udp: remove headers from UDP packets before queueing
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73
74 /*
75 * This structure really needs to be cleaned up.
76 * Most of it is for TCP, and not used by any of
77 * the other protocols.
78 */
79
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92
93 /* This is the per-socket lock. The spinlock provides a synchronization
94 * between user contexts and software interrupt processing, whereas the
95 * mini-semaphore synchronizes multiple users amongst themselves.
96 */
97 typedef struct {
98 spinlock_t slock;
99 int owned;
100 wait_queue_head_t wq;
101 /*
102 * We express the mutex-alike socket_lock semantics
103 * to the lock validator by explicitly managing
104 * the slock as a lock variant (in addition to
105 * the slock itself):
106 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111
112 struct sock;
113 struct proto;
114 struct net;
115
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118
119 /**
120 * struct sock_common - minimal network layer representation of sockets
121 * @skc_daddr: Foreign IPv4 addr
122 * @skc_rcv_saddr: Bound local IPv4 addr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_bound_dev_if: bound device index if != 0
132 * @skc_bind_node: bind hash linkage for various protocol lookup tables
133 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134 * @skc_prot: protocol handlers inside a network family
135 * @skc_net: reference to the network namespace of this socket
136 * @skc_node: main hash linkage for various protocol lookup tables
137 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138 * @skc_tx_queue_mapping: tx queue number for this connection
139 * @skc_flags: place holder for sk_flags
140 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142 * @skc_incoming_cpu: record/match cpu processing incoming packets
143 * @skc_refcnt: reference count
144 *
145 * This is the minimal network layer representation of sockets, the header
146 * for struct sock and struct inet_timewait_sock.
147 */
148 struct sock_common {
149 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 * address on 64bit arches : cf INET_MATCH()
151 */
152 union {
153 __addrpair skc_addrpair;
154 struct {
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
157 };
158 };
159 union {
160 unsigned int skc_hash;
161 __u16 skc_u16hashes[2];
162 };
163 /* skc_dport && skc_num must be grouped as well */
164 union {
165 __portpair skc_portpair;
166 struct {
167 __be16 skc_dport;
168 __u16 skc_num;
169 };
170 };
171
172 unsigned short skc_family;
173 volatile unsigned char skc_state;
174 unsigned char skc_reuse:4;
175 unsigned char skc_reuseport:1;
176 unsigned char skc_ipv6only:1;
177 unsigned char skc_net_refcnt:1;
178 int skc_bound_dev_if;
179 union {
180 struct hlist_node skc_bind_node;
181 struct hlist_node skc_portaddr_node;
182 };
183 struct proto *skc_prot;
184 possible_net_t skc_net;
185
186 #if IS_ENABLED(CONFIG_IPV6)
187 struct in6_addr skc_v6_daddr;
188 struct in6_addr skc_v6_rcv_saddr;
189 #endif
190
191 atomic64_t skc_cookie;
192
193 /* following fields are padding to force
194 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 * assuming IPV6 is enabled. We use this padding differently
196 * for different kind of 'sockets'
197 */
198 union {
199 unsigned long skc_flags;
200 struct sock *skc_listener; /* request_sock */
201 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 };
203 /*
204 * fields between dontcopy_begin/dontcopy_end
205 * are not copied in sock_copy()
206 */
207 /* private: */
208 int skc_dontcopy_begin[0];
209 /* public: */
210 union {
211 struct hlist_node skc_node;
212 struct hlist_nulls_node skc_nulls_node;
213 };
214 int skc_tx_queue_mapping;
215 union {
216 int skc_incoming_cpu;
217 u32 skc_rcv_wnd;
218 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
219 };
220
221 atomic_t skc_refcnt;
222 /* private: */
223 int skc_dontcopy_end[0];
224 union {
225 u32 skc_rxhash;
226 u32 skc_window_clamp;
227 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 };
229 /* public: */
230 };
231
232 /**
233 * struct sock - network layer representation of sockets
234 * @__sk_common: shared layout with inet_timewait_sock
235 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237 * @sk_lock: synchronizer
238 * @sk_rcvbuf: size of receive buffer in bytes
239 * @sk_wq: sock wait queue and async head
240 * @sk_rx_dst: receive input route used by early demux
241 * @sk_dst_cache: destination cache
242 * @sk_policy: flow policy
243 * @sk_receive_queue: incoming packets
244 * @sk_wmem_alloc: transmit queue bytes committed
245 * @sk_write_queue: Packet sending queue
246 * @sk_omem_alloc: "o" is "option" or "other"
247 * @sk_wmem_queued: persistent queue size
248 * @sk_forward_alloc: space allocated forward
249 * @sk_napi_id: id of the last napi context to receive data for sk
250 * @sk_ll_usec: usecs to busypoll when there is no data
251 * @sk_allocation: allocation mode
252 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254 * @sk_sndbuf: size of send buffer in bytes
255 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
256 * @sk_no_check_rx: allow zero checksum in RX packets
257 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
258 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
259 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
260 * @sk_gso_max_size: Maximum GSO segment size to build
261 * @sk_gso_max_segs: Maximum number of GSO segments
262 * @sk_lingertime: %SO_LINGER l_linger setting
263 * @sk_backlog: always used with the per-socket spinlock held
264 * @sk_callback_lock: used with the callbacks in the end of this struct
265 * @sk_error_queue: rarely used
266 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
267 * IPV6_ADDRFORM for instance)
268 * @sk_err: last error
269 * @sk_err_soft: errors that don't cause failure but are the cause of a
270 * persistent failure not just 'timed out'
271 * @sk_drops: raw/udp drops counter
272 * @sk_ack_backlog: current listen backlog
273 * @sk_max_ack_backlog: listen backlog set in listen()
274 * @sk_priority: %SO_PRIORITY setting
275 * @sk_type: socket type (%SOCK_STREAM, etc)
276 * @sk_protocol: which protocol this socket belongs in this network family
277 * @sk_peer_pid: &struct pid for this socket's peer
278 * @sk_peer_cred: %SO_PEERCRED setting
279 * @sk_rcvlowat: %SO_RCVLOWAT setting
280 * @sk_rcvtimeo: %SO_RCVTIMEO setting
281 * @sk_sndtimeo: %SO_SNDTIMEO setting
282 * @sk_txhash: computed flow hash for use on transmit
283 * @sk_filter: socket filtering instructions
284 * @sk_timer: sock cleanup timer
285 * @sk_stamp: time stamp of last packet received
286 * @sk_tsflags: SO_TIMESTAMPING socket options
287 * @sk_tskey: counter to disambiguate concurrent tstamp requests
288 * @sk_socket: Identd and reporting IO signals
289 * @sk_user_data: RPC layer private data
290 * @sk_frag: cached page frag
291 * @sk_peek_off: current peek_offset value
292 * @sk_send_head: front of stuff to transmit
293 * @sk_security: used by security modules
294 * @sk_mark: generic packet mark
295 * @sk_cgrp_data: cgroup data for this cgroup
296 * @sk_memcg: this socket's memory cgroup association
297 * @sk_write_pending: a write to stream socket waits to start
298 * @sk_state_change: callback to indicate change in the state of the sock
299 * @sk_data_ready: callback to indicate there is data to be processed
300 * @sk_write_space: callback to indicate there is bf sending space available
301 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
302 * @sk_backlog_rcv: callback to process the backlog
303 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
304 * @sk_reuseport_cb: reuseport group container
305 */
306 struct sock {
307 /*
308 * Now struct inet_timewait_sock also uses sock_common, so please just
309 * don't add nothing before this first member (__sk_common) --acme
310 */
311 struct sock_common __sk_common;
312 #define sk_node __sk_common.skc_node
313 #define sk_nulls_node __sk_common.skc_nulls_node
314 #define sk_refcnt __sk_common.skc_refcnt
315 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
316
317 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
318 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
319 #define sk_hash __sk_common.skc_hash
320 #define sk_portpair __sk_common.skc_portpair
321 #define sk_num __sk_common.skc_num
322 #define sk_dport __sk_common.skc_dport
323 #define sk_addrpair __sk_common.skc_addrpair
324 #define sk_daddr __sk_common.skc_daddr
325 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
326 #define sk_family __sk_common.skc_family
327 #define sk_state __sk_common.skc_state
328 #define sk_reuse __sk_common.skc_reuse
329 #define sk_reuseport __sk_common.skc_reuseport
330 #define sk_ipv6only __sk_common.skc_ipv6only
331 #define sk_net_refcnt __sk_common.skc_net_refcnt
332 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
333 #define sk_bind_node __sk_common.skc_bind_node
334 #define sk_prot __sk_common.skc_prot
335 #define sk_net __sk_common.skc_net
336 #define sk_v6_daddr __sk_common.skc_v6_daddr
337 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
338 #define sk_cookie __sk_common.skc_cookie
339 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
340 #define sk_flags __sk_common.skc_flags
341 #define sk_rxhash __sk_common.skc_rxhash
342
343 socket_lock_t sk_lock;
344 struct sk_buff_head sk_receive_queue;
345 /*
346 * The backlog queue is special, it is always used with
347 * the per-socket spinlock held and requires low latency
348 * access. Therefore we special case it's implementation.
349 * Note : rmem_alloc is in this structure to fill a hole
350 * on 64bit arches, not because its logically part of
351 * backlog.
352 */
353 struct {
354 atomic_t rmem_alloc;
355 int len;
356 struct sk_buff *head;
357 struct sk_buff *tail;
358 } sk_backlog;
359 #define sk_rmem_alloc sk_backlog.rmem_alloc
360 int sk_forward_alloc;
361
362 __u32 sk_txhash;
363 #ifdef CONFIG_NET_RX_BUSY_POLL
364 unsigned int sk_napi_id;
365 unsigned int sk_ll_usec;
366 #endif
367 atomic_t sk_drops;
368 int sk_rcvbuf;
369
370 struct sk_filter __rcu *sk_filter;
371 union {
372 struct socket_wq __rcu *sk_wq;
373 struct socket_wq *sk_wq_raw;
374 };
375 #ifdef CONFIG_XFRM
376 struct xfrm_policy __rcu *sk_policy[2];
377 #endif
378 struct dst_entry *sk_rx_dst;
379 struct dst_entry __rcu *sk_dst_cache;
380 /* Note: 32bit hole on 64bit arches */
381 atomic_t sk_wmem_alloc;
382 atomic_t sk_omem_alloc;
383 int sk_sndbuf;
384 struct sk_buff_head sk_write_queue;
385 kmemcheck_bitfield_begin(flags);
386 unsigned int sk_shutdown : 2,
387 sk_no_check_tx : 1,
388 sk_no_check_rx : 1,
389 sk_userlocks : 4,
390 sk_protocol : 8,
391 sk_type : 16;
392 #define SK_PROTOCOL_MAX U8_MAX
393 kmemcheck_bitfield_end(flags);
394 int sk_wmem_queued;
395 gfp_t sk_allocation;
396 u32 sk_pacing_rate; /* bytes per second */
397 u32 sk_max_pacing_rate;
398 netdev_features_t sk_route_caps;
399 netdev_features_t sk_route_nocaps;
400 int sk_gso_type;
401 unsigned int sk_gso_max_size;
402 u16 sk_gso_max_segs;
403 int sk_rcvlowat;
404 unsigned long sk_lingertime;
405 struct sk_buff_head sk_error_queue;
406 struct proto *sk_prot_creator;
407 rwlock_t sk_callback_lock;
408 int sk_err,
409 sk_err_soft;
410 u32 sk_ack_backlog;
411 u32 sk_max_ack_backlog;
412 __u32 sk_priority;
413 __u32 sk_mark;
414 struct pid *sk_peer_pid;
415 const struct cred *sk_peer_cred;
416 long sk_rcvtimeo;
417 long sk_sndtimeo;
418 struct timer_list sk_timer;
419 ktime_t sk_stamp;
420 u16 sk_tsflags;
421 u32 sk_tskey;
422 struct socket *sk_socket;
423 void *sk_user_data;
424 struct page_frag sk_frag;
425 struct sk_buff *sk_send_head;
426 __s32 sk_peek_off;
427 int sk_write_pending;
428 #ifdef CONFIG_SECURITY
429 void *sk_security;
430 #endif
431 struct sock_cgroup_data sk_cgrp_data;
432 struct mem_cgroup *sk_memcg;
433 void (*sk_state_change)(struct sock *sk);
434 void (*sk_data_ready)(struct sock *sk);
435 void (*sk_write_space)(struct sock *sk);
436 void (*sk_error_report)(struct sock *sk);
437 int (*sk_backlog_rcv)(struct sock *sk,
438 struct sk_buff *skb);
439 void (*sk_destruct)(struct sock *sk);
440 struct sock_reuseport __rcu *sk_reuseport_cb;
441 struct rcu_head sk_rcu;
442 };
443
444 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
445
446 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
447 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
448
449 /*
450 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
451 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
452 * on a socket means that the socket will reuse everybody else's port
453 * without looking at the other's sk_reuse value.
454 */
455
456 #define SK_NO_REUSE 0
457 #define SK_CAN_REUSE 1
458 #define SK_FORCE_REUSE 2
459
460 static inline int sk_peek_offset(struct sock *sk, int flags)
461 {
462 if (unlikely(flags & MSG_PEEK)) {
463 s32 off = READ_ONCE(sk->sk_peek_off);
464 if (off >= 0)
465 return off;
466 }
467
468 return 0;
469 }
470
471 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
472 {
473 s32 off = READ_ONCE(sk->sk_peek_off);
474
475 if (unlikely(off >= 0)) {
476 off = max_t(s32, off - val, 0);
477 WRITE_ONCE(sk->sk_peek_off, off);
478 }
479 }
480
481 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
482 {
483 sk_peek_offset_bwd(sk, -val);
484 }
485
486 /*
487 * Hashed lists helper routines
488 */
489 static inline struct sock *sk_entry(const struct hlist_node *node)
490 {
491 return hlist_entry(node, struct sock, sk_node);
492 }
493
494 static inline struct sock *__sk_head(const struct hlist_head *head)
495 {
496 return hlist_entry(head->first, struct sock, sk_node);
497 }
498
499 static inline struct sock *sk_head(const struct hlist_head *head)
500 {
501 return hlist_empty(head) ? NULL : __sk_head(head);
502 }
503
504 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
505 {
506 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
507 }
508
509 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
510 {
511 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
512 }
513
514 static inline struct sock *sk_next(const struct sock *sk)
515 {
516 return sk->sk_node.next ?
517 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
518 }
519
520 static inline struct sock *sk_nulls_next(const struct sock *sk)
521 {
522 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
523 hlist_nulls_entry(sk->sk_nulls_node.next,
524 struct sock, sk_nulls_node) :
525 NULL;
526 }
527
528 static inline bool sk_unhashed(const struct sock *sk)
529 {
530 return hlist_unhashed(&sk->sk_node);
531 }
532
533 static inline bool sk_hashed(const struct sock *sk)
534 {
535 return !sk_unhashed(sk);
536 }
537
538 static inline void sk_node_init(struct hlist_node *node)
539 {
540 node->pprev = NULL;
541 }
542
543 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
544 {
545 node->pprev = NULL;
546 }
547
548 static inline void __sk_del_node(struct sock *sk)
549 {
550 __hlist_del(&sk->sk_node);
551 }
552
553 /* NB: equivalent to hlist_del_init_rcu */
554 static inline bool __sk_del_node_init(struct sock *sk)
555 {
556 if (sk_hashed(sk)) {
557 __sk_del_node(sk);
558 sk_node_init(&sk->sk_node);
559 return true;
560 }
561 return false;
562 }
563
564 /* Grab socket reference count. This operation is valid only
565 when sk is ALREADY grabbed f.e. it is found in hash table
566 or a list and the lookup is made under lock preventing hash table
567 modifications.
568 */
569
570 static inline void sock_hold(struct sock *sk)
571 {
572 atomic_inc(&sk->sk_refcnt);
573 }
574
575 /* Ungrab socket in the context, which assumes that socket refcnt
576 cannot hit zero, f.e. it is true in context of any socketcall.
577 */
578 static inline void __sock_put(struct sock *sk)
579 {
580 atomic_dec(&sk->sk_refcnt);
581 }
582
583 static inline bool sk_del_node_init(struct sock *sk)
584 {
585 bool rc = __sk_del_node_init(sk);
586
587 if (rc) {
588 /* paranoid for a while -acme */
589 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
590 __sock_put(sk);
591 }
592 return rc;
593 }
594 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
595
596 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
597 {
598 if (sk_hashed(sk)) {
599 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
600 return true;
601 }
602 return false;
603 }
604
605 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
606 {
607 bool rc = __sk_nulls_del_node_init_rcu(sk);
608
609 if (rc) {
610 /* paranoid for a while -acme */
611 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
612 __sock_put(sk);
613 }
614 return rc;
615 }
616
617 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
618 {
619 hlist_add_head(&sk->sk_node, list);
620 }
621
622 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
623 {
624 sock_hold(sk);
625 __sk_add_node(sk, list);
626 }
627
628 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
629 {
630 sock_hold(sk);
631 hlist_add_head_rcu(&sk->sk_node, list);
632 }
633
634 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
635 {
636 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
637 }
638
639 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
640 {
641 sock_hold(sk);
642 __sk_nulls_add_node_rcu(sk, list);
643 }
644
645 static inline void __sk_del_bind_node(struct sock *sk)
646 {
647 __hlist_del(&sk->sk_bind_node);
648 }
649
650 static inline void sk_add_bind_node(struct sock *sk,
651 struct hlist_head *list)
652 {
653 hlist_add_head(&sk->sk_bind_node, list);
654 }
655
656 #define sk_for_each(__sk, list) \
657 hlist_for_each_entry(__sk, list, sk_node)
658 #define sk_for_each_rcu(__sk, list) \
659 hlist_for_each_entry_rcu(__sk, list, sk_node)
660 #define sk_nulls_for_each(__sk, node, list) \
661 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
662 #define sk_nulls_for_each_rcu(__sk, node, list) \
663 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
664 #define sk_for_each_from(__sk) \
665 hlist_for_each_entry_from(__sk, sk_node)
666 #define sk_nulls_for_each_from(__sk, node) \
667 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
668 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
669 #define sk_for_each_safe(__sk, tmp, list) \
670 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
671 #define sk_for_each_bound(__sk, list) \
672 hlist_for_each_entry(__sk, list, sk_bind_node)
673
674 /**
675 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
676 * @tpos: the type * to use as a loop cursor.
677 * @pos: the &struct hlist_node to use as a loop cursor.
678 * @head: the head for your list.
679 * @offset: offset of hlist_node within the struct.
680 *
681 */
682 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
683 for (pos = rcu_dereference((head)->first); \
684 pos != NULL && \
685 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
686 pos = rcu_dereference(pos->next))
687
688 static inline struct user_namespace *sk_user_ns(struct sock *sk)
689 {
690 /* Careful only use this in a context where these parameters
691 * can not change and must all be valid, such as recvmsg from
692 * userspace.
693 */
694 return sk->sk_socket->file->f_cred->user_ns;
695 }
696
697 /* Sock flags */
698 enum sock_flags {
699 SOCK_DEAD,
700 SOCK_DONE,
701 SOCK_URGINLINE,
702 SOCK_KEEPOPEN,
703 SOCK_LINGER,
704 SOCK_DESTROY,
705 SOCK_BROADCAST,
706 SOCK_TIMESTAMP,
707 SOCK_ZAPPED,
708 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
709 SOCK_DBG, /* %SO_DEBUG setting */
710 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
711 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
712 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
713 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
714 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
715 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
716 SOCK_FASYNC, /* fasync() active */
717 SOCK_RXQ_OVFL,
718 SOCK_ZEROCOPY, /* buffers from userspace */
719 SOCK_WIFI_STATUS, /* push wifi status to userspace */
720 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
721 * Will use last 4 bytes of packet sent from
722 * user-space instead.
723 */
724 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
725 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
726 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
727 };
728
729 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
730
731 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
732 {
733 nsk->sk_flags = osk->sk_flags;
734 }
735
736 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
737 {
738 __set_bit(flag, &sk->sk_flags);
739 }
740
741 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
742 {
743 __clear_bit(flag, &sk->sk_flags);
744 }
745
746 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
747 {
748 return test_bit(flag, &sk->sk_flags);
749 }
750
751 #ifdef CONFIG_NET
752 extern struct static_key memalloc_socks;
753 static inline int sk_memalloc_socks(void)
754 {
755 return static_key_false(&memalloc_socks);
756 }
757 #else
758
759 static inline int sk_memalloc_socks(void)
760 {
761 return 0;
762 }
763
764 #endif
765
766 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
767 {
768 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
769 }
770
771 static inline void sk_acceptq_removed(struct sock *sk)
772 {
773 sk->sk_ack_backlog--;
774 }
775
776 static inline void sk_acceptq_added(struct sock *sk)
777 {
778 sk->sk_ack_backlog++;
779 }
780
781 static inline bool sk_acceptq_is_full(const struct sock *sk)
782 {
783 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
784 }
785
786 /*
787 * Compute minimal free write space needed to queue new packets.
788 */
789 static inline int sk_stream_min_wspace(const struct sock *sk)
790 {
791 return sk->sk_wmem_queued >> 1;
792 }
793
794 static inline int sk_stream_wspace(const struct sock *sk)
795 {
796 return sk->sk_sndbuf - sk->sk_wmem_queued;
797 }
798
799 void sk_stream_write_space(struct sock *sk);
800
801 /* OOB backlog add */
802 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
803 {
804 /* dont let skb dst not refcounted, we are going to leave rcu lock */
805 skb_dst_force_safe(skb);
806
807 if (!sk->sk_backlog.tail)
808 sk->sk_backlog.head = skb;
809 else
810 sk->sk_backlog.tail->next = skb;
811
812 sk->sk_backlog.tail = skb;
813 skb->next = NULL;
814 }
815
816 /*
817 * Take into account size of receive queue and backlog queue
818 * Do not take into account this skb truesize,
819 * to allow even a single big packet to come.
820 */
821 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
822 {
823 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
824
825 return qsize > limit;
826 }
827
828 /* The per-socket spinlock must be held here. */
829 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
830 unsigned int limit)
831 {
832 if (sk_rcvqueues_full(sk, limit))
833 return -ENOBUFS;
834
835 /*
836 * If the skb was allocated from pfmemalloc reserves, only
837 * allow SOCK_MEMALLOC sockets to use it as this socket is
838 * helping free memory
839 */
840 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
841 return -ENOMEM;
842
843 __sk_add_backlog(sk, skb);
844 sk->sk_backlog.len += skb->truesize;
845 return 0;
846 }
847
848 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
849
850 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
851 {
852 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
853 return __sk_backlog_rcv(sk, skb);
854
855 return sk->sk_backlog_rcv(sk, skb);
856 }
857
858 static inline void sk_incoming_cpu_update(struct sock *sk)
859 {
860 sk->sk_incoming_cpu = raw_smp_processor_id();
861 }
862
863 static inline void sock_rps_record_flow_hash(__u32 hash)
864 {
865 #ifdef CONFIG_RPS
866 struct rps_sock_flow_table *sock_flow_table;
867
868 rcu_read_lock();
869 sock_flow_table = rcu_dereference(rps_sock_flow_table);
870 rps_record_sock_flow(sock_flow_table, hash);
871 rcu_read_unlock();
872 #endif
873 }
874
875 static inline void sock_rps_record_flow(const struct sock *sk)
876 {
877 #ifdef CONFIG_RPS
878 sock_rps_record_flow_hash(sk->sk_rxhash);
879 #endif
880 }
881
882 static inline void sock_rps_save_rxhash(struct sock *sk,
883 const struct sk_buff *skb)
884 {
885 #ifdef CONFIG_RPS
886 if (unlikely(sk->sk_rxhash != skb->hash))
887 sk->sk_rxhash = skb->hash;
888 #endif
889 }
890
891 static inline void sock_rps_reset_rxhash(struct sock *sk)
892 {
893 #ifdef CONFIG_RPS
894 sk->sk_rxhash = 0;
895 #endif
896 }
897
898 #define sk_wait_event(__sk, __timeo, __condition) \
899 ({ int __rc; \
900 release_sock(__sk); \
901 __rc = __condition; \
902 if (!__rc) { \
903 *(__timeo) = schedule_timeout(*(__timeo)); \
904 } \
905 sched_annotate_sleep(); \
906 lock_sock(__sk); \
907 __rc = __condition; \
908 __rc; \
909 })
910
911 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
912 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
913 void sk_stream_wait_close(struct sock *sk, long timeo_p);
914 int sk_stream_error(struct sock *sk, int flags, int err);
915 void sk_stream_kill_queues(struct sock *sk);
916 void sk_set_memalloc(struct sock *sk);
917 void sk_clear_memalloc(struct sock *sk);
918
919 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
920
921 struct request_sock_ops;
922 struct timewait_sock_ops;
923 struct inet_hashinfo;
924 struct raw_hashinfo;
925 struct module;
926
927 /*
928 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
929 * un-modified. Special care is taken when initializing object to zero.
930 */
931 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
932 {
933 if (offsetof(struct sock, sk_node.next) != 0)
934 memset(sk, 0, offsetof(struct sock, sk_node.next));
935 memset(&sk->sk_node.pprev, 0,
936 size - offsetof(struct sock, sk_node.pprev));
937 }
938
939 /* Networking protocol blocks we attach to sockets.
940 * socket layer -> transport layer interface
941 */
942 struct proto {
943 void (*close)(struct sock *sk,
944 long timeout);
945 int (*connect)(struct sock *sk,
946 struct sockaddr *uaddr,
947 int addr_len);
948 int (*disconnect)(struct sock *sk, int flags);
949
950 struct sock * (*accept)(struct sock *sk, int flags, int *err);
951
952 int (*ioctl)(struct sock *sk, int cmd,
953 unsigned long arg);
954 int (*init)(struct sock *sk);
955 void (*destroy)(struct sock *sk);
956 void (*shutdown)(struct sock *sk, int how);
957 int (*setsockopt)(struct sock *sk, int level,
958 int optname, char __user *optval,
959 unsigned int optlen);
960 int (*getsockopt)(struct sock *sk, int level,
961 int optname, char __user *optval,
962 int __user *option);
963 #ifdef CONFIG_COMPAT
964 int (*compat_setsockopt)(struct sock *sk,
965 int level,
966 int optname, char __user *optval,
967 unsigned int optlen);
968 int (*compat_getsockopt)(struct sock *sk,
969 int level,
970 int optname, char __user *optval,
971 int __user *option);
972 int (*compat_ioctl)(struct sock *sk,
973 unsigned int cmd, unsigned long arg);
974 #endif
975 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
976 size_t len);
977 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
978 size_t len, int noblock, int flags,
979 int *addr_len);
980 int (*sendpage)(struct sock *sk, struct page *page,
981 int offset, size_t size, int flags);
982 int (*bind)(struct sock *sk,
983 struct sockaddr *uaddr, int addr_len);
984
985 int (*backlog_rcv) (struct sock *sk,
986 struct sk_buff *skb);
987
988 void (*release_cb)(struct sock *sk);
989
990 /* Keeping track of sk's, looking them up, and port selection methods. */
991 int (*hash)(struct sock *sk);
992 void (*unhash)(struct sock *sk);
993 void (*rehash)(struct sock *sk);
994 int (*get_port)(struct sock *sk, unsigned short snum);
995 void (*clear_sk)(struct sock *sk, int size);
996
997 /* Keeping track of sockets in use */
998 #ifdef CONFIG_PROC_FS
999 unsigned int inuse_idx;
1000 #endif
1001
1002 bool (*stream_memory_free)(const struct sock *sk);
1003 /* Memory pressure */
1004 void (*enter_memory_pressure)(struct sock *sk);
1005 atomic_long_t *memory_allocated; /* Current allocated memory. */
1006 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1007 /*
1008 * Pressure flag: try to collapse.
1009 * Technical note: it is used by multiple contexts non atomically.
1010 * All the __sk_mem_schedule() is of this nature: accounting
1011 * is strict, actions are advisory and have some latency.
1012 */
1013 int *memory_pressure;
1014 long *sysctl_mem;
1015 int *sysctl_wmem;
1016 int *sysctl_rmem;
1017 int max_header;
1018 bool no_autobind;
1019
1020 struct kmem_cache *slab;
1021 unsigned int obj_size;
1022 int slab_flags;
1023
1024 struct percpu_counter *orphan_count;
1025
1026 struct request_sock_ops *rsk_prot;
1027 struct timewait_sock_ops *twsk_prot;
1028
1029 union {
1030 struct inet_hashinfo *hashinfo;
1031 struct udp_table *udp_table;
1032 struct raw_hashinfo *raw_hash;
1033 } h;
1034
1035 struct module *owner;
1036
1037 char name[32];
1038
1039 struct list_head node;
1040 #ifdef SOCK_REFCNT_DEBUG
1041 atomic_t socks;
1042 #endif
1043 int (*diag_destroy)(struct sock *sk, int err);
1044 };
1045
1046 int proto_register(struct proto *prot, int alloc_slab);
1047 void proto_unregister(struct proto *prot);
1048
1049 #ifdef SOCK_REFCNT_DEBUG
1050 static inline void sk_refcnt_debug_inc(struct sock *sk)
1051 {
1052 atomic_inc(&sk->sk_prot->socks);
1053 }
1054
1055 static inline void sk_refcnt_debug_dec(struct sock *sk)
1056 {
1057 atomic_dec(&sk->sk_prot->socks);
1058 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1059 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1060 }
1061
1062 static inline void sk_refcnt_debug_release(const struct sock *sk)
1063 {
1064 if (atomic_read(&sk->sk_refcnt) != 1)
1065 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1066 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1067 }
1068 #else /* SOCK_REFCNT_DEBUG */
1069 #define sk_refcnt_debug_inc(sk) do { } while (0)
1070 #define sk_refcnt_debug_dec(sk) do { } while (0)
1071 #define sk_refcnt_debug_release(sk) do { } while (0)
1072 #endif /* SOCK_REFCNT_DEBUG */
1073
1074 static inline bool sk_stream_memory_free(const struct sock *sk)
1075 {
1076 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1077 return false;
1078
1079 return sk->sk_prot->stream_memory_free ?
1080 sk->sk_prot->stream_memory_free(sk) : true;
1081 }
1082
1083 static inline bool sk_stream_is_writeable(const struct sock *sk)
1084 {
1085 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1086 sk_stream_memory_free(sk);
1087 }
1088
1089
1090 static inline bool sk_has_memory_pressure(const struct sock *sk)
1091 {
1092 return sk->sk_prot->memory_pressure != NULL;
1093 }
1094
1095 static inline bool sk_under_memory_pressure(const struct sock *sk)
1096 {
1097 if (!sk->sk_prot->memory_pressure)
1098 return false;
1099
1100 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1101 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1102 return true;
1103
1104 return !!*sk->sk_prot->memory_pressure;
1105 }
1106
1107 static inline void sk_leave_memory_pressure(struct sock *sk)
1108 {
1109 int *memory_pressure = sk->sk_prot->memory_pressure;
1110
1111 if (!memory_pressure)
1112 return;
1113
1114 if (*memory_pressure)
1115 *memory_pressure = 0;
1116 }
1117
1118 static inline void sk_enter_memory_pressure(struct sock *sk)
1119 {
1120 if (!sk->sk_prot->enter_memory_pressure)
1121 return;
1122
1123 sk->sk_prot->enter_memory_pressure(sk);
1124 }
1125
1126 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1127 {
1128 return sk->sk_prot->sysctl_mem[index];
1129 }
1130
1131 static inline long
1132 sk_memory_allocated(const struct sock *sk)
1133 {
1134 return atomic_long_read(sk->sk_prot->memory_allocated);
1135 }
1136
1137 static inline long
1138 sk_memory_allocated_add(struct sock *sk, int amt)
1139 {
1140 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1141 }
1142
1143 static inline void
1144 sk_memory_allocated_sub(struct sock *sk, int amt)
1145 {
1146 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1147 }
1148
1149 static inline void sk_sockets_allocated_dec(struct sock *sk)
1150 {
1151 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1152 }
1153
1154 static inline void sk_sockets_allocated_inc(struct sock *sk)
1155 {
1156 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1157 }
1158
1159 static inline int
1160 sk_sockets_allocated_read_positive(struct sock *sk)
1161 {
1162 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1163 }
1164
1165 static inline int
1166 proto_sockets_allocated_sum_positive(struct proto *prot)
1167 {
1168 return percpu_counter_sum_positive(prot->sockets_allocated);
1169 }
1170
1171 static inline long
1172 proto_memory_allocated(struct proto *prot)
1173 {
1174 return atomic_long_read(prot->memory_allocated);
1175 }
1176
1177 static inline bool
1178 proto_memory_pressure(struct proto *prot)
1179 {
1180 if (!prot->memory_pressure)
1181 return false;
1182 return !!*prot->memory_pressure;
1183 }
1184
1185
1186 #ifdef CONFIG_PROC_FS
1187 /* Called with local bh disabled */
1188 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1189 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1190 #else
1191 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1192 int inc)
1193 {
1194 }
1195 #endif
1196
1197
1198 /* With per-bucket locks this operation is not-atomic, so that
1199 * this version is not worse.
1200 */
1201 static inline int __sk_prot_rehash(struct sock *sk)
1202 {
1203 sk->sk_prot->unhash(sk);
1204 return sk->sk_prot->hash(sk);
1205 }
1206
1207 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1208
1209 /* About 10 seconds */
1210 #define SOCK_DESTROY_TIME (10*HZ)
1211
1212 /* Sockets 0-1023 can't be bound to unless you are superuser */
1213 #define PROT_SOCK 1024
1214
1215 #define SHUTDOWN_MASK 3
1216 #define RCV_SHUTDOWN 1
1217 #define SEND_SHUTDOWN 2
1218
1219 #define SOCK_SNDBUF_LOCK 1
1220 #define SOCK_RCVBUF_LOCK 2
1221 #define SOCK_BINDADDR_LOCK 4
1222 #define SOCK_BINDPORT_LOCK 8
1223
1224 struct socket_alloc {
1225 struct socket socket;
1226 struct inode vfs_inode;
1227 };
1228
1229 static inline struct socket *SOCKET_I(struct inode *inode)
1230 {
1231 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1232 }
1233
1234 static inline struct inode *SOCK_INODE(struct socket *socket)
1235 {
1236 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1237 }
1238
1239 /*
1240 * Functions for memory accounting
1241 */
1242 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1243 void __sk_mem_reclaim(struct sock *sk, int amount);
1244
1245 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1246 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1247 #define SK_MEM_SEND 0
1248 #define SK_MEM_RECV 1
1249
1250 static inline int sk_mem_pages(int amt)
1251 {
1252 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1253 }
1254
1255 static inline bool sk_has_account(struct sock *sk)
1256 {
1257 /* return true if protocol supports memory accounting */
1258 return !!sk->sk_prot->memory_allocated;
1259 }
1260
1261 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1262 {
1263 if (!sk_has_account(sk))
1264 return true;
1265 return size <= sk->sk_forward_alloc ||
1266 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1267 }
1268
1269 static inline bool
1270 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1271 {
1272 if (!sk_has_account(sk))
1273 return true;
1274 return size<= sk->sk_forward_alloc ||
1275 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1276 skb_pfmemalloc(skb);
1277 }
1278
1279 static inline void sk_mem_reclaim(struct sock *sk)
1280 {
1281 if (!sk_has_account(sk))
1282 return;
1283 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1284 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1285 }
1286
1287 static inline void sk_mem_reclaim_partial(struct sock *sk)
1288 {
1289 if (!sk_has_account(sk))
1290 return;
1291 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1292 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1293 }
1294
1295 static inline void sk_mem_charge(struct sock *sk, int size)
1296 {
1297 if (!sk_has_account(sk))
1298 return;
1299 sk->sk_forward_alloc -= size;
1300 }
1301
1302 static inline void sk_mem_uncharge(struct sock *sk, int size)
1303 {
1304 if (!sk_has_account(sk))
1305 return;
1306 sk->sk_forward_alloc += size;
1307 }
1308
1309 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1310 {
1311 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1312 sk->sk_wmem_queued -= skb->truesize;
1313 sk_mem_uncharge(sk, skb->truesize);
1314 __kfree_skb(skb);
1315 }
1316
1317 /* Used by processes to "lock" a socket state, so that
1318 * interrupts and bottom half handlers won't change it
1319 * from under us. It essentially blocks any incoming
1320 * packets, so that we won't get any new data or any
1321 * packets that change the state of the socket.
1322 *
1323 * While locked, BH processing will add new packets to
1324 * the backlog queue. This queue is processed by the
1325 * owner of the socket lock right before it is released.
1326 *
1327 * Since ~2.3.5 it is also exclusive sleep lock serializing
1328 * accesses from user process context.
1329 */
1330 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1331
1332 static inline void sock_release_ownership(struct sock *sk)
1333 {
1334 sk->sk_lock.owned = 0;
1335 }
1336
1337 /*
1338 * Macro so as to not evaluate some arguments when
1339 * lockdep is not enabled.
1340 *
1341 * Mark both the sk_lock and the sk_lock.slock as a
1342 * per-address-family lock class.
1343 */
1344 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1345 do { \
1346 sk->sk_lock.owned = 0; \
1347 init_waitqueue_head(&sk->sk_lock.wq); \
1348 spin_lock_init(&(sk)->sk_lock.slock); \
1349 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1350 sizeof((sk)->sk_lock)); \
1351 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1352 (skey), (sname)); \
1353 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1354 } while (0)
1355
1356 void lock_sock_nested(struct sock *sk, int subclass);
1357
1358 static inline void lock_sock(struct sock *sk)
1359 {
1360 lock_sock_nested(sk, 0);
1361 }
1362
1363 void release_sock(struct sock *sk);
1364
1365 /* BH context may only use the following locking interface. */
1366 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1367 #define bh_lock_sock_nested(__sk) \
1368 spin_lock_nested(&((__sk)->sk_lock.slock), \
1369 SINGLE_DEPTH_NESTING)
1370 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1371
1372 bool lock_sock_fast(struct sock *sk);
1373 /**
1374 * unlock_sock_fast - complement of lock_sock_fast
1375 * @sk: socket
1376 * @slow: slow mode
1377 *
1378 * fast unlock socket for user context.
1379 * If slow mode is on, we call regular release_sock()
1380 */
1381 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1382 {
1383 if (slow)
1384 release_sock(sk);
1385 else
1386 spin_unlock_bh(&sk->sk_lock.slock);
1387 }
1388
1389
1390 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1391 struct proto *prot, int kern);
1392 void sk_free(struct sock *sk);
1393 void sk_destruct(struct sock *sk);
1394 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1395
1396 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1397 gfp_t priority);
1398 void sock_wfree(struct sk_buff *skb);
1399 void skb_orphan_partial(struct sk_buff *skb);
1400 void sock_rfree(struct sk_buff *skb);
1401 void sock_efree(struct sk_buff *skb);
1402 #ifdef CONFIG_INET
1403 void sock_edemux(struct sk_buff *skb);
1404 #else
1405 #define sock_edemux(skb) sock_efree(skb)
1406 #endif
1407
1408 int sock_setsockopt(struct socket *sock, int level, int op,
1409 char __user *optval, unsigned int optlen);
1410
1411 int sock_getsockopt(struct socket *sock, int level, int op,
1412 char __user *optval, int __user *optlen);
1413 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1414 int noblock, int *errcode);
1415 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1416 unsigned long data_len, int noblock,
1417 int *errcode, int max_page_order);
1418 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1419 void sock_kfree_s(struct sock *sk, void *mem, int size);
1420 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1421 void sk_send_sigurg(struct sock *sk);
1422
1423 struct sockcm_cookie {
1424 u32 mark;
1425 u16 tsflags;
1426 };
1427
1428 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1429 struct sockcm_cookie *sockc);
1430 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1431 struct sockcm_cookie *sockc);
1432
1433 /*
1434 * Functions to fill in entries in struct proto_ops when a protocol
1435 * does not implement a particular function.
1436 */
1437 int sock_no_bind(struct socket *, struct sockaddr *, int);
1438 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1439 int sock_no_socketpair(struct socket *, struct socket *);
1440 int sock_no_accept(struct socket *, struct socket *, int);
1441 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1442 unsigned int sock_no_poll(struct file *, struct socket *,
1443 struct poll_table_struct *);
1444 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1445 int sock_no_listen(struct socket *, int);
1446 int sock_no_shutdown(struct socket *, int);
1447 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1448 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1449 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1450 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1451 int sock_no_mmap(struct file *file, struct socket *sock,
1452 struct vm_area_struct *vma);
1453 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1454 size_t size, int flags);
1455
1456 /*
1457 * Functions to fill in entries in struct proto_ops when a protocol
1458 * uses the inet style.
1459 */
1460 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1461 char __user *optval, int __user *optlen);
1462 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1463 int flags);
1464 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1465 char __user *optval, unsigned int optlen);
1466 int compat_sock_common_getsockopt(struct socket *sock, int level,
1467 int optname, char __user *optval, int __user *optlen);
1468 int compat_sock_common_setsockopt(struct socket *sock, int level,
1469 int optname, char __user *optval, unsigned int optlen);
1470
1471 void sk_common_release(struct sock *sk);
1472
1473 /*
1474 * Default socket callbacks and setup code
1475 */
1476
1477 /* Initialise core socket variables */
1478 void sock_init_data(struct socket *sock, struct sock *sk);
1479
1480 /*
1481 * Socket reference counting postulates.
1482 *
1483 * * Each user of socket SHOULD hold a reference count.
1484 * * Each access point to socket (an hash table bucket, reference from a list,
1485 * running timer, skb in flight MUST hold a reference count.
1486 * * When reference count hits 0, it means it will never increase back.
1487 * * When reference count hits 0, it means that no references from
1488 * outside exist to this socket and current process on current CPU
1489 * is last user and may/should destroy this socket.
1490 * * sk_free is called from any context: process, BH, IRQ. When
1491 * it is called, socket has no references from outside -> sk_free
1492 * may release descendant resources allocated by the socket, but
1493 * to the time when it is called, socket is NOT referenced by any
1494 * hash tables, lists etc.
1495 * * Packets, delivered from outside (from network or from another process)
1496 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1497 * when they sit in queue. Otherwise, packets will leak to hole, when
1498 * socket is looked up by one cpu and unhasing is made by another CPU.
1499 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1500 * (leak to backlog). Packet socket does all the processing inside
1501 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1502 * use separate SMP lock, so that they are prone too.
1503 */
1504
1505 /* Ungrab socket and destroy it, if it was the last reference. */
1506 static inline void sock_put(struct sock *sk)
1507 {
1508 if (atomic_dec_and_test(&sk->sk_refcnt))
1509 sk_free(sk);
1510 }
1511 /* Generic version of sock_put(), dealing with all sockets
1512 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1513 */
1514 void sock_gen_put(struct sock *sk);
1515
1516 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1517
1518 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1519 {
1520 sk->sk_tx_queue_mapping = tx_queue;
1521 }
1522
1523 static inline void sk_tx_queue_clear(struct sock *sk)
1524 {
1525 sk->sk_tx_queue_mapping = -1;
1526 }
1527
1528 static inline int sk_tx_queue_get(const struct sock *sk)
1529 {
1530 return sk ? sk->sk_tx_queue_mapping : -1;
1531 }
1532
1533 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1534 {
1535 sk_tx_queue_clear(sk);
1536 sk->sk_socket = sock;
1537 }
1538
1539 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1540 {
1541 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1542 return &rcu_dereference_raw(sk->sk_wq)->wait;
1543 }
1544 /* Detach socket from process context.
1545 * Announce socket dead, detach it from wait queue and inode.
1546 * Note that parent inode held reference count on this struct sock,
1547 * we do not release it in this function, because protocol
1548 * probably wants some additional cleanups or even continuing
1549 * to work with this socket (TCP).
1550 */
1551 static inline void sock_orphan(struct sock *sk)
1552 {
1553 write_lock_bh(&sk->sk_callback_lock);
1554 sock_set_flag(sk, SOCK_DEAD);
1555 sk_set_socket(sk, NULL);
1556 sk->sk_wq = NULL;
1557 write_unlock_bh(&sk->sk_callback_lock);
1558 }
1559
1560 static inline void sock_graft(struct sock *sk, struct socket *parent)
1561 {
1562 write_lock_bh(&sk->sk_callback_lock);
1563 sk->sk_wq = parent->wq;
1564 parent->sk = sk;
1565 sk_set_socket(sk, parent);
1566 security_sock_graft(sk, parent);
1567 write_unlock_bh(&sk->sk_callback_lock);
1568 }
1569
1570 kuid_t sock_i_uid(struct sock *sk);
1571 unsigned long sock_i_ino(struct sock *sk);
1572
1573 static inline u32 net_tx_rndhash(void)
1574 {
1575 u32 v = prandom_u32();
1576
1577 return v ?: 1;
1578 }
1579
1580 static inline void sk_set_txhash(struct sock *sk)
1581 {
1582 sk->sk_txhash = net_tx_rndhash();
1583 }
1584
1585 static inline void sk_rethink_txhash(struct sock *sk)
1586 {
1587 if (sk->sk_txhash)
1588 sk_set_txhash(sk);
1589 }
1590
1591 static inline struct dst_entry *
1592 __sk_dst_get(struct sock *sk)
1593 {
1594 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1595 lockdep_is_held(&sk->sk_lock.slock));
1596 }
1597
1598 static inline struct dst_entry *
1599 sk_dst_get(struct sock *sk)
1600 {
1601 struct dst_entry *dst;
1602
1603 rcu_read_lock();
1604 dst = rcu_dereference(sk->sk_dst_cache);
1605 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1606 dst = NULL;
1607 rcu_read_unlock();
1608 return dst;
1609 }
1610
1611 static inline void dst_negative_advice(struct sock *sk)
1612 {
1613 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1614
1615 sk_rethink_txhash(sk);
1616
1617 if (dst && dst->ops->negative_advice) {
1618 ndst = dst->ops->negative_advice(dst);
1619
1620 if (ndst != dst) {
1621 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1622 sk_tx_queue_clear(sk);
1623 }
1624 }
1625 }
1626
1627 static inline void
1628 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1629 {
1630 struct dst_entry *old_dst;
1631
1632 sk_tx_queue_clear(sk);
1633 /*
1634 * This can be called while sk is owned by the caller only,
1635 * with no state that can be checked in a rcu_dereference_check() cond
1636 */
1637 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1638 rcu_assign_pointer(sk->sk_dst_cache, dst);
1639 dst_release(old_dst);
1640 }
1641
1642 static inline void
1643 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1644 {
1645 struct dst_entry *old_dst;
1646
1647 sk_tx_queue_clear(sk);
1648 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1649 dst_release(old_dst);
1650 }
1651
1652 static inline void
1653 __sk_dst_reset(struct sock *sk)
1654 {
1655 __sk_dst_set(sk, NULL);
1656 }
1657
1658 static inline void
1659 sk_dst_reset(struct sock *sk)
1660 {
1661 sk_dst_set(sk, NULL);
1662 }
1663
1664 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1665
1666 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1667
1668 bool sk_mc_loop(struct sock *sk);
1669
1670 static inline bool sk_can_gso(const struct sock *sk)
1671 {
1672 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1673 }
1674
1675 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1676
1677 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1678 {
1679 sk->sk_route_nocaps |= flags;
1680 sk->sk_route_caps &= ~flags;
1681 }
1682
1683 static inline bool sk_check_csum_caps(struct sock *sk)
1684 {
1685 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1686 (sk->sk_family == PF_INET &&
1687 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1688 (sk->sk_family == PF_INET6 &&
1689 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1690 }
1691
1692 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1693 struct iov_iter *from, char *to,
1694 int copy, int offset)
1695 {
1696 if (skb->ip_summed == CHECKSUM_NONE) {
1697 __wsum csum = 0;
1698 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1699 return -EFAULT;
1700 skb->csum = csum_block_add(skb->csum, csum, offset);
1701 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1702 if (copy_from_iter_nocache(to, copy, from) != copy)
1703 return -EFAULT;
1704 } else if (copy_from_iter(to, copy, from) != copy)
1705 return -EFAULT;
1706
1707 return 0;
1708 }
1709
1710 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1711 struct iov_iter *from, int copy)
1712 {
1713 int err, offset = skb->len;
1714
1715 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1716 copy, offset);
1717 if (err)
1718 __skb_trim(skb, offset);
1719
1720 return err;
1721 }
1722
1723 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1724 struct sk_buff *skb,
1725 struct page *page,
1726 int off, int copy)
1727 {
1728 int err;
1729
1730 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1731 copy, skb->len);
1732 if (err)
1733 return err;
1734
1735 skb->len += copy;
1736 skb->data_len += copy;
1737 skb->truesize += copy;
1738 sk->sk_wmem_queued += copy;
1739 sk_mem_charge(sk, copy);
1740 return 0;
1741 }
1742
1743 /**
1744 * sk_wmem_alloc_get - returns write allocations
1745 * @sk: socket
1746 *
1747 * Returns sk_wmem_alloc minus initial offset of one
1748 */
1749 static inline int sk_wmem_alloc_get(const struct sock *sk)
1750 {
1751 return atomic_read(&sk->sk_wmem_alloc) - 1;
1752 }
1753
1754 /**
1755 * sk_rmem_alloc_get - returns read allocations
1756 * @sk: socket
1757 *
1758 * Returns sk_rmem_alloc
1759 */
1760 static inline int sk_rmem_alloc_get(const struct sock *sk)
1761 {
1762 return atomic_read(&sk->sk_rmem_alloc);
1763 }
1764
1765 /**
1766 * sk_has_allocations - check if allocations are outstanding
1767 * @sk: socket
1768 *
1769 * Returns true if socket has write or read allocations
1770 */
1771 static inline bool sk_has_allocations(const struct sock *sk)
1772 {
1773 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1774 }
1775
1776 /**
1777 * skwq_has_sleeper - check if there are any waiting processes
1778 * @wq: struct socket_wq
1779 *
1780 * Returns true if socket_wq has waiting processes
1781 *
1782 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1783 * barrier call. They were added due to the race found within the tcp code.
1784 *
1785 * Consider following tcp code paths:
1786 *
1787 * CPU1 CPU2
1788 *
1789 * sys_select receive packet
1790 * ... ...
1791 * __add_wait_queue update tp->rcv_nxt
1792 * ... ...
1793 * tp->rcv_nxt check sock_def_readable
1794 * ... {
1795 * schedule rcu_read_lock();
1796 * wq = rcu_dereference(sk->sk_wq);
1797 * if (wq && waitqueue_active(&wq->wait))
1798 * wake_up_interruptible(&wq->wait)
1799 * ...
1800 * }
1801 *
1802 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1803 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1804 * could then endup calling schedule and sleep forever if there are no more
1805 * data on the socket.
1806 *
1807 */
1808 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1809 {
1810 return wq && wq_has_sleeper(&wq->wait);
1811 }
1812
1813 /**
1814 * sock_poll_wait - place memory barrier behind the poll_wait call.
1815 * @filp: file
1816 * @wait_address: socket wait queue
1817 * @p: poll_table
1818 *
1819 * See the comments in the wq_has_sleeper function.
1820 */
1821 static inline void sock_poll_wait(struct file *filp,
1822 wait_queue_head_t *wait_address, poll_table *p)
1823 {
1824 if (!poll_does_not_wait(p) && wait_address) {
1825 poll_wait(filp, wait_address, p);
1826 /* We need to be sure we are in sync with the
1827 * socket flags modification.
1828 *
1829 * This memory barrier is paired in the wq_has_sleeper.
1830 */
1831 smp_mb();
1832 }
1833 }
1834
1835 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1836 {
1837 if (sk->sk_txhash) {
1838 skb->l4_hash = 1;
1839 skb->hash = sk->sk_txhash;
1840 }
1841 }
1842
1843 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1844
1845 /*
1846 * Queue a received datagram if it will fit. Stream and sequenced
1847 * protocols can't normally use this as they need to fit buffers in
1848 * and play with them.
1849 *
1850 * Inlined as it's very short and called for pretty much every
1851 * packet ever received.
1852 */
1853 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1854 {
1855 skb_orphan(skb);
1856 skb->sk = sk;
1857 skb->destructor = sock_rfree;
1858 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1859 sk_mem_charge(sk, skb->truesize);
1860 }
1861
1862 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1863 unsigned long expires);
1864
1865 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1866
1867 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1868 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1869
1870 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1871 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1872
1873 /*
1874 * Recover an error report and clear atomically
1875 */
1876
1877 static inline int sock_error(struct sock *sk)
1878 {
1879 int err;
1880 if (likely(!sk->sk_err))
1881 return 0;
1882 err = xchg(&sk->sk_err, 0);
1883 return -err;
1884 }
1885
1886 static inline unsigned long sock_wspace(struct sock *sk)
1887 {
1888 int amt = 0;
1889
1890 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1891 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1892 if (amt < 0)
1893 amt = 0;
1894 }
1895 return amt;
1896 }
1897
1898 /* Note:
1899 * We use sk->sk_wq_raw, from contexts knowing this
1900 * pointer is not NULL and cannot disappear/change.
1901 */
1902 static inline void sk_set_bit(int nr, struct sock *sk)
1903 {
1904 set_bit(nr, &sk->sk_wq_raw->flags);
1905 }
1906
1907 static inline void sk_clear_bit(int nr, struct sock *sk)
1908 {
1909 clear_bit(nr, &sk->sk_wq_raw->flags);
1910 }
1911
1912 static inline void sk_wake_async(const struct sock *sk, int how, int band)
1913 {
1914 if (sock_flag(sk, SOCK_FASYNC)) {
1915 rcu_read_lock();
1916 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
1917 rcu_read_unlock();
1918 }
1919 }
1920
1921 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
1922 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
1923 * Note: for send buffers, TCP works better if we can build two skbs at
1924 * minimum.
1925 */
1926 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
1927
1928 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
1929 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
1930
1931 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1932 {
1933 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1934 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1935 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1936 }
1937 }
1938
1939 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
1940 bool force_schedule);
1941
1942 /**
1943 * sk_page_frag - return an appropriate page_frag
1944 * @sk: socket
1945 *
1946 * If socket allocation mode allows current thread to sleep, it means its
1947 * safe to use the per task page_frag instead of the per socket one.
1948 */
1949 static inline struct page_frag *sk_page_frag(struct sock *sk)
1950 {
1951 if (gfpflags_allow_blocking(sk->sk_allocation))
1952 return &current->task_frag;
1953
1954 return &sk->sk_frag;
1955 }
1956
1957 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
1958
1959 /*
1960 * Default write policy as shown to user space via poll/select/SIGIO
1961 */
1962 static inline bool sock_writeable(const struct sock *sk)
1963 {
1964 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1965 }
1966
1967 static inline gfp_t gfp_any(void)
1968 {
1969 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1970 }
1971
1972 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
1973 {
1974 return noblock ? 0 : sk->sk_rcvtimeo;
1975 }
1976
1977 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
1978 {
1979 return noblock ? 0 : sk->sk_sndtimeo;
1980 }
1981
1982 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1983 {
1984 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1985 }
1986
1987 /* Alas, with timeout socket operations are not restartable.
1988 * Compare this to poll().
1989 */
1990 static inline int sock_intr_errno(long timeo)
1991 {
1992 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1993 }
1994
1995 struct sock_skb_cb {
1996 u32 dropcount;
1997 };
1998
1999 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2000 * using skb->cb[] would keep using it directly and utilize its
2001 * alignement guarantee.
2002 */
2003 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2004 sizeof(struct sock_skb_cb)))
2005
2006 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2007 SOCK_SKB_CB_OFFSET))
2008
2009 #define sock_skb_cb_check_size(size) \
2010 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2011
2012 static inline void
2013 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2014 {
2015 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2016 }
2017
2018 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2019 {
2020 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2021
2022 atomic_add(segs, &sk->sk_drops);
2023 }
2024
2025 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2026 struct sk_buff *skb);
2027 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2028 struct sk_buff *skb);
2029
2030 static inline void
2031 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2032 {
2033 ktime_t kt = skb->tstamp;
2034 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2035
2036 /*
2037 * generate control messages if
2038 * - receive time stamping in software requested
2039 * - software time stamp available and wanted
2040 * - hardware time stamps available and wanted
2041 */
2042 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2043 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2044 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2045 (hwtstamps->hwtstamp.tv64 &&
2046 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2047 __sock_recv_timestamp(msg, sk, skb);
2048 else
2049 sk->sk_stamp = kt;
2050
2051 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2052 __sock_recv_wifi_status(msg, sk, skb);
2053 }
2054
2055 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2056 struct sk_buff *skb);
2057
2058 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2059 struct sk_buff *skb)
2060 {
2061 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2062 (1UL << SOCK_RCVTSTAMP))
2063 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2064 SOF_TIMESTAMPING_RAW_HARDWARE)
2065
2066 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2067 __sock_recv_ts_and_drops(msg, sk, skb);
2068 else
2069 sk->sk_stamp = skb->tstamp;
2070 }
2071
2072 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2073
2074 /**
2075 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2076 * @sk: socket sending this packet
2077 * @tsflags: timestamping flags to use
2078 * @tx_flags: completed with instructions for time stamping
2079 *
2080 * Note : callers should take care of initial *tx_flags value (usually 0)
2081 */
2082 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2083 __u8 *tx_flags)
2084 {
2085 if (unlikely(tsflags))
2086 __sock_tx_timestamp(tsflags, tx_flags);
2087 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2088 *tx_flags |= SKBTX_WIFI_STATUS;
2089 }
2090
2091 /**
2092 * sk_eat_skb - Release a skb if it is no longer needed
2093 * @sk: socket to eat this skb from
2094 * @skb: socket buffer to eat
2095 *
2096 * This routine must be called with interrupts disabled or with the socket
2097 * locked so that the sk_buff queue operation is ok.
2098 */
2099 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2100 {
2101 __skb_unlink(skb, &sk->sk_receive_queue);
2102 __kfree_skb(skb);
2103 }
2104
2105 static inline
2106 struct net *sock_net(const struct sock *sk)
2107 {
2108 return read_pnet(&sk->sk_net);
2109 }
2110
2111 static inline
2112 void sock_net_set(struct sock *sk, struct net *net)
2113 {
2114 write_pnet(&sk->sk_net, net);
2115 }
2116
2117 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2118 {
2119 if (skb->sk) {
2120 struct sock *sk = skb->sk;
2121
2122 skb->destructor = NULL;
2123 skb->sk = NULL;
2124 return sk;
2125 }
2126 return NULL;
2127 }
2128
2129 /* This helper checks if a socket is a full socket,
2130 * ie _not_ a timewait or request socket.
2131 */
2132 static inline bool sk_fullsock(const struct sock *sk)
2133 {
2134 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2135 }
2136
2137 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2138 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2139 */
2140 static inline bool sk_listener(const struct sock *sk)
2141 {
2142 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2143 }
2144
2145 /**
2146 * sk_state_load - read sk->sk_state for lockless contexts
2147 * @sk: socket pointer
2148 *
2149 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2150 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2151 */
2152 static inline int sk_state_load(const struct sock *sk)
2153 {
2154 return smp_load_acquire(&sk->sk_state);
2155 }
2156
2157 /**
2158 * sk_state_store - update sk->sk_state
2159 * @sk: socket pointer
2160 * @newstate: new state
2161 *
2162 * Paired with sk_state_load(). Should be used in contexts where
2163 * state change might impact lockless readers.
2164 */
2165 static inline void sk_state_store(struct sock *sk, int newstate)
2166 {
2167 smp_store_release(&sk->sk_state, newstate);
2168 }
2169
2170 void sock_enable_timestamp(struct sock *sk, int flag);
2171 int sock_get_timestamp(struct sock *, struct timeval __user *);
2172 int sock_get_timestampns(struct sock *, struct timespec __user *);
2173 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2174 int type);
2175
2176 bool sk_ns_capable(const struct sock *sk,
2177 struct user_namespace *user_ns, int cap);
2178 bool sk_capable(const struct sock *sk, int cap);
2179 bool sk_net_capable(const struct sock *sk, int cap);
2180
2181 extern __u32 sysctl_wmem_max;
2182 extern __u32 sysctl_rmem_max;
2183
2184 extern int sysctl_tstamp_allow_data;
2185 extern int sysctl_optmem_max;
2186
2187 extern __u32 sysctl_wmem_default;
2188 extern __u32 sysctl_rmem_default;
2189
2190 #endif /* _SOCK_H */
This page took 0.092557 seconds and 5 git commands to generate.