sk) do { } while (0)
922 #define sk_refcnt_debug_release(sk) do { } while (0)
923 #endif /* SOCK_REFCNT_DEBUG */
924
925 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
926 extern struct jump_label_key memcg_socket_limit_enabled;
927 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
928 struct cg_proto *cg_proto)
929 {
930 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
931 }
932 #define mem_cgroup_sockets_enabled static_branch(&memcg_socket_limit_enabled)
933 #else
934 #define mem_cgroup_sockets_enabled 0
935 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
936 struct cg_proto *cg_proto)
937 {
938 return NULL;
939 }
940 #endif
941
942
943 static inline bool sk_has_memory_pressure(const struct sock *sk)
944 {
945 return sk->sk_prot->memory_pressure != NULL;
946 }
947
948 static inline bool sk_under_memory_pressure(const struct sock *sk)
949 {
950 if (!sk->sk_prot->memory_pressure)
951 return false;
952
953 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
954 return !!*sk->sk_cgrp->memory_pressure;
955
956 return !!*sk->sk_prot->memory_pressure;
957 }
958
959 static inline void sk_leave_memory_pressure(struct sock *sk)
960 {
961 int *memory_pressure = sk->sk_prot->memory_pressure;
962
963 if (!memory_pressure)
964 return;
965
966 if (*memory_pressure)
967 *memory_pressure = 0;
968
969 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
970 struct cg_proto *cg_proto = sk->sk_cgrp;
971 struct proto *prot = sk->sk_prot;
972
973 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
974 if (*cg_proto->memory_pressure)
975 *cg_proto->memory_pressure = 0;
976 }
977
978 }
979
980 static inline void sk_enter_memory_pressure(struct sock *sk)
981 {
982 if (!sk->sk_prot->enter_memory_pressure)
983 return;
984
985 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
986 struct cg_proto *cg_proto = sk->sk_cgrp;
987 struct proto *prot = sk->sk_prot;
988
989 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
990 cg_proto->enter_memory_pressure(sk);
991 }
992
993 sk->sk_prot->enter_memory_pressure(sk);
994 }
995
996 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
997 {
998 long *prot = sk->sk_prot->sysctl_mem;
999 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1000 prot = sk->sk_cgrp->sysctl_mem;
1001 return prot[index];
1002 }
1003
1004 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1005 unsigned long amt,
1006 int *parent_status)
1007 {
1008 struct res_counter *fail;
1009 int ret;
1010
1011 ret = res_counter_charge(prot->memory_allocated,
1012 amt << PAGE_SHIFT, &fail);
1013
1014 if (ret < 0)
1015 *parent_status = OVER_LIMIT;
1016 }
1017
1018 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1019 unsigned long amt)
1020 {
1021 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1022 }
1023
1024 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1025 {
1026 u64 ret;
1027 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1028 return ret >> PAGE_SHIFT;
1029 }
1030
1031 static inline long
1032 sk_memory_allocated(const struct sock *sk)
1033 {
1034 struct proto *prot = sk->sk_prot;
1035 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1036 return memcg_memory_allocated_read(sk->sk_cgrp);
1037
1038 return atomic_long_read(prot->memory_allocated);
1039 }
1040
1041 static inline long
1042 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1043 {
1044 struct proto *prot = sk->sk_prot;
1045
1046 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1047 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1048 /* update the root cgroup regardless */
1049 atomic_long_add_return(amt, prot->memory_allocated);
1050 return memcg_memory_allocated_read(sk->sk_cgrp);
1051 }
1052
1053 return atomic_long_add_return(amt, prot->memory_allocated);
1054 }
1055
1056 static inline void
1057 sk_memory_allocated_sub(struct sock *sk, int amt, int parent_status)
1058 {
1059 struct proto *prot = sk->sk_prot;
1060
1061 if (mem_cgroup_sockets_enabled && sk->sk_cgrp &&
1062 parent_status != OVER_LIMIT) /* Otherwise was uncharged already */
1063 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1064
1065 atomic_long_sub(amt, prot->memory_allocated);
1066 }
1067
1068 static inline void sk_sockets_allocated_dec(struct sock *sk)
1069 {
1070 struct proto *prot = sk->sk_prot;
1071
1072 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1073 struct cg_proto *cg_proto = sk->sk_cgrp;
1074
1075 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1076 percpu_counter_dec(cg_proto->sockets_allocated);
1077 }
1078
1079 percpu_counter_dec(prot->sockets_allocated);
1080 }
1081
1082 static inline void sk_sockets_allocated_inc(struct sock *sk)
1083 {
1084 struct proto *prot = sk->sk_prot;
1085
1086 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1087 struct cg_proto *cg_proto = sk->sk_cgrp;
1088
1089 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1090 percpu_counter_inc(cg_proto->sockets_allocated);
1091 }
1092
1093 percpu_counter_inc(prot->sockets_allocated);
1094 }
1095
1096 static inline int
1097 sk_sockets_allocated_read_positive(struct sock *sk)
1098 {
1099 struct proto *prot = sk->sk_prot;
1100
1101 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1102 return percpu_counter_sum_positive(sk->sk_cgrp->sockets_allocated);
1103
1104 return percpu_counter_sum_positive(prot->sockets_allocated);
1105 }
1106
1107 static inline int
1108 proto_sockets_allocated_sum_positive(struct proto *prot)
1109 {
1110 return percpu_counter_sum_positive(prot->sockets_allocated);
1111 }
1112
1113 static inline long
1114 proto_memory_allocated(struct proto *prot)
1115 {
1116 return atomic_long_read(prot->memory_allocated);
1117 }
1118
1119 static inline bool
1120 proto_memory_pressure(struct proto *prot)
1121 {
1122 if (!prot->memory_pressure)
1123 return false;
1124 return !!*prot->memory_pressure;
1125 }
1126
1127
1128 #ifdef CONFIG_PROC_FS
1129 /* Called with local bh disabled */
1130 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1131 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1132 #else
1133 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
1134 int inc)
1135 {
1136 }
1137 #endif
1138
1139
1140 /* With per-bucket locks this operation is not-atomic, so that
1141 * this version is not worse.
1142 */
1143 static inline void __sk_prot_rehash(struct sock *sk)
1144 {
1145 sk->sk_prot->unhash(sk);
1146 sk->sk_prot->hash(sk);
1147 }
1148
1149 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1150
1151 /* About 10 seconds */
1152 #define SOCK_DESTROY_TIME (10*HZ)
1153
1154 /* Sockets 0-1023 can't be bound to unless you are superuser */
1155 #define PROT_SOCK 1024
1156
1157 #define SHUTDOWN_MASK 3
1158 #define RCV_SHUTDOWN 1
1159 #define SEND_SHUTDOWN 2
1160
1161 #define SOCK_SNDBUF_LOCK 1
1162 #define SOCK_RCVBUF_LOCK 2
1163 #define SOCK_BINDADDR_LOCK 4
1164 #define SOCK_BINDPORT_LOCK 8
1165
1166 /* sock_iocb: used to kick off async processing of socket ios */
1167 struct sock_iocb {
1168 struct list_head list;
1169
1170 int flags;
1171 int size;
1172 struct socket *sock;
1173 struct sock *sk;
1174 struct scm_cookie *scm;
1175 struct msghdr *msg, async_msg;
1176 struct kiocb *kiocb;
1177 };
1178
1179 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1180 {
1181 return (struct sock_iocb *)iocb->private;
1182 }
1183
1184 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1185 {
1186 return si->kiocb;
1187 }
1188
1189 struct socket_alloc {
1190 struct socket socket;
1191 struct inode vfs_inode;
1192 };
1193
1194 static inline struct socket *SOCKET_I(struct inode *inode)
1195 {
1196 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1197 }
1198
1199 static inline struct inode *SOCK_INODE(struct socket *socket)
1200 {
1201 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1202 }
1203
1204 /*
1205 * Functions for memory accounting
1206 */
1207 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1208 extern void __sk_mem_reclaim(struct sock *sk);
1209
1210 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1211 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1212 #define SK_MEM_SEND 0
1213 #define SK_MEM_RECV 1
1214
1215 static inline int sk_mem_pages(int amt)
1216 {
1217 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1218 }
1219
1220 static inline int sk_has_account(struct sock *sk)
1221 {
1222 /* return true if protocol supports memory accounting */
1223 return !!sk->sk_prot->memory_allocated;
1224 }
1225
1226 static inline int sk_wmem_schedule(struct sock *sk, int size)
1227 {
1228 if (!sk_has_account(sk))
1229 return 1;
1230 return size <= sk->sk_forward_alloc ||
1231 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1232 }
1233
1234 static inline int sk_rmem_schedule(struct sock *sk, int size)
1235 {
1236 if (!sk_has_account(sk))
1237 return 1;
1238 return size <= sk->sk_forward_alloc ||
1239 __sk_mem_schedule(sk, size, SK_MEM_RECV);
1240 }
1241
1242 static inline void sk_mem_reclaim(struct sock *sk)
1243 {
1244 if (!sk_has_account(sk))
1245 return;
1246 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1247 __sk_mem_reclaim(sk);
1248 }
1249
1250 static inline void sk_mem_reclaim_partial(struct sock *sk)
1251 {
1252 if (!sk_has_account(sk))
1253 return;
1254 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1255 __sk_mem_reclaim(sk);
1256 }
1257
1258 static inline void sk_mem_charge(struct sock *sk, int size)
1259 {
1260 if (!sk_has_account(sk))
1261 return;
1262 sk->sk_forward_alloc -= size;
1263 }
1264
1265 static inline void sk_mem_uncharge(struct sock *sk, int size)
1266 {
1267 if (!sk_has_account(sk))
1268 return;
1269 sk->sk_forward_alloc += size;
1270 }
1271
1272 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1273 {
1274 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1275 sk->sk_wmem_queued -= skb->truesize;
1276 sk_mem_uncharge(sk, skb->truesize);
1277 __kfree_skb(skb);
1278 }
1279
1280 /* Used by processes to "lock" a socket state, so that
1281 * interrupts and bottom half handlers won't change it
1282 * from under us. It essentially blocks any incoming
1283 * packets, so that we won't get any new data or any
1284 * packets that change the state of the socket.
1285 *
1286 * While locked, BH processing will add new packets to
1287 * the backlog queue. This queue is processed by the
1288 * owner of the socket lock right before it is released.
1289 *
1290 * Since ~2.3.5 it is also exclusive sleep lock serializing
1291 * accesses from user process context.
1292 */
1293 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1294
1295 /*
1296 * Macro so as to not evaluate some arguments when
1297 * lockdep is not enabled.
1298 *
1299 * Mark both the sk_lock and the sk_lock.slock as a
1300 * per-address-family lock class.
1301 */
1302 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1303 do { \
1304 sk->sk_lock.owned = 0; \
1305 init_waitqueue_head(&sk->sk_lock.wq); \
1306 spin_lock_init(&(sk)->sk_lock.slock); \
1307 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1308 sizeof((sk)->sk_lock)); \
1309 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1310 (skey), (sname)); \
1311 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1312 } while (0)
1313
1314 extern void lock_sock_nested(struct sock *sk, int subclass);
1315
1316 static inline void lock_sock(struct sock *sk)
1317 {
1318 lock_sock_nested(sk, 0);
1319 }
1320
1321 extern void release_sock(struct sock *sk);
1322
1323 /* BH context may only use the following locking interface. */
1324 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1325 #define bh_lock_sock_nested(__sk) \
1326 spin_lock_nested(&((__sk)->sk_lock.slock), \
1327 SINGLE_DEPTH_NESTING)
1328 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1329
1330 extern bool lock_sock_fast(struct sock *sk);
1331 /**
1332 * unlock_sock_fast - complement of lock_sock_fast
1333 * @sk: socket
1334 * @slow: slow mode
1335 *
1336 * fast unlock socket for user context.
1337 * If slow mode is on, we call regular release_sock()
1338 */
1339 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1340 {
1341 if (slow)
1342 release_sock(sk);
1343 else
1344 spin_unlock_bh(&sk->sk_lock.slock);
1345 }
1346
1347
1348 extern struct sock *sk_alloc(struct net *net, int family,
1349 gfp_t priority,
1350 struct proto *prot);
1351 extern void sk_free(struct sock *sk);
1352 extern void sk_release_kernel(struct sock *sk);
1353 extern struct sock *sk_clone_lock(const struct sock *sk,
1354 const gfp_t priority);
1355
1356 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1357 unsigned long size, int force,
1358 gfp_t priority);
1359 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1360 unsigned long size, int force,
1361 gfp_t priority);
1362 extern void sock_wfree(struct sk_buff *skb);
1363 extern void sock_rfree(struct sk_buff *skb);
1364
1365 extern int sock_setsockopt(struct socket *sock, int level,
1366 int op, char __user *optval,
1367 unsigned int optlen);
1368
1369 extern int sock_getsockopt(struct socket *sock, int level,
1370 int op, char __user *optval,
1371 int __user *optlen);
1372 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1373 unsigned long size,
1374 int noblock,
1375 int *errcode);
1376 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1377 unsigned long header_len,
1378 unsigned long data_len,
1379 int noblock,
1380 int *errcode);
1381 extern void *sock_kmalloc(struct sock *sk, int size,
1382 gfp_t priority);
1383 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1384 extern void sk_send_sigurg(struct sock *sk);
1385
1386 #ifdef CONFIG_CGROUPS
1387 extern void sock_update_classid(struct sock *sk);
1388 #else
1389 static inline void sock_update_classid(struct sock *sk)
1390 {
1391 }
1392 #endif
1393
1394 /*
1395 * Functions to fill in entries in struct proto_ops when a protocol
1396 * does not implement a particular function.
1397 */
1398 extern int sock_no_bind(struct socket *,
1399 struct sockaddr *, int);
1400 extern int sock_no_connect(struct socket *,
1401 struct sockaddr *, int, int);
1402 extern int sock_no_socketpair(struct socket *,
1403 struct socket *);
1404 extern int sock_no_accept(struct socket *,
1405 struct socket *, int);
1406 extern int sock_no_getname(struct socket *,
1407 struct sockaddr *, int *, int);
1408 extern unsigned int sock_no_poll(struct file *, struct socket *,
1409 struct poll_table_struct *);
1410 extern int sock_no_ioctl(struct socket *, unsigned int,
1411 unsigned long);
1412 extern int sock_no_listen(struct socket *, int);
1413 extern int sock_no_shutdown(struct socket *, int);
1414 extern int sock_no_getsockopt(struct socket *, int , int,
1415 char __user *, int __user *);
1416 extern int sock_no_setsockopt(struct socket *, int, int,
1417 char __user *, unsigned int);
1418 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1419 struct msghdr *, size_t);
1420 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1421 struct msghdr *, size_t, int);
1422 extern int sock_no_mmap(struct file *file,
1423 struct socket *sock,
1424 struct vm_area_struct *vma);
1425 extern ssize_t sock_no_sendpage(struct socket *sock,
1426 struct page *page,
1427 int offset, size_t size,
1428 int flags);
1429
1430 /*
1431 * Functions to fill in entries in struct proto_ops when a protocol
1432 * uses the inet style.
1433 */
1434 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1435 char __user *optval, int __user *optlen);
1436 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1437 struct msghdr *msg, size_t size, int flags);
1438 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1439 char __user *optval, unsigned int optlen);
1440 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1441 int optname, char __user *optval, int __user *optlen);
1442 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1443 int optname, char __user *optval, unsigned int optlen);
1444
1445 extern void sk_common_release(struct sock *sk);
1446
1447 /*
1448 * Default socket callbacks and setup code
1449 */
1450
1451 /* Initialise core socket variables */
1452 extern void sock_init_data(struct socket *sock, struct sock *sk);
1453
1454 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1455
1456 /**
1457 * sk_filter_release - release a socket filter
1458 * @fp: filter to remove
1459 *
1460 * Remove a filter from a socket and release its resources.
1461 */
1462
1463 static inline void sk_filter_release(struct sk_filter *fp)
1464 {
1465 if (atomic_dec_and_test(&fp->refcnt))
1466 call_rcu(&fp->rcu, sk_filter_release_rcu);
1467 }
1468
1469 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1470 {
1471 unsigned int size = sk_filter_len(fp);
1472
1473 atomic_sub(size, &sk->sk_omem_alloc);
1474 sk_filter_release(fp);
1475 }
1476
1477 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1478 {
1479 atomic_inc(&fp->refcnt);
1480 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1481 }
1482
1483 /*
1484 * Socket reference counting postulates.
1485 *
1486 * * Each user of socket SHOULD hold a reference count.
1487 * * Each access point to socket (an hash table bucket, reference from a list,
1488 * running timer, skb in flight MUST hold a reference count.
1489 * * When reference count hits 0, it means it will never increase back.
1490 * * When reference count hits 0, it means that no references from
1491 * outside exist to this socket and current process on current CPU
1492 * is last user and may/should destroy this socket.
1493 * * sk_free is called from any context: process, BH, IRQ. When
1494 * it is called, socket has no references from outside -> sk_free
1495 * may release descendant resources allocated by the socket, but
1496 * to the time when it is called, socket is NOT referenced by any
1497 * hash tables, lists etc.
1498 * * Packets, delivered from outside (from network or from another process)
1499 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1500 * when they sit in queue. Otherwise, packets will leak to hole, when
1501 * socket is looked up by one cpu and unhasing is made by another CPU.
1502 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1503 * (leak to backlog). Packet socket does all the processing inside
1504 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1505 * use separate SMP lock, so that they are prone too.
1506 */
1507
1508 /* Ungrab socket and destroy it, if it was the last reference. */
1509 static inline void sock_put(struct sock *sk)
1510 {
1511 if (atomic_dec_and_test(&sk->sk_refcnt))
1512 sk_free(sk);
1513 }
1514
1515 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1516 const int nested);
1517
1518 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1519 {
1520 sk->sk_tx_queue_mapping = tx_queue;
1521 }
1522
1523 static inline void sk_tx_queue_clear(struct sock *sk)
1524 {
1525 sk->sk_tx_queue_mapping = -1;
1526 }
1527
1528 static inline int sk_tx_queue_get(const struct sock *sk)
1529 {
1530 return sk ? sk->sk_tx_queue_mapping : -1;
1531 }
1532
1533 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1534 {
1535 sk_tx_queue_clear(sk);
1536 sk->sk_socket = sock;
1537 }
1538
1539 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1540 {
1541 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1542 return &rcu_dereference_raw(sk->sk_wq)->wait;
1543 }
1544 /* Detach socket from process context.
1545 * Announce socket dead, detach it from wait queue and inode.
1546 * Note that parent inode held reference count on this struct sock,
1547 * we do not release it in this function, because protocol
1548 * probably wants some additional cleanups or even continuing
1549 * to work with this socket (TCP).
1550 */
1551 static inline void sock_orphan(struct sock *sk)
1552 {
1553 write_lock_bh(&sk->sk_callback_lock);
1554 sock_set_flag(sk, SOCK_DEAD);
1555 sk_set_socket(sk, NULL);
1556 sk->sk_wq = NULL;
1557 write_unlock_bh(&sk->sk_callback_lock);
1558 }
1559
1560 static inline void sock_graft(struct sock *sk, struct socket *parent)
1561 {
1562 write_lock_bh(&sk->sk_callback_lock);
1563 sk->sk_wq = parent->wq;
1564 parent->sk = sk;
1565 sk_set_socket(sk, parent);
1566 security_sock_graft(sk, parent);
1567 write_unlock_bh(&sk->sk_callback_lock);
1568 }
1569
1570 extern int sock_i_uid(struct sock *sk);
1571 extern unsigned long sock_i_ino(struct sock *sk);
1572
1573 static inline struct dst_entry *
1574 __sk_dst_get(struct sock *sk)
1575 {
1576 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1577 lockdep_is_held(&sk->sk_lock.slock));
1578 }
1579
1580 static inline struct dst_entry *
1581 sk_dst_get(struct sock *sk)
1582 {
1583 struct dst_entry *dst;
1584
1585 rcu_read_lock();
1586 dst = rcu_dereference(sk->sk_dst_cache);
1587 if (dst)
1588 dst_hold(dst);
1589 rcu_read_unlock();
1590 return dst;
1591 }
1592
1593 extern void sk_reset_txq(struct sock *sk);
1594
1595 static inline void dst_negative_advice(struct sock *sk)
1596 {
1597 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1598
1599 if (dst && dst->ops->negative_advice) {
1600 ndst = dst->ops->negative_advice(dst);
1601
1602 if (ndst != dst) {
1603 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1604 sk_reset_txq(sk);
1605 }
1606 }
1607 }
1608
1609 static inline void
1610 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1611 {
1612 struct dst_entry *old_dst;
1613
1614 sk_tx_queue_clear(sk);
1615 /*
1616 * This can be called while sk is owned by the caller only,
1617 * with no state that can be checked in a rcu_dereference_check() cond
1618 */
1619 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1620 rcu_assign_pointer(sk->sk_dst_cache, dst);
1621 dst_release(old_dst);
1622 }
1623
1624 static inline void
1625 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1626 {
1627 spin_lock(&sk->sk_dst_lock);
1628 __sk_dst_set(sk, dst);
1629 spin_unlock(&sk->sk_dst_lock);
1630 }
1631
1632 static inline void
1633 __sk_dst_reset(struct sock *sk)
1634 {
1635 __sk_dst_set(sk, NULL);
1636 }
1637
1638 static inline void
1639 sk_dst_reset(struct sock *sk)
1640 {
1641 spin_lock(&sk->sk_dst_lock);
1642 __sk_dst_reset(sk);
1643 spin_unlock(&sk->sk_dst_lock);
1644 }
1645
1646 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1647
1648 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1649
1650 static inline int sk_can_gso(const struct sock *sk)
1651 {
1652 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1653 }
1654
1655 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1656
1657 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1658 {
1659 sk->sk_route_nocaps |= flags;
1660 sk->sk_route_caps &= ~flags;
1661 }
1662
1663 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1664 char __user *from, char *to,
1665 int copy, int offset)
1666 {
1667 if (skb->ip_summed == CHECKSUM_NONE) {
1668 int err = 0;
1669 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1670 if (err)
1671 return err;
1672 skb->csum = csum_block_add(skb->csum, csum, offset);
1673 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1674 if (!access_ok(VERIFY_READ, from, copy) ||
1675 __copy_from_user_nocache(to, from, copy))
1676 return -EFAULT;
1677 } else if (copy_from_user(to, from, copy))
1678 return -EFAULT;
1679
1680 return 0;
1681 }
1682
1683 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1684 char __user *from, int copy)
1685 {
1686 int err, offset = skb->len;
1687
1688 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1689 copy, offset);
1690 if (err)
1691 __skb_trim(skb, offset);
1692
1693 return err;
1694 }
1695
1696 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1697 struct sk_buff *skb,
1698 struct page *page,
1699 int off, int copy)
1700 {
1701 int err;
1702
1703 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1704 copy, skb->len);
1705 if (err)
1706 return err;
1707
1708 skb->len += copy;
1709 skb->data_len += copy;
1710 skb->truesize += copy;
1711 sk->sk_wmem_queued += copy;
1712 sk_mem_charge(sk, copy);
1713 return 0;
1714 }
1715
1716 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1717 struct sk_buff *skb, struct page *page,
1718 int off, int copy)
1719 {
1720 if (skb->ip_summed == CHECKSUM_NONE) {
1721 int err = 0;
1722 __wsum csum = csum_and_copy_from_user(from,
1723 page_address(page) + off,
1724 copy, 0, &err);
1725 if (err)
1726 return err;
1727 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1728 } else if (copy_from_user(page_address(page) + off, from, copy))
1729 return -EFAULT;
1730
1731 skb->len += copy;
1732 skb->data_len += copy;
1733 skb->truesize += copy;
1734 sk->sk_wmem_queued += copy;
1735 sk_mem_charge(sk, copy);
1736 return 0;
1737 }
1738
1739 /**
1740 * sk_wmem_alloc_get - returns write allocations
1741 * @sk: socket
1742 *
1743 * Returns sk_wmem_alloc minus initial offset of one
1744 */
1745 static inline int sk_wmem_alloc_get(const struct sock *sk)
1746 {
1747 return atomic_read(&sk->sk_wmem_alloc) - 1;
1748 }
1749
1750 /**
1751 * sk_rmem_alloc_get - returns read allocations
1752 * @sk: socket
1753 *
1754 * Returns sk_rmem_alloc
1755 */
1756 static inline int sk_rmem_alloc_get(const struct sock *sk)
1757 {
1758 return atomic_read(&sk->sk_rmem_alloc);
1759 }
1760
1761 /**
1762 * sk_has_allocations - check if allocations are outstanding
1763 * @sk: socket
1764 *
1765 * Returns true if socket has write or read allocations
1766 */
1767 static inline int sk_has_allocations(const struct sock *sk)
1768 {
1769 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1770 }
1771
1772 /**
1773 * wq_has_sleeper - check if there are any waiting processes
1774 * @wq: struct socket_wq
1775 *
1776 * Returns true if socket_wq has waiting processes
1777 *
1778 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1779 * barrier call. They were added due to the race found within the tcp code.
1780 *
1781 * Consider following tcp code paths:
1782 *
1783 * CPU1 CPU2
1784 *
1785 * sys_select receive packet
1786 * ... ...
1787 * __add_wait_queue update tp->rcv_nxt
1788 * ... ...
1789 * tp->rcv_nxt check sock_def_readable
1790 * ... {
1791 * schedule rcu_read_lock();
1792 * wq = rcu_dereference(sk->sk_wq);
1793 * if (wq && waitqueue_active(&wq->wait))
1794 * wake_up_interruptible(&wq->wait)
1795 * ...
1796 * }
1797 *
1798 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1799 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1800 * could then endup calling schedule and sleep forever if there are no more
1801 * data on the socket.
1802 *
1803 */
1804 static inline bool wq_has_sleeper(struct socket_wq *wq)
1805 {
1806
1807 /*
1808 * We need to be sure we are in sync with the
1809 * add_wait_queue modifications to the wait queue.
1810 *
1811 * This memory barrier is paired in the sock_poll_wait.
1812 */
1813 smp_mb();
1814 return wq && waitqueue_active(&wq->wait);
1815 }
1816
1817 /**
1818 * sock_poll_wait - place memory barrier behind the poll_wait call.
1819 * @filp: file
1820 * @wait_address: socket wait queue
1821 * @p: poll_table
1822 *
1823 * See the comments in the wq_has_sleeper function.
1824 */
1825 static inline void sock_poll_wait(struct file *filp,
1826 wait_queue_head_t *wait_address, poll_table *p)
1827 {
1828 if (p && wait_address) {
1829 poll_wait(filp, wait_address, p);
1830 /*
1831 * We need to be sure we are in sync with the
1832 * socket flags modification.
1833 *
1834 * This memory barrier is paired in the wq_has_sleeper.
1835 */
1836 smp_mb();
1837 }
1838 }
1839
1840 /*
1841 * Queue a received datagram if it will fit. Stream and sequenced
1842 * protocols can't normally use this as they need to fit buffers in
1843 * and play with them.
1844 *
1845 * Inlined as it's very short and called for pretty much every
1846 * packet ever received.
1847 */
1848
1849 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1850 {
1851 skb_orphan(skb);
1852 skb->sk = sk;
1853 skb->destructor = sock_wfree;
1854 /*
1855 * We used to take a refcount on sk, but following operation
1856 * is enough to guarantee sk_free() wont free this sock until
1857 * all in-flight packets are completed
1858 */
1859 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1860 }
1861
1862 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1863 {
1864 skb_orphan(skb);
1865 skb->sk = sk;
1866 skb->destructor = sock_rfree;
1867 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1868 sk_mem_charge(sk, skb->truesize);
1869 }
1870
1871 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1872 unsigned long expires);
1873
1874 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1875
1876 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1877
1878 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1879
1880 /*
1881 * Recover an error report and clear atomically
1882 */
1883
1884 static inline int sock_error(struct sock *sk)
1885 {
1886 int err;
1887 if (likely(!sk->sk_err))
1888 return 0;
1889 err = xchg(&sk->sk_err, 0);
1890 return -err;
1891 }
1892
1893 static inline unsigned long sock_wspace(struct sock *sk)
1894 {
1895 int amt = 0;
1896
1897 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1898 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1899 if (amt < 0)
1900 amt = 0;
1901 }
1902 return amt;
1903 }
1904
1905 static inline void sk_wake_async(struct sock *sk, int how, int band)
1906 {
1907 if (sock_flag(sk, SOCK_FASYNC))
1908 sock_wake_async(sk->sk_socket, how, band);
1909 }
1910
1911 #define SOCK_MIN_SNDBUF 2048
1912 /*
1913 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1914 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1915 */
1916 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1917
1918 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1919 {
1920 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1921 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1922 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1923 }
1924 }
1925
1926 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1927
1928 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1929 {
1930 struct page *page = NULL;
1931
1932 page = alloc_pages(sk->sk_allocation, 0);
1933 if (!page) {
1934 sk_enter_memory_pressure(sk);
1935 sk_stream_moderate_sndbuf(sk);
1936 }
1937 return page;
1938 }
1939
1940 /*
1941 * Default write policy as shown to user space via poll/select/SIGIO
1942 */
1943 static inline int sock_writeable(const struct sock *sk)
1944 {
1945 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1946 }
1947
1948 static inline gfp_t gfp_any(void)
1949 {
1950 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1951 }
1952
1953 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1954 {
1955 return noblock ? 0 : sk->sk_rcvtimeo;
1956 }
1957
1958 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1959 {
1960 return noblock ? 0 : sk->sk_sndtimeo;
1961 }
1962
1963 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1964 {
1965 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1966 }
1967
1968 /* Alas, with timeout socket operations are not restartable.
1969 * Compare this to poll().
1970 */
1971 static inline int sock_intr_errno(long timeo)
1972 {
1973 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1974 }
1975
1976 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1977 struct sk_buff *skb);
1978 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
1979 struct sk_buff *skb);
1980
1981 static __inline__ void
1982 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1983 {
1984 ktime_t kt = skb->tstamp;
1985 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1986
1987 /*
1988 * generate control messages if
1989 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1990 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1991 * - software time stamp available and wanted
1992 * (SOCK_TIMESTAMPING_SOFTWARE)
1993 * - hardware time stamps available and wanted
1994 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1995 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1996 */
1997 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1998 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1999 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2000 (hwtstamps->hwtstamp.tv64 &&
2001 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2002 (hwtstamps->syststamp.tv64 &&
2003 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2004 __sock_recv_timestamp(msg, sk, skb);
2005 else
2006 sk->sk_stamp = kt;
2007
2008 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2009 __sock_recv_wifi_status(msg, sk, skb);
2010 }
2011
2012 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2013 struct sk_buff *skb);
2014
2015 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2016 struct sk_buff *skb)
2017 {
2018 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2019 (1UL << SOCK_RCVTSTAMP) | \
2020 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2021 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2022 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2023 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2024
2025 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2026 __sock_recv_ts_and_drops(msg, sk, skb);
2027 else
2028 sk->sk_stamp = skb->tstamp;
2029 }
2030
2031 /**
2032 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2033 * @sk: socket sending this packet
2034 * @tx_flags: filled with instructions for time stamping
2035 *
2036 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2037 * parameters are invalid.
2038 */
2039 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2040
2041 /**
2042 * sk_eat_skb - Release a skb if it is no longer needed
2043 * @sk: socket to eat this skb from
2044 * @skb: socket buffer to eat
2045 * @copied_early: flag indicating whether DMA operations copied this data early
2046 *
2047 * This routine must be called with interrupts disabled or with the socket
2048 * locked so that the sk_buff queue operation is ok.
2049 */
2050 #ifdef CONFIG_NET_DMA
2051 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2052 {
2053 __skb_unlink(skb, &sk->sk_receive_queue);
2054 if (!copied_early)
2055 __kfree_skb(skb);
2056 else
2057 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2058 }
2059 #else
2060 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2061 {
2062 __skb_unlink(skb, &sk->sk_receive_queue);
2063 __kfree_skb(skb);
2064 }
2065 #endif
2066
2067 static inline
2068 struct net *sock_net(const struct sock *sk)
2069 {
2070 return read_pnet(&sk->sk_net);
2071 }
2072
2073 static inline
2074 void sock_net_set(struct sock *sk, struct net *net)
2075 {
2076 write_pnet(&sk->sk_net, net);
2077 }
2078
2079 /*
2080 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2081 * They should not hold a reference to a namespace in order to allow
2082 * to stop it.
2083 * Sockets after sk_change_net should be released using sk_release_kernel
2084 */
2085 static inline void sk_change_net(struct sock *sk, struct net *net)
2086 {
2087 put_net(sock_net(sk));
2088 sock_net_set(sk, hold_net(net));
2089 }
2090
2091 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2092 {
2093 if (unlikely(skb->sk)) {
2094 struct sock *sk = skb->sk;
2095
2096 skb->destructor = NULL;
2097 skb->sk = NULL;
2098 return sk;
2099 }
2100 return NULL;
2101 }
2102
2103 extern void sock_enable_timestamp(struct sock *sk, int flag);
2104 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2105 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2106
2107 /*
2108 * Enable debug/info messages
2109 */
2110 extern int net_msg_warn;
2111 #define NETDEBUG(fmt, args...) \
2112 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2113
2114 #define LIMIT_NETDEBUG(fmt, args...) \
2115 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2116
2117 extern __u32 sysctl_wmem_max;
2118 extern __u32 sysctl_rmem_max;
2119
2120 extern void sk_init(void);
2121
2122 extern int sysctl_optmem_max;
2123
2124 extern __u32 sysctl_wmem_default;
2125 extern __u32 sysctl_rmem_default;
2126
2127 #endif /* _SOCK_H */
This page took 0.103168 seconds and 5 git commands to generate.