Merge branch 'merge' of git://git.secretlab.ca/git/linux-2.6
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54
55 #include <linux/filter.h>
56 #include <linux/rculist_nulls.h>
57 #include <linux/poll.h>
58
59 #include <asm/atomic.h>
60 #include <net/dst.h>
61 #include <net/checksum.h>
62
63 /*
64 * This structure really needs to be cleaned up.
65 * Most of it is for TCP, and not used by any of
66 * the other protocols.
67 */
68
69 /* Define this to get the SOCK_DBG debugging facility. */
70 #define SOCK_DEBUGGING
71 #ifdef SOCK_DEBUGGING
72 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
73 printk(KERN_DEBUG msg); } while (0)
74 #else
75 /* Validate arguments and do nothing */
76 static void inline int __attribute__ ((format (printf, 2, 3)))
77 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
78 {
79 }
80 #endif
81
82 /* This is the per-socket lock. The spinlock provides a synchronization
83 * between user contexts and software interrupt processing, whereas the
84 * mini-semaphore synchronizes multiple users amongst themselves.
85 */
86 typedef struct {
87 spinlock_t slock;
88 int owned;
89 wait_queue_head_t wq;
90 /*
91 * We express the mutex-alike socket_lock semantics
92 * to the lock validator by explicitly managing
93 * the slock as a lock variant (in addition to
94 * the slock itself):
95 */
96 #ifdef CONFIG_DEBUG_LOCK_ALLOC
97 struct lockdep_map dep_map;
98 #endif
99 } socket_lock_t;
100
101 struct sock;
102 struct proto;
103 struct net;
104
105 /**
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_node: main hash linkage for various protocol lookup tables
108 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
109 * @skc_refcnt: reference count
110 * @skc_tx_queue_mapping: tx queue number for this connection
111 * @skc_hash: hash value used with various protocol lookup tables
112 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
113 * @skc_family: network address family
114 * @skc_state: Connection state
115 * @skc_reuse: %SO_REUSEADDR setting
116 * @skc_bound_dev_if: bound device index if != 0
117 * @skc_bind_node: bind hash linkage for various protocol lookup tables
118 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
119 * @skc_prot: protocol handlers inside a network family
120 * @skc_net: reference to the network namespace of this socket
121 *
122 * This is the minimal network layer representation of sockets, the header
123 * for struct sock and struct inet_timewait_sock.
124 */
125 struct sock_common {
126 /*
127 * first fields are not copied in sock_copy()
128 */
129 union {
130 struct hlist_node skc_node;
131 struct hlist_nulls_node skc_nulls_node;
132 };
133 atomic_t skc_refcnt;
134 int skc_tx_queue_mapping;
135
136 union {
137 unsigned int skc_hash;
138 __u16 skc_u16hashes[2];
139 };
140 unsigned short skc_family;
141 volatile unsigned char skc_state;
142 unsigned char skc_reuse;
143 int skc_bound_dev_if;
144 union {
145 struct hlist_node skc_bind_node;
146 struct hlist_nulls_node skc_portaddr_node;
147 };
148 struct proto *skc_prot;
149 #ifdef CONFIG_NET_NS
150 struct net *skc_net;
151 #endif
152 };
153
154 /**
155 * struct sock - network layer representation of sockets
156 * @__sk_common: shared layout with inet_timewait_sock
157 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
158 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
159 * @sk_lock: synchronizer
160 * @sk_rcvbuf: size of receive buffer in bytes
161 * @sk_sleep: sock wait queue
162 * @sk_dst_cache: destination cache
163 * @sk_dst_lock: destination cache lock
164 * @sk_policy: flow policy
165 * @sk_rmem_alloc: receive queue bytes committed
166 * @sk_receive_queue: incoming packets
167 * @sk_wmem_alloc: transmit queue bytes committed
168 * @sk_write_queue: Packet sending queue
169 * @sk_async_wait_queue: DMA copied packets
170 * @sk_omem_alloc: "o" is "option" or "other"
171 * @sk_wmem_queued: persistent queue size
172 * @sk_forward_alloc: space allocated forward
173 * @sk_allocation: allocation mode
174 * @sk_sndbuf: size of send buffer in bytes
175 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
176 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
177 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
178 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
179 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
180 * @sk_gso_max_size: Maximum GSO segment size to build
181 * @sk_lingertime: %SO_LINGER l_linger setting
182 * @sk_backlog: always used with the per-socket spinlock held
183 * @sk_callback_lock: used with the callbacks in the end of this struct
184 * @sk_error_queue: rarely used
185 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
186 * IPV6_ADDRFORM for instance)
187 * @sk_err: last error
188 * @sk_err_soft: errors that don't cause failure but are the cause of a
189 * persistent failure not just 'timed out'
190 * @sk_drops: raw/udp drops counter
191 * @sk_ack_backlog: current listen backlog
192 * @sk_max_ack_backlog: listen backlog set in listen()
193 * @sk_priority: %SO_PRIORITY setting
194 * @sk_type: socket type (%SOCK_STREAM, etc)
195 * @sk_protocol: which protocol this socket belongs in this network family
196 * @sk_peercred: %SO_PEERCRED setting
197 * @sk_rcvlowat: %SO_RCVLOWAT setting
198 * @sk_rcvtimeo: %SO_RCVTIMEO setting
199 * @sk_sndtimeo: %SO_SNDTIMEO setting
200 * @sk_filter: socket filtering instructions
201 * @sk_protinfo: private area, net family specific, when not using slab
202 * @sk_timer: sock cleanup timer
203 * @sk_stamp: time stamp of last packet received
204 * @sk_socket: Identd and reporting IO signals
205 * @sk_user_data: RPC layer private data
206 * @sk_sndmsg_page: cached page for sendmsg
207 * @sk_sndmsg_off: cached offset for sendmsg
208 * @sk_send_head: front of stuff to transmit
209 * @sk_security: used by security modules
210 * @sk_mark: generic packet mark
211 * @sk_write_pending: a write to stream socket waits to start
212 * @sk_state_change: callback to indicate change in the state of the sock
213 * @sk_data_ready: callback to indicate there is data to be processed
214 * @sk_write_space: callback to indicate there is bf sending space available
215 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
216 * @sk_backlog_rcv: callback to process the backlog
217 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
218 */
219 struct sock {
220 /*
221 * Now struct inet_timewait_sock also uses sock_common, so please just
222 * don't add nothing before this first member (__sk_common) --acme
223 */
224 struct sock_common __sk_common;
225 #define sk_node __sk_common.skc_node
226 #define sk_nulls_node __sk_common.skc_nulls_node
227 #define sk_refcnt __sk_common.skc_refcnt
228 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
229
230 #define sk_copy_start __sk_common.skc_hash
231 #define sk_hash __sk_common.skc_hash
232 #define sk_family __sk_common.skc_family
233 #define sk_state __sk_common.skc_state
234 #define sk_reuse __sk_common.skc_reuse
235 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
236 #define sk_bind_node __sk_common.skc_bind_node
237 #define sk_prot __sk_common.skc_prot
238 #define sk_net __sk_common.skc_net
239 kmemcheck_bitfield_begin(flags);
240 unsigned int sk_shutdown : 2,
241 sk_no_check : 2,
242 sk_userlocks : 4,
243 sk_protocol : 8,
244 sk_type : 16;
245 kmemcheck_bitfield_end(flags);
246 int sk_rcvbuf;
247 socket_lock_t sk_lock;
248 /*
249 * The backlog queue is special, it is always used with
250 * the per-socket spinlock held and requires low latency
251 * access. Therefore we special case it's implementation.
252 */
253 struct {
254 struct sk_buff *head;
255 struct sk_buff *tail;
256 int len;
257 int limit;
258 } sk_backlog;
259 wait_queue_head_t *sk_sleep;
260 struct dst_entry *sk_dst_cache;
261 #ifdef CONFIG_XFRM
262 struct xfrm_policy *sk_policy[2];
263 #endif
264 rwlock_t sk_dst_lock;
265 atomic_t sk_rmem_alloc;
266 atomic_t sk_wmem_alloc;
267 atomic_t sk_omem_alloc;
268 int sk_sndbuf;
269 struct sk_buff_head sk_receive_queue;
270 struct sk_buff_head sk_write_queue;
271 #ifdef CONFIG_NET_DMA
272 struct sk_buff_head sk_async_wait_queue;
273 #endif
274 int sk_wmem_queued;
275 int sk_forward_alloc;
276 gfp_t sk_allocation;
277 int sk_route_caps;
278 int sk_gso_type;
279 unsigned int sk_gso_max_size;
280 int sk_rcvlowat;
281 unsigned long sk_flags;
282 unsigned long sk_lingertime;
283 struct sk_buff_head sk_error_queue;
284 struct proto *sk_prot_creator;
285 rwlock_t sk_callback_lock;
286 int sk_err,
287 sk_err_soft;
288 atomic_t sk_drops;
289 unsigned short sk_ack_backlog;
290 unsigned short sk_max_ack_backlog;
291 __u32 sk_priority;
292 struct ucred sk_peercred;
293 long sk_rcvtimeo;
294 long sk_sndtimeo;
295 struct sk_filter *sk_filter;
296 void *sk_protinfo;
297 struct timer_list sk_timer;
298 ktime_t sk_stamp;
299 struct socket *sk_socket;
300 void *sk_user_data;
301 struct page *sk_sndmsg_page;
302 struct sk_buff *sk_send_head;
303 __u32 sk_sndmsg_off;
304 int sk_write_pending;
305 #ifdef CONFIG_SECURITY
306 void *sk_security;
307 #endif
308 __u32 sk_mark;
309 /* XXX 4 bytes hole on 64 bit */
310 void (*sk_state_change)(struct sock *sk);
311 void (*sk_data_ready)(struct sock *sk, int bytes);
312 void (*sk_write_space)(struct sock *sk);
313 void (*sk_error_report)(struct sock *sk);
314 int (*sk_backlog_rcv)(struct sock *sk,
315 struct sk_buff *skb);
316 void (*sk_destruct)(struct sock *sk);
317 };
318
319 /*
320 * Hashed lists helper routines
321 */
322 static inline struct sock *sk_entry(const struct hlist_node *node)
323 {
324 return hlist_entry(node, struct sock, sk_node);
325 }
326
327 static inline struct sock *__sk_head(const struct hlist_head *head)
328 {
329 return hlist_entry(head->first, struct sock, sk_node);
330 }
331
332 static inline struct sock *sk_head(const struct hlist_head *head)
333 {
334 return hlist_empty(head) ? NULL : __sk_head(head);
335 }
336
337 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
338 {
339 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
340 }
341
342 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
343 {
344 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
345 }
346
347 static inline struct sock *sk_next(const struct sock *sk)
348 {
349 return sk->sk_node.next ?
350 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
351 }
352
353 static inline struct sock *sk_nulls_next(const struct sock *sk)
354 {
355 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
356 hlist_nulls_entry(sk->sk_nulls_node.next,
357 struct sock, sk_nulls_node) :
358 NULL;
359 }
360
361 static inline int sk_unhashed(const struct sock *sk)
362 {
363 return hlist_unhashed(&sk->sk_node);
364 }
365
366 static inline int sk_hashed(const struct sock *sk)
367 {
368 return !sk_unhashed(sk);
369 }
370
371 static __inline__ void sk_node_init(struct hlist_node *node)
372 {
373 node->pprev = NULL;
374 }
375
376 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
377 {
378 node->pprev = NULL;
379 }
380
381 static __inline__ void __sk_del_node(struct sock *sk)
382 {
383 __hlist_del(&sk->sk_node);
384 }
385
386 /* NB: equivalent to hlist_del_init_rcu */
387 static __inline__ int __sk_del_node_init(struct sock *sk)
388 {
389 if (sk_hashed(sk)) {
390 __sk_del_node(sk);
391 sk_node_init(&sk->sk_node);
392 return 1;
393 }
394 return 0;
395 }
396
397 /* Grab socket reference count. This operation is valid only
398 when sk is ALREADY grabbed f.e. it is found in hash table
399 or a list and the lookup is made under lock preventing hash table
400 modifications.
401 */
402
403 static inline void sock_hold(struct sock *sk)
404 {
405 atomic_inc(&sk->sk_refcnt);
406 }
407
408 /* Ungrab socket in the context, which assumes that socket refcnt
409 cannot hit zero, f.e. it is true in context of any socketcall.
410 */
411 static inline void __sock_put(struct sock *sk)
412 {
413 atomic_dec(&sk->sk_refcnt);
414 }
415
416 static __inline__ int sk_del_node_init(struct sock *sk)
417 {
418 int rc = __sk_del_node_init(sk);
419
420 if (rc) {
421 /* paranoid for a while -acme */
422 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
423 __sock_put(sk);
424 }
425 return rc;
426 }
427 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
428
429 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
430 {
431 if (sk_hashed(sk)) {
432 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
433 return 1;
434 }
435 return 0;
436 }
437
438 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
439 {
440 int rc = __sk_nulls_del_node_init_rcu(sk);
441
442 if (rc) {
443 /* paranoid for a while -acme */
444 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
445 __sock_put(sk);
446 }
447 return rc;
448 }
449
450 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
451 {
452 hlist_add_head(&sk->sk_node, list);
453 }
454
455 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
456 {
457 sock_hold(sk);
458 __sk_add_node(sk, list);
459 }
460
461 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
462 {
463 sock_hold(sk);
464 hlist_add_head_rcu(&sk->sk_node, list);
465 }
466
467 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
468 {
469 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
470 }
471
472 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
473 {
474 sock_hold(sk);
475 __sk_nulls_add_node_rcu(sk, list);
476 }
477
478 static __inline__ void __sk_del_bind_node(struct sock *sk)
479 {
480 __hlist_del(&sk->sk_bind_node);
481 }
482
483 static __inline__ void sk_add_bind_node(struct sock *sk,
484 struct hlist_head *list)
485 {
486 hlist_add_head(&sk->sk_bind_node, list);
487 }
488
489 #define sk_for_each(__sk, node, list) \
490 hlist_for_each_entry(__sk, node, list, sk_node)
491 #define sk_for_each_rcu(__sk, node, list) \
492 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
493 #define sk_nulls_for_each(__sk, node, list) \
494 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
495 #define sk_nulls_for_each_rcu(__sk, node, list) \
496 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
497 #define sk_for_each_from(__sk, node) \
498 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
499 hlist_for_each_entry_from(__sk, node, sk_node)
500 #define sk_nulls_for_each_from(__sk, node) \
501 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
502 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
503 #define sk_for_each_continue(__sk, node) \
504 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
505 hlist_for_each_entry_continue(__sk, node, sk_node)
506 #define sk_for_each_safe(__sk, node, tmp, list) \
507 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
508 #define sk_for_each_bound(__sk, node, list) \
509 hlist_for_each_entry(__sk, node, list, sk_bind_node)
510
511 /* Sock flags */
512 enum sock_flags {
513 SOCK_DEAD,
514 SOCK_DONE,
515 SOCK_URGINLINE,
516 SOCK_KEEPOPEN,
517 SOCK_LINGER,
518 SOCK_DESTROY,
519 SOCK_BROADCAST,
520 SOCK_TIMESTAMP,
521 SOCK_ZAPPED,
522 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
523 SOCK_DBG, /* %SO_DEBUG setting */
524 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
525 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
526 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
527 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
528 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
529 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
530 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
531 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
532 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
533 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
534 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
535 SOCK_FASYNC, /* fasync() active */
536 SOCK_RXQ_OVFL,
537 };
538
539 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
540 {
541 nsk->sk_flags = osk->sk_flags;
542 }
543
544 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
545 {
546 __set_bit(flag, &sk->sk_flags);
547 }
548
549 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
550 {
551 __clear_bit(flag, &sk->sk_flags);
552 }
553
554 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
555 {
556 return test_bit(flag, &sk->sk_flags);
557 }
558
559 static inline void sk_acceptq_removed(struct sock *sk)
560 {
561 sk->sk_ack_backlog--;
562 }
563
564 static inline void sk_acceptq_added(struct sock *sk)
565 {
566 sk->sk_ack_backlog++;
567 }
568
569 static inline int sk_acceptq_is_full(struct sock *sk)
570 {
571 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
572 }
573
574 /*
575 * Compute minimal free write space needed to queue new packets.
576 */
577 static inline int sk_stream_min_wspace(struct sock *sk)
578 {
579 return sk->sk_wmem_queued >> 1;
580 }
581
582 static inline int sk_stream_wspace(struct sock *sk)
583 {
584 return sk->sk_sndbuf - sk->sk_wmem_queued;
585 }
586
587 extern void sk_stream_write_space(struct sock *sk);
588
589 static inline int sk_stream_memory_free(struct sock *sk)
590 {
591 return sk->sk_wmem_queued < sk->sk_sndbuf;
592 }
593
594 /* OOB backlog add */
595 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
596 {
597 if (!sk->sk_backlog.tail) {
598 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
599 } else {
600 sk->sk_backlog.tail->next = skb;
601 sk->sk_backlog.tail = skb;
602 }
603 skb->next = NULL;
604 }
605
606 /* The per-socket spinlock must be held here. */
607 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
608 {
609 if (sk->sk_backlog.len >= max(sk->sk_backlog.limit, sk->sk_rcvbuf << 1))
610 return -ENOBUFS;
611
612 __sk_add_backlog(sk, skb);
613 sk->sk_backlog.len += skb->truesize;
614 return 0;
615 }
616
617 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
618 {
619 return sk->sk_backlog_rcv(sk, skb);
620 }
621
622 #define sk_wait_event(__sk, __timeo, __condition) \
623 ({ int __rc; \
624 release_sock(__sk); \
625 __rc = __condition; \
626 if (!__rc) { \
627 *(__timeo) = schedule_timeout(*(__timeo)); \
628 } \
629 lock_sock(__sk); \
630 __rc = __condition; \
631 __rc; \
632 })
633
634 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
635 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
636 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
637 extern int sk_stream_error(struct sock *sk, int flags, int err);
638 extern void sk_stream_kill_queues(struct sock *sk);
639
640 extern int sk_wait_data(struct sock *sk, long *timeo);
641
642 struct request_sock_ops;
643 struct timewait_sock_ops;
644 struct inet_hashinfo;
645 struct raw_hashinfo;
646
647 /* Networking protocol blocks we attach to sockets.
648 * socket layer -> transport layer interface
649 * transport -> network interface is defined by struct inet_proto
650 */
651 struct proto {
652 void (*close)(struct sock *sk,
653 long timeout);
654 int (*connect)(struct sock *sk,
655 struct sockaddr *uaddr,
656 int addr_len);
657 int (*disconnect)(struct sock *sk, int flags);
658
659 struct sock * (*accept) (struct sock *sk, int flags, int *err);
660
661 int (*ioctl)(struct sock *sk, int cmd,
662 unsigned long arg);
663 int (*init)(struct sock *sk);
664 void (*destroy)(struct sock *sk);
665 void (*shutdown)(struct sock *sk, int how);
666 int (*setsockopt)(struct sock *sk, int level,
667 int optname, char __user *optval,
668 unsigned int optlen);
669 int (*getsockopt)(struct sock *sk, int level,
670 int optname, char __user *optval,
671 int __user *option);
672 #ifdef CONFIG_COMPAT
673 int (*compat_setsockopt)(struct sock *sk,
674 int level,
675 int optname, char __user *optval,
676 unsigned int optlen);
677 int (*compat_getsockopt)(struct sock *sk,
678 int level,
679 int optname, char __user *optval,
680 int __user *option);
681 #endif
682 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
683 struct msghdr *msg, size_t len);
684 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
685 struct msghdr *msg,
686 size_t len, int noblock, int flags,
687 int *addr_len);
688 int (*sendpage)(struct sock *sk, struct page *page,
689 int offset, size_t size, int flags);
690 int (*bind)(struct sock *sk,
691 struct sockaddr *uaddr, int addr_len);
692
693 int (*backlog_rcv) (struct sock *sk,
694 struct sk_buff *skb);
695
696 /* Keeping track of sk's, looking them up, and port selection methods. */
697 void (*hash)(struct sock *sk);
698 void (*unhash)(struct sock *sk);
699 int (*get_port)(struct sock *sk, unsigned short snum);
700
701 /* Keeping track of sockets in use */
702 #ifdef CONFIG_PROC_FS
703 unsigned int inuse_idx;
704 #endif
705
706 /* Memory pressure */
707 void (*enter_memory_pressure)(struct sock *sk);
708 atomic_t *memory_allocated; /* Current allocated memory. */
709 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
710 /*
711 * Pressure flag: try to collapse.
712 * Technical note: it is used by multiple contexts non atomically.
713 * All the __sk_mem_schedule() is of this nature: accounting
714 * is strict, actions are advisory and have some latency.
715 */
716 int *memory_pressure;
717 int *sysctl_mem;
718 int *sysctl_wmem;
719 int *sysctl_rmem;
720 int max_header;
721
722 struct kmem_cache *slab;
723 unsigned int obj_size;
724 int slab_flags;
725
726 struct percpu_counter *orphan_count;
727
728 struct request_sock_ops *rsk_prot;
729 struct timewait_sock_ops *twsk_prot;
730
731 union {
732 struct inet_hashinfo *hashinfo;
733 struct udp_table *udp_table;
734 struct raw_hashinfo *raw_hash;
735 } h;
736
737 struct module *owner;
738
739 char name[32];
740
741 struct list_head node;
742 #ifdef SOCK_REFCNT_DEBUG
743 atomic_t socks;
744 #endif
745 };
746
747 extern int proto_register(struct proto *prot, int alloc_slab);
748 extern void proto_unregister(struct proto *prot);
749
750 #ifdef SOCK_REFCNT_DEBUG
751 static inline void sk_refcnt_debug_inc(struct sock *sk)
752 {
753 atomic_inc(&sk->sk_prot->socks);
754 }
755
756 static inline void sk_refcnt_debug_dec(struct sock *sk)
757 {
758 atomic_dec(&sk->sk_prot->socks);
759 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
760 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
761 }
762
763 static inline void sk_refcnt_debug_release(const struct sock *sk)
764 {
765 if (atomic_read(&sk->sk_refcnt) != 1)
766 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
767 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
768 }
769 #else /* SOCK_REFCNT_DEBUG */
770 #define sk_refcnt_debug_inc(sk) do { } while (0)
771 #define sk_refcnt_debug_dec(sk) do { } while (0)
772 #define sk_refcnt_debug_release(sk) do { } while (0)
773 #endif /* SOCK_REFCNT_DEBUG */
774
775
776 #ifdef CONFIG_PROC_FS
777 /* Called with local bh disabled */
778 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
779 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
780 #else
781 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
782 int inc)
783 {
784 }
785 #endif
786
787
788 /* With per-bucket locks this operation is not-atomic, so that
789 * this version is not worse.
790 */
791 static inline void __sk_prot_rehash(struct sock *sk)
792 {
793 sk->sk_prot->unhash(sk);
794 sk->sk_prot->hash(sk);
795 }
796
797 /* About 10 seconds */
798 #define SOCK_DESTROY_TIME (10*HZ)
799
800 /* Sockets 0-1023 can't be bound to unless you are superuser */
801 #define PROT_SOCK 1024
802
803 #define SHUTDOWN_MASK 3
804 #define RCV_SHUTDOWN 1
805 #define SEND_SHUTDOWN 2
806
807 #define SOCK_SNDBUF_LOCK 1
808 #define SOCK_RCVBUF_LOCK 2
809 #define SOCK_BINDADDR_LOCK 4
810 #define SOCK_BINDPORT_LOCK 8
811
812 /* sock_iocb: used to kick off async processing of socket ios */
813 struct sock_iocb {
814 struct list_head list;
815
816 int flags;
817 int size;
818 struct socket *sock;
819 struct sock *sk;
820 struct scm_cookie *scm;
821 struct msghdr *msg, async_msg;
822 struct kiocb *kiocb;
823 };
824
825 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
826 {
827 return (struct sock_iocb *)iocb->private;
828 }
829
830 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
831 {
832 return si->kiocb;
833 }
834
835 struct socket_alloc {
836 struct socket socket;
837 struct inode vfs_inode;
838 };
839
840 static inline struct socket *SOCKET_I(struct inode *inode)
841 {
842 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
843 }
844
845 static inline struct inode *SOCK_INODE(struct socket *socket)
846 {
847 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
848 }
849
850 /*
851 * Functions for memory accounting
852 */
853 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
854 extern void __sk_mem_reclaim(struct sock *sk);
855
856 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
857 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
858 #define SK_MEM_SEND 0
859 #define SK_MEM_RECV 1
860
861 static inline int sk_mem_pages(int amt)
862 {
863 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
864 }
865
866 static inline int sk_has_account(struct sock *sk)
867 {
868 /* return true if protocol supports memory accounting */
869 return !!sk->sk_prot->memory_allocated;
870 }
871
872 static inline int sk_wmem_schedule(struct sock *sk, int size)
873 {
874 if (!sk_has_account(sk))
875 return 1;
876 return size <= sk->sk_forward_alloc ||
877 __sk_mem_schedule(sk, size, SK_MEM_SEND);
878 }
879
880 static inline int sk_rmem_schedule(struct sock *sk, int size)
881 {
882 if (!sk_has_account(sk))
883 return 1;
884 return size <= sk->sk_forward_alloc ||
885 __sk_mem_schedule(sk, size, SK_MEM_RECV);
886 }
887
888 static inline void sk_mem_reclaim(struct sock *sk)
889 {
890 if (!sk_has_account(sk))
891 return;
892 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
893 __sk_mem_reclaim(sk);
894 }
895
896 static inline void sk_mem_reclaim_partial(struct sock *sk)
897 {
898 if (!sk_has_account(sk))
899 return;
900 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
901 __sk_mem_reclaim(sk);
902 }
903
904 static inline void sk_mem_charge(struct sock *sk, int size)
905 {
906 if (!sk_has_account(sk))
907 return;
908 sk->sk_forward_alloc -= size;
909 }
910
911 static inline void sk_mem_uncharge(struct sock *sk, int size)
912 {
913 if (!sk_has_account(sk))
914 return;
915 sk->sk_forward_alloc += size;
916 }
917
918 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
919 {
920 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
921 sk->sk_wmem_queued -= skb->truesize;
922 sk_mem_uncharge(sk, skb->truesize);
923 __kfree_skb(skb);
924 }
925
926 /* Used by processes to "lock" a socket state, so that
927 * interrupts and bottom half handlers won't change it
928 * from under us. It essentially blocks any incoming
929 * packets, so that we won't get any new data or any
930 * packets that change the state of the socket.
931 *
932 * While locked, BH processing will add new packets to
933 * the backlog queue. This queue is processed by the
934 * owner of the socket lock right before it is released.
935 *
936 * Since ~2.3.5 it is also exclusive sleep lock serializing
937 * accesses from user process context.
938 */
939 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
940
941 /*
942 * Macro so as to not evaluate some arguments when
943 * lockdep is not enabled.
944 *
945 * Mark both the sk_lock and the sk_lock.slock as a
946 * per-address-family lock class.
947 */
948 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
949 do { \
950 sk->sk_lock.owned = 0; \
951 init_waitqueue_head(&sk->sk_lock.wq); \
952 spin_lock_init(&(sk)->sk_lock.slock); \
953 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
954 sizeof((sk)->sk_lock)); \
955 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
956 (skey), (sname)); \
957 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
958 } while (0)
959
960 extern void lock_sock_nested(struct sock *sk, int subclass);
961
962 static inline void lock_sock(struct sock *sk)
963 {
964 lock_sock_nested(sk, 0);
965 }
966
967 extern void release_sock(struct sock *sk);
968
969 /* BH context may only use the following locking interface. */
970 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
971 #define bh_lock_sock_nested(__sk) \
972 spin_lock_nested(&((__sk)->sk_lock.slock), \
973 SINGLE_DEPTH_NESTING)
974 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
975
976 extern struct sock *sk_alloc(struct net *net, int family,
977 gfp_t priority,
978 struct proto *prot);
979 extern void sk_free(struct sock *sk);
980 extern void sk_release_kernel(struct sock *sk);
981 extern struct sock *sk_clone(const struct sock *sk,
982 const gfp_t priority);
983
984 extern struct sk_buff *sock_wmalloc(struct sock *sk,
985 unsigned long size, int force,
986 gfp_t priority);
987 extern struct sk_buff *sock_rmalloc(struct sock *sk,
988 unsigned long size, int force,
989 gfp_t priority);
990 extern void sock_wfree(struct sk_buff *skb);
991 extern void sock_rfree(struct sk_buff *skb);
992
993 extern int sock_setsockopt(struct socket *sock, int level,
994 int op, char __user *optval,
995 unsigned int optlen);
996
997 extern int sock_getsockopt(struct socket *sock, int level,
998 int op, char __user *optval,
999 int __user *optlen);
1000 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1001 unsigned long size,
1002 int noblock,
1003 int *errcode);
1004 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1005 unsigned long header_len,
1006 unsigned long data_len,
1007 int noblock,
1008 int *errcode);
1009 extern void *sock_kmalloc(struct sock *sk, int size,
1010 gfp_t priority);
1011 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1012 extern void sk_send_sigurg(struct sock *sk);
1013
1014 /*
1015 * Functions to fill in entries in struct proto_ops when a protocol
1016 * does not implement a particular function.
1017 */
1018 extern int sock_no_bind(struct socket *,
1019 struct sockaddr *, int);
1020 extern int sock_no_connect(struct socket *,
1021 struct sockaddr *, int, int);
1022 extern int sock_no_socketpair(struct socket *,
1023 struct socket *);
1024 extern int sock_no_accept(struct socket *,
1025 struct socket *, int);
1026 extern int sock_no_getname(struct socket *,
1027 struct sockaddr *, int *, int);
1028 extern unsigned int sock_no_poll(struct file *, struct socket *,
1029 struct poll_table_struct *);
1030 extern int sock_no_ioctl(struct socket *, unsigned int,
1031 unsigned long);
1032 extern int sock_no_listen(struct socket *, int);
1033 extern int sock_no_shutdown(struct socket *, int);
1034 extern int sock_no_getsockopt(struct socket *, int , int,
1035 char __user *, int __user *);
1036 extern int sock_no_setsockopt(struct socket *, int, int,
1037 char __user *, unsigned int);
1038 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1039 struct msghdr *, size_t);
1040 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1041 struct msghdr *, size_t, int);
1042 extern int sock_no_mmap(struct file *file,
1043 struct socket *sock,
1044 struct vm_area_struct *vma);
1045 extern ssize_t sock_no_sendpage(struct socket *sock,
1046 struct page *page,
1047 int offset, size_t size,
1048 int flags);
1049
1050 /*
1051 * Functions to fill in entries in struct proto_ops when a protocol
1052 * uses the inet style.
1053 */
1054 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1055 char __user *optval, int __user *optlen);
1056 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1057 struct msghdr *msg, size_t size, int flags);
1058 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1059 char __user *optval, unsigned int optlen);
1060 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1061 int optname, char __user *optval, int __user *optlen);
1062 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1063 int optname, char __user *optval, unsigned int optlen);
1064
1065 extern void sk_common_release(struct sock *sk);
1066
1067 /*
1068 * Default socket callbacks and setup code
1069 */
1070
1071 /* Initialise core socket variables */
1072 extern void sock_init_data(struct socket *sock, struct sock *sk);
1073
1074 /**
1075 * sk_filter_release - release a socket filter
1076 * @fp: filter to remove
1077 *
1078 * Remove a filter from a socket and release its resources.
1079 */
1080
1081 static inline void sk_filter_release(struct sk_filter *fp)
1082 {
1083 if (atomic_dec_and_test(&fp->refcnt))
1084 kfree(fp);
1085 }
1086
1087 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1088 {
1089 unsigned int size = sk_filter_len(fp);
1090
1091 atomic_sub(size, &sk->sk_omem_alloc);
1092 sk_filter_release(fp);
1093 }
1094
1095 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1096 {
1097 atomic_inc(&fp->refcnt);
1098 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1099 }
1100
1101 /*
1102 * Socket reference counting postulates.
1103 *
1104 * * Each user of socket SHOULD hold a reference count.
1105 * * Each access point to socket (an hash table bucket, reference from a list,
1106 * running timer, skb in flight MUST hold a reference count.
1107 * * When reference count hits 0, it means it will never increase back.
1108 * * When reference count hits 0, it means that no references from
1109 * outside exist to this socket and current process on current CPU
1110 * is last user and may/should destroy this socket.
1111 * * sk_free is called from any context: process, BH, IRQ. When
1112 * it is called, socket has no references from outside -> sk_free
1113 * may release descendant resources allocated by the socket, but
1114 * to the time when it is called, socket is NOT referenced by any
1115 * hash tables, lists etc.
1116 * * Packets, delivered from outside (from network or from another process)
1117 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1118 * when they sit in queue. Otherwise, packets will leak to hole, when
1119 * socket is looked up by one cpu and unhasing is made by another CPU.
1120 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1121 * (leak to backlog). Packet socket does all the processing inside
1122 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1123 * use separate SMP lock, so that they are prone too.
1124 */
1125
1126 /* Ungrab socket and destroy it, if it was the last reference. */
1127 static inline void sock_put(struct sock *sk)
1128 {
1129 if (atomic_dec_and_test(&sk->sk_refcnt))
1130 sk_free(sk);
1131 }
1132
1133 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1134 const int nested);
1135
1136 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1137 {
1138 sk->sk_tx_queue_mapping = tx_queue;
1139 }
1140
1141 static inline void sk_tx_queue_clear(struct sock *sk)
1142 {
1143 sk->sk_tx_queue_mapping = -1;
1144 }
1145
1146 static inline int sk_tx_queue_get(const struct sock *sk)
1147 {
1148 return sk->sk_tx_queue_mapping;
1149 }
1150
1151 static inline bool sk_tx_queue_recorded(const struct sock *sk)
1152 {
1153 return (sk && sk->sk_tx_queue_mapping >= 0);
1154 }
1155
1156 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1157 {
1158 sk_tx_queue_clear(sk);
1159 sk->sk_socket = sock;
1160 }
1161
1162 /* Detach socket from process context.
1163 * Announce socket dead, detach it from wait queue and inode.
1164 * Note that parent inode held reference count on this struct sock,
1165 * we do not release it in this function, because protocol
1166 * probably wants some additional cleanups or even continuing
1167 * to work with this socket (TCP).
1168 */
1169 static inline void sock_orphan(struct sock *sk)
1170 {
1171 write_lock_bh(&sk->sk_callback_lock);
1172 sock_set_flag(sk, SOCK_DEAD);
1173 sk_set_socket(sk, NULL);
1174 sk->sk_sleep = NULL;
1175 write_unlock_bh(&sk->sk_callback_lock);
1176 }
1177
1178 static inline void sock_graft(struct sock *sk, struct socket *parent)
1179 {
1180 write_lock_bh(&sk->sk_callback_lock);
1181 sk->sk_sleep = &parent->wait;
1182 parent->sk = sk;
1183 sk_set_socket(sk, parent);
1184 security_sock_graft(sk, parent);
1185 write_unlock_bh(&sk->sk_callback_lock);
1186 }
1187
1188 extern int sock_i_uid(struct sock *sk);
1189 extern unsigned long sock_i_ino(struct sock *sk);
1190
1191 static inline struct dst_entry *
1192 __sk_dst_get(struct sock *sk)
1193 {
1194 return sk->sk_dst_cache;
1195 }
1196
1197 static inline struct dst_entry *
1198 sk_dst_get(struct sock *sk)
1199 {
1200 struct dst_entry *dst;
1201
1202 read_lock(&sk->sk_dst_lock);
1203 dst = sk->sk_dst_cache;
1204 if (dst)
1205 dst_hold(dst);
1206 read_unlock(&sk->sk_dst_lock);
1207 return dst;
1208 }
1209
1210 static inline void
1211 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1212 {
1213 struct dst_entry *old_dst;
1214
1215 sk_tx_queue_clear(sk);
1216 old_dst = sk->sk_dst_cache;
1217 sk->sk_dst_cache = dst;
1218 dst_release(old_dst);
1219 }
1220
1221 static inline void
1222 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1223 {
1224 write_lock(&sk->sk_dst_lock);
1225 __sk_dst_set(sk, dst);
1226 write_unlock(&sk->sk_dst_lock);
1227 }
1228
1229 static inline void
1230 __sk_dst_reset(struct sock *sk)
1231 {
1232 struct dst_entry *old_dst;
1233
1234 sk_tx_queue_clear(sk);
1235 old_dst = sk->sk_dst_cache;
1236 sk->sk_dst_cache = NULL;
1237 dst_release(old_dst);
1238 }
1239
1240 static inline void
1241 sk_dst_reset(struct sock *sk)
1242 {
1243 write_lock(&sk->sk_dst_lock);
1244 __sk_dst_reset(sk);
1245 write_unlock(&sk->sk_dst_lock);
1246 }
1247
1248 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1249
1250 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1251
1252 static inline int sk_can_gso(const struct sock *sk)
1253 {
1254 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1255 }
1256
1257 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1258
1259 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1260 struct sk_buff *skb, struct page *page,
1261 int off, int copy)
1262 {
1263 if (skb->ip_summed == CHECKSUM_NONE) {
1264 int err = 0;
1265 __wsum csum = csum_and_copy_from_user(from,
1266 page_address(page) + off,
1267 copy, 0, &err);
1268 if (err)
1269 return err;
1270 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1271 } else if (copy_from_user(page_address(page) + off, from, copy))
1272 return -EFAULT;
1273
1274 skb->len += copy;
1275 skb->data_len += copy;
1276 skb->truesize += copy;
1277 sk->sk_wmem_queued += copy;
1278 sk_mem_charge(sk, copy);
1279 return 0;
1280 }
1281
1282 /**
1283 * sk_wmem_alloc_get - returns write allocations
1284 * @sk: socket
1285 *
1286 * Returns sk_wmem_alloc minus initial offset of one
1287 */
1288 static inline int sk_wmem_alloc_get(const struct sock *sk)
1289 {
1290 return atomic_read(&sk->sk_wmem_alloc) - 1;
1291 }
1292
1293 /**
1294 * sk_rmem_alloc_get - returns read allocations
1295 * @sk: socket
1296 *
1297 * Returns sk_rmem_alloc
1298 */
1299 static inline int sk_rmem_alloc_get(const struct sock *sk)
1300 {
1301 return atomic_read(&sk->sk_rmem_alloc);
1302 }
1303
1304 /**
1305 * sk_has_allocations - check if allocations are outstanding
1306 * @sk: socket
1307 *
1308 * Returns true if socket has write or read allocations
1309 */
1310 static inline int sk_has_allocations(const struct sock *sk)
1311 {
1312 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1313 }
1314
1315 /**
1316 * sk_has_sleeper - check if there are any waiting processes
1317 * @sk: socket
1318 *
1319 * Returns true if socket has waiting processes
1320 *
1321 * The purpose of the sk_has_sleeper and sock_poll_wait is to wrap the memory
1322 * barrier call. They were added due to the race found within the tcp code.
1323 *
1324 * Consider following tcp code paths:
1325 *
1326 * CPU1 CPU2
1327 *
1328 * sys_select receive packet
1329 * ... ...
1330 * __add_wait_queue update tp->rcv_nxt
1331 * ... ...
1332 * tp->rcv_nxt check sock_def_readable
1333 * ... {
1334 * schedule ...
1335 * if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1336 * wake_up_interruptible(sk->sk_sleep)
1337 * ...
1338 * }
1339 *
1340 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1341 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1342 * could then endup calling schedule and sleep forever if there are no more
1343 * data on the socket.
1344 *
1345 * The sk_has_sleeper is always called right after a call to read_lock, so we
1346 * can use smp_mb__after_lock barrier.
1347 */
1348 static inline int sk_has_sleeper(struct sock *sk)
1349 {
1350 /*
1351 * We need to be sure we are in sync with the
1352 * add_wait_queue modifications to the wait queue.
1353 *
1354 * This memory barrier is paired in the sock_poll_wait.
1355 */
1356 smp_mb__after_lock();
1357 return sk->sk_sleep && waitqueue_active(sk->sk_sleep);
1358 }
1359
1360 /**
1361 * sock_poll_wait - place memory barrier behind the poll_wait call.
1362 * @filp: file
1363 * @wait_address: socket wait queue
1364 * @p: poll_table
1365 *
1366 * See the comments in the sk_has_sleeper function.
1367 */
1368 static inline void sock_poll_wait(struct file *filp,
1369 wait_queue_head_t *wait_address, poll_table *p)
1370 {
1371 if (p && wait_address) {
1372 poll_wait(filp, wait_address, p);
1373 /*
1374 * We need to be sure we are in sync with the
1375 * socket flags modification.
1376 *
1377 * This memory barrier is paired in the sk_has_sleeper.
1378 */
1379 smp_mb();
1380 }
1381 }
1382
1383 /*
1384 * Queue a received datagram if it will fit. Stream and sequenced
1385 * protocols can't normally use this as they need to fit buffers in
1386 * and play with them.
1387 *
1388 * Inlined as it's very short and called for pretty much every
1389 * packet ever received.
1390 */
1391
1392 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1393 {
1394 skb_orphan(skb);
1395 skb->sk = sk;
1396 skb->destructor = sock_wfree;
1397 /*
1398 * We used to take a refcount on sk, but following operation
1399 * is enough to guarantee sk_free() wont free this sock until
1400 * all in-flight packets are completed
1401 */
1402 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1403 }
1404
1405 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1406 {
1407 skb_orphan(skb);
1408 skb->sk = sk;
1409 skb->destructor = sock_rfree;
1410 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1411 sk_mem_charge(sk, skb->truesize);
1412 }
1413
1414 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1415 unsigned long expires);
1416
1417 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1418
1419 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1420
1421 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1422 {
1423 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1424 number of warnings when compiling with -W --ANK
1425 */
1426 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1427 (unsigned)sk->sk_rcvbuf)
1428 return -ENOMEM;
1429 skb_set_owner_r(skb, sk);
1430 skb_queue_tail(&sk->sk_error_queue, skb);
1431 if (!sock_flag(sk, SOCK_DEAD))
1432 sk->sk_data_ready(sk, skb->len);
1433 return 0;
1434 }
1435
1436 /*
1437 * Recover an error report and clear atomically
1438 */
1439
1440 static inline int sock_error(struct sock *sk)
1441 {
1442 int err;
1443 if (likely(!sk->sk_err))
1444 return 0;
1445 err = xchg(&sk->sk_err, 0);
1446 return -err;
1447 }
1448
1449 static inline unsigned long sock_wspace(struct sock *sk)
1450 {
1451 int amt = 0;
1452
1453 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1454 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1455 if (amt < 0)
1456 amt = 0;
1457 }
1458 return amt;
1459 }
1460
1461 static inline void sk_wake_async(struct sock *sk, int how, int band)
1462 {
1463 if (sock_flag(sk, SOCK_FASYNC))
1464 sock_wake_async(sk->sk_socket, how, band);
1465 }
1466
1467 #define SOCK_MIN_SNDBUF 2048
1468 #define SOCK_MIN_RCVBUF 256
1469
1470 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1471 {
1472 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1473 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1474 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1475 }
1476 }
1477
1478 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1479
1480 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1481 {
1482 struct page *page = NULL;
1483
1484 page = alloc_pages(sk->sk_allocation, 0);
1485 if (!page) {
1486 sk->sk_prot->enter_memory_pressure(sk);
1487 sk_stream_moderate_sndbuf(sk);
1488 }
1489 return page;
1490 }
1491
1492 /*
1493 * Default write policy as shown to user space via poll/select/SIGIO
1494 */
1495 static inline int sock_writeable(const struct sock *sk)
1496 {
1497 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1498 }
1499
1500 static inline gfp_t gfp_any(void)
1501 {
1502 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1503 }
1504
1505 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1506 {
1507 return noblock ? 0 : sk->sk_rcvtimeo;
1508 }
1509
1510 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1511 {
1512 return noblock ? 0 : sk->sk_sndtimeo;
1513 }
1514
1515 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1516 {
1517 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1518 }
1519
1520 /* Alas, with timeout socket operations are not restartable.
1521 * Compare this to poll().
1522 */
1523 static inline int sock_intr_errno(long timeo)
1524 {
1525 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1526 }
1527
1528 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1529 struct sk_buff *skb);
1530
1531 static __inline__ void
1532 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1533 {
1534 ktime_t kt = skb->tstamp;
1535 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1536
1537 /*
1538 * generate control messages if
1539 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1540 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1541 * - software time stamp available and wanted
1542 * (SOCK_TIMESTAMPING_SOFTWARE)
1543 * - hardware time stamps available and wanted
1544 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1545 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1546 */
1547 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1548 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1549 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1550 (hwtstamps->hwtstamp.tv64 &&
1551 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1552 (hwtstamps->syststamp.tv64 &&
1553 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1554 __sock_recv_timestamp(msg, sk, skb);
1555 else
1556 sk->sk_stamp = kt;
1557 }
1558
1559 extern void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb);
1560
1561 /**
1562 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1563 * @msg: outgoing packet
1564 * @sk: socket sending this packet
1565 * @shtx: filled with instructions for time stamping
1566 *
1567 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1568 * parameters are invalid.
1569 */
1570 extern int sock_tx_timestamp(struct msghdr *msg,
1571 struct sock *sk,
1572 union skb_shared_tx *shtx);
1573
1574
1575 /**
1576 * sk_eat_skb - Release a skb if it is no longer needed
1577 * @sk: socket to eat this skb from
1578 * @skb: socket buffer to eat
1579 * @copied_early: flag indicating whether DMA operations copied this data early
1580 *
1581 * This routine must be called with interrupts disabled or with the socket
1582 * locked so that the sk_buff queue operation is ok.
1583 */
1584 #ifdef CONFIG_NET_DMA
1585 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1586 {
1587 __skb_unlink(skb, &sk->sk_receive_queue);
1588 if (!copied_early)
1589 __kfree_skb(skb);
1590 else
1591 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1592 }
1593 #else
1594 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1595 {
1596 __skb_unlink(skb, &sk->sk_receive_queue);
1597 __kfree_skb(skb);
1598 }
1599 #endif
1600
1601 static inline
1602 struct net *sock_net(const struct sock *sk)
1603 {
1604 #ifdef CONFIG_NET_NS
1605 return sk->sk_net;
1606 #else
1607 return &init_net;
1608 #endif
1609 }
1610
1611 static inline
1612 void sock_net_set(struct sock *sk, struct net *net)
1613 {
1614 #ifdef CONFIG_NET_NS
1615 sk->sk_net = net;
1616 #endif
1617 }
1618
1619 /*
1620 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1621 * They should not hold a referrence to a namespace in order to allow
1622 * to stop it.
1623 * Sockets after sk_change_net should be released using sk_release_kernel
1624 */
1625 static inline void sk_change_net(struct sock *sk, struct net *net)
1626 {
1627 put_net(sock_net(sk));
1628 sock_net_set(sk, hold_net(net));
1629 }
1630
1631 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1632 {
1633 if (unlikely(skb->sk)) {
1634 struct sock *sk = skb->sk;
1635
1636 skb->destructor = NULL;
1637 skb->sk = NULL;
1638 return sk;
1639 }
1640 return NULL;
1641 }
1642
1643 extern void sock_enable_timestamp(struct sock *sk, int flag);
1644 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1645 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1646
1647 /*
1648 * Enable debug/info messages
1649 */
1650 extern int net_msg_warn;
1651 #define NETDEBUG(fmt, args...) \
1652 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1653
1654 #define LIMIT_NETDEBUG(fmt, args...) \
1655 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1656
1657 extern __u32 sysctl_wmem_max;
1658 extern __u32 sysctl_rmem_max;
1659
1660 extern void sk_init(void);
1661
1662 extern int sysctl_optmem_max;
1663
1664 extern __u32 sysctl_wmem_default;
1665 extern __u32 sysctl_rmem_default;
1666
1667 #endif /* _SOCK_H */
This page took 0.063231 seconds and 6 git commands to generate.