Merge git://git.kernel.org/pub/scm/linux/kernel/git/wim/linux-2.6-watchdog
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/timer.h>
46 #include <linux/cache.h>
47 #include <linux/module.h>
48 #include <linux/lockdep.h>
49 #include <linux/netdevice.h>
50 #include <linux/skbuff.h> /* struct sk_buff */
51 #include <linux/mm.h>
52 #include <linux/security.h>
53
54 #include <linux/filter.h>
55
56 #include <asm/atomic.h>
57 #include <net/dst.h>
58 #include <net/checksum.h>
59 #include <net/net_namespace.h>
60
61 /*
62 * This structure really needs to be cleaned up.
63 * Most of it is for TCP, and not used by any of
64 * the other protocols.
65 */
66
67 /* Define this to get the SOCK_DBG debugging facility. */
68 #define SOCK_DEBUGGING
69 #ifdef SOCK_DEBUGGING
70 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
71 printk(KERN_DEBUG msg); } while (0)
72 #else
73 #define SOCK_DEBUG(sk, msg...) do { } while (0)
74 #endif
75
76 /* This is the per-socket lock. The spinlock provides a synchronization
77 * between user contexts and software interrupt processing, whereas the
78 * mini-semaphore synchronizes multiple users amongst themselves.
79 */
80 typedef struct {
81 spinlock_t slock;
82 int owned;
83 wait_queue_head_t wq;
84 /*
85 * We express the mutex-alike socket_lock semantics
86 * to the lock validator by explicitly managing
87 * the slock as a lock variant (in addition to
88 * the slock itself):
89 */
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91 struct lockdep_map dep_map;
92 #endif
93 } socket_lock_t;
94
95 struct sock;
96 struct proto;
97
98 /**
99 * struct sock_common - minimal network layer representation of sockets
100 * @skc_family: network address family
101 * @skc_state: Connection state
102 * @skc_reuse: %SO_REUSEADDR setting
103 * @skc_bound_dev_if: bound device index if != 0
104 * @skc_node: main hash linkage for various protocol lookup tables
105 * @skc_bind_node: bind hash linkage for various protocol lookup tables
106 * @skc_refcnt: reference count
107 * @skc_hash: hash value used with various protocol lookup tables
108 * @skc_prot: protocol handlers inside a network family
109 * @skc_net: reference to the network namespace of this socket
110 *
111 * This is the minimal network layer representation of sockets, the header
112 * for struct sock and struct inet_timewait_sock.
113 */
114 struct sock_common {
115 unsigned short skc_family;
116 volatile unsigned char skc_state;
117 unsigned char skc_reuse;
118 int skc_bound_dev_if;
119 struct hlist_node skc_node;
120 struct hlist_node skc_bind_node;
121 atomic_t skc_refcnt;
122 unsigned int skc_hash;
123 struct proto *skc_prot;
124 struct net *skc_net;
125 };
126
127 /**
128 * struct sock - network layer representation of sockets
129 * @__sk_common: shared layout with inet_timewait_sock
130 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
131 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
132 * @sk_lock: synchronizer
133 * @sk_rcvbuf: size of receive buffer in bytes
134 * @sk_sleep: sock wait queue
135 * @sk_dst_cache: destination cache
136 * @sk_dst_lock: destination cache lock
137 * @sk_policy: flow policy
138 * @sk_rmem_alloc: receive queue bytes committed
139 * @sk_receive_queue: incoming packets
140 * @sk_wmem_alloc: transmit queue bytes committed
141 * @sk_write_queue: Packet sending queue
142 * @sk_async_wait_queue: DMA copied packets
143 * @sk_omem_alloc: "o" is "option" or "other"
144 * @sk_wmem_queued: persistent queue size
145 * @sk_forward_alloc: space allocated forward
146 * @sk_allocation: allocation mode
147 * @sk_sndbuf: size of send buffer in bytes
148 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
149 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
150 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
151 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
152 * @sk_lingertime: %SO_LINGER l_linger setting
153 * @sk_backlog: always used with the per-socket spinlock held
154 * @sk_callback_lock: used with the callbacks in the end of this struct
155 * @sk_error_queue: rarely used
156 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
157 * @sk_err: last error
158 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
159 * @sk_ack_backlog: current listen backlog
160 * @sk_max_ack_backlog: listen backlog set in listen()
161 * @sk_priority: %SO_PRIORITY setting
162 * @sk_type: socket type (%SOCK_STREAM, etc)
163 * @sk_protocol: which protocol this socket belongs in this network family
164 * @sk_peercred: %SO_PEERCRED setting
165 * @sk_rcvlowat: %SO_RCVLOWAT setting
166 * @sk_rcvtimeo: %SO_RCVTIMEO setting
167 * @sk_sndtimeo: %SO_SNDTIMEO setting
168 * @sk_filter: socket filtering instructions
169 * @sk_protinfo: private area, net family specific, when not using slab
170 * @sk_timer: sock cleanup timer
171 * @sk_stamp: time stamp of last packet received
172 * @sk_socket: Identd and reporting IO signals
173 * @sk_user_data: RPC layer private data
174 * @sk_sndmsg_page: cached page for sendmsg
175 * @sk_sndmsg_off: cached offset for sendmsg
176 * @sk_send_head: front of stuff to transmit
177 * @sk_security: used by security modules
178 * @sk_write_pending: a write to stream socket waits to start
179 * @sk_state_change: callback to indicate change in the state of the sock
180 * @sk_data_ready: callback to indicate there is data to be processed
181 * @sk_write_space: callback to indicate there is bf sending space available
182 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
183 * @sk_backlog_rcv: callback to process the backlog
184 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
185 */
186 struct sock {
187 /*
188 * Now struct inet_timewait_sock also uses sock_common, so please just
189 * don't add nothing before this first member (__sk_common) --acme
190 */
191 struct sock_common __sk_common;
192 #define sk_family __sk_common.skc_family
193 #define sk_state __sk_common.skc_state
194 #define sk_reuse __sk_common.skc_reuse
195 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
196 #define sk_node __sk_common.skc_node
197 #define sk_bind_node __sk_common.skc_bind_node
198 #define sk_refcnt __sk_common.skc_refcnt
199 #define sk_hash __sk_common.skc_hash
200 #define sk_prot __sk_common.skc_prot
201 #define sk_net __sk_common.skc_net
202 unsigned char sk_shutdown : 2,
203 sk_no_check : 2,
204 sk_userlocks : 4;
205 unsigned char sk_protocol;
206 unsigned short sk_type;
207 int sk_rcvbuf;
208 socket_lock_t sk_lock;
209 /*
210 * The backlog queue is special, it is always used with
211 * the per-socket spinlock held and requires low latency
212 * access. Therefore we special case it's implementation.
213 */
214 struct {
215 struct sk_buff *head;
216 struct sk_buff *tail;
217 } sk_backlog;
218 wait_queue_head_t *sk_sleep;
219 struct dst_entry *sk_dst_cache;
220 struct xfrm_policy *sk_policy[2];
221 rwlock_t sk_dst_lock;
222 atomic_t sk_rmem_alloc;
223 atomic_t sk_wmem_alloc;
224 atomic_t sk_omem_alloc;
225 int sk_sndbuf;
226 struct sk_buff_head sk_receive_queue;
227 struct sk_buff_head sk_write_queue;
228 struct sk_buff_head sk_async_wait_queue;
229 int sk_wmem_queued;
230 int sk_forward_alloc;
231 gfp_t sk_allocation;
232 int sk_route_caps;
233 int sk_gso_type;
234 int sk_rcvlowat;
235 unsigned long sk_flags;
236 unsigned long sk_lingertime;
237 struct sk_buff_head sk_error_queue;
238 struct proto *sk_prot_creator;
239 rwlock_t sk_callback_lock;
240 int sk_err,
241 sk_err_soft;
242 unsigned short sk_ack_backlog;
243 unsigned short sk_max_ack_backlog;
244 __u32 sk_priority;
245 struct ucred sk_peercred;
246 long sk_rcvtimeo;
247 long sk_sndtimeo;
248 struct sk_filter *sk_filter;
249 void *sk_protinfo;
250 struct timer_list sk_timer;
251 ktime_t sk_stamp;
252 struct socket *sk_socket;
253 void *sk_user_data;
254 struct page *sk_sndmsg_page;
255 struct sk_buff *sk_send_head;
256 __u32 sk_sndmsg_off;
257 int sk_write_pending;
258 void *sk_security;
259 void (*sk_state_change)(struct sock *sk);
260 void (*sk_data_ready)(struct sock *sk, int bytes);
261 void (*sk_write_space)(struct sock *sk);
262 void (*sk_error_report)(struct sock *sk);
263 int (*sk_backlog_rcv)(struct sock *sk,
264 struct sk_buff *skb);
265 void (*sk_destruct)(struct sock *sk);
266 };
267
268 /*
269 * Hashed lists helper routines
270 */
271 static inline struct sock *__sk_head(const struct hlist_head *head)
272 {
273 return hlist_entry(head->first, struct sock, sk_node);
274 }
275
276 static inline struct sock *sk_head(const struct hlist_head *head)
277 {
278 return hlist_empty(head) ? NULL : __sk_head(head);
279 }
280
281 static inline struct sock *sk_next(const struct sock *sk)
282 {
283 return sk->sk_node.next ?
284 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
285 }
286
287 static inline int sk_unhashed(const struct sock *sk)
288 {
289 return hlist_unhashed(&sk->sk_node);
290 }
291
292 static inline int sk_hashed(const struct sock *sk)
293 {
294 return !sk_unhashed(sk);
295 }
296
297 static __inline__ void sk_node_init(struct hlist_node *node)
298 {
299 node->pprev = NULL;
300 }
301
302 static __inline__ void __sk_del_node(struct sock *sk)
303 {
304 __hlist_del(&sk->sk_node);
305 }
306
307 static __inline__ int __sk_del_node_init(struct sock *sk)
308 {
309 if (sk_hashed(sk)) {
310 __sk_del_node(sk);
311 sk_node_init(&sk->sk_node);
312 return 1;
313 }
314 return 0;
315 }
316
317 /* Grab socket reference count. This operation is valid only
318 when sk is ALREADY grabbed f.e. it is found in hash table
319 or a list and the lookup is made under lock preventing hash table
320 modifications.
321 */
322
323 static inline void sock_hold(struct sock *sk)
324 {
325 atomic_inc(&sk->sk_refcnt);
326 }
327
328 /* Ungrab socket in the context, which assumes that socket refcnt
329 cannot hit zero, f.e. it is true in context of any socketcall.
330 */
331 static inline void __sock_put(struct sock *sk)
332 {
333 atomic_dec(&sk->sk_refcnt);
334 }
335
336 static __inline__ int sk_del_node_init(struct sock *sk)
337 {
338 int rc = __sk_del_node_init(sk);
339
340 if (rc) {
341 /* paranoid for a while -acme */
342 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
343 __sock_put(sk);
344 }
345 return rc;
346 }
347
348 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
349 {
350 hlist_add_head(&sk->sk_node, list);
351 }
352
353 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
354 {
355 sock_hold(sk);
356 __sk_add_node(sk, list);
357 }
358
359 static __inline__ void __sk_del_bind_node(struct sock *sk)
360 {
361 __hlist_del(&sk->sk_bind_node);
362 }
363
364 static __inline__ void sk_add_bind_node(struct sock *sk,
365 struct hlist_head *list)
366 {
367 hlist_add_head(&sk->sk_bind_node, list);
368 }
369
370 #define sk_for_each(__sk, node, list) \
371 hlist_for_each_entry(__sk, node, list, sk_node)
372 #define sk_for_each_from(__sk, node) \
373 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
374 hlist_for_each_entry_from(__sk, node, sk_node)
375 #define sk_for_each_continue(__sk, node) \
376 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
377 hlist_for_each_entry_continue(__sk, node, sk_node)
378 #define sk_for_each_safe(__sk, node, tmp, list) \
379 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
380 #define sk_for_each_bound(__sk, node, list) \
381 hlist_for_each_entry(__sk, node, list, sk_bind_node)
382
383 /* Sock flags */
384 enum sock_flags {
385 SOCK_DEAD,
386 SOCK_DONE,
387 SOCK_URGINLINE,
388 SOCK_KEEPOPEN,
389 SOCK_LINGER,
390 SOCK_DESTROY,
391 SOCK_BROADCAST,
392 SOCK_TIMESTAMP,
393 SOCK_ZAPPED,
394 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
395 SOCK_DBG, /* %SO_DEBUG setting */
396 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
397 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
398 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
399 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
400 };
401
402 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
403 {
404 nsk->sk_flags = osk->sk_flags;
405 }
406
407 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
408 {
409 __set_bit(flag, &sk->sk_flags);
410 }
411
412 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
413 {
414 __clear_bit(flag, &sk->sk_flags);
415 }
416
417 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
418 {
419 return test_bit(flag, &sk->sk_flags);
420 }
421
422 static inline void sk_acceptq_removed(struct sock *sk)
423 {
424 sk->sk_ack_backlog--;
425 }
426
427 static inline void sk_acceptq_added(struct sock *sk)
428 {
429 sk->sk_ack_backlog++;
430 }
431
432 static inline int sk_acceptq_is_full(struct sock *sk)
433 {
434 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
435 }
436
437 /*
438 * Compute minimal free write space needed to queue new packets.
439 */
440 static inline int sk_stream_min_wspace(struct sock *sk)
441 {
442 return sk->sk_wmem_queued / 2;
443 }
444
445 static inline int sk_stream_wspace(struct sock *sk)
446 {
447 return sk->sk_sndbuf - sk->sk_wmem_queued;
448 }
449
450 extern void sk_stream_write_space(struct sock *sk);
451
452 static inline int sk_stream_memory_free(struct sock *sk)
453 {
454 return sk->sk_wmem_queued < sk->sk_sndbuf;
455 }
456
457 extern void sk_stream_rfree(struct sk_buff *skb);
458
459 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
460 {
461 skb->sk = sk;
462 skb->destructor = sk_stream_rfree;
463 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
464 sk->sk_forward_alloc -= skb->truesize;
465 }
466
467 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
468 {
469 skb_truesize_check(skb);
470 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
471 sk->sk_wmem_queued -= skb->truesize;
472 sk->sk_forward_alloc += skb->truesize;
473 __kfree_skb(skb);
474 }
475
476 /* The per-socket spinlock must be held here. */
477 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
478 {
479 if (!sk->sk_backlog.tail) {
480 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
481 } else {
482 sk->sk_backlog.tail->next = skb;
483 sk->sk_backlog.tail = skb;
484 }
485 skb->next = NULL;
486 }
487
488 #define sk_wait_event(__sk, __timeo, __condition) \
489 ({ int __rc; \
490 release_sock(__sk); \
491 __rc = __condition; \
492 if (!__rc) { \
493 *(__timeo) = schedule_timeout(*(__timeo)); \
494 } \
495 lock_sock(__sk); \
496 __rc = __condition; \
497 __rc; \
498 })
499
500 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
501 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
502 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
503 extern int sk_stream_error(struct sock *sk, int flags, int err);
504 extern void sk_stream_kill_queues(struct sock *sk);
505
506 extern int sk_wait_data(struct sock *sk, long *timeo);
507
508 struct request_sock_ops;
509 struct timewait_sock_ops;
510
511 /* Networking protocol blocks we attach to sockets.
512 * socket layer -> transport layer interface
513 * transport -> network interface is defined by struct inet_proto
514 */
515 struct proto {
516 void (*close)(struct sock *sk,
517 long timeout);
518 int (*connect)(struct sock *sk,
519 struct sockaddr *uaddr,
520 int addr_len);
521 int (*disconnect)(struct sock *sk, int flags);
522
523 struct sock * (*accept) (struct sock *sk, int flags, int *err);
524
525 int (*ioctl)(struct sock *sk, int cmd,
526 unsigned long arg);
527 int (*init)(struct sock *sk);
528 int (*destroy)(struct sock *sk);
529 void (*shutdown)(struct sock *sk, int how);
530 int (*setsockopt)(struct sock *sk, int level,
531 int optname, char __user *optval,
532 int optlen);
533 int (*getsockopt)(struct sock *sk, int level,
534 int optname, char __user *optval,
535 int __user *option);
536 int (*compat_setsockopt)(struct sock *sk,
537 int level,
538 int optname, char __user *optval,
539 int optlen);
540 int (*compat_getsockopt)(struct sock *sk,
541 int level,
542 int optname, char __user *optval,
543 int __user *option);
544 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
545 struct msghdr *msg, size_t len);
546 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
547 struct msghdr *msg,
548 size_t len, int noblock, int flags,
549 int *addr_len);
550 int (*sendpage)(struct sock *sk, struct page *page,
551 int offset, size_t size, int flags);
552 int (*bind)(struct sock *sk,
553 struct sockaddr *uaddr, int addr_len);
554
555 int (*backlog_rcv) (struct sock *sk,
556 struct sk_buff *skb);
557
558 /* Keeping track of sk's, looking them up, and port selection methods. */
559 void (*hash)(struct sock *sk);
560 void (*unhash)(struct sock *sk);
561 int (*get_port)(struct sock *sk, unsigned short snum);
562
563 /* Memory pressure */
564 void (*enter_memory_pressure)(void);
565 atomic_t *memory_allocated; /* Current allocated memory. */
566 atomic_t *sockets_allocated; /* Current number of sockets. */
567 /*
568 * Pressure flag: try to collapse.
569 * Technical note: it is used by multiple contexts non atomically.
570 * All the sk_stream_mem_schedule() is of this nature: accounting
571 * is strict, actions are advisory and have some latency.
572 */
573 int *memory_pressure;
574 int *sysctl_mem;
575 int *sysctl_wmem;
576 int *sysctl_rmem;
577 int max_header;
578
579 struct kmem_cache *slab;
580 unsigned int obj_size;
581
582 atomic_t *orphan_count;
583
584 struct request_sock_ops *rsk_prot;
585 struct timewait_sock_ops *twsk_prot;
586
587 struct module *owner;
588
589 char name[32];
590
591 struct list_head node;
592 #ifdef SOCK_REFCNT_DEBUG
593 atomic_t socks;
594 #endif
595 struct {
596 int inuse;
597 u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
598 } stats[NR_CPUS];
599 };
600
601 extern int proto_register(struct proto *prot, int alloc_slab);
602 extern void proto_unregister(struct proto *prot);
603
604 #ifdef SOCK_REFCNT_DEBUG
605 static inline void sk_refcnt_debug_inc(struct sock *sk)
606 {
607 atomic_inc(&sk->sk_prot->socks);
608 }
609
610 static inline void sk_refcnt_debug_dec(struct sock *sk)
611 {
612 atomic_dec(&sk->sk_prot->socks);
613 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
614 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
615 }
616
617 static inline void sk_refcnt_debug_release(const struct sock *sk)
618 {
619 if (atomic_read(&sk->sk_refcnt) != 1)
620 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
621 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
622 }
623 #else /* SOCK_REFCNT_DEBUG */
624 #define sk_refcnt_debug_inc(sk) do { } while (0)
625 #define sk_refcnt_debug_dec(sk) do { } while (0)
626 #define sk_refcnt_debug_release(sk) do { } while (0)
627 #endif /* SOCK_REFCNT_DEBUG */
628
629 /* Called with local bh disabled */
630 static __inline__ void sock_prot_inc_use(struct proto *prot)
631 {
632 prot->stats[smp_processor_id()].inuse++;
633 }
634
635 static __inline__ void sock_prot_dec_use(struct proto *prot)
636 {
637 prot->stats[smp_processor_id()].inuse--;
638 }
639
640 /* With per-bucket locks this operation is not-atomic, so that
641 * this version is not worse.
642 */
643 static inline void __sk_prot_rehash(struct sock *sk)
644 {
645 sk->sk_prot->unhash(sk);
646 sk->sk_prot->hash(sk);
647 }
648
649 /* About 10 seconds */
650 #define SOCK_DESTROY_TIME (10*HZ)
651
652 /* Sockets 0-1023 can't be bound to unless you are superuser */
653 #define PROT_SOCK 1024
654
655 #define SHUTDOWN_MASK 3
656 #define RCV_SHUTDOWN 1
657 #define SEND_SHUTDOWN 2
658
659 #define SOCK_SNDBUF_LOCK 1
660 #define SOCK_RCVBUF_LOCK 2
661 #define SOCK_BINDADDR_LOCK 4
662 #define SOCK_BINDPORT_LOCK 8
663
664 /* sock_iocb: used to kick off async processing of socket ios */
665 struct sock_iocb {
666 struct list_head list;
667
668 int flags;
669 int size;
670 struct socket *sock;
671 struct sock *sk;
672 struct scm_cookie *scm;
673 struct msghdr *msg, async_msg;
674 struct kiocb *kiocb;
675 };
676
677 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
678 {
679 return (struct sock_iocb *)iocb->private;
680 }
681
682 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
683 {
684 return si->kiocb;
685 }
686
687 struct socket_alloc {
688 struct socket socket;
689 struct inode vfs_inode;
690 };
691
692 static inline struct socket *SOCKET_I(struct inode *inode)
693 {
694 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
695 }
696
697 static inline struct inode *SOCK_INODE(struct socket *socket)
698 {
699 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
700 }
701
702 extern void __sk_stream_mem_reclaim(struct sock *sk);
703 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
704
705 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
706
707 static inline int sk_stream_pages(int amt)
708 {
709 return DIV_ROUND_UP(amt, SK_STREAM_MEM_QUANTUM);
710 }
711
712 static inline void sk_stream_mem_reclaim(struct sock *sk)
713 {
714 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
715 __sk_stream_mem_reclaim(sk);
716 }
717
718 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
719 {
720 return (int)skb->truesize <= sk->sk_forward_alloc ||
721 sk_stream_mem_schedule(sk, skb->truesize, 1);
722 }
723
724 static inline int sk_stream_wmem_schedule(struct sock *sk, int size)
725 {
726 return size <= sk->sk_forward_alloc ||
727 sk_stream_mem_schedule(sk, size, 0);
728 }
729
730 /* Used by processes to "lock" a socket state, so that
731 * interrupts and bottom half handlers won't change it
732 * from under us. It essentially blocks any incoming
733 * packets, so that we won't get any new data or any
734 * packets that change the state of the socket.
735 *
736 * While locked, BH processing will add new packets to
737 * the backlog queue. This queue is processed by the
738 * owner of the socket lock right before it is released.
739 *
740 * Since ~2.3.5 it is also exclusive sleep lock serializing
741 * accesses from user process context.
742 */
743 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
744
745 /*
746 * Macro so as to not evaluate some arguments when
747 * lockdep is not enabled.
748 *
749 * Mark both the sk_lock and the sk_lock.slock as a
750 * per-address-family lock class.
751 */
752 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
753 do { \
754 sk->sk_lock.owned = 0; \
755 init_waitqueue_head(&sk->sk_lock.wq); \
756 spin_lock_init(&(sk)->sk_lock.slock); \
757 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
758 sizeof((sk)->sk_lock)); \
759 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
760 (skey), (sname)); \
761 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
762 } while (0)
763
764 extern void FASTCALL(lock_sock_nested(struct sock *sk, int subclass));
765
766 static inline void lock_sock(struct sock *sk)
767 {
768 lock_sock_nested(sk, 0);
769 }
770
771 extern void FASTCALL(release_sock(struct sock *sk));
772
773 /* BH context may only use the following locking interface. */
774 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
775 #define bh_lock_sock_nested(__sk) \
776 spin_lock_nested(&((__sk)->sk_lock.slock), \
777 SINGLE_DEPTH_NESTING)
778 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
779
780 extern struct sock *sk_alloc(struct net *net, int family,
781 gfp_t priority,
782 struct proto *prot);
783 extern void sk_free(struct sock *sk);
784 extern struct sock *sk_clone(const struct sock *sk,
785 const gfp_t priority);
786
787 extern struct sk_buff *sock_wmalloc(struct sock *sk,
788 unsigned long size, int force,
789 gfp_t priority);
790 extern struct sk_buff *sock_rmalloc(struct sock *sk,
791 unsigned long size, int force,
792 gfp_t priority);
793 extern void sock_wfree(struct sk_buff *skb);
794 extern void sock_rfree(struct sk_buff *skb);
795
796 extern int sock_setsockopt(struct socket *sock, int level,
797 int op, char __user *optval,
798 int optlen);
799
800 extern int sock_getsockopt(struct socket *sock, int level,
801 int op, char __user *optval,
802 int __user *optlen);
803 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
804 unsigned long size,
805 int noblock,
806 int *errcode);
807 extern void *sock_kmalloc(struct sock *sk, int size,
808 gfp_t priority);
809 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
810 extern void sk_send_sigurg(struct sock *sk);
811
812 /*
813 * Functions to fill in entries in struct proto_ops when a protocol
814 * does not implement a particular function.
815 */
816 extern int sock_no_bind(struct socket *,
817 struct sockaddr *, int);
818 extern int sock_no_connect(struct socket *,
819 struct sockaddr *, int, int);
820 extern int sock_no_socketpair(struct socket *,
821 struct socket *);
822 extern int sock_no_accept(struct socket *,
823 struct socket *, int);
824 extern int sock_no_getname(struct socket *,
825 struct sockaddr *, int *, int);
826 extern unsigned int sock_no_poll(struct file *, struct socket *,
827 struct poll_table_struct *);
828 extern int sock_no_ioctl(struct socket *, unsigned int,
829 unsigned long);
830 extern int sock_no_listen(struct socket *, int);
831 extern int sock_no_shutdown(struct socket *, int);
832 extern int sock_no_getsockopt(struct socket *, int , int,
833 char __user *, int __user *);
834 extern int sock_no_setsockopt(struct socket *, int, int,
835 char __user *, int);
836 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
837 struct msghdr *, size_t);
838 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
839 struct msghdr *, size_t, int);
840 extern int sock_no_mmap(struct file *file,
841 struct socket *sock,
842 struct vm_area_struct *vma);
843 extern ssize_t sock_no_sendpage(struct socket *sock,
844 struct page *page,
845 int offset, size_t size,
846 int flags);
847
848 /*
849 * Functions to fill in entries in struct proto_ops when a protocol
850 * uses the inet style.
851 */
852 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
853 char __user *optval, int __user *optlen);
854 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
855 struct msghdr *msg, size_t size, int flags);
856 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
857 char __user *optval, int optlen);
858 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
859 int optname, char __user *optval, int __user *optlen);
860 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
861 int optname, char __user *optval, int optlen);
862
863 extern void sk_common_release(struct sock *sk);
864
865 /*
866 * Default socket callbacks and setup code
867 */
868
869 /* Initialise core socket variables */
870 extern void sock_init_data(struct socket *sock, struct sock *sk);
871
872 /**
873 * sk_filter - run a packet through a socket filter
874 * @sk: sock associated with &sk_buff
875 * @skb: buffer to filter
876 * @needlock: set to 1 if the sock is not locked by caller.
877 *
878 * Run the filter code and then cut skb->data to correct size returned by
879 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
880 * than pkt_len we keep whole skb->data. This is the socket level
881 * wrapper to sk_run_filter. It returns 0 if the packet should
882 * be accepted or -EPERM if the packet should be tossed.
883 *
884 */
885
886 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
887 {
888 int err;
889 struct sk_filter *filter;
890
891 err = security_sock_rcv_skb(sk, skb);
892 if (err)
893 return err;
894
895 rcu_read_lock_bh();
896 filter = sk->sk_filter;
897 if (filter) {
898 unsigned int pkt_len = sk_run_filter(skb, filter->insns,
899 filter->len);
900 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
901 }
902 rcu_read_unlock_bh();
903
904 return err;
905 }
906
907 /**
908 * sk_filter_release: Release a socket filter
909 * @sk: socket
910 * @fp: filter to remove
911 *
912 * Remove a filter from a socket and release its resources.
913 */
914
915 static inline void sk_filter_release(struct sk_filter *fp)
916 {
917 if (atomic_dec_and_test(&fp->refcnt))
918 kfree(fp);
919 }
920
921 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
922 {
923 unsigned int size = sk_filter_len(fp);
924
925 atomic_sub(size, &sk->sk_omem_alloc);
926 sk_filter_release(fp);
927 }
928
929 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
930 {
931 atomic_inc(&fp->refcnt);
932 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
933 }
934
935 /*
936 * Socket reference counting postulates.
937 *
938 * * Each user of socket SHOULD hold a reference count.
939 * * Each access point to socket (an hash table bucket, reference from a list,
940 * running timer, skb in flight MUST hold a reference count.
941 * * When reference count hits 0, it means it will never increase back.
942 * * When reference count hits 0, it means that no references from
943 * outside exist to this socket and current process on current CPU
944 * is last user and may/should destroy this socket.
945 * * sk_free is called from any context: process, BH, IRQ. When
946 * it is called, socket has no references from outside -> sk_free
947 * may release descendant resources allocated by the socket, but
948 * to the time when it is called, socket is NOT referenced by any
949 * hash tables, lists etc.
950 * * Packets, delivered from outside (from network or from another process)
951 * and enqueued on receive/error queues SHOULD NOT grab reference count,
952 * when they sit in queue. Otherwise, packets will leak to hole, when
953 * socket is looked up by one cpu and unhasing is made by another CPU.
954 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
955 * (leak to backlog). Packet socket does all the processing inside
956 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
957 * use separate SMP lock, so that they are prone too.
958 */
959
960 /* Ungrab socket and destroy it, if it was the last reference. */
961 static inline void sock_put(struct sock *sk)
962 {
963 if (atomic_dec_and_test(&sk->sk_refcnt))
964 sk_free(sk);
965 }
966
967 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
968 const int nested);
969
970 /* Detach socket from process context.
971 * Announce socket dead, detach it from wait queue and inode.
972 * Note that parent inode held reference count on this struct sock,
973 * we do not release it in this function, because protocol
974 * probably wants some additional cleanups or even continuing
975 * to work with this socket (TCP).
976 */
977 static inline void sock_orphan(struct sock *sk)
978 {
979 write_lock_bh(&sk->sk_callback_lock);
980 sock_set_flag(sk, SOCK_DEAD);
981 sk->sk_socket = NULL;
982 sk->sk_sleep = NULL;
983 write_unlock_bh(&sk->sk_callback_lock);
984 }
985
986 static inline void sock_graft(struct sock *sk, struct socket *parent)
987 {
988 write_lock_bh(&sk->sk_callback_lock);
989 sk->sk_sleep = &parent->wait;
990 parent->sk = sk;
991 sk->sk_socket = parent;
992 security_sock_graft(sk, parent);
993 write_unlock_bh(&sk->sk_callback_lock);
994 }
995
996 extern int sock_i_uid(struct sock *sk);
997 extern unsigned long sock_i_ino(struct sock *sk);
998
999 static inline struct dst_entry *
1000 __sk_dst_get(struct sock *sk)
1001 {
1002 return sk->sk_dst_cache;
1003 }
1004
1005 static inline struct dst_entry *
1006 sk_dst_get(struct sock *sk)
1007 {
1008 struct dst_entry *dst;
1009
1010 read_lock(&sk->sk_dst_lock);
1011 dst = sk->sk_dst_cache;
1012 if (dst)
1013 dst_hold(dst);
1014 read_unlock(&sk->sk_dst_lock);
1015 return dst;
1016 }
1017
1018 static inline void
1019 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1020 {
1021 struct dst_entry *old_dst;
1022
1023 old_dst = sk->sk_dst_cache;
1024 sk->sk_dst_cache = dst;
1025 dst_release(old_dst);
1026 }
1027
1028 static inline void
1029 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1030 {
1031 write_lock(&sk->sk_dst_lock);
1032 __sk_dst_set(sk, dst);
1033 write_unlock(&sk->sk_dst_lock);
1034 }
1035
1036 static inline void
1037 __sk_dst_reset(struct sock *sk)
1038 {
1039 struct dst_entry *old_dst;
1040
1041 old_dst = sk->sk_dst_cache;
1042 sk->sk_dst_cache = NULL;
1043 dst_release(old_dst);
1044 }
1045
1046 static inline void
1047 sk_dst_reset(struct sock *sk)
1048 {
1049 write_lock(&sk->sk_dst_lock);
1050 __sk_dst_reset(sk);
1051 write_unlock(&sk->sk_dst_lock);
1052 }
1053
1054 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1055
1056 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1057
1058 static inline int sk_can_gso(const struct sock *sk)
1059 {
1060 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1061 }
1062
1063 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1064
1065 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
1066 {
1067 sk->sk_wmem_queued += skb->truesize;
1068 sk->sk_forward_alloc -= skb->truesize;
1069 }
1070
1071 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1072 struct sk_buff *skb, struct page *page,
1073 int off, int copy)
1074 {
1075 if (skb->ip_summed == CHECKSUM_NONE) {
1076 int err = 0;
1077 __wsum csum = csum_and_copy_from_user(from,
1078 page_address(page) + off,
1079 copy, 0, &err);
1080 if (err)
1081 return err;
1082 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1083 } else if (copy_from_user(page_address(page) + off, from, copy))
1084 return -EFAULT;
1085
1086 skb->len += copy;
1087 skb->data_len += copy;
1088 skb->truesize += copy;
1089 sk->sk_wmem_queued += copy;
1090 sk->sk_forward_alloc -= copy;
1091 return 0;
1092 }
1093
1094 /*
1095 * Queue a received datagram if it will fit. Stream and sequenced
1096 * protocols can't normally use this as they need to fit buffers in
1097 * and play with them.
1098 *
1099 * Inlined as it's very short and called for pretty much every
1100 * packet ever received.
1101 */
1102
1103 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1104 {
1105 sock_hold(sk);
1106 skb->sk = sk;
1107 skb->destructor = sock_wfree;
1108 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1109 }
1110
1111 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1112 {
1113 skb->sk = sk;
1114 skb->destructor = sock_rfree;
1115 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1116 }
1117
1118 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1119 unsigned long expires);
1120
1121 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1122
1123 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1124
1125 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1126 {
1127 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1128 number of warnings when compiling with -W --ANK
1129 */
1130 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1131 (unsigned)sk->sk_rcvbuf)
1132 return -ENOMEM;
1133 skb_set_owner_r(skb, sk);
1134 skb_queue_tail(&sk->sk_error_queue, skb);
1135 if (!sock_flag(sk, SOCK_DEAD))
1136 sk->sk_data_ready(sk, skb->len);
1137 return 0;
1138 }
1139
1140 /*
1141 * Recover an error report and clear atomically
1142 */
1143
1144 static inline int sock_error(struct sock *sk)
1145 {
1146 int err;
1147 if (likely(!sk->sk_err))
1148 return 0;
1149 err = xchg(&sk->sk_err, 0);
1150 return -err;
1151 }
1152
1153 static inline unsigned long sock_wspace(struct sock *sk)
1154 {
1155 int amt = 0;
1156
1157 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1158 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1159 if (amt < 0)
1160 amt = 0;
1161 }
1162 return amt;
1163 }
1164
1165 static inline void sk_wake_async(struct sock *sk, int how, int band)
1166 {
1167 if (sk->sk_socket && sk->sk_socket->fasync_list)
1168 sock_wake_async(sk->sk_socket, how, band);
1169 }
1170
1171 #define SOCK_MIN_SNDBUF 2048
1172 #define SOCK_MIN_RCVBUF 256
1173
1174 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1175 {
1176 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1177 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1178 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1179 }
1180 }
1181
1182 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1183 int size, int mem,
1184 gfp_t gfp)
1185 {
1186 struct sk_buff *skb;
1187 int hdr_len;
1188
1189 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1190 skb = alloc_skb_fclone(size + hdr_len, gfp);
1191 if (skb) {
1192 skb->truesize += mem;
1193 if (sk_stream_wmem_schedule(sk, skb->truesize)) {
1194 skb_reserve(skb, hdr_len);
1195 return skb;
1196 }
1197 __kfree_skb(skb);
1198 } else {
1199 sk->sk_prot->enter_memory_pressure();
1200 sk_stream_moderate_sndbuf(sk);
1201 }
1202 return NULL;
1203 }
1204
1205 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1206 int size,
1207 gfp_t gfp)
1208 {
1209 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1210 }
1211
1212 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1213 {
1214 struct page *page = NULL;
1215
1216 page = alloc_pages(sk->sk_allocation, 0);
1217 if (!page) {
1218 sk->sk_prot->enter_memory_pressure();
1219 sk_stream_moderate_sndbuf(sk);
1220 }
1221 return page;
1222 }
1223
1224 /*
1225 * Default write policy as shown to user space via poll/select/SIGIO
1226 */
1227 static inline int sock_writeable(const struct sock *sk)
1228 {
1229 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1230 }
1231
1232 static inline gfp_t gfp_any(void)
1233 {
1234 return in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
1235 }
1236
1237 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1238 {
1239 return noblock ? 0 : sk->sk_rcvtimeo;
1240 }
1241
1242 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1243 {
1244 return noblock ? 0 : sk->sk_sndtimeo;
1245 }
1246
1247 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1248 {
1249 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1250 }
1251
1252 /* Alas, with timeout socket operations are not restartable.
1253 * Compare this to poll().
1254 */
1255 static inline int sock_intr_errno(long timeo)
1256 {
1257 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1258 }
1259
1260 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1261 struct sk_buff *skb);
1262
1263 static __inline__ void
1264 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1265 {
1266 ktime_t kt = skb->tstamp;
1267
1268 if (sock_flag(sk, SOCK_RCVTSTAMP))
1269 __sock_recv_timestamp(msg, sk, skb);
1270 else
1271 sk->sk_stamp = kt;
1272 }
1273
1274 /**
1275 * sk_eat_skb - Release a skb if it is no longer needed
1276 * @sk: socket to eat this skb from
1277 * @skb: socket buffer to eat
1278 * @copied_early: flag indicating whether DMA operations copied this data early
1279 *
1280 * This routine must be called with interrupts disabled or with the socket
1281 * locked so that the sk_buff queue operation is ok.
1282 */
1283 #ifdef CONFIG_NET_DMA
1284 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1285 {
1286 __skb_unlink(skb, &sk->sk_receive_queue);
1287 if (!copied_early)
1288 __kfree_skb(skb);
1289 else
1290 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1291 }
1292 #else
1293 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1294 {
1295 __skb_unlink(skb, &sk->sk_receive_queue);
1296 __kfree_skb(skb);
1297 }
1298 #endif
1299
1300 extern void sock_enable_timestamp(struct sock *sk);
1301 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1302 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1303
1304 /*
1305 * Enable debug/info messages
1306 */
1307 extern int net_msg_warn;
1308 #define NETDEBUG(fmt, args...) \
1309 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1310
1311 #define LIMIT_NETDEBUG(fmt, args...) \
1312 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1313
1314 /*
1315 * Macros for sleeping on a socket. Use them like this:
1316 *
1317 * SOCK_SLEEP_PRE(sk)
1318 * if (condition)
1319 * schedule();
1320 * SOCK_SLEEP_POST(sk)
1321 *
1322 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1323 * and when the last use of them in DECnet has gone, I'm intending to
1324 * remove them.
1325 */
1326
1327 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1328 DECLARE_WAITQUEUE(wait, tsk); \
1329 tsk->state = TASK_INTERRUPTIBLE; \
1330 add_wait_queue((sk)->sk_sleep, &wait); \
1331 release_sock(sk);
1332
1333 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1334 remove_wait_queue((sk)->sk_sleep, &wait); \
1335 lock_sock(sk); \
1336 }
1337
1338 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1339 {
1340 if (valbool)
1341 sock_set_flag(sk, bit);
1342 else
1343 sock_reset_flag(sk, bit);
1344 }
1345
1346 extern __u32 sysctl_wmem_max;
1347 extern __u32 sysctl_rmem_max;
1348
1349 extern void sk_init(void);
1350
1351 #ifdef CONFIG_SYSCTL
1352 extern struct ctl_table core_table[];
1353 #endif
1354
1355 extern int sysctl_optmem_max;
1356
1357 extern __u32 sysctl_wmem_default;
1358 extern __u32 sysctl_rmem_default;
1359
1360 #endif /* _SOCK_H */
This page took 0.057577 seconds and 6 git commands to generate.