Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80 return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
91 */
92
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105
106 /* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
109 */
110 typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
114 /*
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
119 */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124
125 struct sock;
126 struct proto;
127 struct net;
128
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
131
132 /**
133 * struct sock_common - minimal network layer representation of sockets
134 * @skc_daddr: Foreign IPv4 addr
135 * @skc_rcv_saddr: Bound local IPv4 addr
136 * @skc_hash: hash value used with various protocol lookup tables
137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
138 * @skc_dport: placeholder for inet_dport/tw_dport
139 * @skc_num: placeholder for inet_num/tw_num
140 * @skc_family: network address family
141 * @skc_state: Connection state
142 * @skc_reuse: %SO_REUSEADDR setting
143 * @skc_reuseport: %SO_REUSEPORT setting
144 * @skc_bound_dev_if: bound device index if != 0
145 * @skc_bind_node: bind hash linkage for various protocol lookup tables
146 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
147 * @skc_prot: protocol handlers inside a network family
148 * @skc_net: reference to the network namespace of this socket
149 * @skc_node: main hash linkage for various protocol lookup tables
150 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
151 * @skc_tx_queue_mapping: tx queue number for this connection
152 * @skc_refcnt: reference count
153 *
154 * This is the minimal network layer representation of sockets, the header
155 * for struct sock and struct inet_timewait_sock.
156 */
157 struct sock_common {
158 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
159 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
160 */
161 union {
162 __addrpair skc_addrpair;
163 struct {
164 __be32 skc_daddr;
165 __be32 skc_rcv_saddr;
166 };
167 };
168 union {
169 unsigned int skc_hash;
170 __u16 skc_u16hashes[2];
171 };
172 /* skc_dport && skc_num must be grouped as well */
173 union {
174 __portpair skc_portpair;
175 struct {
176 __be16 skc_dport;
177 __u16 skc_num;
178 };
179 };
180
181 unsigned short skc_family;
182 volatile unsigned char skc_state;
183 unsigned char skc_reuse:4;
184 unsigned char skc_reuseport:4;
185 int skc_bound_dev_if;
186 union {
187 struct hlist_node skc_bind_node;
188 struct hlist_nulls_node skc_portaddr_node;
189 };
190 struct proto *skc_prot;
191 #ifdef CONFIG_NET_NS
192 struct net *skc_net;
193 #endif
194 /*
195 * fields between dontcopy_begin/dontcopy_end
196 * are not copied in sock_copy()
197 */
198 /* private: */
199 int skc_dontcopy_begin[0];
200 /* public: */
201 union {
202 struct hlist_node skc_node;
203 struct hlist_nulls_node skc_nulls_node;
204 };
205 int skc_tx_queue_mapping;
206 atomic_t skc_refcnt;
207 /* private: */
208 int skc_dontcopy_end[0];
209 /* public: */
210 };
211
212 struct cg_proto;
213 /**
214 * struct sock - network layer representation of sockets
215 * @__sk_common: shared layout with inet_timewait_sock
216 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
217 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
218 * @sk_lock: synchronizer
219 * @sk_rcvbuf: size of receive buffer in bytes
220 * @sk_wq: sock wait queue and async head
221 * @sk_rx_dst: receive input route used by early tcp demux
222 * @sk_dst_cache: destination cache
223 * @sk_dst_lock: destination cache lock
224 * @sk_policy: flow policy
225 * @sk_receive_queue: incoming packets
226 * @sk_wmem_alloc: transmit queue bytes committed
227 * @sk_write_queue: Packet sending queue
228 * @sk_async_wait_queue: DMA copied packets
229 * @sk_omem_alloc: "o" is "option" or "other"
230 * @sk_wmem_queued: persistent queue size
231 * @sk_forward_alloc: space allocated forward
232 * @sk_allocation: allocation mode
233 * @sk_sndbuf: size of send buffer in bytes
234 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
235 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
236 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
237 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
238 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
239 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
240 * @sk_gso_max_size: Maximum GSO segment size to build
241 * @sk_gso_max_segs: Maximum number of GSO segments
242 * @sk_lingertime: %SO_LINGER l_linger setting
243 * @sk_backlog: always used with the per-socket spinlock held
244 * @sk_callback_lock: used with the callbacks in the end of this struct
245 * @sk_error_queue: rarely used
246 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
247 * IPV6_ADDRFORM for instance)
248 * @sk_err: last error
249 * @sk_err_soft: errors that don't cause failure but are the cause of a
250 * persistent failure not just 'timed out'
251 * @sk_drops: raw/udp drops counter
252 * @sk_ack_backlog: current listen backlog
253 * @sk_max_ack_backlog: listen backlog set in listen()
254 * @sk_priority: %SO_PRIORITY setting
255 * @sk_cgrp_prioidx: socket group's priority map index
256 * @sk_type: socket type (%SOCK_STREAM, etc)
257 * @sk_protocol: which protocol this socket belongs in this network family
258 * @sk_peer_pid: &struct pid for this socket's peer
259 * @sk_peer_cred: %SO_PEERCRED setting
260 * @sk_rcvlowat: %SO_RCVLOWAT setting
261 * @sk_rcvtimeo: %SO_RCVTIMEO setting
262 * @sk_sndtimeo: %SO_SNDTIMEO setting
263 * @sk_rxhash: flow hash received from netif layer
264 * @sk_filter: socket filtering instructions
265 * @sk_protinfo: private area, net family specific, when not using slab
266 * @sk_timer: sock cleanup timer
267 * @sk_stamp: time stamp of last packet received
268 * @sk_socket: Identd and reporting IO signals
269 * @sk_user_data: RPC layer private data
270 * @sk_frag: cached page frag
271 * @sk_peek_off: current peek_offset value
272 * @sk_send_head: front of stuff to transmit
273 * @sk_security: used by security modules
274 * @sk_mark: generic packet mark
275 * @sk_classid: this socket's cgroup classid
276 * @sk_cgrp: this socket's cgroup-specific proto data
277 * @sk_write_pending: a write to stream socket waits to start
278 * @sk_state_change: callback to indicate change in the state of the sock
279 * @sk_data_ready: callback to indicate there is data to be processed
280 * @sk_write_space: callback to indicate there is bf sending space available
281 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
282 * @sk_backlog_rcv: callback to process the backlog
283 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
284 */
285 struct sock {
286 /*
287 * Now struct inet_timewait_sock also uses sock_common, so please just
288 * don't add nothing before this first member (__sk_common) --acme
289 */
290 struct sock_common __sk_common;
291 #define sk_node __sk_common.skc_node
292 #define sk_nulls_node __sk_common.skc_nulls_node
293 #define sk_refcnt __sk_common.skc_refcnt
294 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
295
296 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
297 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
298 #define sk_hash __sk_common.skc_hash
299 #define sk_family __sk_common.skc_family
300 #define sk_state __sk_common.skc_state
301 #define sk_reuse __sk_common.skc_reuse
302 #define sk_reuseport __sk_common.skc_reuseport
303 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
304 #define sk_bind_node __sk_common.skc_bind_node
305 #define sk_prot __sk_common.skc_prot
306 #define sk_net __sk_common.skc_net
307 socket_lock_t sk_lock;
308 struct sk_buff_head sk_receive_queue;
309 /*
310 * The backlog queue is special, it is always used with
311 * the per-socket spinlock held and requires low latency
312 * access. Therefore we special case it's implementation.
313 * Note : rmem_alloc is in this structure to fill a hole
314 * on 64bit arches, not because its logically part of
315 * backlog.
316 */
317 struct {
318 atomic_t rmem_alloc;
319 int len;
320 struct sk_buff *head;
321 struct sk_buff *tail;
322 } sk_backlog;
323 #define sk_rmem_alloc sk_backlog.rmem_alloc
324 int sk_forward_alloc;
325 #ifdef CONFIG_RPS
326 __u32 sk_rxhash;
327 #endif
328 atomic_t sk_drops;
329 int sk_rcvbuf;
330
331 struct sk_filter __rcu *sk_filter;
332 struct socket_wq __rcu *sk_wq;
333
334 #ifdef CONFIG_NET_DMA
335 struct sk_buff_head sk_async_wait_queue;
336 #endif
337
338 #ifdef CONFIG_XFRM
339 struct xfrm_policy *sk_policy[2];
340 #endif
341 unsigned long sk_flags;
342 struct dst_entry *sk_rx_dst;
343 struct dst_entry __rcu *sk_dst_cache;
344 spinlock_t sk_dst_lock;
345 atomic_t sk_wmem_alloc;
346 atomic_t sk_omem_alloc;
347 int sk_sndbuf;
348 struct sk_buff_head sk_write_queue;
349 kmemcheck_bitfield_begin(flags);
350 unsigned int sk_shutdown : 2,
351 sk_no_check : 2,
352 sk_userlocks : 4,
353 sk_protocol : 8,
354 sk_type : 16;
355 kmemcheck_bitfield_end(flags);
356 int sk_wmem_queued;
357 gfp_t sk_allocation;
358 netdev_features_t sk_route_caps;
359 netdev_features_t sk_route_nocaps;
360 int sk_gso_type;
361 unsigned int sk_gso_max_size;
362 u16 sk_gso_max_segs;
363 int sk_rcvlowat;
364 unsigned long sk_lingertime;
365 struct sk_buff_head sk_error_queue;
366 struct proto *sk_prot_creator;
367 rwlock_t sk_callback_lock;
368 int sk_err,
369 sk_err_soft;
370 unsigned short sk_ack_backlog;
371 unsigned short sk_max_ack_backlog;
372 __u32 sk_priority;
373 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
374 __u32 sk_cgrp_prioidx;
375 #endif
376 struct pid *sk_peer_pid;
377 const struct cred *sk_peer_cred;
378 long sk_rcvtimeo;
379 long sk_sndtimeo;
380 void *sk_protinfo;
381 struct timer_list sk_timer;
382 ktime_t sk_stamp;
383 struct socket *sk_socket;
384 void *sk_user_data;
385 struct page_frag sk_frag;
386 struct sk_buff *sk_send_head;
387 __s32 sk_peek_off;
388 int sk_write_pending;
389 #ifdef CONFIG_SECURITY
390 void *sk_security;
391 #endif
392 __u32 sk_mark;
393 u32 sk_classid;
394 struct cg_proto *sk_cgrp;
395 void (*sk_state_change)(struct sock *sk);
396 void (*sk_data_ready)(struct sock *sk, int bytes);
397 void (*sk_write_space)(struct sock *sk);
398 void (*sk_error_report)(struct sock *sk);
399 int (*sk_backlog_rcv)(struct sock *sk,
400 struct sk_buff *skb);
401 void (*sk_destruct)(struct sock *sk);
402 };
403
404 /*
405 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
406 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
407 * on a socket means that the socket will reuse everybody else's port
408 * without looking at the other's sk_reuse value.
409 */
410
411 #define SK_NO_REUSE 0
412 #define SK_CAN_REUSE 1
413 #define SK_FORCE_REUSE 2
414
415 static inline int sk_peek_offset(struct sock *sk, int flags)
416 {
417 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
418 return sk->sk_peek_off;
419 else
420 return 0;
421 }
422
423 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
424 {
425 if (sk->sk_peek_off >= 0) {
426 if (sk->sk_peek_off >= val)
427 sk->sk_peek_off -= val;
428 else
429 sk->sk_peek_off = 0;
430 }
431 }
432
433 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
434 {
435 if (sk->sk_peek_off >= 0)
436 sk->sk_peek_off += val;
437 }
438
439 /*
440 * Hashed lists helper routines
441 */
442 static inline struct sock *sk_entry(const struct hlist_node *node)
443 {
444 return hlist_entry(node, struct sock, sk_node);
445 }
446
447 static inline struct sock *__sk_head(const struct hlist_head *head)
448 {
449 return hlist_entry(head->first, struct sock, sk_node);
450 }
451
452 static inline struct sock *sk_head(const struct hlist_head *head)
453 {
454 return hlist_empty(head) ? NULL : __sk_head(head);
455 }
456
457 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
458 {
459 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
460 }
461
462 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
463 {
464 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
465 }
466
467 static inline struct sock *sk_next(const struct sock *sk)
468 {
469 return sk->sk_node.next ?
470 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
471 }
472
473 static inline struct sock *sk_nulls_next(const struct sock *sk)
474 {
475 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
476 hlist_nulls_entry(sk->sk_nulls_node.next,
477 struct sock, sk_nulls_node) :
478 NULL;
479 }
480
481 static inline bool sk_unhashed(const struct sock *sk)
482 {
483 return hlist_unhashed(&sk->sk_node);
484 }
485
486 static inline bool sk_hashed(const struct sock *sk)
487 {
488 return !sk_unhashed(sk);
489 }
490
491 static inline void sk_node_init(struct hlist_node *node)
492 {
493 node->pprev = NULL;
494 }
495
496 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
497 {
498 node->pprev = NULL;
499 }
500
501 static inline void __sk_del_node(struct sock *sk)
502 {
503 __hlist_del(&sk->sk_node);
504 }
505
506 /* NB: equivalent to hlist_del_init_rcu */
507 static inline bool __sk_del_node_init(struct sock *sk)
508 {
509 if (sk_hashed(sk)) {
510 __sk_del_node(sk);
511 sk_node_init(&sk->sk_node);
512 return true;
513 }
514 return false;
515 }
516
517 /* Grab socket reference count. This operation is valid only
518 when sk is ALREADY grabbed f.e. it is found in hash table
519 or a list and the lookup is made under lock preventing hash table
520 modifications.
521 */
522
523 static inline void sock_hold(struct sock *sk)
524 {
525 atomic_inc(&sk->sk_refcnt);
526 }
527
528 /* Ungrab socket in the context, which assumes that socket refcnt
529 cannot hit zero, f.e. it is true in context of any socketcall.
530 */
531 static inline void __sock_put(struct sock *sk)
532 {
533 atomic_dec(&sk->sk_refcnt);
534 }
535
536 static inline bool sk_del_node_init(struct sock *sk)
537 {
538 bool rc = __sk_del_node_init(sk);
539
540 if (rc) {
541 /* paranoid for a while -acme */
542 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
543 __sock_put(sk);
544 }
545 return rc;
546 }
547 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
548
549 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
550 {
551 if (sk_hashed(sk)) {
552 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
553 return true;
554 }
555 return false;
556 }
557
558 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
559 {
560 bool rc = __sk_nulls_del_node_init_rcu(sk);
561
562 if (rc) {
563 /* paranoid for a while -acme */
564 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
565 __sock_put(sk);
566 }
567 return rc;
568 }
569
570 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
571 {
572 hlist_add_head(&sk->sk_node, list);
573 }
574
575 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
576 {
577 sock_hold(sk);
578 __sk_add_node(sk, list);
579 }
580
581 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
582 {
583 sock_hold(sk);
584 hlist_add_head_rcu(&sk->sk_node, list);
585 }
586
587 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
588 {
589 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
590 }
591
592 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
593 {
594 sock_hold(sk);
595 __sk_nulls_add_node_rcu(sk, list);
596 }
597
598 static inline void __sk_del_bind_node(struct sock *sk)
599 {
600 __hlist_del(&sk->sk_bind_node);
601 }
602
603 static inline void sk_add_bind_node(struct sock *sk,
604 struct hlist_head *list)
605 {
606 hlist_add_head(&sk->sk_bind_node, list);
607 }
608
609 #define sk_for_each(__sk, node, list) \
610 hlist_for_each_entry(__sk, node, list, sk_node)
611 #define sk_for_each_rcu(__sk, node, list) \
612 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
613 #define sk_nulls_for_each(__sk, node, list) \
614 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
615 #define sk_nulls_for_each_rcu(__sk, node, list) \
616 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
617 #define sk_for_each_from(__sk, node) \
618 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
619 hlist_for_each_entry_from(__sk, node, sk_node)
620 #define sk_nulls_for_each_from(__sk, node) \
621 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
622 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
623 #define sk_for_each_safe(__sk, node, tmp, list) \
624 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
625 #define sk_for_each_bound(__sk, node, list) \
626 hlist_for_each_entry(__sk, node, list, sk_bind_node)
627
628 static inline struct user_namespace *sk_user_ns(struct sock *sk)
629 {
630 /* Careful only use this in a context where these parameters
631 * can not change and must all be valid, such as recvmsg from
632 * userspace.
633 */
634 return sk->sk_socket->file->f_cred->user_ns;
635 }
636
637 /* Sock flags */
638 enum sock_flags {
639 SOCK_DEAD,
640 SOCK_DONE,
641 SOCK_URGINLINE,
642 SOCK_KEEPOPEN,
643 SOCK_LINGER,
644 SOCK_DESTROY,
645 SOCK_BROADCAST,
646 SOCK_TIMESTAMP,
647 SOCK_ZAPPED,
648 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
649 SOCK_DBG, /* %SO_DEBUG setting */
650 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
651 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
652 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
653 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
654 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
655 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
656 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
657 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
658 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
659 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
660 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
661 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
662 SOCK_FASYNC, /* fasync() active */
663 SOCK_RXQ_OVFL,
664 SOCK_ZEROCOPY, /* buffers from userspace */
665 SOCK_WIFI_STATUS, /* push wifi status to userspace */
666 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
667 * Will use last 4 bytes of packet sent from
668 * user-space instead.
669 */
670 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
671 };
672
673 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
674 {
675 nsk->sk_flags = osk->sk_flags;
676 }
677
678 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
679 {
680 __set_bit(flag, &sk->sk_flags);
681 }
682
683 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
684 {
685 __clear_bit(flag, &sk->sk_flags);
686 }
687
688 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
689 {
690 return test_bit(flag, &sk->sk_flags);
691 }
692
693 #ifdef CONFIG_NET
694 extern struct static_key memalloc_socks;
695 static inline int sk_memalloc_socks(void)
696 {
697 return static_key_false(&memalloc_socks);
698 }
699 #else
700
701 static inline int sk_memalloc_socks(void)
702 {
703 return 0;
704 }
705
706 #endif
707
708 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
709 {
710 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
711 }
712
713 static inline void sk_acceptq_removed(struct sock *sk)
714 {
715 sk->sk_ack_backlog--;
716 }
717
718 static inline void sk_acceptq_added(struct sock *sk)
719 {
720 sk->sk_ack_backlog++;
721 }
722
723 static inline bool sk_acceptq_is_full(const struct sock *sk)
724 {
725 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
726 }
727
728 /*
729 * Compute minimal free write space needed to queue new packets.
730 */
731 static inline int sk_stream_min_wspace(const struct sock *sk)
732 {
733 return sk->sk_wmem_queued >> 1;
734 }
735
736 static inline int sk_stream_wspace(const struct sock *sk)
737 {
738 return sk->sk_sndbuf - sk->sk_wmem_queued;
739 }
740
741 extern void sk_stream_write_space(struct sock *sk);
742
743 static inline bool sk_stream_memory_free(const struct sock *sk)
744 {
745 return sk->sk_wmem_queued < sk->sk_sndbuf;
746 }
747
748 /* OOB backlog add */
749 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
750 {
751 /* dont let skb dst not refcounted, we are going to leave rcu lock */
752 skb_dst_force(skb);
753
754 if (!sk->sk_backlog.tail)
755 sk->sk_backlog.head = skb;
756 else
757 sk->sk_backlog.tail->next = skb;
758
759 sk->sk_backlog.tail = skb;
760 skb->next = NULL;
761 }
762
763 /*
764 * Take into account size of receive queue and backlog queue
765 * Do not take into account this skb truesize,
766 * to allow even a single big packet to come.
767 */
768 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
769 unsigned int limit)
770 {
771 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
772
773 return qsize > limit;
774 }
775
776 /* The per-socket spinlock must be held here. */
777 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
778 unsigned int limit)
779 {
780 if (sk_rcvqueues_full(sk, skb, limit))
781 return -ENOBUFS;
782
783 __sk_add_backlog(sk, skb);
784 sk->sk_backlog.len += skb->truesize;
785 return 0;
786 }
787
788 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
789
790 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
791 {
792 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
793 return __sk_backlog_rcv(sk, skb);
794
795 return sk->sk_backlog_rcv(sk, skb);
796 }
797
798 static inline void sock_rps_record_flow(const struct sock *sk)
799 {
800 #ifdef CONFIG_RPS
801 struct rps_sock_flow_table *sock_flow_table;
802
803 rcu_read_lock();
804 sock_flow_table = rcu_dereference(rps_sock_flow_table);
805 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
806 rcu_read_unlock();
807 #endif
808 }
809
810 static inline void sock_rps_reset_flow(const struct sock *sk)
811 {
812 #ifdef CONFIG_RPS
813 struct rps_sock_flow_table *sock_flow_table;
814
815 rcu_read_lock();
816 sock_flow_table = rcu_dereference(rps_sock_flow_table);
817 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
818 rcu_read_unlock();
819 #endif
820 }
821
822 static inline void sock_rps_save_rxhash(struct sock *sk,
823 const struct sk_buff *skb)
824 {
825 #ifdef CONFIG_RPS
826 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
827 sock_rps_reset_flow(sk);
828 sk->sk_rxhash = skb->rxhash;
829 }
830 #endif
831 }
832
833 static inline void sock_rps_reset_rxhash(struct sock *sk)
834 {
835 #ifdef CONFIG_RPS
836 sock_rps_reset_flow(sk);
837 sk->sk_rxhash = 0;
838 #endif
839 }
840
841 #define sk_wait_event(__sk, __timeo, __condition) \
842 ({ int __rc; \
843 release_sock(__sk); \
844 __rc = __condition; \
845 if (!__rc) { \
846 *(__timeo) = schedule_timeout(*(__timeo)); \
847 } \
848 lock_sock(__sk); \
849 __rc = __condition; \
850 __rc; \
851 })
852
853 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
854 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
855 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
856 extern int sk_stream_error(struct sock *sk, int flags, int err);
857 extern void sk_stream_kill_queues(struct sock *sk);
858 extern void sk_set_memalloc(struct sock *sk);
859 extern void sk_clear_memalloc(struct sock *sk);
860
861 extern int sk_wait_data(struct sock *sk, long *timeo);
862
863 struct request_sock_ops;
864 struct timewait_sock_ops;
865 struct inet_hashinfo;
866 struct raw_hashinfo;
867 struct module;
868
869 /* Networking protocol blocks we attach to sockets.
870 * socket layer -> transport layer interface
871 * transport -> network interface is defined by struct inet_proto
872 */
873 struct proto {
874 void (*close)(struct sock *sk,
875 long timeout);
876 int (*connect)(struct sock *sk,
877 struct sockaddr *uaddr,
878 int addr_len);
879 int (*disconnect)(struct sock *sk, int flags);
880
881 struct sock * (*accept)(struct sock *sk, int flags, int *err);
882
883 int (*ioctl)(struct sock *sk, int cmd,
884 unsigned long arg);
885 int (*init)(struct sock *sk);
886 void (*destroy)(struct sock *sk);
887 void (*shutdown)(struct sock *sk, int how);
888 int (*setsockopt)(struct sock *sk, int level,
889 int optname, char __user *optval,
890 unsigned int optlen);
891 int (*getsockopt)(struct sock *sk, int level,
892 int optname, char __user *optval,
893 int __user *option);
894 #ifdef CONFIG_COMPAT
895 int (*compat_setsockopt)(struct sock *sk,
896 int level,
897 int optname, char __user *optval,
898 unsigned int optlen);
899 int (*compat_getsockopt)(struct sock *sk,
900 int level,
901 int optname, char __user *optval,
902 int __user *option);
903 int (*compat_ioctl)(struct sock *sk,
904 unsigned int cmd, unsigned long arg);
905 #endif
906 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
907 struct msghdr *msg, size_t len);
908 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
909 struct msghdr *msg,
910 size_t len, int noblock, int flags,
911 int *addr_len);
912 int (*sendpage)(struct sock *sk, struct page *page,
913 int offset, size_t size, int flags);
914 int (*bind)(struct sock *sk,
915 struct sockaddr *uaddr, int addr_len);
916
917 int (*backlog_rcv) (struct sock *sk,
918 struct sk_buff *skb);
919
920 void (*release_cb)(struct sock *sk);
921 void (*mtu_reduced)(struct sock *sk);
922
923 /* Keeping track of sk's, looking them up, and port selection methods. */
924 void (*hash)(struct sock *sk);
925 void (*unhash)(struct sock *sk);
926 void (*rehash)(struct sock *sk);
927 int (*get_port)(struct sock *sk, unsigned short snum);
928 void (*clear_sk)(struct sock *sk, int size);
929
930 /* Keeping track of sockets in use */
931 #ifdef CONFIG_PROC_FS
932 unsigned int inuse_idx;
933 #endif
934
935 /* Memory pressure */
936 void (*enter_memory_pressure)(struct sock *sk);
937 atomic_long_t *memory_allocated; /* Current allocated memory. */
938 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
939 /*
940 * Pressure flag: try to collapse.
941 * Technical note: it is used by multiple contexts non atomically.
942 * All the __sk_mem_schedule() is of this nature: accounting
943 * is strict, actions are advisory and have some latency.
944 */
945 int *memory_pressure;
946 long *sysctl_mem;
947 int *sysctl_wmem;
948 int *sysctl_rmem;
949 int max_header;
950 bool no_autobind;
951
952 struct kmem_cache *slab;
953 unsigned int obj_size;
954 int slab_flags;
955
956 struct percpu_counter *orphan_count;
957
958 struct request_sock_ops *rsk_prot;
959 struct timewait_sock_ops *twsk_prot;
960
961 union {
962 struct inet_hashinfo *hashinfo;
963 struct udp_table *udp_table;
964 struct raw_hashinfo *raw_hash;
965 } h;
966
967 struct module *owner;
968
969 char name[32];
970
971 struct list_head node;
972 #ifdef SOCK_REFCNT_DEBUG
973 atomic_t socks;
974 #endif
975 #ifdef CONFIG_MEMCG_KMEM
976 /*
977 * cgroup specific init/deinit functions. Called once for all
978 * protocols that implement it, from cgroups populate function.
979 * This function has to setup any files the protocol want to
980 * appear in the kmem cgroup filesystem.
981 */
982 int (*init_cgroup)(struct mem_cgroup *memcg,
983 struct cgroup_subsys *ss);
984 void (*destroy_cgroup)(struct mem_cgroup *memcg);
985 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
986 #endif
987 };
988
989 /*
990 * Bits in struct cg_proto.flags
991 */
992 enum cg_proto_flags {
993 /* Currently active and new sockets should be assigned to cgroups */
994 MEMCG_SOCK_ACTIVE,
995 /* It was ever activated; we must disarm static keys on destruction */
996 MEMCG_SOCK_ACTIVATED,
997 };
998
999 struct cg_proto {
1000 void (*enter_memory_pressure)(struct sock *sk);
1001 struct res_counter *memory_allocated; /* Current allocated memory. */
1002 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1003 int *memory_pressure;
1004 long *sysctl_mem;
1005 unsigned long flags;
1006 /*
1007 * memcg field is used to find which memcg we belong directly
1008 * Each memcg struct can hold more than one cg_proto, so container_of
1009 * won't really cut.
1010 *
1011 * The elegant solution would be having an inverse function to
1012 * proto_cgroup in struct proto, but that means polluting the structure
1013 * for everybody, instead of just for memcg users.
1014 */
1015 struct mem_cgroup *memcg;
1016 };
1017
1018 extern int proto_register(struct proto *prot, int alloc_slab);
1019 extern void proto_unregister(struct proto *prot);
1020
1021 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1022 {
1023 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1024 }
1025
1026 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1027 {
1028 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1029 }
1030
1031 #ifdef SOCK_REFCNT_DEBUG
1032 static inline void sk_refcnt_debug_inc(struct sock *sk)
1033 {
1034 atomic_inc(&sk->sk_prot->socks);
1035 }
1036
1037 static inline void sk_refcnt_debug_dec(struct sock *sk)
1038 {
1039 atomic_dec(&sk->sk_prot->socks);
1040 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1041 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1042 }
1043
1044 static inline void sk_refcnt_debug_release(const struct sock *sk)
1045 {
1046 if (atomic_read(&sk->sk_refcnt) != 1)
1047 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1048 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1049 }
1050 #else /* SOCK_REFCNT_DEBUG */
1051 #define sk_refcnt_debug_inc(sk) do { } while (0)
1052 #define sk_refcnt_debug_dec(sk) do { } while (0)
1053 #define sk_refcnt_debug_release(sk) do { } while (0)
1054 #endif /* SOCK_REFCNT_DEBUG */
1055
1056 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1057 extern struct static_key memcg_socket_limit_enabled;
1058 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1059 struct cg_proto *cg_proto)
1060 {
1061 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1062 }
1063 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1064 #else
1065 #define mem_cgroup_sockets_enabled 0
1066 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1067 struct cg_proto *cg_proto)
1068 {
1069 return NULL;
1070 }
1071 #endif
1072
1073
1074 static inline bool sk_has_memory_pressure(const struct sock *sk)
1075 {
1076 return sk->sk_prot->memory_pressure != NULL;
1077 }
1078
1079 static inline bool sk_under_memory_pressure(const struct sock *sk)
1080 {
1081 if (!sk->sk_prot->memory_pressure)
1082 return false;
1083
1084 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1085 return !!*sk->sk_cgrp->memory_pressure;
1086
1087 return !!*sk->sk_prot->memory_pressure;
1088 }
1089
1090 static inline void sk_leave_memory_pressure(struct sock *sk)
1091 {
1092 int *memory_pressure = sk->sk_prot->memory_pressure;
1093
1094 if (!memory_pressure)
1095 return;
1096
1097 if (*memory_pressure)
1098 *memory_pressure = 0;
1099
1100 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1101 struct cg_proto *cg_proto = sk->sk_cgrp;
1102 struct proto *prot = sk->sk_prot;
1103
1104 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1105 if (*cg_proto->memory_pressure)
1106 *cg_proto->memory_pressure = 0;
1107 }
1108
1109 }
1110
1111 static inline void sk_enter_memory_pressure(struct sock *sk)
1112 {
1113 if (!sk->sk_prot->enter_memory_pressure)
1114 return;
1115
1116 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1117 struct cg_proto *cg_proto = sk->sk_cgrp;
1118 struct proto *prot = sk->sk_prot;
1119
1120 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1121 cg_proto->enter_memory_pressure(sk);
1122 }
1123
1124 sk->sk_prot->enter_memory_pressure(sk);
1125 }
1126
1127 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1128 {
1129 long *prot = sk->sk_prot->sysctl_mem;
1130 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1131 prot = sk->sk_cgrp->sysctl_mem;
1132 return prot[index];
1133 }
1134
1135 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1136 unsigned long amt,
1137 int *parent_status)
1138 {
1139 struct res_counter *fail;
1140 int ret;
1141
1142 ret = res_counter_charge_nofail(prot->memory_allocated,
1143 amt << PAGE_SHIFT, &fail);
1144 if (ret < 0)
1145 *parent_status = OVER_LIMIT;
1146 }
1147
1148 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1149 unsigned long amt)
1150 {
1151 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1152 }
1153
1154 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1155 {
1156 u64 ret;
1157 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1158 return ret >> PAGE_SHIFT;
1159 }
1160
1161 static inline long
1162 sk_memory_allocated(const struct sock *sk)
1163 {
1164 struct proto *prot = sk->sk_prot;
1165 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1166 return memcg_memory_allocated_read(sk->sk_cgrp);
1167
1168 return atomic_long_read(prot->memory_allocated);
1169 }
1170
1171 static inline long
1172 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1173 {
1174 struct proto *prot = sk->sk_prot;
1175
1176 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1177 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1178 /* update the root cgroup regardless */
1179 atomic_long_add_return(amt, prot->memory_allocated);
1180 return memcg_memory_allocated_read(sk->sk_cgrp);
1181 }
1182
1183 return atomic_long_add_return(amt, prot->memory_allocated);
1184 }
1185
1186 static inline void
1187 sk_memory_allocated_sub(struct sock *sk, int amt)
1188 {
1189 struct proto *prot = sk->sk_prot;
1190
1191 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1192 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1193
1194 atomic_long_sub(amt, prot->memory_allocated);
1195 }
1196
1197 static inline void sk_sockets_allocated_dec(struct sock *sk)
1198 {
1199 struct proto *prot = sk->sk_prot;
1200
1201 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1202 struct cg_proto *cg_proto = sk->sk_cgrp;
1203
1204 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1205 percpu_counter_dec(cg_proto->sockets_allocated);
1206 }
1207
1208 percpu_counter_dec(prot->sockets_allocated);
1209 }
1210
1211 static inline void sk_sockets_allocated_inc(struct sock *sk)
1212 {
1213 struct proto *prot = sk->sk_prot;
1214
1215 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1216 struct cg_proto *cg_proto = sk->sk_cgrp;
1217
1218 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1219 percpu_counter_inc(cg_proto->sockets_allocated);
1220 }
1221
1222 percpu_counter_inc(prot->sockets_allocated);
1223 }
1224
1225 static inline int
1226 sk_sockets_allocated_read_positive(struct sock *sk)
1227 {
1228 struct proto *prot = sk->sk_prot;
1229
1230 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1231 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1232
1233 return percpu_counter_read_positive(prot->sockets_allocated);
1234 }
1235
1236 static inline int
1237 proto_sockets_allocated_sum_positive(struct proto *prot)
1238 {
1239 return percpu_counter_sum_positive(prot->sockets_allocated);
1240 }
1241
1242 static inline long
1243 proto_memory_allocated(struct proto *prot)
1244 {
1245 return atomic_long_read(prot->memory_allocated);
1246 }
1247
1248 static inline bool
1249 proto_memory_pressure(struct proto *prot)
1250 {
1251 if (!prot->memory_pressure)
1252 return false;
1253 return !!*prot->memory_pressure;
1254 }
1255
1256
1257 #ifdef CONFIG_PROC_FS
1258 /* Called with local bh disabled */
1259 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1260 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1261 #else
1262 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1263 int inc)
1264 {
1265 }
1266 #endif
1267
1268
1269 /* With per-bucket locks this operation is not-atomic, so that
1270 * this version is not worse.
1271 */
1272 static inline void __sk_prot_rehash(struct sock *sk)
1273 {
1274 sk->sk_prot->unhash(sk);
1275 sk->sk_prot->hash(sk);
1276 }
1277
1278 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1279
1280 /* About 10 seconds */
1281 #define SOCK_DESTROY_TIME (10*HZ)
1282
1283 /* Sockets 0-1023 can't be bound to unless you are superuser */
1284 #define PROT_SOCK 1024
1285
1286 #define SHUTDOWN_MASK 3
1287 #define RCV_SHUTDOWN 1
1288 #define SEND_SHUTDOWN 2
1289
1290 #define SOCK_SNDBUF_LOCK 1
1291 #define SOCK_RCVBUF_LOCK 2
1292 #define SOCK_BINDADDR_LOCK 4
1293 #define SOCK_BINDPORT_LOCK 8
1294
1295 /* sock_iocb: used to kick off async processing of socket ios */
1296 struct sock_iocb {
1297 struct list_head list;
1298
1299 int flags;
1300 int size;
1301 struct socket *sock;
1302 struct sock *sk;
1303 struct scm_cookie *scm;
1304 struct msghdr *msg, async_msg;
1305 struct kiocb *kiocb;
1306 };
1307
1308 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1309 {
1310 return (struct sock_iocb *)iocb->private;
1311 }
1312
1313 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1314 {
1315 return si->kiocb;
1316 }
1317
1318 struct socket_alloc {
1319 struct socket socket;
1320 struct inode vfs_inode;
1321 };
1322
1323 static inline struct socket *SOCKET_I(struct inode *inode)
1324 {
1325 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1326 }
1327
1328 static inline struct inode *SOCK_INODE(struct socket *socket)
1329 {
1330 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1331 }
1332
1333 /*
1334 * Functions for memory accounting
1335 */
1336 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1337 extern void __sk_mem_reclaim(struct sock *sk);
1338
1339 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1340 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1341 #define SK_MEM_SEND 0
1342 #define SK_MEM_RECV 1
1343
1344 static inline int sk_mem_pages(int amt)
1345 {
1346 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1347 }
1348
1349 static inline bool sk_has_account(struct sock *sk)
1350 {
1351 /* return true if protocol supports memory accounting */
1352 return !!sk->sk_prot->memory_allocated;
1353 }
1354
1355 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1356 {
1357 if (!sk_has_account(sk))
1358 return true;
1359 return size <= sk->sk_forward_alloc ||
1360 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1361 }
1362
1363 static inline bool
1364 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1365 {
1366 if (!sk_has_account(sk))
1367 return true;
1368 return size<= sk->sk_forward_alloc ||
1369 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1370 skb_pfmemalloc(skb);
1371 }
1372
1373 static inline void sk_mem_reclaim(struct sock *sk)
1374 {
1375 if (!sk_has_account(sk))
1376 return;
1377 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1378 __sk_mem_reclaim(sk);
1379 }
1380
1381 static inline void sk_mem_reclaim_partial(struct sock *sk)
1382 {
1383 if (!sk_has_account(sk))
1384 return;
1385 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1386 __sk_mem_reclaim(sk);
1387 }
1388
1389 static inline void sk_mem_charge(struct sock *sk, int size)
1390 {
1391 if (!sk_has_account(sk))
1392 return;
1393 sk->sk_forward_alloc -= size;
1394 }
1395
1396 static inline void sk_mem_uncharge(struct sock *sk, int size)
1397 {
1398 if (!sk_has_account(sk))
1399 return;
1400 sk->sk_forward_alloc += size;
1401 }
1402
1403 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1404 {
1405 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1406 sk->sk_wmem_queued -= skb->truesize;
1407 sk_mem_uncharge(sk, skb->truesize);
1408 __kfree_skb(skb);
1409 }
1410
1411 /* Used by processes to "lock" a socket state, so that
1412 * interrupts and bottom half handlers won't change it
1413 * from under us. It essentially blocks any incoming
1414 * packets, so that we won't get any new data or any
1415 * packets that change the state of the socket.
1416 *
1417 * While locked, BH processing will add new packets to
1418 * the backlog queue. This queue is processed by the
1419 * owner of the socket lock right before it is released.
1420 *
1421 * Since ~2.3.5 it is also exclusive sleep lock serializing
1422 * accesses from user process context.
1423 */
1424 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1425
1426 /*
1427 * Macro so as to not evaluate some arguments when
1428 * lockdep is not enabled.
1429 *
1430 * Mark both the sk_lock and the sk_lock.slock as a
1431 * per-address-family lock class.
1432 */
1433 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1434 do { \
1435 sk->sk_lock.owned = 0; \
1436 init_waitqueue_head(&sk->sk_lock.wq); \
1437 spin_lock_init(&(sk)->sk_lock.slock); \
1438 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1439 sizeof((sk)->sk_lock)); \
1440 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1441 (skey), (sname)); \
1442 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1443 } while (0)
1444
1445 extern void lock_sock_nested(struct sock *sk, int subclass);
1446
1447 static inline void lock_sock(struct sock *sk)
1448 {
1449 lock_sock_nested(sk, 0);
1450 }
1451
1452 extern void release_sock(struct sock *sk);
1453
1454 /* BH context may only use the following locking interface. */
1455 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1456 #define bh_lock_sock_nested(__sk) \
1457 spin_lock_nested(&((__sk)->sk_lock.slock), \
1458 SINGLE_DEPTH_NESTING)
1459 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1460
1461 extern bool lock_sock_fast(struct sock *sk);
1462 /**
1463 * unlock_sock_fast - complement of lock_sock_fast
1464 * @sk: socket
1465 * @slow: slow mode
1466 *
1467 * fast unlock socket for user context.
1468 * If slow mode is on, we call regular release_sock()
1469 */
1470 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1471 {
1472 if (slow)
1473 release_sock(sk);
1474 else
1475 spin_unlock_bh(&sk->sk_lock.slock);
1476 }
1477
1478
1479 extern struct sock *sk_alloc(struct net *net, int family,
1480 gfp_t priority,
1481 struct proto *prot);
1482 extern void sk_free(struct sock *sk);
1483 extern void sk_release_kernel(struct sock *sk);
1484 extern struct sock *sk_clone_lock(const struct sock *sk,
1485 const gfp_t priority);
1486
1487 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1488 unsigned long size, int force,
1489 gfp_t priority);
1490 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1491 unsigned long size, int force,
1492 gfp_t priority);
1493 extern void sock_wfree(struct sk_buff *skb);
1494 extern void sock_rfree(struct sk_buff *skb);
1495 extern void sock_edemux(struct sk_buff *skb);
1496
1497 extern int sock_setsockopt(struct socket *sock, int level,
1498 int op, char __user *optval,
1499 unsigned int optlen);
1500
1501 extern int sock_getsockopt(struct socket *sock, int level,
1502 int op, char __user *optval,
1503 int __user *optlen);
1504 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1505 unsigned long size,
1506 int noblock,
1507 int *errcode);
1508 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1509 unsigned long header_len,
1510 unsigned long data_len,
1511 int noblock,
1512 int *errcode);
1513 extern void *sock_kmalloc(struct sock *sk, int size,
1514 gfp_t priority);
1515 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1516 extern void sk_send_sigurg(struct sock *sk);
1517
1518 /*
1519 * Functions to fill in entries in struct proto_ops when a protocol
1520 * does not implement a particular function.
1521 */
1522 extern int sock_no_bind(struct socket *,
1523 struct sockaddr *, int);
1524 extern int sock_no_connect(struct socket *,
1525 struct sockaddr *, int, int);
1526 extern int sock_no_socketpair(struct socket *,
1527 struct socket *);
1528 extern int sock_no_accept(struct socket *,
1529 struct socket *, int);
1530 extern int sock_no_getname(struct socket *,
1531 struct sockaddr *, int *, int);
1532 extern unsigned int sock_no_poll(struct file *, struct socket *,
1533 struct poll_table_struct *);
1534 extern int sock_no_ioctl(struct socket *, unsigned int,
1535 unsigned long);
1536 extern int sock_no_listen(struct socket *, int);
1537 extern int sock_no_shutdown(struct socket *, int);
1538 extern int sock_no_getsockopt(struct socket *, int , int,
1539 char __user *, int __user *);
1540 extern int sock_no_setsockopt(struct socket *, int, int,
1541 char __user *, unsigned int);
1542 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1543 struct msghdr *, size_t);
1544 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1545 struct msghdr *, size_t, int);
1546 extern int sock_no_mmap(struct file *file,
1547 struct socket *sock,
1548 struct vm_area_struct *vma);
1549 extern ssize_t sock_no_sendpage(struct socket *sock,
1550 struct page *page,
1551 int offset, size_t size,
1552 int flags);
1553
1554 /*
1555 * Functions to fill in entries in struct proto_ops when a protocol
1556 * uses the inet style.
1557 */
1558 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1559 char __user *optval, int __user *optlen);
1560 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1561 struct msghdr *msg, size_t size, int flags);
1562 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1563 char __user *optval, unsigned int optlen);
1564 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1565 int optname, char __user *optval, int __user *optlen);
1566 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1567 int optname, char __user *optval, unsigned int optlen);
1568
1569 extern void sk_common_release(struct sock *sk);
1570
1571 /*
1572 * Default socket callbacks and setup code
1573 */
1574
1575 /* Initialise core socket variables */
1576 extern void sock_init_data(struct socket *sock, struct sock *sk);
1577
1578 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1579
1580 /**
1581 * sk_filter_release - release a socket filter
1582 * @fp: filter to remove
1583 *
1584 * Remove a filter from a socket and release its resources.
1585 */
1586
1587 static inline void sk_filter_release(struct sk_filter *fp)
1588 {
1589 if (atomic_dec_and_test(&fp->refcnt))
1590 call_rcu(&fp->rcu, sk_filter_release_rcu);
1591 }
1592
1593 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1594 {
1595 unsigned int size = sk_filter_len(fp);
1596
1597 atomic_sub(size, &sk->sk_omem_alloc);
1598 sk_filter_release(fp);
1599 }
1600
1601 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1602 {
1603 atomic_inc(&fp->refcnt);
1604 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1605 }
1606
1607 /*
1608 * Socket reference counting postulates.
1609 *
1610 * * Each user of socket SHOULD hold a reference count.
1611 * * Each access point to socket (an hash table bucket, reference from a list,
1612 * running timer, skb in flight MUST hold a reference count.
1613 * * When reference count hits 0, it means it will never increase back.
1614 * * When reference count hits 0, it means that no references from
1615 * outside exist to this socket and current process on current CPU
1616 * is last user and may/should destroy this socket.
1617 * * sk_free is called from any context: process, BH, IRQ. When
1618 * it is called, socket has no references from outside -> sk_free
1619 * may release descendant resources allocated by the socket, but
1620 * to the time when it is called, socket is NOT referenced by any
1621 * hash tables, lists etc.
1622 * * Packets, delivered from outside (from network or from another process)
1623 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1624 * when they sit in queue. Otherwise, packets will leak to hole, when
1625 * socket is looked up by one cpu and unhasing is made by another CPU.
1626 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1627 * (leak to backlog). Packet socket does all the processing inside
1628 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1629 * use separate SMP lock, so that they are prone too.
1630 */
1631
1632 /* Ungrab socket and destroy it, if it was the last reference. */
1633 static inline void sock_put(struct sock *sk)
1634 {
1635 if (atomic_dec_and_test(&sk->sk_refcnt))
1636 sk_free(sk);
1637 }
1638
1639 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1640 const int nested);
1641
1642 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1643 {
1644 sk->sk_tx_queue_mapping = tx_queue;
1645 }
1646
1647 static inline void sk_tx_queue_clear(struct sock *sk)
1648 {
1649 sk->sk_tx_queue_mapping = -1;
1650 }
1651
1652 static inline int sk_tx_queue_get(const struct sock *sk)
1653 {
1654 return sk ? sk->sk_tx_queue_mapping : -1;
1655 }
1656
1657 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1658 {
1659 sk_tx_queue_clear(sk);
1660 sk->sk_socket = sock;
1661 }
1662
1663 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1664 {
1665 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1666 return &rcu_dereference_raw(sk->sk_wq)->wait;
1667 }
1668 /* Detach socket from process context.
1669 * Announce socket dead, detach it from wait queue and inode.
1670 * Note that parent inode held reference count on this struct sock,
1671 * we do not release it in this function, because protocol
1672 * probably wants some additional cleanups or even continuing
1673 * to work with this socket (TCP).
1674 */
1675 static inline void sock_orphan(struct sock *sk)
1676 {
1677 write_lock_bh(&sk->sk_callback_lock);
1678 sock_set_flag(sk, SOCK_DEAD);
1679 sk_set_socket(sk, NULL);
1680 sk->sk_wq = NULL;
1681 write_unlock_bh(&sk->sk_callback_lock);
1682 }
1683
1684 static inline void sock_graft(struct sock *sk, struct socket *parent)
1685 {
1686 write_lock_bh(&sk->sk_callback_lock);
1687 sk->sk_wq = parent->wq;
1688 parent->sk = sk;
1689 sk_set_socket(sk, parent);
1690 security_sock_graft(sk, parent);
1691 write_unlock_bh(&sk->sk_callback_lock);
1692 }
1693
1694 extern kuid_t sock_i_uid(struct sock *sk);
1695 extern unsigned long sock_i_ino(struct sock *sk);
1696
1697 static inline struct dst_entry *
1698 __sk_dst_get(struct sock *sk)
1699 {
1700 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1701 lockdep_is_held(&sk->sk_lock.slock));
1702 }
1703
1704 static inline struct dst_entry *
1705 sk_dst_get(struct sock *sk)
1706 {
1707 struct dst_entry *dst;
1708
1709 rcu_read_lock();
1710 dst = rcu_dereference(sk->sk_dst_cache);
1711 if (dst)
1712 dst_hold(dst);
1713 rcu_read_unlock();
1714 return dst;
1715 }
1716
1717 extern void sk_reset_txq(struct sock *sk);
1718
1719 static inline void dst_negative_advice(struct sock *sk)
1720 {
1721 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1722
1723 if (dst && dst->ops->negative_advice) {
1724 ndst = dst->ops->negative_advice(dst);
1725
1726 if (ndst != dst) {
1727 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1728 sk_reset_txq(sk);
1729 }
1730 }
1731 }
1732
1733 static inline void
1734 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1735 {
1736 struct dst_entry *old_dst;
1737
1738 sk_tx_queue_clear(sk);
1739 /*
1740 * This can be called while sk is owned by the caller only,
1741 * with no state that can be checked in a rcu_dereference_check() cond
1742 */
1743 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1744 rcu_assign_pointer(sk->sk_dst_cache, dst);
1745 dst_release(old_dst);
1746 }
1747
1748 static inline void
1749 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1750 {
1751 spin_lock(&sk->sk_dst_lock);
1752 __sk_dst_set(sk, dst);
1753 spin_unlock(&sk->sk_dst_lock);
1754 }
1755
1756 static inline void
1757 __sk_dst_reset(struct sock *sk)
1758 {
1759 __sk_dst_set(sk, NULL);
1760 }
1761
1762 static inline void
1763 sk_dst_reset(struct sock *sk)
1764 {
1765 spin_lock(&sk->sk_dst_lock);
1766 __sk_dst_reset(sk);
1767 spin_unlock(&sk->sk_dst_lock);
1768 }
1769
1770 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1771
1772 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1773
1774 static inline bool sk_can_gso(const struct sock *sk)
1775 {
1776 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1777 }
1778
1779 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1780
1781 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1782 {
1783 sk->sk_route_nocaps |= flags;
1784 sk->sk_route_caps &= ~flags;
1785 }
1786
1787 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1788 char __user *from, char *to,
1789 int copy, int offset)
1790 {
1791 if (skb->ip_summed == CHECKSUM_NONE) {
1792 int err = 0;
1793 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1794 if (err)
1795 return err;
1796 skb->csum = csum_block_add(skb->csum, csum, offset);
1797 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1798 if (!access_ok(VERIFY_READ, from, copy) ||
1799 __copy_from_user_nocache(to, from, copy))
1800 return -EFAULT;
1801 } else if (copy_from_user(to, from, copy))
1802 return -EFAULT;
1803
1804 return 0;
1805 }
1806
1807 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1808 char __user *from, int copy)
1809 {
1810 int err, offset = skb->len;
1811
1812 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1813 copy, offset);
1814 if (err)
1815 __skb_trim(skb, offset);
1816
1817 return err;
1818 }
1819
1820 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1821 struct sk_buff *skb,
1822 struct page *page,
1823 int off, int copy)
1824 {
1825 int err;
1826
1827 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1828 copy, skb->len);
1829 if (err)
1830 return err;
1831
1832 skb->len += copy;
1833 skb->data_len += copy;
1834 skb->truesize += copy;
1835 sk->sk_wmem_queued += copy;
1836 sk_mem_charge(sk, copy);
1837 return 0;
1838 }
1839
1840 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1841 struct sk_buff *skb, struct page *page,
1842 int off, int copy)
1843 {
1844 if (skb->ip_summed == CHECKSUM_NONE) {
1845 int err = 0;
1846 __wsum csum = csum_and_copy_from_user(from,
1847 page_address(page) + off,
1848 copy, 0, &err);
1849 if (err)
1850 return err;
1851 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1852 } else if (copy_from_user(page_address(page) + off, from, copy))
1853 return -EFAULT;
1854
1855 skb->len += copy;
1856 skb->data_len += copy;
1857 skb->truesize += copy;
1858 sk->sk_wmem_queued += copy;
1859 sk_mem_charge(sk, copy);
1860 return 0;
1861 }
1862
1863 /**
1864 * sk_wmem_alloc_get - returns write allocations
1865 * @sk: socket
1866 *
1867 * Returns sk_wmem_alloc minus initial offset of one
1868 */
1869 static inline int sk_wmem_alloc_get(const struct sock *sk)
1870 {
1871 return atomic_read(&sk->sk_wmem_alloc) - 1;
1872 }
1873
1874 /**
1875 * sk_rmem_alloc_get - returns read allocations
1876 * @sk: socket
1877 *
1878 * Returns sk_rmem_alloc
1879 */
1880 static inline int sk_rmem_alloc_get(const struct sock *sk)
1881 {
1882 return atomic_read(&sk->sk_rmem_alloc);
1883 }
1884
1885 /**
1886 * sk_has_allocations - check if allocations are outstanding
1887 * @sk: socket
1888 *
1889 * Returns true if socket has write or read allocations
1890 */
1891 static inline bool sk_has_allocations(const struct sock *sk)
1892 {
1893 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1894 }
1895
1896 /**
1897 * wq_has_sleeper - check if there are any waiting processes
1898 * @wq: struct socket_wq
1899 *
1900 * Returns true if socket_wq has waiting processes
1901 *
1902 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1903 * barrier call. They were added due to the race found within the tcp code.
1904 *
1905 * Consider following tcp code paths:
1906 *
1907 * CPU1 CPU2
1908 *
1909 * sys_select receive packet
1910 * ... ...
1911 * __add_wait_queue update tp->rcv_nxt
1912 * ... ...
1913 * tp->rcv_nxt check sock_def_readable
1914 * ... {
1915 * schedule rcu_read_lock();
1916 * wq = rcu_dereference(sk->sk_wq);
1917 * if (wq && waitqueue_active(&wq->wait))
1918 * wake_up_interruptible(&wq->wait)
1919 * ...
1920 * }
1921 *
1922 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1923 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1924 * could then endup calling schedule and sleep forever if there are no more
1925 * data on the socket.
1926 *
1927 */
1928 static inline bool wq_has_sleeper(struct socket_wq *wq)
1929 {
1930 /* We need to be sure we are in sync with the
1931 * add_wait_queue modifications to the wait queue.
1932 *
1933 * This memory barrier is paired in the sock_poll_wait.
1934 */
1935 smp_mb();
1936 return wq && waitqueue_active(&wq->wait);
1937 }
1938
1939 /**
1940 * sock_poll_wait - place memory barrier behind the poll_wait call.
1941 * @filp: file
1942 * @wait_address: socket wait queue
1943 * @p: poll_table
1944 *
1945 * See the comments in the wq_has_sleeper function.
1946 */
1947 static inline void sock_poll_wait(struct file *filp,
1948 wait_queue_head_t *wait_address, poll_table *p)
1949 {
1950 if (!poll_does_not_wait(p) && wait_address) {
1951 poll_wait(filp, wait_address, p);
1952 /* We need to be sure we are in sync with the
1953 * socket flags modification.
1954 *
1955 * This memory barrier is paired in the wq_has_sleeper.
1956 */
1957 smp_mb();
1958 }
1959 }
1960
1961 /*
1962 * Queue a received datagram if it will fit. Stream and sequenced
1963 * protocols can't normally use this as they need to fit buffers in
1964 * and play with them.
1965 *
1966 * Inlined as it's very short and called for pretty much every
1967 * packet ever received.
1968 */
1969
1970 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1971 {
1972 skb_orphan(skb);
1973 skb->sk = sk;
1974 skb->destructor = sock_wfree;
1975 /*
1976 * We used to take a refcount on sk, but following operation
1977 * is enough to guarantee sk_free() wont free this sock until
1978 * all in-flight packets are completed
1979 */
1980 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1981 }
1982
1983 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1984 {
1985 skb_orphan(skb);
1986 skb->sk = sk;
1987 skb->destructor = sock_rfree;
1988 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1989 sk_mem_charge(sk, skb->truesize);
1990 }
1991
1992 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1993 unsigned long expires);
1994
1995 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1996
1997 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1998
1999 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2000
2001 /*
2002 * Recover an error report and clear atomically
2003 */
2004
2005 static inline int sock_error(struct sock *sk)
2006 {
2007 int err;
2008 if (likely(!sk->sk_err))
2009 return 0;
2010 err = xchg(&sk->sk_err, 0);
2011 return -err;
2012 }
2013
2014 static inline unsigned long sock_wspace(struct sock *sk)
2015 {
2016 int amt = 0;
2017
2018 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2019 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2020 if (amt < 0)
2021 amt = 0;
2022 }
2023 return amt;
2024 }
2025
2026 static inline void sk_wake_async(struct sock *sk, int how, int band)
2027 {
2028 if (sock_flag(sk, SOCK_FASYNC))
2029 sock_wake_async(sk->sk_socket, how, band);
2030 }
2031
2032 #define SOCK_MIN_SNDBUF 2048
2033 /*
2034 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2035 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2036 */
2037 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2038
2039 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2040 {
2041 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2042 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2043 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2044 }
2045 }
2046
2047 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2048
2049 /**
2050 * sk_page_frag - return an appropriate page_frag
2051 * @sk: socket
2052 *
2053 * If socket allocation mode allows current thread to sleep, it means its
2054 * safe to use the per task page_frag instead of the per socket one.
2055 */
2056 static inline struct page_frag *sk_page_frag(struct sock *sk)
2057 {
2058 if (sk->sk_allocation & __GFP_WAIT)
2059 return &current->task_frag;
2060
2061 return &sk->sk_frag;
2062 }
2063
2064 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2065
2066 /*
2067 * Default write policy as shown to user space via poll/select/SIGIO
2068 */
2069 static inline bool sock_writeable(const struct sock *sk)
2070 {
2071 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2072 }
2073
2074 static inline gfp_t gfp_any(void)
2075 {
2076 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2077 }
2078
2079 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2080 {
2081 return noblock ? 0 : sk->sk_rcvtimeo;
2082 }
2083
2084 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2085 {
2086 return noblock ? 0 : sk->sk_sndtimeo;
2087 }
2088
2089 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2090 {
2091 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2092 }
2093
2094 /* Alas, with timeout socket operations are not restartable.
2095 * Compare this to poll().
2096 */
2097 static inline int sock_intr_errno(long timeo)
2098 {
2099 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2100 }
2101
2102 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2103 struct sk_buff *skb);
2104 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2105 struct sk_buff *skb);
2106
2107 static inline void
2108 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2109 {
2110 ktime_t kt = skb->tstamp;
2111 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2112
2113 /*
2114 * generate control messages if
2115 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2116 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2117 * - software time stamp available and wanted
2118 * (SOCK_TIMESTAMPING_SOFTWARE)
2119 * - hardware time stamps available and wanted
2120 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2121 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2122 */
2123 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2124 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2125 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2126 (hwtstamps->hwtstamp.tv64 &&
2127 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2128 (hwtstamps->syststamp.tv64 &&
2129 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2130 __sock_recv_timestamp(msg, sk, skb);
2131 else
2132 sk->sk_stamp = kt;
2133
2134 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2135 __sock_recv_wifi_status(msg, sk, skb);
2136 }
2137
2138 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2139 struct sk_buff *skb);
2140
2141 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2142 struct sk_buff *skb)
2143 {
2144 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2145 (1UL << SOCK_RCVTSTAMP) | \
2146 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2147 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2148 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2149 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2150
2151 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2152 __sock_recv_ts_and_drops(msg, sk, skb);
2153 else
2154 sk->sk_stamp = skb->tstamp;
2155 }
2156
2157 /**
2158 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2159 * @sk: socket sending this packet
2160 * @tx_flags: filled with instructions for time stamping
2161 *
2162 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2163 * parameters are invalid.
2164 */
2165 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2166
2167 /**
2168 * sk_eat_skb - Release a skb if it is no longer needed
2169 * @sk: socket to eat this skb from
2170 * @skb: socket buffer to eat
2171 * @copied_early: flag indicating whether DMA operations copied this data early
2172 *
2173 * This routine must be called with interrupts disabled or with the socket
2174 * locked so that the sk_buff queue operation is ok.
2175 */
2176 #ifdef CONFIG_NET_DMA
2177 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2178 {
2179 __skb_unlink(skb, &sk->sk_receive_queue);
2180 if (!copied_early)
2181 __kfree_skb(skb);
2182 else
2183 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2184 }
2185 #else
2186 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2187 {
2188 __skb_unlink(skb, &sk->sk_receive_queue);
2189 __kfree_skb(skb);
2190 }
2191 #endif
2192
2193 static inline
2194 struct net *sock_net(const struct sock *sk)
2195 {
2196 return read_pnet(&sk->sk_net);
2197 }
2198
2199 static inline
2200 void sock_net_set(struct sock *sk, struct net *net)
2201 {
2202 write_pnet(&sk->sk_net, net);
2203 }
2204
2205 /*
2206 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2207 * They should not hold a reference to a namespace in order to allow
2208 * to stop it.
2209 * Sockets after sk_change_net should be released using sk_release_kernel
2210 */
2211 static inline void sk_change_net(struct sock *sk, struct net *net)
2212 {
2213 put_net(sock_net(sk));
2214 sock_net_set(sk, hold_net(net));
2215 }
2216
2217 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2218 {
2219 if (skb->sk) {
2220 struct sock *sk = skb->sk;
2221
2222 skb->destructor = NULL;
2223 skb->sk = NULL;
2224 return sk;
2225 }
2226 return NULL;
2227 }
2228
2229 extern void sock_enable_timestamp(struct sock *sk, int flag);
2230 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2231 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2232
2233 /*
2234 * Enable debug/info messages
2235 */
2236 extern int net_msg_warn;
2237 #define NETDEBUG(fmt, args...) \
2238 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2239
2240 #define LIMIT_NETDEBUG(fmt, args...) \
2241 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2242
2243 extern __u32 sysctl_wmem_max;
2244 extern __u32 sysctl_rmem_max;
2245
2246 extern int sysctl_optmem_max;
2247
2248 extern __u32 sysctl_wmem_default;
2249 extern __u32 sysctl_rmem_default;
2250
2251 #endif /* _SOCK_H */
This page took 0.130859 seconds and 5 git commands to generate.