sctp: delay calls to sk_data_ready() as much as possible
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73
74 /*
75 * This structure really needs to be cleaned up.
76 * Most of it is for TCP, and not used by any of
77 * the other protocols.
78 */
79
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92
93 /* This is the per-socket lock. The spinlock provides a synchronization
94 * between user contexts and software interrupt processing, whereas the
95 * mini-semaphore synchronizes multiple users amongst themselves.
96 */
97 typedef struct {
98 spinlock_t slock;
99 int owned;
100 wait_queue_head_t wq;
101 /*
102 * We express the mutex-alike socket_lock semantics
103 * to the lock validator by explicitly managing
104 * the slock as a lock variant (in addition to
105 * the slock itself):
106 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111
112 struct sock;
113 struct proto;
114 struct net;
115
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118
119 /**
120 * struct sock_common - minimal network layer representation of sockets
121 * @skc_daddr: Foreign IPv4 addr
122 * @skc_rcv_saddr: Bound local IPv4 addr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_bound_dev_if: bound device index if != 0
132 * @skc_bind_node: bind hash linkage for various protocol lookup tables
133 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134 * @skc_prot: protocol handlers inside a network family
135 * @skc_net: reference to the network namespace of this socket
136 * @skc_node: main hash linkage for various protocol lookup tables
137 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138 * @skc_tx_queue_mapping: tx queue number for this connection
139 * @skc_flags: place holder for sk_flags
140 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142 * @skc_incoming_cpu: record/match cpu processing incoming packets
143 * @skc_refcnt: reference count
144 *
145 * This is the minimal network layer representation of sockets, the header
146 * for struct sock and struct inet_timewait_sock.
147 */
148 struct sock_common {
149 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 * address on 64bit arches : cf INET_MATCH()
151 */
152 union {
153 __addrpair skc_addrpair;
154 struct {
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
157 };
158 };
159 union {
160 unsigned int skc_hash;
161 __u16 skc_u16hashes[2];
162 };
163 /* skc_dport && skc_num must be grouped as well */
164 union {
165 __portpair skc_portpair;
166 struct {
167 __be16 skc_dport;
168 __u16 skc_num;
169 };
170 };
171
172 unsigned short skc_family;
173 volatile unsigned char skc_state;
174 unsigned char skc_reuse:4;
175 unsigned char skc_reuseport:1;
176 unsigned char skc_ipv6only:1;
177 unsigned char skc_net_refcnt:1;
178 int skc_bound_dev_if;
179 union {
180 struct hlist_node skc_bind_node;
181 struct hlist_node skc_portaddr_node;
182 };
183 struct proto *skc_prot;
184 possible_net_t skc_net;
185
186 #if IS_ENABLED(CONFIG_IPV6)
187 struct in6_addr skc_v6_daddr;
188 struct in6_addr skc_v6_rcv_saddr;
189 #endif
190
191 atomic64_t skc_cookie;
192
193 /* following fields are padding to force
194 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 * assuming IPV6 is enabled. We use this padding differently
196 * for different kind of 'sockets'
197 */
198 union {
199 unsigned long skc_flags;
200 struct sock *skc_listener; /* request_sock */
201 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 };
203 /*
204 * fields between dontcopy_begin/dontcopy_end
205 * are not copied in sock_copy()
206 */
207 /* private: */
208 int skc_dontcopy_begin[0];
209 /* public: */
210 union {
211 struct hlist_node skc_node;
212 struct hlist_nulls_node skc_nulls_node;
213 };
214 int skc_tx_queue_mapping;
215 union {
216 int skc_incoming_cpu;
217 u32 skc_rcv_wnd;
218 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
219 };
220
221 atomic_t skc_refcnt;
222 /* private: */
223 int skc_dontcopy_end[0];
224 union {
225 u32 skc_rxhash;
226 u32 skc_window_clamp;
227 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 };
229 /* public: */
230 };
231
232 /**
233 * struct sock - network layer representation of sockets
234 * @__sk_common: shared layout with inet_timewait_sock
235 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237 * @sk_lock: synchronizer
238 * @sk_rcvbuf: size of receive buffer in bytes
239 * @sk_wq: sock wait queue and async head
240 * @sk_rx_dst: receive input route used by early demux
241 * @sk_dst_cache: destination cache
242 * @sk_policy: flow policy
243 * @sk_receive_queue: incoming packets
244 * @sk_wmem_alloc: transmit queue bytes committed
245 * @sk_write_queue: Packet sending queue
246 * @sk_omem_alloc: "o" is "option" or "other"
247 * @sk_wmem_queued: persistent queue size
248 * @sk_forward_alloc: space allocated forward
249 * @sk_napi_id: id of the last napi context to receive data for sk
250 * @sk_ll_usec: usecs to busypoll when there is no data
251 * @sk_allocation: allocation mode
252 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254 * @sk_sndbuf: size of send buffer in bytes
255 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
256 * @sk_no_check_rx: allow zero checksum in RX packets
257 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
258 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
259 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
260 * @sk_gso_max_size: Maximum GSO segment size to build
261 * @sk_gso_max_segs: Maximum number of GSO segments
262 * @sk_lingertime: %SO_LINGER l_linger setting
263 * @sk_backlog: always used with the per-socket spinlock held
264 * @sk_callback_lock: used with the callbacks in the end of this struct
265 * @sk_error_queue: rarely used
266 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
267 * IPV6_ADDRFORM for instance)
268 * @sk_err: last error
269 * @sk_err_soft: errors that don't cause failure but are the cause of a
270 * persistent failure not just 'timed out'
271 * @sk_drops: raw/udp drops counter
272 * @sk_ack_backlog: current listen backlog
273 * @sk_max_ack_backlog: listen backlog set in listen()
274 * @sk_priority: %SO_PRIORITY setting
275 * @sk_type: socket type (%SOCK_STREAM, etc)
276 * @sk_protocol: which protocol this socket belongs in this network family
277 * @sk_peer_pid: &struct pid for this socket's peer
278 * @sk_peer_cred: %SO_PEERCRED setting
279 * @sk_rcvlowat: %SO_RCVLOWAT setting
280 * @sk_rcvtimeo: %SO_RCVTIMEO setting
281 * @sk_sndtimeo: %SO_SNDTIMEO setting
282 * @sk_txhash: computed flow hash for use on transmit
283 * @sk_filter: socket filtering instructions
284 * @sk_timer: sock cleanup timer
285 * @sk_stamp: time stamp of last packet received
286 * @sk_tsflags: SO_TIMESTAMPING socket options
287 * @sk_tskey: counter to disambiguate concurrent tstamp requests
288 * @sk_socket: Identd and reporting IO signals
289 * @sk_user_data: RPC layer private data
290 * @sk_frag: cached page frag
291 * @sk_peek_off: current peek_offset value
292 * @sk_send_head: front of stuff to transmit
293 * @sk_security: used by security modules
294 * @sk_mark: generic packet mark
295 * @sk_cgrp_data: cgroup data for this cgroup
296 * @sk_memcg: this socket's memory cgroup association
297 * @sk_write_pending: a write to stream socket waits to start
298 * @sk_state_change: callback to indicate change in the state of the sock
299 * @sk_data_ready: callback to indicate there is data to be processed
300 * @sk_write_space: callback to indicate there is bf sending space available
301 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
302 * @sk_backlog_rcv: callback to process the backlog
303 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
304 * @sk_reuseport_cb: reuseport group container
305 */
306 struct sock {
307 /*
308 * Now struct inet_timewait_sock also uses sock_common, so please just
309 * don't add nothing before this first member (__sk_common) --acme
310 */
311 struct sock_common __sk_common;
312 #define sk_node __sk_common.skc_node
313 #define sk_nulls_node __sk_common.skc_nulls_node
314 #define sk_refcnt __sk_common.skc_refcnt
315 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
316
317 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
318 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
319 #define sk_hash __sk_common.skc_hash
320 #define sk_portpair __sk_common.skc_portpair
321 #define sk_num __sk_common.skc_num
322 #define sk_dport __sk_common.skc_dport
323 #define sk_addrpair __sk_common.skc_addrpair
324 #define sk_daddr __sk_common.skc_daddr
325 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
326 #define sk_family __sk_common.skc_family
327 #define sk_state __sk_common.skc_state
328 #define sk_reuse __sk_common.skc_reuse
329 #define sk_reuseport __sk_common.skc_reuseport
330 #define sk_ipv6only __sk_common.skc_ipv6only
331 #define sk_net_refcnt __sk_common.skc_net_refcnt
332 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
333 #define sk_bind_node __sk_common.skc_bind_node
334 #define sk_prot __sk_common.skc_prot
335 #define sk_net __sk_common.skc_net
336 #define sk_v6_daddr __sk_common.skc_v6_daddr
337 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
338 #define sk_cookie __sk_common.skc_cookie
339 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
340 #define sk_flags __sk_common.skc_flags
341 #define sk_rxhash __sk_common.skc_rxhash
342
343 socket_lock_t sk_lock;
344 struct sk_buff_head sk_receive_queue;
345 /*
346 * The backlog queue is special, it is always used with
347 * the per-socket spinlock held and requires low latency
348 * access. Therefore we special case it's implementation.
349 * Note : rmem_alloc is in this structure to fill a hole
350 * on 64bit arches, not because its logically part of
351 * backlog.
352 */
353 struct {
354 atomic_t rmem_alloc;
355 int len;
356 struct sk_buff *head;
357 struct sk_buff *tail;
358 } sk_backlog;
359 #define sk_rmem_alloc sk_backlog.rmem_alloc
360 int sk_forward_alloc;
361
362 __u32 sk_txhash;
363 #ifdef CONFIG_NET_RX_BUSY_POLL
364 unsigned int sk_napi_id;
365 unsigned int sk_ll_usec;
366 #endif
367 atomic_t sk_drops;
368 int sk_rcvbuf;
369
370 struct sk_filter __rcu *sk_filter;
371 union {
372 struct socket_wq __rcu *sk_wq;
373 struct socket_wq *sk_wq_raw;
374 };
375 #ifdef CONFIG_XFRM
376 struct xfrm_policy __rcu *sk_policy[2];
377 #endif
378 struct dst_entry *sk_rx_dst;
379 struct dst_entry __rcu *sk_dst_cache;
380 /* Note: 32bit hole on 64bit arches */
381 atomic_t sk_wmem_alloc;
382 atomic_t sk_omem_alloc;
383 int sk_sndbuf;
384 struct sk_buff_head sk_write_queue;
385 kmemcheck_bitfield_begin(flags);
386 unsigned int sk_shutdown : 2,
387 sk_no_check_tx : 1,
388 sk_no_check_rx : 1,
389 sk_userlocks : 4,
390 sk_protocol : 8,
391 sk_type : 16;
392 #define SK_PROTOCOL_MAX U8_MAX
393 kmemcheck_bitfield_end(flags);
394 int sk_wmem_queued;
395 gfp_t sk_allocation;
396 u32 sk_pacing_rate; /* bytes per second */
397 u32 sk_max_pacing_rate;
398 netdev_features_t sk_route_caps;
399 netdev_features_t sk_route_nocaps;
400 int sk_gso_type;
401 unsigned int sk_gso_max_size;
402 u16 sk_gso_max_segs;
403 int sk_rcvlowat;
404 unsigned long sk_lingertime;
405 struct sk_buff_head sk_error_queue;
406 struct proto *sk_prot_creator;
407 rwlock_t sk_callback_lock;
408 int sk_err,
409 sk_err_soft;
410 u32 sk_ack_backlog;
411 u32 sk_max_ack_backlog;
412 __u32 sk_priority;
413 __u32 sk_mark;
414 struct pid *sk_peer_pid;
415 const struct cred *sk_peer_cred;
416 long sk_rcvtimeo;
417 long sk_sndtimeo;
418 struct timer_list sk_timer;
419 ktime_t sk_stamp;
420 u16 sk_tsflags;
421 u32 sk_tskey;
422 struct socket *sk_socket;
423 void *sk_user_data;
424 struct page_frag sk_frag;
425 struct sk_buff *sk_send_head;
426 __s32 sk_peek_off;
427 int sk_write_pending;
428 #ifdef CONFIG_SECURITY
429 void *sk_security;
430 #endif
431 struct sock_cgroup_data sk_cgrp_data;
432 struct mem_cgroup *sk_memcg;
433 void (*sk_state_change)(struct sock *sk);
434 void (*sk_data_ready)(struct sock *sk);
435 void (*sk_write_space)(struct sock *sk);
436 void (*sk_error_report)(struct sock *sk);
437 int (*sk_backlog_rcv)(struct sock *sk,
438 struct sk_buff *skb);
439 void (*sk_destruct)(struct sock *sk);
440 struct sock_reuseport __rcu *sk_reuseport_cb;
441 struct rcu_head sk_rcu;
442 };
443
444 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
445
446 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
447 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
448
449 /*
450 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
451 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
452 * on a socket means that the socket will reuse everybody else's port
453 * without looking at the other's sk_reuse value.
454 */
455
456 #define SK_NO_REUSE 0
457 #define SK_CAN_REUSE 1
458 #define SK_FORCE_REUSE 2
459
460 int sk_set_peek_off(struct sock *sk, int val);
461
462 static inline int sk_peek_offset(struct sock *sk, int flags)
463 {
464 if (unlikely(flags & MSG_PEEK)) {
465 s32 off = READ_ONCE(sk->sk_peek_off);
466 if (off >= 0)
467 return off;
468 }
469
470 return 0;
471 }
472
473 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
474 {
475 s32 off = READ_ONCE(sk->sk_peek_off);
476
477 if (unlikely(off >= 0)) {
478 off = max_t(s32, off - val, 0);
479 WRITE_ONCE(sk->sk_peek_off, off);
480 }
481 }
482
483 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
484 {
485 sk_peek_offset_bwd(sk, -val);
486 }
487
488 /*
489 * Hashed lists helper routines
490 */
491 static inline struct sock *sk_entry(const struct hlist_node *node)
492 {
493 return hlist_entry(node, struct sock, sk_node);
494 }
495
496 static inline struct sock *__sk_head(const struct hlist_head *head)
497 {
498 return hlist_entry(head->first, struct sock, sk_node);
499 }
500
501 static inline struct sock *sk_head(const struct hlist_head *head)
502 {
503 return hlist_empty(head) ? NULL : __sk_head(head);
504 }
505
506 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
507 {
508 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
509 }
510
511 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
512 {
513 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
514 }
515
516 static inline struct sock *sk_next(const struct sock *sk)
517 {
518 return sk->sk_node.next ?
519 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
520 }
521
522 static inline struct sock *sk_nulls_next(const struct sock *sk)
523 {
524 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
525 hlist_nulls_entry(sk->sk_nulls_node.next,
526 struct sock, sk_nulls_node) :
527 NULL;
528 }
529
530 static inline bool sk_unhashed(const struct sock *sk)
531 {
532 return hlist_unhashed(&sk->sk_node);
533 }
534
535 static inline bool sk_hashed(const struct sock *sk)
536 {
537 return !sk_unhashed(sk);
538 }
539
540 static inline void sk_node_init(struct hlist_node *node)
541 {
542 node->pprev = NULL;
543 }
544
545 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
546 {
547 node->pprev = NULL;
548 }
549
550 static inline void __sk_del_node(struct sock *sk)
551 {
552 __hlist_del(&sk->sk_node);
553 }
554
555 /* NB: equivalent to hlist_del_init_rcu */
556 static inline bool __sk_del_node_init(struct sock *sk)
557 {
558 if (sk_hashed(sk)) {
559 __sk_del_node(sk);
560 sk_node_init(&sk->sk_node);
561 return true;
562 }
563 return false;
564 }
565
566 /* Grab socket reference count. This operation is valid only
567 when sk is ALREADY grabbed f.e. it is found in hash table
568 or a list and the lookup is made under lock preventing hash table
569 modifications.
570 */
571
572 static __always_inline void sock_hold(struct sock *sk)
573 {
574 atomic_inc(&sk->sk_refcnt);
575 }
576
577 /* Ungrab socket in the context, which assumes that socket refcnt
578 cannot hit zero, f.e. it is true in context of any socketcall.
579 */
580 static __always_inline void __sock_put(struct sock *sk)
581 {
582 atomic_dec(&sk->sk_refcnt);
583 }
584
585 static inline bool sk_del_node_init(struct sock *sk)
586 {
587 bool rc = __sk_del_node_init(sk);
588
589 if (rc) {
590 /* paranoid for a while -acme */
591 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
592 __sock_put(sk);
593 }
594 return rc;
595 }
596 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
597
598 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
599 {
600 if (sk_hashed(sk)) {
601 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
602 return true;
603 }
604 return false;
605 }
606
607 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
608 {
609 bool rc = __sk_nulls_del_node_init_rcu(sk);
610
611 if (rc) {
612 /* paranoid for a while -acme */
613 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
614 __sock_put(sk);
615 }
616 return rc;
617 }
618
619 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
620 {
621 hlist_add_head(&sk->sk_node, list);
622 }
623
624 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
625 {
626 sock_hold(sk);
627 __sk_add_node(sk, list);
628 }
629
630 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
631 {
632 sock_hold(sk);
633 hlist_add_head_rcu(&sk->sk_node, list);
634 }
635
636 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
637 {
638 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
639 }
640
641 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
642 {
643 sock_hold(sk);
644 __sk_nulls_add_node_rcu(sk, list);
645 }
646
647 static inline void __sk_del_bind_node(struct sock *sk)
648 {
649 __hlist_del(&sk->sk_bind_node);
650 }
651
652 static inline void sk_add_bind_node(struct sock *sk,
653 struct hlist_head *list)
654 {
655 hlist_add_head(&sk->sk_bind_node, list);
656 }
657
658 #define sk_for_each(__sk, list) \
659 hlist_for_each_entry(__sk, list, sk_node)
660 #define sk_for_each_rcu(__sk, list) \
661 hlist_for_each_entry_rcu(__sk, list, sk_node)
662 #define sk_nulls_for_each(__sk, node, list) \
663 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
664 #define sk_nulls_for_each_rcu(__sk, node, list) \
665 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
666 #define sk_for_each_from(__sk) \
667 hlist_for_each_entry_from(__sk, sk_node)
668 #define sk_nulls_for_each_from(__sk, node) \
669 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
670 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
671 #define sk_for_each_safe(__sk, tmp, list) \
672 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
673 #define sk_for_each_bound(__sk, list) \
674 hlist_for_each_entry(__sk, list, sk_bind_node)
675
676 /**
677 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
678 * @tpos: the type * to use as a loop cursor.
679 * @pos: the &struct hlist_node to use as a loop cursor.
680 * @head: the head for your list.
681 * @offset: offset of hlist_node within the struct.
682 *
683 */
684 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
685 for (pos = rcu_dereference((head)->first); \
686 pos != NULL && \
687 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
688 pos = rcu_dereference(pos->next))
689
690 static inline struct user_namespace *sk_user_ns(struct sock *sk)
691 {
692 /* Careful only use this in a context where these parameters
693 * can not change and must all be valid, such as recvmsg from
694 * userspace.
695 */
696 return sk->sk_socket->file->f_cred->user_ns;
697 }
698
699 /* Sock flags */
700 enum sock_flags {
701 SOCK_DEAD,
702 SOCK_DONE,
703 SOCK_URGINLINE,
704 SOCK_KEEPOPEN,
705 SOCK_LINGER,
706 SOCK_DESTROY,
707 SOCK_BROADCAST,
708 SOCK_TIMESTAMP,
709 SOCK_ZAPPED,
710 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
711 SOCK_DBG, /* %SO_DEBUG setting */
712 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
713 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
714 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
715 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
716 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
717 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
718 SOCK_FASYNC, /* fasync() active */
719 SOCK_RXQ_OVFL,
720 SOCK_ZEROCOPY, /* buffers from userspace */
721 SOCK_WIFI_STATUS, /* push wifi status to userspace */
722 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
723 * Will use last 4 bytes of packet sent from
724 * user-space instead.
725 */
726 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
727 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
728 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
729 };
730
731 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
732
733 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
734 {
735 nsk->sk_flags = osk->sk_flags;
736 }
737
738 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
739 {
740 __set_bit(flag, &sk->sk_flags);
741 }
742
743 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
744 {
745 __clear_bit(flag, &sk->sk_flags);
746 }
747
748 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
749 {
750 return test_bit(flag, &sk->sk_flags);
751 }
752
753 #ifdef CONFIG_NET
754 extern struct static_key memalloc_socks;
755 static inline int sk_memalloc_socks(void)
756 {
757 return static_key_false(&memalloc_socks);
758 }
759 #else
760
761 static inline int sk_memalloc_socks(void)
762 {
763 return 0;
764 }
765
766 #endif
767
768 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
769 {
770 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
771 }
772
773 static inline void sk_acceptq_removed(struct sock *sk)
774 {
775 sk->sk_ack_backlog--;
776 }
777
778 static inline void sk_acceptq_added(struct sock *sk)
779 {
780 sk->sk_ack_backlog++;
781 }
782
783 static inline bool sk_acceptq_is_full(const struct sock *sk)
784 {
785 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
786 }
787
788 /*
789 * Compute minimal free write space needed to queue new packets.
790 */
791 static inline int sk_stream_min_wspace(const struct sock *sk)
792 {
793 return sk->sk_wmem_queued >> 1;
794 }
795
796 static inline int sk_stream_wspace(const struct sock *sk)
797 {
798 return sk->sk_sndbuf - sk->sk_wmem_queued;
799 }
800
801 void sk_stream_write_space(struct sock *sk);
802
803 /* OOB backlog add */
804 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
805 {
806 /* dont let skb dst not refcounted, we are going to leave rcu lock */
807 skb_dst_force_safe(skb);
808
809 if (!sk->sk_backlog.tail)
810 sk->sk_backlog.head = skb;
811 else
812 sk->sk_backlog.tail->next = skb;
813
814 sk->sk_backlog.tail = skb;
815 skb->next = NULL;
816 }
817
818 /*
819 * Take into account size of receive queue and backlog queue
820 * Do not take into account this skb truesize,
821 * to allow even a single big packet to come.
822 */
823 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
824 {
825 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
826
827 return qsize > limit;
828 }
829
830 /* The per-socket spinlock must be held here. */
831 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
832 unsigned int limit)
833 {
834 if (sk_rcvqueues_full(sk, limit))
835 return -ENOBUFS;
836
837 /*
838 * If the skb was allocated from pfmemalloc reserves, only
839 * allow SOCK_MEMALLOC sockets to use it as this socket is
840 * helping free memory
841 */
842 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
843 return -ENOMEM;
844
845 __sk_add_backlog(sk, skb);
846 sk->sk_backlog.len += skb->truesize;
847 return 0;
848 }
849
850 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
851
852 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
853 {
854 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
855 return __sk_backlog_rcv(sk, skb);
856
857 return sk->sk_backlog_rcv(sk, skb);
858 }
859
860 static inline void sk_incoming_cpu_update(struct sock *sk)
861 {
862 sk->sk_incoming_cpu = raw_smp_processor_id();
863 }
864
865 static inline void sock_rps_record_flow_hash(__u32 hash)
866 {
867 #ifdef CONFIG_RPS
868 struct rps_sock_flow_table *sock_flow_table;
869
870 rcu_read_lock();
871 sock_flow_table = rcu_dereference(rps_sock_flow_table);
872 rps_record_sock_flow(sock_flow_table, hash);
873 rcu_read_unlock();
874 #endif
875 }
876
877 static inline void sock_rps_record_flow(const struct sock *sk)
878 {
879 #ifdef CONFIG_RPS
880 sock_rps_record_flow_hash(sk->sk_rxhash);
881 #endif
882 }
883
884 static inline void sock_rps_save_rxhash(struct sock *sk,
885 const struct sk_buff *skb)
886 {
887 #ifdef CONFIG_RPS
888 if (unlikely(sk->sk_rxhash != skb->hash))
889 sk->sk_rxhash = skb->hash;
890 #endif
891 }
892
893 static inline void sock_rps_reset_rxhash(struct sock *sk)
894 {
895 #ifdef CONFIG_RPS
896 sk->sk_rxhash = 0;
897 #endif
898 }
899
900 #define sk_wait_event(__sk, __timeo, __condition) \
901 ({ int __rc; \
902 release_sock(__sk); \
903 __rc = __condition; \
904 if (!__rc) { \
905 *(__timeo) = schedule_timeout(*(__timeo)); \
906 } \
907 sched_annotate_sleep(); \
908 lock_sock(__sk); \
909 __rc = __condition; \
910 __rc; \
911 })
912
913 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
914 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
915 void sk_stream_wait_close(struct sock *sk, long timeo_p);
916 int sk_stream_error(struct sock *sk, int flags, int err);
917 void sk_stream_kill_queues(struct sock *sk);
918 void sk_set_memalloc(struct sock *sk);
919 void sk_clear_memalloc(struct sock *sk);
920
921 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
922
923 struct request_sock_ops;
924 struct timewait_sock_ops;
925 struct inet_hashinfo;
926 struct raw_hashinfo;
927 struct module;
928
929 /*
930 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
931 * un-modified. Special care is taken when initializing object to zero.
932 */
933 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
934 {
935 if (offsetof(struct sock, sk_node.next) != 0)
936 memset(sk, 0, offsetof(struct sock, sk_node.next));
937 memset(&sk->sk_node.pprev, 0,
938 size - offsetof(struct sock, sk_node.pprev));
939 }
940
941 /* Networking protocol blocks we attach to sockets.
942 * socket layer -> transport layer interface
943 */
944 struct proto {
945 void (*close)(struct sock *sk,
946 long timeout);
947 int (*connect)(struct sock *sk,
948 struct sockaddr *uaddr,
949 int addr_len);
950 int (*disconnect)(struct sock *sk, int flags);
951
952 struct sock * (*accept)(struct sock *sk, int flags, int *err);
953
954 int (*ioctl)(struct sock *sk, int cmd,
955 unsigned long arg);
956 int (*init)(struct sock *sk);
957 void (*destroy)(struct sock *sk);
958 void (*shutdown)(struct sock *sk, int how);
959 int (*setsockopt)(struct sock *sk, int level,
960 int optname, char __user *optval,
961 unsigned int optlen);
962 int (*getsockopt)(struct sock *sk, int level,
963 int optname, char __user *optval,
964 int __user *option);
965 #ifdef CONFIG_COMPAT
966 int (*compat_setsockopt)(struct sock *sk,
967 int level,
968 int optname, char __user *optval,
969 unsigned int optlen);
970 int (*compat_getsockopt)(struct sock *sk,
971 int level,
972 int optname, char __user *optval,
973 int __user *option);
974 int (*compat_ioctl)(struct sock *sk,
975 unsigned int cmd, unsigned long arg);
976 #endif
977 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
978 size_t len);
979 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
980 size_t len, int noblock, int flags,
981 int *addr_len);
982 int (*sendpage)(struct sock *sk, struct page *page,
983 int offset, size_t size, int flags);
984 int (*bind)(struct sock *sk,
985 struct sockaddr *uaddr, int addr_len);
986
987 int (*backlog_rcv) (struct sock *sk,
988 struct sk_buff *skb);
989
990 void (*release_cb)(struct sock *sk);
991
992 /* Keeping track of sk's, looking them up, and port selection methods. */
993 int (*hash)(struct sock *sk);
994 void (*unhash)(struct sock *sk);
995 void (*rehash)(struct sock *sk);
996 int (*get_port)(struct sock *sk, unsigned short snum);
997 void (*clear_sk)(struct sock *sk, int size);
998
999 /* Keeping track of sockets in use */
1000 #ifdef CONFIG_PROC_FS
1001 unsigned int inuse_idx;
1002 #endif
1003
1004 bool (*stream_memory_free)(const struct sock *sk);
1005 /* Memory pressure */
1006 void (*enter_memory_pressure)(struct sock *sk);
1007 atomic_long_t *memory_allocated; /* Current allocated memory. */
1008 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1009 /*
1010 * Pressure flag: try to collapse.
1011 * Technical note: it is used by multiple contexts non atomically.
1012 * All the __sk_mem_schedule() is of this nature: accounting
1013 * is strict, actions are advisory and have some latency.
1014 */
1015 int *memory_pressure;
1016 long *sysctl_mem;
1017 int *sysctl_wmem;
1018 int *sysctl_rmem;
1019 int max_header;
1020 bool no_autobind;
1021
1022 struct kmem_cache *slab;
1023 unsigned int obj_size;
1024 int slab_flags;
1025
1026 struct percpu_counter *orphan_count;
1027
1028 struct request_sock_ops *rsk_prot;
1029 struct timewait_sock_ops *twsk_prot;
1030
1031 union {
1032 struct inet_hashinfo *hashinfo;
1033 struct udp_table *udp_table;
1034 struct raw_hashinfo *raw_hash;
1035 } h;
1036
1037 struct module *owner;
1038
1039 char name[32];
1040
1041 struct list_head node;
1042 #ifdef SOCK_REFCNT_DEBUG
1043 atomic_t socks;
1044 #endif
1045 int (*diag_destroy)(struct sock *sk, int err);
1046 };
1047
1048 int proto_register(struct proto *prot, int alloc_slab);
1049 void proto_unregister(struct proto *prot);
1050
1051 #ifdef SOCK_REFCNT_DEBUG
1052 static inline void sk_refcnt_debug_inc(struct sock *sk)
1053 {
1054 atomic_inc(&sk->sk_prot->socks);
1055 }
1056
1057 static inline void sk_refcnt_debug_dec(struct sock *sk)
1058 {
1059 atomic_dec(&sk->sk_prot->socks);
1060 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1061 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1062 }
1063
1064 static inline void sk_refcnt_debug_release(const struct sock *sk)
1065 {
1066 if (atomic_read(&sk->sk_refcnt) != 1)
1067 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1068 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1069 }
1070 #else /* SOCK_REFCNT_DEBUG */
1071 #define sk_refcnt_debug_inc(sk) do { } while (0)
1072 #define sk_refcnt_debug_dec(sk) do { } while (0)
1073 #define sk_refcnt_debug_release(sk) do { } while (0)
1074 #endif /* SOCK_REFCNT_DEBUG */
1075
1076 static inline bool sk_stream_memory_free(const struct sock *sk)
1077 {
1078 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1079 return false;
1080
1081 return sk->sk_prot->stream_memory_free ?
1082 sk->sk_prot->stream_memory_free(sk) : true;
1083 }
1084
1085 static inline bool sk_stream_is_writeable(const struct sock *sk)
1086 {
1087 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1088 sk_stream_memory_free(sk);
1089 }
1090
1091
1092 static inline bool sk_has_memory_pressure(const struct sock *sk)
1093 {
1094 return sk->sk_prot->memory_pressure != NULL;
1095 }
1096
1097 static inline bool sk_under_memory_pressure(const struct sock *sk)
1098 {
1099 if (!sk->sk_prot->memory_pressure)
1100 return false;
1101
1102 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1103 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1104 return true;
1105
1106 return !!*sk->sk_prot->memory_pressure;
1107 }
1108
1109 static inline void sk_leave_memory_pressure(struct sock *sk)
1110 {
1111 int *memory_pressure = sk->sk_prot->memory_pressure;
1112
1113 if (!memory_pressure)
1114 return;
1115
1116 if (*memory_pressure)
1117 *memory_pressure = 0;
1118 }
1119
1120 static inline void sk_enter_memory_pressure(struct sock *sk)
1121 {
1122 if (!sk->sk_prot->enter_memory_pressure)
1123 return;
1124
1125 sk->sk_prot->enter_memory_pressure(sk);
1126 }
1127
1128 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1129 {
1130 return sk->sk_prot->sysctl_mem[index];
1131 }
1132
1133 static inline long
1134 sk_memory_allocated(const struct sock *sk)
1135 {
1136 return atomic_long_read(sk->sk_prot->memory_allocated);
1137 }
1138
1139 static inline long
1140 sk_memory_allocated_add(struct sock *sk, int amt)
1141 {
1142 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1143 }
1144
1145 static inline void
1146 sk_memory_allocated_sub(struct sock *sk, int amt)
1147 {
1148 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1149 }
1150
1151 static inline void sk_sockets_allocated_dec(struct sock *sk)
1152 {
1153 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1154 }
1155
1156 static inline void sk_sockets_allocated_inc(struct sock *sk)
1157 {
1158 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1159 }
1160
1161 static inline int
1162 sk_sockets_allocated_read_positive(struct sock *sk)
1163 {
1164 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1165 }
1166
1167 static inline int
1168 proto_sockets_allocated_sum_positive(struct proto *prot)
1169 {
1170 return percpu_counter_sum_positive(prot->sockets_allocated);
1171 }
1172
1173 static inline long
1174 proto_memory_allocated(struct proto *prot)
1175 {
1176 return atomic_long_read(prot->memory_allocated);
1177 }
1178
1179 static inline bool
1180 proto_memory_pressure(struct proto *prot)
1181 {
1182 if (!prot->memory_pressure)
1183 return false;
1184 return !!*prot->memory_pressure;
1185 }
1186
1187
1188 #ifdef CONFIG_PROC_FS
1189 /* Called with local bh disabled */
1190 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1191 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1192 #else
1193 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1194 int inc)
1195 {
1196 }
1197 #endif
1198
1199
1200 /* With per-bucket locks this operation is not-atomic, so that
1201 * this version is not worse.
1202 */
1203 static inline int __sk_prot_rehash(struct sock *sk)
1204 {
1205 sk->sk_prot->unhash(sk);
1206 return sk->sk_prot->hash(sk);
1207 }
1208
1209 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1210
1211 /* About 10 seconds */
1212 #define SOCK_DESTROY_TIME (10*HZ)
1213
1214 /* Sockets 0-1023 can't be bound to unless you are superuser */
1215 #define PROT_SOCK 1024
1216
1217 #define SHUTDOWN_MASK 3
1218 #define RCV_SHUTDOWN 1
1219 #define SEND_SHUTDOWN 2
1220
1221 #define SOCK_SNDBUF_LOCK 1
1222 #define SOCK_RCVBUF_LOCK 2
1223 #define SOCK_BINDADDR_LOCK 4
1224 #define SOCK_BINDPORT_LOCK 8
1225
1226 struct socket_alloc {
1227 struct socket socket;
1228 struct inode vfs_inode;
1229 };
1230
1231 static inline struct socket *SOCKET_I(struct inode *inode)
1232 {
1233 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1234 }
1235
1236 static inline struct inode *SOCK_INODE(struct socket *socket)
1237 {
1238 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1239 }
1240
1241 /*
1242 * Functions for memory accounting
1243 */
1244 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1245 void __sk_mem_reclaim(struct sock *sk, int amount);
1246
1247 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1248 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1249 #define SK_MEM_SEND 0
1250 #define SK_MEM_RECV 1
1251
1252 static inline int sk_mem_pages(int amt)
1253 {
1254 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1255 }
1256
1257 static inline bool sk_has_account(struct sock *sk)
1258 {
1259 /* return true if protocol supports memory accounting */
1260 return !!sk->sk_prot->memory_allocated;
1261 }
1262
1263 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1264 {
1265 if (!sk_has_account(sk))
1266 return true;
1267 return size <= sk->sk_forward_alloc ||
1268 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1269 }
1270
1271 static inline bool
1272 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1273 {
1274 if (!sk_has_account(sk))
1275 return true;
1276 return size<= sk->sk_forward_alloc ||
1277 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1278 skb_pfmemalloc(skb);
1279 }
1280
1281 static inline void sk_mem_reclaim(struct sock *sk)
1282 {
1283 if (!sk_has_account(sk))
1284 return;
1285 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1286 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1287 }
1288
1289 static inline void sk_mem_reclaim_partial(struct sock *sk)
1290 {
1291 if (!sk_has_account(sk))
1292 return;
1293 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1294 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1295 }
1296
1297 static inline void sk_mem_charge(struct sock *sk, int size)
1298 {
1299 if (!sk_has_account(sk))
1300 return;
1301 sk->sk_forward_alloc -= size;
1302 }
1303
1304 static inline void sk_mem_uncharge(struct sock *sk, int size)
1305 {
1306 if (!sk_has_account(sk))
1307 return;
1308 sk->sk_forward_alloc += size;
1309 }
1310
1311 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1312 {
1313 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1314 sk->sk_wmem_queued -= skb->truesize;
1315 sk_mem_uncharge(sk, skb->truesize);
1316 __kfree_skb(skb);
1317 }
1318
1319 static inline void sock_release_ownership(struct sock *sk)
1320 {
1321 if (sk->sk_lock.owned) {
1322 sk->sk_lock.owned = 0;
1323
1324 /* The sk_lock has mutex_unlock() semantics: */
1325 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1326 }
1327 }
1328
1329 /*
1330 * Macro so as to not evaluate some arguments when
1331 * lockdep is not enabled.
1332 *
1333 * Mark both the sk_lock and the sk_lock.slock as a
1334 * per-address-family lock class.
1335 */
1336 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1337 do { \
1338 sk->sk_lock.owned = 0; \
1339 init_waitqueue_head(&sk->sk_lock.wq); \
1340 spin_lock_init(&(sk)->sk_lock.slock); \
1341 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1342 sizeof((sk)->sk_lock)); \
1343 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1344 (skey), (sname)); \
1345 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1346 } while (0)
1347
1348 #ifdef CONFIG_LOCKDEP
1349 static inline bool lockdep_sock_is_held(const struct sock *csk)
1350 {
1351 struct sock *sk = (struct sock *)csk;
1352
1353 return lockdep_is_held(&sk->sk_lock) ||
1354 lockdep_is_held(&sk->sk_lock.slock);
1355 }
1356 #endif
1357
1358 void lock_sock_nested(struct sock *sk, int subclass);
1359
1360 static inline void lock_sock(struct sock *sk)
1361 {
1362 lock_sock_nested(sk, 0);
1363 }
1364
1365 void release_sock(struct sock *sk);
1366
1367 /* BH context may only use the following locking interface. */
1368 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1369 #define bh_lock_sock_nested(__sk) \
1370 spin_lock_nested(&((__sk)->sk_lock.slock), \
1371 SINGLE_DEPTH_NESTING)
1372 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1373
1374 bool lock_sock_fast(struct sock *sk);
1375 /**
1376 * unlock_sock_fast - complement of lock_sock_fast
1377 * @sk: socket
1378 * @slow: slow mode
1379 *
1380 * fast unlock socket for user context.
1381 * If slow mode is on, we call regular release_sock()
1382 */
1383 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1384 {
1385 if (slow)
1386 release_sock(sk);
1387 else
1388 spin_unlock_bh(&sk->sk_lock.slock);
1389 }
1390
1391 /* Used by processes to "lock" a socket state, so that
1392 * interrupts and bottom half handlers won't change it
1393 * from under us. It essentially blocks any incoming
1394 * packets, so that we won't get any new data or any
1395 * packets that change the state of the socket.
1396 *
1397 * While locked, BH processing will add new packets to
1398 * the backlog queue. This queue is processed by the
1399 * owner of the socket lock right before it is released.
1400 *
1401 * Since ~2.3.5 it is also exclusive sleep lock serializing
1402 * accesses from user process context.
1403 */
1404
1405 static inline bool sock_owned_by_user(const struct sock *sk)
1406 {
1407 #ifdef CONFIG_LOCKDEP
1408 WARN_ON(!lockdep_sock_is_held(sk));
1409 #endif
1410 return sk->sk_lock.owned;
1411 }
1412
1413 /* no reclassification while locks are held */
1414 static inline bool sock_allow_reclassification(const struct sock *csk)
1415 {
1416 struct sock *sk = (struct sock *)csk;
1417
1418 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1419 }
1420
1421 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1422 struct proto *prot, int kern);
1423 void sk_free(struct sock *sk);
1424 void sk_destruct(struct sock *sk);
1425 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1426
1427 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1428 gfp_t priority);
1429 void sock_wfree(struct sk_buff *skb);
1430 void skb_orphan_partial(struct sk_buff *skb);
1431 void sock_rfree(struct sk_buff *skb);
1432 void sock_efree(struct sk_buff *skb);
1433 #ifdef CONFIG_INET
1434 void sock_edemux(struct sk_buff *skb);
1435 #else
1436 #define sock_edemux(skb) sock_efree(skb)
1437 #endif
1438
1439 int sock_setsockopt(struct socket *sock, int level, int op,
1440 char __user *optval, unsigned int optlen);
1441
1442 int sock_getsockopt(struct socket *sock, int level, int op,
1443 char __user *optval, int __user *optlen);
1444 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1445 int noblock, int *errcode);
1446 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1447 unsigned long data_len, int noblock,
1448 int *errcode, int max_page_order);
1449 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1450 void sock_kfree_s(struct sock *sk, void *mem, int size);
1451 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1452 void sk_send_sigurg(struct sock *sk);
1453
1454 struct sockcm_cookie {
1455 u32 mark;
1456 u16 tsflags;
1457 };
1458
1459 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1460 struct sockcm_cookie *sockc);
1461 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1462 struct sockcm_cookie *sockc);
1463
1464 /*
1465 * Functions to fill in entries in struct proto_ops when a protocol
1466 * does not implement a particular function.
1467 */
1468 int sock_no_bind(struct socket *, struct sockaddr *, int);
1469 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1470 int sock_no_socketpair(struct socket *, struct socket *);
1471 int sock_no_accept(struct socket *, struct socket *, int);
1472 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1473 unsigned int sock_no_poll(struct file *, struct socket *,
1474 struct poll_table_struct *);
1475 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1476 int sock_no_listen(struct socket *, int);
1477 int sock_no_shutdown(struct socket *, int);
1478 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1479 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1480 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1481 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1482 int sock_no_mmap(struct file *file, struct socket *sock,
1483 struct vm_area_struct *vma);
1484 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1485 size_t size, int flags);
1486
1487 /*
1488 * Functions to fill in entries in struct proto_ops when a protocol
1489 * uses the inet style.
1490 */
1491 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1492 char __user *optval, int __user *optlen);
1493 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1494 int flags);
1495 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1496 char __user *optval, unsigned int optlen);
1497 int compat_sock_common_getsockopt(struct socket *sock, int level,
1498 int optname, char __user *optval, int __user *optlen);
1499 int compat_sock_common_setsockopt(struct socket *sock, int level,
1500 int optname, char __user *optval, unsigned int optlen);
1501
1502 void sk_common_release(struct sock *sk);
1503
1504 /*
1505 * Default socket callbacks and setup code
1506 */
1507
1508 /* Initialise core socket variables */
1509 void sock_init_data(struct socket *sock, struct sock *sk);
1510
1511 /*
1512 * Socket reference counting postulates.
1513 *
1514 * * Each user of socket SHOULD hold a reference count.
1515 * * Each access point to socket (an hash table bucket, reference from a list,
1516 * running timer, skb in flight MUST hold a reference count.
1517 * * When reference count hits 0, it means it will never increase back.
1518 * * When reference count hits 0, it means that no references from
1519 * outside exist to this socket and current process on current CPU
1520 * is last user and may/should destroy this socket.
1521 * * sk_free is called from any context: process, BH, IRQ. When
1522 * it is called, socket has no references from outside -> sk_free
1523 * may release descendant resources allocated by the socket, but
1524 * to the time when it is called, socket is NOT referenced by any
1525 * hash tables, lists etc.
1526 * * Packets, delivered from outside (from network or from another process)
1527 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1528 * when they sit in queue. Otherwise, packets will leak to hole, when
1529 * socket is looked up by one cpu and unhasing is made by another CPU.
1530 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1531 * (leak to backlog). Packet socket does all the processing inside
1532 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1533 * use separate SMP lock, so that they are prone too.
1534 */
1535
1536 /* Ungrab socket and destroy it, if it was the last reference. */
1537 static inline void sock_put(struct sock *sk)
1538 {
1539 if (atomic_dec_and_test(&sk->sk_refcnt))
1540 sk_free(sk);
1541 }
1542 /* Generic version of sock_put(), dealing with all sockets
1543 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1544 */
1545 void sock_gen_put(struct sock *sk);
1546
1547 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1548
1549 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1550 {
1551 sk->sk_tx_queue_mapping = tx_queue;
1552 }
1553
1554 static inline void sk_tx_queue_clear(struct sock *sk)
1555 {
1556 sk->sk_tx_queue_mapping = -1;
1557 }
1558
1559 static inline int sk_tx_queue_get(const struct sock *sk)
1560 {
1561 return sk ? sk->sk_tx_queue_mapping : -1;
1562 }
1563
1564 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1565 {
1566 sk_tx_queue_clear(sk);
1567 sk->sk_socket = sock;
1568 }
1569
1570 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1571 {
1572 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1573 return &rcu_dereference_raw(sk->sk_wq)->wait;
1574 }
1575 /* Detach socket from process context.
1576 * Announce socket dead, detach it from wait queue and inode.
1577 * Note that parent inode held reference count on this struct sock,
1578 * we do not release it in this function, because protocol
1579 * probably wants some additional cleanups or even continuing
1580 * to work with this socket (TCP).
1581 */
1582 static inline void sock_orphan(struct sock *sk)
1583 {
1584 write_lock_bh(&sk->sk_callback_lock);
1585 sock_set_flag(sk, SOCK_DEAD);
1586 sk_set_socket(sk, NULL);
1587 sk->sk_wq = NULL;
1588 write_unlock_bh(&sk->sk_callback_lock);
1589 }
1590
1591 static inline void sock_graft(struct sock *sk, struct socket *parent)
1592 {
1593 write_lock_bh(&sk->sk_callback_lock);
1594 sk->sk_wq = parent->wq;
1595 parent->sk = sk;
1596 sk_set_socket(sk, parent);
1597 security_sock_graft(sk, parent);
1598 write_unlock_bh(&sk->sk_callback_lock);
1599 }
1600
1601 kuid_t sock_i_uid(struct sock *sk);
1602 unsigned long sock_i_ino(struct sock *sk);
1603
1604 static inline u32 net_tx_rndhash(void)
1605 {
1606 u32 v = prandom_u32();
1607
1608 return v ?: 1;
1609 }
1610
1611 static inline void sk_set_txhash(struct sock *sk)
1612 {
1613 sk->sk_txhash = net_tx_rndhash();
1614 }
1615
1616 static inline void sk_rethink_txhash(struct sock *sk)
1617 {
1618 if (sk->sk_txhash)
1619 sk_set_txhash(sk);
1620 }
1621
1622 static inline struct dst_entry *
1623 __sk_dst_get(struct sock *sk)
1624 {
1625 return rcu_dereference_check(sk->sk_dst_cache,
1626 lockdep_sock_is_held(sk));
1627 }
1628
1629 static inline struct dst_entry *
1630 sk_dst_get(struct sock *sk)
1631 {
1632 struct dst_entry *dst;
1633
1634 rcu_read_lock();
1635 dst = rcu_dereference(sk->sk_dst_cache);
1636 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1637 dst = NULL;
1638 rcu_read_unlock();
1639 return dst;
1640 }
1641
1642 static inline void dst_negative_advice(struct sock *sk)
1643 {
1644 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1645
1646 sk_rethink_txhash(sk);
1647
1648 if (dst && dst->ops->negative_advice) {
1649 ndst = dst->ops->negative_advice(dst);
1650
1651 if (ndst != dst) {
1652 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1653 sk_tx_queue_clear(sk);
1654 }
1655 }
1656 }
1657
1658 static inline void
1659 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1660 {
1661 struct dst_entry *old_dst;
1662
1663 sk_tx_queue_clear(sk);
1664 /*
1665 * This can be called while sk is owned by the caller only,
1666 * with no state that can be checked in a rcu_dereference_check() cond
1667 */
1668 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1669 rcu_assign_pointer(sk->sk_dst_cache, dst);
1670 dst_release(old_dst);
1671 }
1672
1673 static inline void
1674 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1675 {
1676 struct dst_entry *old_dst;
1677
1678 sk_tx_queue_clear(sk);
1679 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1680 dst_release(old_dst);
1681 }
1682
1683 static inline void
1684 __sk_dst_reset(struct sock *sk)
1685 {
1686 __sk_dst_set(sk, NULL);
1687 }
1688
1689 static inline void
1690 sk_dst_reset(struct sock *sk)
1691 {
1692 sk_dst_set(sk, NULL);
1693 }
1694
1695 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1696
1697 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1698
1699 bool sk_mc_loop(struct sock *sk);
1700
1701 static inline bool sk_can_gso(const struct sock *sk)
1702 {
1703 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1704 }
1705
1706 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1707
1708 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1709 {
1710 sk->sk_route_nocaps |= flags;
1711 sk->sk_route_caps &= ~flags;
1712 }
1713
1714 static inline bool sk_check_csum_caps(struct sock *sk)
1715 {
1716 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1717 (sk->sk_family == PF_INET &&
1718 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1719 (sk->sk_family == PF_INET6 &&
1720 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1721 }
1722
1723 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1724 struct iov_iter *from, char *to,
1725 int copy, int offset)
1726 {
1727 if (skb->ip_summed == CHECKSUM_NONE) {
1728 __wsum csum = 0;
1729 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1730 return -EFAULT;
1731 skb->csum = csum_block_add(skb->csum, csum, offset);
1732 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1733 if (copy_from_iter_nocache(to, copy, from) != copy)
1734 return -EFAULT;
1735 } else if (copy_from_iter(to, copy, from) != copy)
1736 return -EFAULT;
1737
1738 return 0;
1739 }
1740
1741 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1742 struct iov_iter *from, int copy)
1743 {
1744 int err, offset = skb->len;
1745
1746 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1747 copy, offset);
1748 if (err)
1749 __skb_trim(skb, offset);
1750
1751 return err;
1752 }
1753
1754 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1755 struct sk_buff *skb,
1756 struct page *page,
1757 int off, int copy)
1758 {
1759 int err;
1760
1761 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1762 copy, skb->len);
1763 if (err)
1764 return err;
1765
1766 skb->len += copy;
1767 skb->data_len += copy;
1768 skb->truesize += copy;
1769 sk->sk_wmem_queued += copy;
1770 sk_mem_charge(sk, copy);
1771 return 0;
1772 }
1773
1774 /**
1775 * sk_wmem_alloc_get - returns write allocations
1776 * @sk: socket
1777 *
1778 * Returns sk_wmem_alloc minus initial offset of one
1779 */
1780 static inline int sk_wmem_alloc_get(const struct sock *sk)
1781 {
1782 return atomic_read(&sk->sk_wmem_alloc) - 1;
1783 }
1784
1785 /**
1786 * sk_rmem_alloc_get - returns read allocations
1787 * @sk: socket
1788 *
1789 * Returns sk_rmem_alloc
1790 */
1791 static inline int sk_rmem_alloc_get(const struct sock *sk)
1792 {
1793 return atomic_read(&sk->sk_rmem_alloc);
1794 }
1795
1796 /**
1797 * sk_has_allocations - check if allocations are outstanding
1798 * @sk: socket
1799 *
1800 * Returns true if socket has write or read allocations
1801 */
1802 static inline bool sk_has_allocations(const struct sock *sk)
1803 {
1804 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1805 }
1806
1807 /**
1808 * skwq_has_sleeper - check if there are any waiting processes
1809 * @wq: struct socket_wq
1810 *
1811 * Returns true if socket_wq has waiting processes
1812 *
1813 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1814 * barrier call. They were added due to the race found within the tcp code.
1815 *
1816 * Consider following tcp code paths:
1817 *
1818 * CPU1 CPU2
1819 *
1820 * sys_select receive packet
1821 * ... ...
1822 * __add_wait_queue update tp->rcv_nxt
1823 * ... ...
1824 * tp->rcv_nxt check sock_def_readable
1825 * ... {
1826 * schedule rcu_read_lock();
1827 * wq = rcu_dereference(sk->sk_wq);
1828 * if (wq && waitqueue_active(&wq->wait))
1829 * wake_up_interruptible(&wq->wait)
1830 * ...
1831 * }
1832 *
1833 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1834 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1835 * could then endup calling schedule and sleep forever if there are no more
1836 * data on the socket.
1837 *
1838 */
1839 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1840 {
1841 return wq && wq_has_sleeper(&wq->wait);
1842 }
1843
1844 /**
1845 * sock_poll_wait - place memory barrier behind the poll_wait call.
1846 * @filp: file
1847 * @wait_address: socket wait queue
1848 * @p: poll_table
1849 *
1850 * See the comments in the wq_has_sleeper function.
1851 */
1852 static inline void sock_poll_wait(struct file *filp,
1853 wait_queue_head_t *wait_address, poll_table *p)
1854 {
1855 if (!poll_does_not_wait(p) && wait_address) {
1856 poll_wait(filp, wait_address, p);
1857 /* We need to be sure we are in sync with the
1858 * socket flags modification.
1859 *
1860 * This memory barrier is paired in the wq_has_sleeper.
1861 */
1862 smp_mb();
1863 }
1864 }
1865
1866 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1867 {
1868 if (sk->sk_txhash) {
1869 skb->l4_hash = 1;
1870 skb->hash = sk->sk_txhash;
1871 }
1872 }
1873
1874 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1875
1876 /*
1877 * Queue a received datagram if it will fit. Stream and sequenced
1878 * protocols can't normally use this as they need to fit buffers in
1879 * and play with them.
1880 *
1881 * Inlined as it's very short and called for pretty much every
1882 * packet ever received.
1883 */
1884 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1885 {
1886 skb_orphan(skb);
1887 skb->sk = sk;
1888 skb->destructor = sock_rfree;
1889 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1890 sk_mem_charge(sk, skb->truesize);
1891 }
1892
1893 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1894 unsigned long expires);
1895
1896 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1897
1898 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1899 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1900
1901 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1902 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1903
1904 /*
1905 * Recover an error report and clear atomically
1906 */
1907
1908 static inline int sock_error(struct sock *sk)
1909 {
1910 int err;
1911 if (likely(!sk->sk_err))
1912 return 0;
1913 err = xchg(&sk->sk_err, 0);
1914 return -err;
1915 }
1916
1917 static inline unsigned long sock_wspace(struct sock *sk)
1918 {
1919 int amt = 0;
1920
1921 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1922 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1923 if (amt < 0)
1924 amt = 0;
1925 }
1926 return amt;
1927 }
1928
1929 /* Note:
1930 * We use sk->sk_wq_raw, from contexts knowing this
1931 * pointer is not NULL and cannot disappear/change.
1932 */
1933 static inline void sk_set_bit(int nr, struct sock *sk)
1934 {
1935 set_bit(nr, &sk->sk_wq_raw->flags);
1936 }
1937
1938 static inline void sk_clear_bit(int nr, struct sock *sk)
1939 {
1940 clear_bit(nr, &sk->sk_wq_raw->flags);
1941 }
1942
1943 static inline void sk_wake_async(const struct sock *sk, int how, int band)
1944 {
1945 if (sock_flag(sk, SOCK_FASYNC)) {
1946 rcu_read_lock();
1947 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
1948 rcu_read_unlock();
1949 }
1950 }
1951
1952 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
1953 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
1954 * Note: for send buffers, TCP works better if we can build two skbs at
1955 * minimum.
1956 */
1957 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
1958
1959 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
1960 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
1961
1962 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1963 {
1964 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1965 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1966 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1967 }
1968 }
1969
1970 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
1971 bool force_schedule);
1972
1973 /**
1974 * sk_page_frag - return an appropriate page_frag
1975 * @sk: socket
1976 *
1977 * If socket allocation mode allows current thread to sleep, it means its
1978 * safe to use the per task page_frag instead of the per socket one.
1979 */
1980 static inline struct page_frag *sk_page_frag(struct sock *sk)
1981 {
1982 if (gfpflags_allow_blocking(sk->sk_allocation))
1983 return &current->task_frag;
1984
1985 return &sk->sk_frag;
1986 }
1987
1988 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
1989
1990 /*
1991 * Default write policy as shown to user space via poll/select/SIGIO
1992 */
1993 static inline bool sock_writeable(const struct sock *sk)
1994 {
1995 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1996 }
1997
1998 static inline gfp_t gfp_any(void)
1999 {
2000 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2001 }
2002
2003 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2004 {
2005 return noblock ? 0 : sk->sk_rcvtimeo;
2006 }
2007
2008 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2009 {
2010 return noblock ? 0 : sk->sk_sndtimeo;
2011 }
2012
2013 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2014 {
2015 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2016 }
2017
2018 /* Alas, with timeout socket operations are not restartable.
2019 * Compare this to poll().
2020 */
2021 static inline int sock_intr_errno(long timeo)
2022 {
2023 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2024 }
2025
2026 struct sock_skb_cb {
2027 u32 dropcount;
2028 };
2029
2030 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2031 * using skb->cb[] would keep using it directly and utilize its
2032 * alignement guarantee.
2033 */
2034 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2035 sizeof(struct sock_skb_cb)))
2036
2037 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2038 SOCK_SKB_CB_OFFSET))
2039
2040 #define sock_skb_cb_check_size(size) \
2041 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2042
2043 static inline void
2044 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2045 {
2046 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2047 }
2048
2049 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2050 {
2051 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2052
2053 atomic_add(segs, &sk->sk_drops);
2054 }
2055
2056 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2057 struct sk_buff *skb);
2058 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2059 struct sk_buff *skb);
2060
2061 static inline void
2062 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2063 {
2064 ktime_t kt = skb->tstamp;
2065 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2066
2067 /*
2068 * generate control messages if
2069 * - receive time stamping in software requested
2070 * - software time stamp available and wanted
2071 * - hardware time stamps available and wanted
2072 */
2073 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2074 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2075 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2076 (hwtstamps->hwtstamp.tv64 &&
2077 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2078 __sock_recv_timestamp(msg, sk, skb);
2079 else
2080 sk->sk_stamp = kt;
2081
2082 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2083 __sock_recv_wifi_status(msg, sk, skb);
2084 }
2085
2086 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2087 struct sk_buff *skb);
2088
2089 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2090 struct sk_buff *skb)
2091 {
2092 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2093 (1UL << SOCK_RCVTSTAMP))
2094 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2095 SOF_TIMESTAMPING_RAW_HARDWARE)
2096
2097 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2098 __sock_recv_ts_and_drops(msg, sk, skb);
2099 else
2100 sk->sk_stamp = skb->tstamp;
2101 }
2102
2103 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2104
2105 /**
2106 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2107 * @sk: socket sending this packet
2108 * @tsflags: timestamping flags to use
2109 * @tx_flags: completed with instructions for time stamping
2110 *
2111 * Note : callers should take care of initial *tx_flags value (usually 0)
2112 */
2113 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2114 __u8 *tx_flags)
2115 {
2116 if (unlikely(tsflags))
2117 __sock_tx_timestamp(tsflags, tx_flags);
2118 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2119 *tx_flags |= SKBTX_WIFI_STATUS;
2120 }
2121
2122 /**
2123 * sk_eat_skb - Release a skb if it is no longer needed
2124 * @sk: socket to eat this skb from
2125 * @skb: socket buffer to eat
2126 *
2127 * This routine must be called with interrupts disabled or with the socket
2128 * locked so that the sk_buff queue operation is ok.
2129 */
2130 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2131 {
2132 __skb_unlink(skb, &sk->sk_receive_queue);
2133 __kfree_skb(skb);
2134 }
2135
2136 static inline
2137 struct net *sock_net(const struct sock *sk)
2138 {
2139 return read_pnet(&sk->sk_net);
2140 }
2141
2142 static inline
2143 void sock_net_set(struct sock *sk, struct net *net)
2144 {
2145 write_pnet(&sk->sk_net, net);
2146 }
2147
2148 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2149 {
2150 if (skb->sk) {
2151 struct sock *sk = skb->sk;
2152
2153 skb->destructor = NULL;
2154 skb->sk = NULL;
2155 return sk;
2156 }
2157 return NULL;
2158 }
2159
2160 /* This helper checks if a socket is a full socket,
2161 * ie _not_ a timewait or request socket.
2162 */
2163 static inline bool sk_fullsock(const struct sock *sk)
2164 {
2165 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2166 }
2167
2168 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2169 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2170 */
2171 static inline bool sk_listener(const struct sock *sk)
2172 {
2173 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2174 }
2175
2176 /**
2177 * sk_state_load - read sk->sk_state for lockless contexts
2178 * @sk: socket pointer
2179 *
2180 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2181 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2182 */
2183 static inline int sk_state_load(const struct sock *sk)
2184 {
2185 return smp_load_acquire(&sk->sk_state);
2186 }
2187
2188 /**
2189 * sk_state_store - update sk->sk_state
2190 * @sk: socket pointer
2191 * @newstate: new state
2192 *
2193 * Paired with sk_state_load(). Should be used in contexts where
2194 * state change might impact lockless readers.
2195 */
2196 static inline void sk_state_store(struct sock *sk, int newstate)
2197 {
2198 smp_store_release(&sk->sk_state, newstate);
2199 }
2200
2201 void sock_enable_timestamp(struct sock *sk, int flag);
2202 int sock_get_timestamp(struct sock *, struct timeval __user *);
2203 int sock_get_timestampns(struct sock *, struct timespec __user *);
2204 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2205 int type);
2206
2207 bool sk_ns_capable(const struct sock *sk,
2208 struct user_namespace *user_ns, int cap);
2209 bool sk_capable(const struct sock *sk, int cap);
2210 bool sk_net_capable(const struct sock *sk, int cap);
2211
2212 extern __u32 sysctl_wmem_max;
2213 extern __u32 sysctl_rmem_max;
2214
2215 extern int sysctl_tstamp_allow_data;
2216 extern int sysctl_optmem_max;
2217
2218 extern __u32 sysctl_wmem_default;
2219 extern __u32 sysctl_rmem_default;
2220
2221 #endif /* _SOCK_H */
This page took 0.0798 seconds and 5 git commands to generate.