Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54
55 #include <linux/filter.h>
56 #include <linux/rculist_nulls.h>
57 #include <linux/poll.h>
58
59 #include <asm/atomic.h>
60 #include <net/dst.h>
61 #include <net/checksum.h>
62
63 /*
64 * This structure really needs to be cleaned up.
65 * Most of it is for TCP, and not used by any of
66 * the other protocols.
67 */
68
69 /* Define this to get the SOCK_DBG debugging facility. */
70 #define SOCK_DEBUGGING
71 #ifdef SOCK_DEBUGGING
72 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
73 printk(KERN_DEBUG msg); } while (0)
74 #else
75 /* Validate arguments and do nothing */
76 static void inline int __attribute__ ((format (printf, 2, 3)))
77 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
78 {
79 }
80 #endif
81
82 /* This is the per-socket lock. The spinlock provides a synchronization
83 * between user contexts and software interrupt processing, whereas the
84 * mini-semaphore synchronizes multiple users amongst themselves.
85 */
86 typedef struct {
87 spinlock_t slock;
88 int owned;
89 wait_queue_head_t wq;
90 /*
91 * We express the mutex-alike socket_lock semantics
92 * to the lock validator by explicitly managing
93 * the slock as a lock variant (in addition to
94 * the slock itself):
95 */
96 #ifdef CONFIG_DEBUG_LOCK_ALLOC
97 struct lockdep_map dep_map;
98 #endif
99 } socket_lock_t;
100
101 struct sock;
102 struct proto;
103 struct net;
104
105 /**
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_node: main hash linkage for various protocol lookup tables
108 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
109 * @skc_refcnt: reference count
110 * @skc_tx_queue_mapping: tx queue number for this connection
111 * @skc_hash: hash value used with various protocol lookup tables
112 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
113 * @skc_family: network address family
114 * @skc_state: Connection state
115 * @skc_reuse: %SO_REUSEADDR setting
116 * @skc_bound_dev_if: bound device index if != 0
117 * @skc_bind_node: bind hash linkage for various protocol lookup tables
118 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
119 * @skc_prot: protocol handlers inside a network family
120 * @skc_net: reference to the network namespace of this socket
121 *
122 * This is the minimal network layer representation of sockets, the header
123 * for struct sock and struct inet_timewait_sock.
124 */
125 struct sock_common {
126 /*
127 * first fields are not copied in sock_copy()
128 */
129 union {
130 struct hlist_node skc_node;
131 struct hlist_nulls_node skc_nulls_node;
132 };
133 atomic_t skc_refcnt;
134 int skc_tx_queue_mapping;
135
136 union {
137 unsigned int skc_hash;
138 __u16 skc_u16hashes[2];
139 };
140 unsigned short skc_family;
141 volatile unsigned char skc_state;
142 unsigned char skc_reuse;
143 int skc_bound_dev_if;
144 union {
145 struct hlist_node skc_bind_node;
146 struct hlist_nulls_node skc_portaddr_node;
147 };
148 struct proto *skc_prot;
149 #ifdef CONFIG_NET_NS
150 struct net *skc_net;
151 #endif
152 };
153
154 /**
155 * struct sock - network layer representation of sockets
156 * @__sk_common: shared layout with inet_timewait_sock
157 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
158 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
159 * @sk_lock: synchronizer
160 * @sk_rcvbuf: size of receive buffer in bytes
161 * @sk_sleep: sock wait queue
162 * @sk_dst_cache: destination cache
163 * @sk_dst_lock: destination cache lock
164 * @sk_policy: flow policy
165 * @sk_rmem_alloc: receive queue bytes committed
166 * @sk_receive_queue: incoming packets
167 * @sk_wmem_alloc: transmit queue bytes committed
168 * @sk_write_queue: Packet sending queue
169 * @sk_async_wait_queue: DMA copied packets
170 * @sk_omem_alloc: "o" is "option" or "other"
171 * @sk_wmem_queued: persistent queue size
172 * @sk_forward_alloc: space allocated forward
173 * @sk_allocation: allocation mode
174 * @sk_sndbuf: size of send buffer in bytes
175 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
176 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
177 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
178 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
179 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
180 * @sk_gso_max_size: Maximum GSO segment size to build
181 * @sk_lingertime: %SO_LINGER l_linger setting
182 * @sk_backlog: always used with the per-socket spinlock held
183 * @sk_callback_lock: used with the callbacks in the end of this struct
184 * @sk_error_queue: rarely used
185 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
186 * IPV6_ADDRFORM for instance)
187 * @sk_err: last error
188 * @sk_err_soft: errors that don't cause failure but are the cause of a
189 * persistent failure not just 'timed out'
190 * @sk_drops: raw/udp drops counter
191 * @sk_ack_backlog: current listen backlog
192 * @sk_max_ack_backlog: listen backlog set in listen()
193 * @sk_priority: %SO_PRIORITY setting
194 * @sk_type: socket type (%SOCK_STREAM, etc)
195 * @sk_protocol: which protocol this socket belongs in this network family
196 * @sk_peercred: %SO_PEERCRED setting
197 * @sk_rcvlowat: %SO_RCVLOWAT setting
198 * @sk_rcvtimeo: %SO_RCVTIMEO setting
199 * @sk_sndtimeo: %SO_SNDTIMEO setting
200 * @sk_filter: socket filtering instructions
201 * @sk_protinfo: private area, net family specific, when not using slab
202 * @sk_timer: sock cleanup timer
203 * @sk_stamp: time stamp of last packet received
204 * @sk_socket: Identd and reporting IO signals
205 * @sk_user_data: RPC layer private data
206 * @sk_sndmsg_page: cached page for sendmsg
207 * @sk_sndmsg_off: cached offset for sendmsg
208 * @sk_send_head: front of stuff to transmit
209 * @sk_security: used by security modules
210 * @sk_mark: generic packet mark
211 * @sk_write_pending: a write to stream socket waits to start
212 * @sk_state_change: callback to indicate change in the state of the sock
213 * @sk_data_ready: callback to indicate there is data to be processed
214 * @sk_write_space: callback to indicate there is bf sending space available
215 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
216 * @sk_backlog_rcv: callback to process the backlog
217 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
218 */
219 struct sock {
220 /*
221 * Now struct inet_timewait_sock also uses sock_common, so please just
222 * don't add nothing before this first member (__sk_common) --acme
223 */
224 struct sock_common __sk_common;
225 #define sk_node __sk_common.skc_node
226 #define sk_nulls_node __sk_common.skc_nulls_node
227 #define sk_refcnt __sk_common.skc_refcnt
228 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
229
230 #define sk_copy_start __sk_common.skc_hash
231 #define sk_hash __sk_common.skc_hash
232 #define sk_family __sk_common.skc_family
233 #define sk_state __sk_common.skc_state
234 #define sk_reuse __sk_common.skc_reuse
235 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
236 #define sk_bind_node __sk_common.skc_bind_node
237 #define sk_prot __sk_common.skc_prot
238 #define sk_net __sk_common.skc_net
239 kmemcheck_bitfield_begin(flags);
240 unsigned int sk_shutdown : 2,
241 sk_no_check : 2,
242 sk_userlocks : 4,
243 sk_protocol : 8,
244 sk_type : 16;
245 kmemcheck_bitfield_end(flags);
246 int sk_rcvbuf;
247 socket_lock_t sk_lock;
248 /*
249 * The backlog queue is special, it is always used with
250 * the per-socket spinlock held and requires low latency
251 * access. Therefore we special case it's implementation.
252 */
253 struct {
254 struct sk_buff *head;
255 struct sk_buff *tail;
256 } sk_backlog;
257 wait_queue_head_t *sk_sleep;
258 struct dst_entry *sk_dst_cache;
259 #ifdef CONFIG_XFRM
260 struct xfrm_policy *sk_policy[2];
261 #endif
262 rwlock_t sk_dst_lock;
263 atomic_t sk_rmem_alloc;
264 atomic_t sk_wmem_alloc;
265 atomic_t sk_omem_alloc;
266 int sk_sndbuf;
267 struct sk_buff_head sk_receive_queue;
268 struct sk_buff_head sk_write_queue;
269 #ifdef CONFIG_NET_DMA
270 struct sk_buff_head sk_async_wait_queue;
271 #endif
272 int sk_wmem_queued;
273 int sk_forward_alloc;
274 gfp_t sk_allocation;
275 int sk_route_caps;
276 int sk_gso_type;
277 unsigned int sk_gso_max_size;
278 int sk_rcvlowat;
279 unsigned long sk_flags;
280 unsigned long sk_lingertime;
281 struct sk_buff_head sk_error_queue;
282 struct proto *sk_prot_creator;
283 rwlock_t sk_callback_lock;
284 int sk_err,
285 sk_err_soft;
286 atomic_t sk_drops;
287 unsigned short sk_ack_backlog;
288 unsigned short sk_max_ack_backlog;
289 __u32 sk_priority;
290 struct ucred sk_peercred;
291 long sk_rcvtimeo;
292 long sk_sndtimeo;
293 struct sk_filter *sk_filter;
294 void *sk_protinfo;
295 struct timer_list sk_timer;
296 ktime_t sk_stamp;
297 struct socket *sk_socket;
298 void *sk_user_data;
299 struct page *sk_sndmsg_page;
300 struct sk_buff *sk_send_head;
301 __u32 sk_sndmsg_off;
302 int sk_write_pending;
303 #ifdef CONFIG_SECURITY
304 void *sk_security;
305 #endif
306 __u32 sk_mark;
307 /* XXX 4 bytes hole on 64 bit */
308 void (*sk_state_change)(struct sock *sk);
309 void (*sk_data_ready)(struct sock *sk, int bytes);
310 void (*sk_write_space)(struct sock *sk);
311 void (*sk_error_report)(struct sock *sk);
312 int (*sk_backlog_rcv)(struct sock *sk,
313 struct sk_buff *skb);
314 void (*sk_destruct)(struct sock *sk);
315 };
316
317 /*
318 * Hashed lists helper routines
319 */
320 static inline struct sock *sk_entry(const struct hlist_node *node)
321 {
322 return hlist_entry(node, struct sock, sk_node);
323 }
324
325 static inline struct sock *__sk_head(const struct hlist_head *head)
326 {
327 return hlist_entry(head->first, struct sock, sk_node);
328 }
329
330 static inline struct sock *sk_head(const struct hlist_head *head)
331 {
332 return hlist_empty(head) ? NULL : __sk_head(head);
333 }
334
335 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
336 {
337 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
338 }
339
340 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
341 {
342 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
343 }
344
345 static inline struct sock *sk_next(const struct sock *sk)
346 {
347 return sk->sk_node.next ?
348 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
349 }
350
351 static inline struct sock *sk_nulls_next(const struct sock *sk)
352 {
353 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
354 hlist_nulls_entry(sk->sk_nulls_node.next,
355 struct sock, sk_nulls_node) :
356 NULL;
357 }
358
359 static inline int sk_unhashed(const struct sock *sk)
360 {
361 return hlist_unhashed(&sk->sk_node);
362 }
363
364 static inline int sk_hashed(const struct sock *sk)
365 {
366 return !sk_unhashed(sk);
367 }
368
369 static __inline__ void sk_node_init(struct hlist_node *node)
370 {
371 node->pprev = NULL;
372 }
373
374 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
375 {
376 node->pprev = NULL;
377 }
378
379 static __inline__ void __sk_del_node(struct sock *sk)
380 {
381 __hlist_del(&sk->sk_node);
382 }
383
384 /* NB: equivalent to hlist_del_init_rcu */
385 static __inline__ int __sk_del_node_init(struct sock *sk)
386 {
387 if (sk_hashed(sk)) {
388 __sk_del_node(sk);
389 sk_node_init(&sk->sk_node);
390 return 1;
391 }
392 return 0;
393 }
394
395 /* Grab socket reference count. This operation is valid only
396 when sk is ALREADY grabbed f.e. it is found in hash table
397 or a list and the lookup is made under lock preventing hash table
398 modifications.
399 */
400
401 static inline void sock_hold(struct sock *sk)
402 {
403 atomic_inc(&sk->sk_refcnt);
404 }
405
406 /* Ungrab socket in the context, which assumes that socket refcnt
407 cannot hit zero, f.e. it is true in context of any socketcall.
408 */
409 static inline void __sock_put(struct sock *sk)
410 {
411 atomic_dec(&sk->sk_refcnt);
412 }
413
414 static __inline__ int sk_del_node_init(struct sock *sk)
415 {
416 int rc = __sk_del_node_init(sk);
417
418 if (rc) {
419 /* paranoid for a while -acme */
420 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
421 __sock_put(sk);
422 }
423 return rc;
424 }
425 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
426
427 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
428 {
429 if (sk_hashed(sk)) {
430 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
431 return 1;
432 }
433 return 0;
434 }
435
436 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
437 {
438 int rc = __sk_nulls_del_node_init_rcu(sk);
439
440 if (rc) {
441 /* paranoid for a while -acme */
442 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
443 __sock_put(sk);
444 }
445 return rc;
446 }
447
448 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
449 {
450 hlist_add_head(&sk->sk_node, list);
451 }
452
453 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
454 {
455 sock_hold(sk);
456 __sk_add_node(sk, list);
457 }
458
459 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
460 {
461 sock_hold(sk);
462 hlist_add_head_rcu(&sk->sk_node, list);
463 }
464
465 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
466 {
467 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
468 }
469
470 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
471 {
472 sock_hold(sk);
473 __sk_nulls_add_node_rcu(sk, list);
474 }
475
476 static __inline__ void __sk_del_bind_node(struct sock *sk)
477 {
478 __hlist_del(&sk->sk_bind_node);
479 }
480
481 static __inline__ void sk_add_bind_node(struct sock *sk,
482 struct hlist_head *list)
483 {
484 hlist_add_head(&sk->sk_bind_node, list);
485 }
486
487 #define sk_for_each(__sk, node, list) \
488 hlist_for_each_entry(__sk, node, list, sk_node)
489 #define sk_for_each_rcu(__sk, node, list) \
490 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
491 #define sk_nulls_for_each(__sk, node, list) \
492 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
493 #define sk_nulls_for_each_rcu(__sk, node, list) \
494 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
495 #define sk_for_each_from(__sk, node) \
496 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
497 hlist_for_each_entry_from(__sk, node, sk_node)
498 #define sk_nulls_for_each_from(__sk, node) \
499 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
500 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
501 #define sk_for_each_continue(__sk, node) \
502 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
503 hlist_for_each_entry_continue(__sk, node, sk_node)
504 #define sk_for_each_safe(__sk, node, tmp, list) \
505 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
506 #define sk_for_each_bound(__sk, node, list) \
507 hlist_for_each_entry(__sk, node, list, sk_bind_node)
508
509 /* Sock flags */
510 enum sock_flags {
511 SOCK_DEAD,
512 SOCK_DONE,
513 SOCK_URGINLINE,
514 SOCK_KEEPOPEN,
515 SOCK_LINGER,
516 SOCK_DESTROY,
517 SOCK_BROADCAST,
518 SOCK_TIMESTAMP,
519 SOCK_ZAPPED,
520 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
521 SOCK_DBG, /* %SO_DEBUG setting */
522 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
523 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
524 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
525 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
526 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
527 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
528 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
529 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
530 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
531 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
532 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
533 SOCK_FASYNC, /* fasync() active */
534 SOCK_RXQ_OVFL,
535 };
536
537 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
538 {
539 nsk->sk_flags = osk->sk_flags;
540 }
541
542 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
543 {
544 __set_bit(flag, &sk->sk_flags);
545 }
546
547 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
548 {
549 __clear_bit(flag, &sk->sk_flags);
550 }
551
552 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
553 {
554 return test_bit(flag, &sk->sk_flags);
555 }
556
557 static inline void sk_acceptq_removed(struct sock *sk)
558 {
559 sk->sk_ack_backlog--;
560 }
561
562 static inline void sk_acceptq_added(struct sock *sk)
563 {
564 sk->sk_ack_backlog++;
565 }
566
567 static inline int sk_acceptq_is_full(struct sock *sk)
568 {
569 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
570 }
571
572 /*
573 * Compute minimal free write space needed to queue new packets.
574 */
575 static inline int sk_stream_min_wspace(struct sock *sk)
576 {
577 return sk->sk_wmem_queued >> 1;
578 }
579
580 static inline int sk_stream_wspace(struct sock *sk)
581 {
582 return sk->sk_sndbuf - sk->sk_wmem_queued;
583 }
584
585 extern void sk_stream_write_space(struct sock *sk);
586
587 static inline int sk_stream_memory_free(struct sock *sk)
588 {
589 return sk->sk_wmem_queued < sk->sk_sndbuf;
590 }
591
592 /* The per-socket spinlock must be held here. */
593 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
594 {
595 if (!sk->sk_backlog.tail) {
596 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
597 } else {
598 sk->sk_backlog.tail->next = skb;
599 sk->sk_backlog.tail = skb;
600 }
601 skb->next = NULL;
602 }
603
604 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
605 {
606 return sk->sk_backlog_rcv(sk, skb);
607 }
608
609 #define sk_wait_event(__sk, __timeo, __condition) \
610 ({ int __rc; \
611 release_sock(__sk); \
612 __rc = __condition; \
613 if (!__rc) { \
614 *(__timeo) = schedule_timeout(*(__timeo)); \
615 } \
616 lock_sock(__sk); \
617 __rc = __condition; \
618 __rc; \
619 })
620
621 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
622 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
623 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
624 extern int sk_stream_error(struct sock *sk, int flags, int err);
625 extern void sk_stream_kill_queues(struct sock *sk);
626
627 extern int sk_wait_data(struct sock *sk, long *timeo);
628
629 struct request_sock_ops;
630 struct timewait_sock_ops;
631 struct inet_hashinfo;
632 struct raw_hashinfo;
633
634 /* Networking protocol blocks we attach to sockets.
635 * socket layer -> transport layer interface
636 * transport -> network interface is defined by struct inet_proto
637 */
638 struct proto {
639 void (*close)(struct sock *sk,
640 long timeout);
641 int (*connect)(struct sock *sk,
642 struct sockaddr *uaddr,
643 int addr_len);
644 int (*disconnect)(struct sock *sk, int flags);
645
646 struct sock * (*accept) (struct sock *sk, int flags, int *err);
647
648 int (*ioctl)(struct sock *sk, int cmd,
649 unsigned long arg);
650 int (*init)(struct sock *sk);
651 void (*destroy)(struct sock *sk);
652 void (*shutdown)(struct sock *sk, int how);
653 int (*setsockopt)(struct sock *sk, int level,
654 int optname, char __user *optval,
655 unsigned int optlen);
656 int (*getsockopt)(struct sock *sk, int level,
657 int optname, char __user *optval,
658 int __user *option);
659 #ifdef CONFIG_COMPAT
660 int (*compat_setsockopt)(struct sock *sk,
661 int level,
662 int optname, char __user *optval,
663 unsigned int optlen);
664 int (*compat_getsockopt)(struct sock *sk,
665 int level,
666 int optname, char __user *optval,
667 int __user *option);
668 #endif
669 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
670 struct msghdr *msg, size_t len);
671 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
672 struct msghdr *msg,
673 size_t len, int noblock, int flags,
674 int *addr_len);
675 int (*sendpage)(struct sock *sk, struct page *page,
676 int offset, size_t size, int flags);
677 int (*bind)(struct sock *sk,
678 struct sockaddr *uaddr, int addr_len);
679
680 int (*backlog_rcv) (struct sock *sk,
681 struct sk_buff *skb);
682
683 /* Keeping track of sk's, looking them up, and port selection methods. */
684 void (*hash)(struct sock *sk);
685 void (*unhash)(struct sock *sk);
686 int (*get_port)(struct sock *sk, unsigned short snum);
687
688 /* Keeping track of sockets in use */
689 #ifdef CONFIG_PROC_FS
690 unsigned int inuse_idx;
691 #endif
692
693 /* Memory pressure */
694 void (*enter_memory_pressure)(struct sock *sk);
695 atomic_t *memory_allocated; /* Current allocated memory. */
696 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
697 /*
698 * Pressure flag: try to collapse.
699 * Technical note: it is used by multiple contexts non atomically.
700 * All the __sk_mem_schedule() is of this nature: accounting
701 * is strict, actions are advisory and have some latency.
702 */
703 int *memory_pressure;
704 int *sysctl_mem;
705 int *sysctl_wmem;
706 int *sysctl_rmem;
707 int max_header;
708
709 struct kmem_cache *slab;
710 unsigned int obj_size;
711 int slab_flags;
712
713 struct percpu_counter *orphan_count;
714
715 struct request_sock_ops *rsk_prot;
716 struct timewait_sock_ops *twsk_prot;
717
718 union {
719 struct inet_hashinfo *hashinfo;
720 struct udp_table *udp_table;
721 struct raw_hashinfo *raw_hash;
722 } h;
723
724 struct module *owner;
725
726 char name[32];
727
728 struct list_head node;
729 #ifdef SOCK_REFCNT_DEBUG
730 atomic_t socks;
731 #endif
732 };
733
734 extern int proto_register(struct proto *prot, int alloc_slab);
735 extern void proto_unregister(struct proto *prot);
736
737 #ifdef SOCK_REFCNT_DEBUG
738 static inline void sk_refcnt_debug_inc(struct sock *sk)
739 {
740 atomic_inc(&sk->sk_prot->socks);
741 }
742
743 static inline void sk_refcnt_debug_dec(struct sock *sk)
744 {
745 atomic_dec(&sk->sk_prot->socks);
746 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
747 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
748 }
749
750 static inline void sk_refcnt_debug_release(const struct sock *sk)
751 {
752 if (atomic_read(&sk->sk_refcnt) != 1)
753 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
754 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
755 }
756 #else /* SOCK_REFCNT_DEBUG */
757 #define sk_refcnt_debug_inc(sk) do { } while (0)
758 #define sk_refcnt_debug_dec(sk) do { } while (0)
759 #define sk_refcnt_debug_release(sk) do { } while (0)
760 #endif /* SOCK_REFCNT_DEBUG */
761
762
763 #ifdef CONFIG_PROC_FS
764 /* Called with local bh disabled */
765 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
766 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
767 #else
768 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
769 int inc)
770 {
771 }
772 #endif
773
774
775 /* With per-bucket locks this operation is not-atomic, so that
776 * this version is not worse.
777 */
778 static inline void __sk_prot_rehash(struct sock *sk)
779 {
780 sk->sk_prot->unhash(sk);
781 sk->sk_prot->hash(sk);
782 }
783
784 /* About 10 seconds */
785 #define SOCK_DESTROY_TIME (10*HZ)
786
787 /* Sockets 0-1023 can't be bound to unless you are superuser */
788 #define PROT_SOCK 1024
789
790 #define SHUTDOWN_MASK 3
791 #define RCV_SHUTDOWN 1
792 #define SEND_SHUTDOWN 2
793
794 #define SOCK_SNDBUF_LOCK 1
795 #define SOCK_RCVBUF_LOCK 2
796 #define SOCK_BINDADDR_LOCK 4
797 #define SOCK_BINDPORT_LOCK 8
798
799 /* sock_iocb: used to kick off async processing of socket ios */
800 struct sock_iocb {
801 struct list_head list;
802
803 int flags;
804 int size;
805 struct socket *sock;
806 struct sock *sk;
807 struct scm_cookie *scm;
808 struct msghdr *msg, async_msg;
809 struct kiocb *kiocb;
810 };
811
812 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
813 {
814 return (struct sock_iocb *)iocb->private;
815 }
816
817 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
818 {
819 return si->kiocb;
820 }
821
822 struct socket_alloc {
823 struct socket socket;
824 struct inode vfs_inode;
825 };
826
827 static inline struct socket *SOCKET_I(struct inode *inode)
828 {
829 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
830 }
831
832 static inline struct inode *SOCK_INODE(struct socket *socket)
833 {
834 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
835 }
836
837 /*
838 * Functions for memory accounting
839 */
840 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
841 extern void __sk_mem_reclaim(struct sock *sk);
842
843 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
844 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
845 #define SK_MEM_SEND 0
846 #define SK_MEM_RECV 1
847
848 static inline int sk_mem_pages(int amt)
849 {
850 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
851 }
852
853 static inline int sk_has_account(struct sock *sk)
854 {
855 /* return true if protocol supports memory accounting */
856 return !!sk->sk_prot->memory_allocated;
857 }
858
859 static inline int sk_wmem_schedule(struct sock *sk, int size)
860 {
861 if (!sk_has_account(sk))
862 return 1;
863 return size <= sk->sk_forward_alloc ||
864 __sk_mem_schedule(sk, size, SK_MEM_SEND);
865 }
866
867 static inline int sk_rmem_schedule(struct sock *sk, int size)
868 {
869 if (!sk_has_account(sk))
870 return 1;
871 return size <= sk->sk_forward_alloc ||
872 __sk_mem_schedule(sk, size, SK_MEM_RECV);
873 }
874
875 static inline void sk_mem_reclaim(struct sock *sk)
876 {
877 if (!sk_has_account(sk))
878 return;
879 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
880 __sk_mem_reclaim(sk);
881 }
882
883 static inline void sk_mem_reclaim_partial(struct sock *sk)
884 {
885 if (!sk_has_account(sk))
886 return;
887 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
888 __sk_mem_reclaim(sk);
889 }
890
891 static inline void sk_mem_charge(struct sock *sk, int size)
892 {
893 if (!sk_has_account(sk))
894 return;
895 sk->sk_forward_alloc -= size;
896 }
897
898 static inline void sk_mem_uncharge(struct sock *sk, int size)
899 {
900 if (!sk_has_account(sk))
901 return;
902 sk->sk_forward_alloc += size;
903 }
904
905 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
906 {
907 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
908 sk->sk_wmem_queued -= skb->truesize;
909 sk_mem_uncharge(sk, skb->truesize);
910 __kfree_skb(skb);
911 }
912
913 /* Used by processes to "lock" a socket state, so that
914 * interrupts and bottom half handlers won't change it
915 * from under us. It essentially blocks any incoming
916 * packets, so that we won't get any new data or any
917 * packets that change the state of the socket.
918 *
919 * While locked, BH processing will add new packets to
920 * the backlog queue. This queue is processed by the
921 * owner of the socket lock right before it is released.
922 *
923 * Since ~2.3.5 it is also exclusive sleep lock serializing
924 * accesses from user process context.
925 */
926 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
927
928 /*
929 * Macro so as to not evaluate some arguments when
930 * lockdep is not enabled.
931 *
932 * Mark both the sk_lock and the sk_lock.slock as a
933 * per-address-family lock class.
934 */
935 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
936 do { \
937 sk->sk_lock.owned = 0; \
938 init_waitqueue_head(&sk->sk_lock.wq); \
939 spin_lock_init(&(sk)->sk_lock.slock); \
940 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
941 sizeof((sk)->sk_lock)); \
942 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
943 (skey), (sname)); \
944 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
945 } while (0)
946
947 extern void lock_sock_nested(struct sock *sk, int subclass);
948
949 static inline void lock_sock(struct sock *sk)
950 {
951 lock_sock_nested(sk, 0);
952 }
953
954 extern void release_sock(struct sock *sk);
955
956 /* BH context may only use the following locking interface. */
957 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
958 #define bh_lock_sock_nested(__sk) \
959 spin_lock_nested(&((__sk)->sk_lock.slock), \
960 SINGLE_DEPTH_NESTING)
961 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
962
963 extern struct sock *sk_alloc(struct net *net, int family,
964 gfp_t priority,
965 struct proto *prot);
966 extern void sk_free(struct sock *sk);
967 extern void sk_release_kernel(struct sock *sk);
968 extern struct sock *sk_clone(const struct sock *sk,
969 const gfp_t priority);
970
971 extern struct sk_buff *sock_wmalloc(struct sock *sk,
972 unsigned long size, int force,
973 gfp_t priority);
974 extern struct sk_buff *sock_rmalloc(struct sock *sk,
975 unsigned long size, int force,
976 gfp_t priority);
977 extern void sock_wfree(struct sk_buff *skb);
978 extern void sock_rfree(struct sk_buff *skb);
979
980 extern int sock_setsockopt(struct socket *sock, int level,
981 int op, char __user *optval,
982 unsigned int optlen);
983
984 extern int sock_getsockopt(struct socket *sock, int level,
985 int op, char __user *optval,
986 int __user *optlen);
987 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
988 unsigned long size,
989 int noblock,
990 int *errcode);
991 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
992 unsigned long header_len,
993 unsigned long data_len,
994 int noblock,
995 int *errcode);
996 extern void *sock_kmalloc(struct sock *sk, int size,
997 gfp_t priority);
998 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
999 extern void sk_send_sigurg(struct sock *sk);
1000
1001 /*
1002 * Functions to fill in entries in struct proto_ops when a protocol
1003 * does not implement a particular function.
1004 */
1005 extern int sock_no_bind(struct socket *,
1006 struct sockaddr *, int);
1007 extern int sock_no_connect(struct socket *,
1008 struct sockaddr *, int, int);
1009 extern int sock_no_socketpair(struct socket *,
1010 struct socket *);
1011 extern int sock_no_accept(struct socket *,
1012 struct socket *, int);
1013 extern int sock_no_getname(struct socket *,
1014 struct sockaddr *, int *, int);
1015 extern unsigned int sock_no_poll(struct file *, struct socket *,
1016 struct poll_table_struct *);
1017 extern int sock_no_ioctl(struct socket *, unsigned int,
1018 unsigned long);
1019 extern int sock_no_listen(struct socket *, int);
1020 extern int sock_no_shutdown(struct socket *, int);
1021 extern int sock_no_getsockopt(struct socket *, int , int,
1022 char __user *, int __user *);
1023 extern int sock_no_setsockopt(struct socket *, int, int,
1024 char __user *, unsigned int);
1025 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1026 struct msghdr *, size_t);
1027 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1028 struct msghdr *, size_t, int);
1029 extern int sock_no_mmap(struct file *file,
1030 struct socket *sock,
1031 struct vm_area_struct *vma);
1032 extern ssize_t sock_no_sendpage(struct socket *sock,
1033 struct page *page,
1034 int offset, size_t size,
1035 int flags);
1036
1037 /*
1038 * Functions to fill in entries in struct proto_ops when a protocol
1039 * uses the inet style.
1040 */
1041 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1042 char __user *optval, int __user *optlen);
1043 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1044 struct msghdr *msg, size_t size, int flags);
1045 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1046 char __user *optval, unsigned int optlen);
1047 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1048 int optname, char __user *optval, int __user *optlen);
1049 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1050 int optname, char __user *optval, unsigned int optlen);
1051
1052 extern void sk_common_release(struct sock *sk);
1053
1054 /*
1055 * Default socket callbacks and setup code
1056 */
1057
1058 /* Initialise core socket variables */
1059 extern void sock_init_data(struct socket *sock, struct sock *sk);
1060
1061 /**
1062 * sk_filter_release - release a socket filter
1063 * @fp: filter to remove
1064 *
1065 * Remove a filter from a socket and release its resources.
1066 */
1067
1068 static inline void sk_filter_release(struct sk_filter *fp)
1069 {
1070 if (atomic_dec_and_test(&fp->refcnt))
1071 kfree(fp);
1072 }
1073
1074 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1075 {
1076 unsigned int size = sk_filter_len(fp);
1077
1078 atomic_sub(size, &sk->sk_omem_alloc);
1079 sk_filter_release(fp);
1080 }
1081
1082 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1083 {
1084 atomic_inc(&fp->refcnt);
1085 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1086 }
1087
1088 /*
1089 * Socket reference counting postulates.
1090 *
1091 * * Each user of socket SHOULD hold a reference count.
1092 * * Each access point to socket (an hash table bucket, reference from a list,
1093 * running timer, skb in flight MUST hold a reference count.
1094 * * When reference count hits 0, it means it will never increase back.
1095 * * When reference count hits 0, it means that no references from
1096 * outside exist to this socket and current process on current CPU
1097 * is last user and may/should destroy this socket.
1098 * * sk_free is called from any context: process, BH, IRQ. When
1099 * it is called, socket has no references from outside -> sk_free
1100 * may release descendant resources allocated by the socket, but
1101 * to the time when it is called, socket is NOT referenced by any
1102 * hash tables, lists etc.
1103 * * Packets, delivered from outside (from network or from another process)
1104 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1105 * when they sit in queue. Otherwise, packets will leak to hole, when
1106 * socket is looked up by one cpu and unhasing is made by another CPU.
1107 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1108 * (leak to backlog). Packet socket does all the processing inside
1109 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1110 * use separate SMP lock, so that they are prone too.
1111 */
1112
1113 /* Ungrab socket and destroy it, if it was the last reference. */
1114 static inline void sock_put(struct sock *sk)
1115 {
1116 if (atomic_dec_and_test(&sk->sk_refcnt))
1117 sk_free(sk);
1118 }
1119
1120 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1121 const int nested);
1122
1123 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1124 {
1125 sk->sk_tx_queue_mapping = tx_queue;
1126 }
1127
1128 static inline void sk_tx_queue_clear(struct sock *sk)
1129 {
1130 sk->sk_tx_queue_mapping = -1;
1131 }
1132
1133 static inline int sk_tx_queue_get(const struct sock *sk)
1134 {
1135 return sk->sk_tx_queue_mapping;
1136 }
1137
1138 static inline bool sk_tx_queue_recorded(const struct sock *sk)
1139 {
1140 return (sk && sk->sk_tx_queue_mapping >= 0);
1141 }
1142
1143 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1144 {
1145 sk_tx_queue_clear(sk);
1146 sk->sk_socket = sock;
1147 }
1148
1149 /* Detach socket from process context.
1150 * Announce socket dead, detach it from wait queue and inode.
1151 * Note that parent inode held reference count on this struct sock,
1152 * we do not release it in this function, because protocol
1153 * probably wants some additional cleanups or even continuing
1154 * to work with this socket (TCP).
1155 */
1156 static inline void sock_orphan(struct sock *sk)
1157 {
1158 write_lock_bh(&sk->sk_callback_lock);
1159 sock_set_flag(sk, SOCK_DEAD);
1160 sk_set_socket(sk, NULL);
1161 sk->sk_sleep = NULL;
1162 write_unlock_bh(&sk->sk_callback_lock);
1163 }
1164
1165 static inline void sock_graft(struct sock *sk, struct socket *parent)
1166 {
1167 write_lock_bh(&sk->sk_callback_lock);
1168 sk->sk_sleep = &parent->wait;
1169 parent->sk = sk;
1170 sk_set_socket(sk, parent);
1171 security_sock_graft(sk, parent);
1172 write_unlock_bh(&sk->sk_callback_lock);
1173 }
1174
1175 extern int sock_i_uid(struct sock *sk);
1176 extern unsigned long sock_i_ino(struct sock *sk);
1177
1178 static inline struct dst_entry *
1179 __sk_dst_get(struct sock *sk)
1180 {
1181 return sk->sk_dst_cache;
1182 }
1183
1184 static inline struct dst_entry *
1185 sk_dst_get(struct sock *sk)
1186 {
1187 struct dst_entry *dst;
1188
1189 read_lock(&sk->sk_dst_lock);
1190 dst = sk->sk_dst_cache;
1191 if (dst)
1192 dst_hold(dst);
1193 read_unlock(&sk->sk_dst_lock);
1194 return dst;
1195 }
1196
1197 static inline void
1198 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1199 {
1200 struct dst_entry *old_dst;
1201
1202 sk_tx_queue_clear(sk);
1203 old_dst = sk->sk_dst_cache;
1204 sk->sk_dst_cache = dst;
1205 dst_release(old_dst);
1206 }
1207
1208 static inline void
1209 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1210 {
1211 write_lock(&sk->sk_dst_lock);
1212 __sk_dst_set(sk, dst);
1213 write_unlock(&sk->sk_dst_lock);
1214 }
1215
1216 static inline void
1217 __sk_dst_reset(struct sock *sk)
1218 {
1219 struct dst_entry *old_dst;
1220
1221 sk_tx_queue_clear(sk);
1222 old_dst = sk->sk_dst_cache;
1223 sk->sk_dst_cache = NULL;
1224 dst_release(old_dst);
1225 }
1226
1227 static inline void
1228 sk_dst_reset(struct sock *sk)
1229 {
1230 write_lock(&sk->sk_dst_lock);
1231 __sk_dst_reset(sk);
1232 write_unlock(&sk->sk_dst_lock);
1233 }
1234
1235 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1236
1237 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1238
1239 static inline int sk_can_gso(const struct sock *sk)
1240 {
1241 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1242 }
1243
1244 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1245
1246 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1247 struct sk_buff *skb, struct page *page,
1248 int off, int copy)
1249 {
1250 if (skb->ip_summed == CHECKSUM_NONE) {
1251 int err = 0;
1252 __wsum csum = csum_and_copy_from_user(from,
1253 page_address(page) + off,
1254 copy, 0, &err);
1255 if (err)
1256 return err;
1257 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1258 } else if (copy_from_user(page_address(page) + off, from, copy))
1259 return -EFAULT;
1260
1261 skb->len += copy;
1262 skb->data_len += copy;
1263 skb->truesize += copy;
1264 sk->sk_wmem_queued += copy;
1265 sk_mem_charge(sk, copy);
1266 return 0;
1267 }
1268
1269 /**
1270 * sk_wmem_alloc_get - returns write allocations
1271 * @sk: socket
1272 *
1273 * Returns sk_wmem_alloc minus initial offset of one
1274 */
1275 static inline int sk_wmem_alloc_get(const struct sock *sk)
1276 {
1277 return atomic_read(&sk->sk_wmem_alloc) - 1;
1278 }
1279
1280 /**
1281 * sk_rmem_alloc_get - returns read allocations
1282 * @sk: socket
1283 *
1284 * Returns sk_rmem_alloc
1285 */
1286 static inline int sk_rmem_alloc_get(const struct sock *sk)
1287 {
1288 return atomic_read(&sk->sk_rmem_alloc);
1289 }
1290
1291 /**
1292 * sk_has_allocations - check if allocations are outstanding
1293 * @sk: socket
1294 *
1295 * Returns true if socket has write or read allocations
1296 */
1297 static inline int sk_has_allocations(const struct sock *sk)
1298 {
1299 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1300 }
1301
1302 /**
1303 * sk_has_sleeper - check if there are any waiting processes
1304 * @sk: socket
1305 *
1306 * Returns true if socket has waiting processes
1307 *
1308 * The purpose of the sk_has_sleeper and sock_poll_wait is to wrap the memory
1309 * barrier call. They were added due to the race found within the tcp code.
1310 *
1311 * Consider following tcp code paths:
1312 *
1313 * CPU1 CPU2
1314 *
1315 * sys_select receive packet
1316 * ... ...
1317 * __add_wait_queue update tp->rcv_nxt
1318 * ... ...
1319 * tp->rcv_nxt check sock_def_readable
1320 * ... {
1321 * schedule ...
1322 * if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1323 * wake_up_interruptible(sk->sk_sleep)
1324 * ...
1325 * }
1326 *
1327 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1328 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1329 * could then endup calling schedule and sleep forever if there are no more
1330 * data on the socket.
1331 *
1332 * The sk_has_sleeper is always called right after a call to read_lock, so we
1333 * can use smp_mb__after_lock barrier.
1334 */
1335 static inline int sk_has_sleeper(struct sock *sk)
1336 {
1337 /*
1338 * We need to be sure we are in sync with the
1339 * add_wait_queue modifications to the wait queue.
1340 *
1341 * This memory barrier is paired in the sock_poll_wait.
1342 */
1343 smp_mb__after_lock();
1344 return sk->sk_sleep && waitqueue_active(sk->sk_sleep);
1345 }
1346
1347 /**
1348 * sock_poll_wait - place memory barrier behind the poll_wait call.
1349 * @filp: file
1350 * @wait_address: socket wait queue
1351 * @p: poll_table
1352 *
1353 * See the comments in the sk_has_sleeper function.
1354 */
1355 static inline void sock_poll_wait(struct file *filp,
1356 wait_queue_head_t *wait_address, poll_table *p)
1357 {
1358 if (p && wait_address) {
1359 poll_wait(filp, wait_address, p);
1360 /*
1361 * We need to be sure we are in sync with the
1362 * socket flags modification.
1363 *
1364 * This memory barrier is paired in the sk_has_sleeper.
1365 */
1366 smp_mb();
1367 }
1368 }
1369
1370 /*
1371 * Queue a received datagram if it will fit. Stream and sequenced
1372 * protocols can't normally use this as they need to fit buffers in
1373 * and play with them.
1374 *
1375 * Inlined as it's very short and called for pretty much every
1376 * packet ever received.
1377 */
1378
1379 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1380 {
1381 skb_orphan(skb);
1382 skb->sk = sk;
1383 skb->destructor = sock_wfree;
1384 /*
1385 * We used to take a refcount on sk, but following operation
1386 * is enough to guarantee sk_free() wont free this sock until
1387 * all in-flight packets are completed
1388 */
1389 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1390 }
1391
1392 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1393 {
1394 skb_orphan(skb);
1395 skb->sk = sk;
1396 skb->destructor = sock_rfree;
1397 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1398 sk_mem_charge(sk, skb->truesize);
1399 }
1400
1401 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1402 unsigned long expires);
1403
1404 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1405
1406 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1407
1408 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1409 {
1410 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1411 number of warnings when compiling with -W --ANK
1412 */
1413 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1414 (unsigned)sk->sk_rcvbuf)
1415 return -ENOMEM;
1416 skb_set_owner_r(skb, sk);
1417 skb_queue_tail(&sk->sk_error_queue, skb);
1418 if (!sock_flag(sk, SOCK_DEAD))
1419 sk->sk_data_ready(sk, skb->len);
1420 return 0;
1421 }
1422
1423 /*
1424 * Recover an error report and clear atomically
1425 */
1426
1427 static inline int sock_error(struct sock *sk)
1428 {
1429 int err;
1430 if (likely(!sk->sk_err))
1431 return 0;
1432 err = xchg(&sk->sk_err, 0);
1433 return -err;
1434 }
1435
1436 static inline unsigned long sock_wspace(struct sock *sk)
1437 {
1438 int amt = 0;
1439
1440 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1441 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1442 if (amt < 0)
1443 amt = 0;
1444 }
1445 return amt;
1446 }
1447
1448 static inline void sk_wake_async(struct sock *sk, int how, int band)
1449 {
1450 if (sock_flag(sk, SOCK_FASYNC))
1451 sock_wake_async(sk->sk_socket, how, band);
1452 }
1453
1454 #define SOCK_MIN_SNDBUF 2048
1455 #define SOCK_MIN_RCVBUF 256
1456
1457 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1458 {
1459 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1460 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1461 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1462 }
1463 }
1464
1465 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1466
1467 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1468 {
1469 struct page *page = NULL;
1470
1471 page = alloc_pages(sk->sk_allocation, 0);
1472 if (!page) {
1473 sk->sk_prot->enter_memory_pressure(sk);
1474 sk_stream_moderate_sndbuf(sk);
1475 }
1476 return page;
1477 }
1478
1479 /*
1480 * Default write policy as shown to user space via poll/select/SIGIO
1481 */
1482 static inline int sock_writeable(const struct sock *sk)
1483 {
1484 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1485 }
1486
1487 static inline gfp_t gfp_any(void)
1488 {
1489 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1490 }
1491
1492 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1493 {
1494 return noblock ? 0 : sk->sk_rcvtimeo;
1495 }
1496
1497 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1498 {
1499 return noblock ? 0 : sk->sk_sndtimeo;
1500 }
1501
1502 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1503 {
1504 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1505 }
1506
1507 /* Alas, with timeout socket operations are not restartable.
1508 * Compare this to poll().
1509 */
1510 static inline int sock_intr_errno(long timeo)
1511 {
1512 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1513 }
1514
1515 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1516 struct sk_buff *skb);
1517
1518 static __inline__ void
1519 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1520 {
1521 ktime_t kt = skb->tstamp;
1522 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1523
1524 /*
1525 * generate control messages if
1526 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1527 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1528 * - software time stamp available and wanted
1529 * (SOCK_TIMESTAMPING_SOFTWARE)
1530 * - hardware time stamps available and wanted
1531 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1532 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1533 */
1534 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1535 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1536 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1537 (hwtstamps->hwtstamp.tv64 &&
1538 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1539 (hwtstamps->syststamp.tv64 &&
1540 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1541 __sock_recv_timestamp(msg, sk, skb);
1542 else
1543 sk->sk_stamp = kt;
1544 }
1545
1546 extern void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb);
1547
1548 /**
1549 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1550 * @msg: outgoing packet
1551 * @sk: socket sending this packet
1552 * @shtx: filled with instructions for time stamping
1553 *
1554 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1555 * parameters are invalid.
1556 */
1557 extern int sock_tx_timestamp(struct msghdr *msg,
1558 struct sock *sk,
1559 union skb_shared_tx *shtx);
1560
1561
1562 /**
1563 * sk_eat_skb - Release a skb if it is no longer needed
1564 * @sk: socket to eat this skb from
1565 * @skb: socket buffer to eat
1566 * @copied_early: flag indicating whether DMA operations copied this data early
1567 *
1568 * This routine must be called with interrupts disabled or with the socket
1569 * locked so that the sk_buff queue operation is ok.
1570 */
1571 #ifdef CONFIG_NET_DMA
1572 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1573 {
1574 __skb_unlink(skb, &sk->sk_receive_queue);
1575 if (!copied_early)
1576 __kfree_skb(skb);
1577 else
1578 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1579 }
1580 #else
1581 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1582 {
1583 __skb_unlink(skb, &sk->sk_receive_queue);
1584 __kfree_skb(skb);
1585 }
1586 #endif
1587
1588 static inline
1589 struct net *sock_net(const struct sock *sk)
1590 {
1591 #ifdef CONFIG_NET_NS
1592 return sk->sk_net;
1593 #else
1594 return &init_net;
1595 #endif
1596 }
1597
1598 static inline
1599 void sock_net_set(struct sock *sk, struct net *net)
1600 {
1601 #ifdef CONFIG_NET_NS
1602 sk->sk_net = net;
1603 #endif
1604 }
1605
1606 /*
1607 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1608 * They should not hold a referrence to a namespace in order to allow
1609 * to stop it.
1610 * Sockets after sk_change_net should be released using sk_release_kernel
1611 */
1612 static inline void sk_change_net(struct sock *sk, struct net *net)
1613 {
1614 put_net(sock_net(sk));
1615 sock_net_set(sk, hold_net(net));
1616 }
1617
1618 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1619 {
1620 if (unlikely(skb->sk)) {
1621 struct sock *sk = skb->sk;
1622
1623 skb->destructor = NULL;
1624 skb->sk = NULL;
1625 return sk;
1626 }
1627 return NULL;
1628 }
1629
1630 extern void sock_enable_timestamp(struct sock *sk, int flag);
1631 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1632 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1633
1634 /*
1635 * Enable debug/info messages
1636 */
1637 extern int net_msg_warn;
1638 #define NETDEBUG(fmt, args...) \
1639 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1640
1641 #define LIMIT_NETDEBUG(fmt, args...) \
1642 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1643
1644 extern __u32 sysctl_wmem_max;
1645 extern __u32 sysctl_rmem_max;
1646
1647 extern void sk_init(void);
1648
1649 extern int sysctl_optmem_max;
1650
1651 extern __u32 sysctl_wmem_default;
1652 extern __u32 sysctl_rmem_default;
1653
1654 #endif /* _SOCK_H */
This page took 0.076385 seconds and 6 git commands to generate.