Merge tag 'kvm-s390-master-4.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73
74 struct cgroup;
75 struct cgroup_subsys;
76 #ifdef CONFIG_NET
77 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
78 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
79 #else
80 static inline
81 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
82 {
83 return 0;
84 }
85 static inline
86 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
87 {
88 }
89 #endif
90 /*
91 * This structure really needs to be cleaned up.
92 * Most of it is for TCP, and not used by any of
93 * the other protocols.
94 */
95
96 /* Define this to get the SOCK_DBG debugging facility. */
97 #define SOCK_DEBUGGING
98 #ifdef SOCK_DEBUGGING
99 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
100 printk(KERN_DEBUG msg); } while (0)
101 #else
102 /* Validate arguments and do nothing */
103 static inline __printf(2, 3)
104 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
105 {
106 }
107 #endif
108
109 /* This is the per-socket lock. The spinlock provides a synchronization
110 * between user contexts and software interrupt processing, whereas the
111 * mini-semaphore synchronizes multiple users amongst themselves.
112 */
113 typedef struct {
114 spinlock_t slock;
115 int owned;
116 wait_queue_head_t wq;
117 /*
118 * We express the mutex-alike socket_lock semantics
119 * to the lock validator by explicitly managing
120 * the slock as a lock variant (in addition to
121 * the slock itself):
122 */
123 #ifdef CONFIG_DEBUG_LOCK_ALLOC
124 struct lockdep_map dep_map;
125 #endif
126 } socket_lock_t;
127
128 struct sock;
129 struct proto;
130 struct net;
131
132 typedef __u32 __bitwise __portpair;
133 typedef __u64 __bitwise __addrpair;
134
135 /**
136 * struct sock_common - minimal network layer representation of sockets
137 * @skc_daddr: Foreign IPv4 addr
138 * @skc_rcv_saddr: Bound local IPv4 addr
139 * @skc_hash: hash value used with various protocol lookup tables
140 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
141 * @skc_dport: placeholder for inet_dport/tw_dport
142 * @skc_num: placeholder for inet_num/tw_num
143 * @skc_family: network address family
144 * @skc_state: Connection state
145 * @skc_reuse: %SO_REUSEADDR setting
146 * @skc_reuseport: %SO_REUSEPORT setting
147 * @skc_bound_dev_if: bound device index if != 0
148 * @skc_bind_node: bind hash linkage for various protocol lookup tables
149 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
150 * @skc_prot: protocol handlers inside a network family
151 * @skc_net: reference to the network namespace of this socket
152 * @skc_node: main hash linkage for various protocol lookup tables
153 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
154 * @skc_tx_queue_mapping: tx queue number for this connection
155 * @skc_flags: place holder for sk_flags
156 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
157 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
158 * @skc_incoming_cpu: record/match cpu processing incoming packets
159 * @skc_refcnt: reference count
160 *
161 * This is the minimal network layer representation of sockets, the header
162 * for struct sock and struct inet_timewait_sock.
163 */
164 struct sock_common {
165 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
166 * address on 64bit arches : cf INET_MATCH()
167 */
168 union {
169 __addrpair skc_addrpair;
170 struct {
171 __be32 skc_daddr;
172 __be32 skc_rcv_saddr;
173 };
174 };
175 union {
176 unsigned int skc_hash;
177 __u16 skc_u16hashes[2];
178 };
179 /* skc_dport && skc_num must be grouped as well */
180 union {
181 __portpair skc_portpair;
182 struct {
183 __be16 skc_dport;
184 __u16 skc_num;
185 };
186 };
187
188 unsigned short skc_family;
189 volatile unsigned char skc_state;
190 unsigned char skc_reuse:4;
191 unsigned char skc_reuseport:1;
192 unsigned char skc_ipv6only:1;
193 unsigned char skc_net_refcnt:1;
194 int skc_bound_dev_if;
195 union {
196 struct hlist_node skc_bind_node;
197 struct hlist_nulls_node skc_portaddr_node;
198 };
199 struct proto *skc_prot;
200 possible_net_t skc_net;
201
202 #if IS_ENABLED(CONFIG_IPV6)
203 struct in6_addr skc_v6_daddr;
204 struct in6_addr skc_v6_rcv_saddr;
205 #endif
206
207 atomic64_t skc_cookie;
208
209 /* following fields are padding to force
210 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
211 * assuming IPV6 is enabled. We use this padding differently
212 * for different kind of 'sockets'
213 */
214 union {
215 unsigned long skc_flags;
216 struct sock *skc_listener; /* request_sock */
217 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
218 };
219 /*
220 * fields between dontcopy_begin/dontcopy_end
221 * are not copied in sock_copy()
222 */
223 /* private: */
224 int skc_dontcopy_begin[0];
225 /* public: */
226 union {
227 struct hlist_node skc_node;
228 struct hlist_nulls_node skc_nulls_node;
229 };
230 int skc_tx_queue_mapping;
231 union {
232 int skc_incoming_cpu;
233 u32 skc_rcv_wnd;
234 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
235 };
236
237 atomic_t skc_refcnt;
238 /* private: */
239 int skc_dontcopy_end[0];
240 union {
241 u32 skc_rxhash;
242 u32 skc_window_clamp;
243 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
244 };
245 /* public: */
246 };
247
248 struct cg_proto;
249 /**
250 * struct sock - network layer representation of sockets
251 * @__sk_common: shared layout with inet_timewait_sock
252 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
253 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
254 * @sk_lock: synchronizer
255 * @sk_rcvbuf: size of receive buffer in bytes
256 * @sk_wq: sock wait queue and async head
257 * @sk_rx_dst: receive input route used by early demux
258 * @sk_dst_cache: destination cache
259 * @sk_policy: flow policy
260 * @sk_receive_queue: incoming packets
261 * @sk_wmem_alloc: transmit queue bytes committed
262 * @sk_write_queue: Packet sending queue
263 * @sk_omem_alloc: "o" is "option" or "other"
264 * @sk_wmem_queued: persistent queue size
265 * @sk_forward_alloc: space allocated forward
266 * @sk_napi_id: id of the last napi context to receive data for sk
267 * @sk_ll_usec: usecs to busypoll when there is no data
268 * @sk_allocation: allocation mode
269 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
270 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
271 * @sk_sndbuf: size of send buffer in bytes
272 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
273 * @sk_no_check_rx: allow zero checksum in RX packets
274 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
275 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
276 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
277 * @sk_gso_max_size: Maximum GSO segment size to build
278 * @sk_gso_max_segs: Maximum number of GSO segments
279 * @sk_lingertime: %SO_LINGER l_linger setting
280 * @sk_backlog: always used with the per-socket spinlock held
281 * @sk_callback_lock: used with the callbacks in the end of this struct
282 * @sk_error_queue: rarely used
283 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
284 * IPV6_ADDRFORM for instance)
285 * @sk_err: last error
286 * @sk_err_soft: errors that don't cause failure but are the cause of a
287 * persistent failure not just 'timed out'
288 * @sk_drops: raw/udp drops counter
289 * @sk_ack_backlog: current listen backlog
290 * @sk_max_ack_backlog: listen backlog set in listen()
291 * @sk_priority: %SO_PRIORITY setting
292 * @sk_type: socket type (%SOCK_STREAM, etc)
293 * @sk_protocol: which protocol this socket belongs in this network family
294 * @sk_peer_pid: &struct pid for this socket's peer
295 * @sk_peer_cred: %SO_PEERCRED setting
296 * @sk_rcvlowat: %SO_RCVLOWAT setting
297 * @sk_rcvtimeo: %SO_RCVTIMEO setting
298 * @sk_sndtimeo: %SO_SNDTIMEO setting
299 * @sk_txhash: computed flow hash for use on transmit
300 * @sk_filter: socket filtering instructions
301 * @sk_timer: sock cleanup timer
302 * @sk_stamp: time stamp of last packet received
303 * @sk_tsflags: SO_TIMESTAMPING socket options
304 * @sk_tskey: counter to disambiguate concurrent tstamp requests
305 * @sk_socket: Identd and reporting IO signals
306 * @sk_user_data: RPC layer private data
307 * @sk_frag: cached page frag
308 * @sk_peek_off: current peek_offset value
309 * @sk_send_head: front of stuff to transmit
310 * @sk_security: used by security modules
311 * @sk_mark: generic packet mark
312 * @sk_cgrp_data: cgroup data for this cgroup
313 * @sk_cgrp: this socket's cgroup-specific proto data
314 * @sk_write_pending: a write to stream socket waits to start
315 * @sk_state_change: callback to indicate change in the state of the sock
316 * @sk_data_ready: callback to indicate there is data to be processed
317 * @sk_write_space: callback to indicate there is bf sending space available
318 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
319 * @sk_backlog_rcv: callback to process the backlog
320 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
321 * @sk_reuseport_cb: reuseport group container
322 */
323 struct sock {
324 /*
325 * Now struct inet_timewait_sock also uses sock_common, so please just
326 * don't add nothing before this first member (__sk_common) --acme
327 */
328 struct sock_common __sk_common;
329 #define sk_node __sk_common.skc_node
330 #define sk_nulls_node __sk_common.skc_nulls_node
331 #define sk_refcnt __sk_common.skc_refcnt
332 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
333
334 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
335 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
336 #define sk_hash __sk_common.skc_hash
337 #define sk_portpair __sk_common.skc_portpair
338 #define sk_num __sk_common.skc_num
339 #define sk_dport __sk_common.skc_dport
340 #define sk_addrpair __sk_common.skc_addrpair
341 #define sk_daddr __sk_common.skc_daddr
342 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
343 #define sk_family __sk_common.skc_family
344 #define sk_state __sk_common.skc_state
345 #define sk_reuse __sk_common.skc_reuse
346 #define sk_reuseport __sk_common.skc_reuseport
347 #define sk_ipv6only __sk_common.skc_ipv6only
348 #define sk_net_refcnt __sk_common.skc_net_refcnt
349 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
350 #define sk_bind_node __sk_common.skc_bind_node
351 #define sk_prot __sk_common.skc_prot
352 #define sk_net __sk_common.skc_net
353 #define sk_v6_daddr __sk_common.skc_v6_daddr
354 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
355 #define sk_cookie __sk_common.skc_cookie
356 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
357 #define sk_flags __sk_common.skc_flags
358 #define sk_rxhash __sk_common.skc_rxhash
359
360 socket_lock_t sk_lock;
361 struct sk_buff_head sk_receive_queue;
362 /*
363 * The backlog queue is special, it is always used with
364 * the per-socket spinlock held and requires low latency
365 * access. Therefore we special case it's implementation.
366 * Note : rmem_alloc is in this structure to fill a hole
367 * on 64bit arches, not because its logically part of
368 * backlog.
369 */
370 struct {
371 atomic_t rmem_alloc;
372 int len;
373 struct sk_buff *head;
374 struct sk_buff *tail;
375 } sk_backlog;
376 #define sk_rmem_alloc sk_backlog.rmem_alloc
377 int sk_forward_alloc;
378
379 __u32 sk_txhash;
380 #ifdef CONFIG_NET_RX_BUSY_POLL
381 unsigned int sk_napi_id;
382 unsigned int sk_ll_usec;
383 #endif
384 atomic_t sk_drops;
385 int sk_rcvbuf;
386
387 struct sk_filter __rcu *sk_filter;
388 union {
389 struct socket_wq __rcu *sk_wq;
390 struct socket_wq *sk_wq_raw;
391 };
392 #ifdef CONFIG_XFRM
393 struct xfrm_policy __rcu *sk_policy[2];
394 #endif
395 struct dst_entry *sk_rx_dst;
396 struct dst_entry __rcu *sk_dst_cache;
397 /* Note: 32bit hole on 64bit arches */
398 atomic_t sk_wmem_alloc;
399 atomic_t sk_omem_alloc;
400 int sk_sndbuf;
401 struct sk_buff_head sk_write_queue;
402 kmemcheck_bitfield_begin(flags);
403 unsigned int sk_shutdown : 2,
404 sk_no_check_tx : 1,
405 sk_no_check_rx : 1,
406 sk_userlocks : 4,
407 sk_protocol : 8,
408 sk_type : 16;
409 #define SK_PROTOCOL_MAX U8_MAX
410 kmemcheck_bitfield_end(flags);
411 int sk_wmem_queued;
412 gfp_t sk_allocation;
413 u32 sk_pacing_rate; /* bytes per second */
414 u32 sk_max_pacing_rate;
415 netdev_features_t sk_route_caps;
416 netdev_features_t sk_route_nocaps;
417 int sk_gso_type;
418 unsigned int sk_gso_max_size;
419 u16 sk_gso_max_segs;
420 int sk_rcvlowat;
421 unsigned long sk_lingertime;
422 struct sk_buff_head sk_error_queue;
423 struct proto *sk_prot_creator;
424 rwlock_t sk_callback_lock;
425 int sk_err,
426 sk_err_soft;
427 u32 sk_ack_backlog;
428 u32 sk_max_ack_backlog;
429 __u32 sk_priority;
430 __u32 sk_mark;
431 struct pid *sk_peer_pid;
432 const struct cred *sk_peer_cred;
433 long sk_rcvtimeo;
434 long sk_sndtimeo;
435 struct timer_list sk_timer;
436 ktime_t sk_stamp;
437 u16 sk_tsflags;
438 u32 sk_tskey;
439 struct socket *sk_socket;
440 void *sk_user_data;
441 struct page_frag sk_frag;
442 struct sk_buff *sk_send_head;
443 __s32 sk_peek_off;
444 int sk_write_pending;
445 #ifdef CONFIG_SECURITY
446 void *sk_security;
447 #endif
448 struct sock_cgroup_data sk_cgrp_data;
449 struct cg_proto *sk_cgrp;
450 void (*sk_state_change)(struct sock *sk);
451 void (*sk_data_ready)(struct sock *sk);
452 void (*sk_write_space)(struct sock *sk);
453 void (*sk_error_report)(struct sock *sk);
454 int (*sk_backlog_rcv)(struct sock *sk,
455 struct sk_buff *skb);
456 void (*sk_destruct)(struct sock *sk);
457 struct sock_reuseport __rcu *sk_reuseport_cb;
458 };
459
460 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
461
462 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
463 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
464
465 /*
466 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
467 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
468 * on a socket means that the socket will reuse everybody else's port
469 * without looking at the other's sk_reuse value.
470 */
471
472 #define SK_NO_REUSE 0
473 #define SK_CAN_REUSE 1
474 #define SK_FORCE_REUSE 2
475
476 static inline int sk_peek_offset(struct sock *sk, int flags)
477 {
478 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
479 return sk->sk_peek_off;
480 else
481 return 0;
482 }
483
484 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
485 {
486 if (sk->sk_peek_off >= 0) {
487 if (sk->sk_peek_off >= val)
488 sk->sk_peek_off -= val;
489 else
490 sk->sk_peek_off = 0;
491 }
492 }
493
494 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
495 {
496 if (sk->sk_peek_off >= 0)
497 sk->sk_peek_off += val;
498 }
499
500 /*
501 * Hashed lists helper routines
502 */
503 static inline struct sock *sk_entry(const struct hlist_node *node)
504 {
505 return hlist_entry(node, struct sock, sk_node);
506 }
507
508 static inline struct sock *__sk_head(const struct hlist_head *head)
509 {
510 return hlist_entry(head->first, struct sock, sk_node);
511 }
512
513 static inline struct sock *sk_head(const struct hlist_head *head)
514 {
515 return hlist_empty(head) ? NULL : __sk_head(head);
516 }
517
518 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
519 {
520 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
521 }
522
523 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
524 {
525 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
526 }
527
528 static inline struct sock *sk_next(const struct sock *sk)
529 {
530 return sk->sk_node.next ?
531 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
532 }
533
534 static inline struct sock *sk_nulls_next(const struct sock *sk)
535 {
536 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
537 hlist_nulls_entry(sk->sk_nulls_node.next,
538 struct sock, sk_nulls_node) :
539 NULL;
540 }
541
542 static inline bool sk_unhashed(const struct sock *sk)
543 {
544 return hlist_unhashed(&sk->sk_node);
545 }
546
547 static inline bool sk_hashed(const struct sock *sk)
548 {
549 return !sk_unhashed(sk);
550 }
551
552 static inline void sk_node_init(struct hlist_node *node)
553 {
554 node->pprev = NULL;
555 }
556
557 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
558 {
559 node->pprev = NULL;
560 }
561
562 static inline void __sk_del_node(struct sock *sk)
563 {
564 __hlist_del(&sk->sk_node);
565 }
566
567 /* NB: equivalent to hlist_del_init_rcu */
568 static inline bool __sk_del_node_init(struct sock *sk)
569 {
570 if (sk_hashed(sk)) {
571 __sk_del_node(sk);
572 sk_node_init(&sk->sk_node);
573 return true;
574 }
575 return false;
576 }
577
578 /* Grab socket reference count. This operation is valid only
579 when sk is ALREADY grabbed f.e. it is found in hash table
580 or a list and the lookup is made under lock preventing hash table
581 modifications.
582 */
583
584 static inline void sock_hold(struct sock *sk)
585 {
586 atomic_inc(&sk->sk_refcnt);
587 }
588
589 /* Ungrab socket in the context, which assumes that socket refcnt
590 cannot hit zero, f.e. it is true in context of any socketcall.
591 */
592 static inline void __sock_put(struct sock *sk)
593 {
594 atomic_dec(&sk->sk_refcnt);
595 }
596
597 static inline bool sk_del_node_init(struct sock *sk)
598 {
599 bool rc = __sk_del_node_init(sk);
600
601 if (rc) {
602 /* paranoid for a while -acme */
603 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
604 __sock_put(sk);
605 }
606 return rc;
607 }
608 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
609
610 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
611 {
612 if (sk_hashed(sk)) {
613 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
614 return true;
615 }
616 return false;
617 }
618
619 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
620 {
621 bool rc = __sk_nulls_del_node_init_rcu(sk);
622
623 if (rc) {
624 /* paranoid for a while -acme */
625 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
626 __sock_put(sk);
627 }
628 return rc;
629 }
630
631 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
632 {
633 hlist_add_head(&sk->sk_node, list);
634 }
635
636 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
637 {
638 sock_hold(sk);
639 __sk_add_node(sk, list);
640 }
641
642 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
643 {
644 sock_hold(sk);
645 hlist_add_head_rcu(&sk->sk_node, list);
646 }
647
648 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
649 {
650 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
651 }
652
653 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
654 {
655 sock_hold(sk);
656 __sk_nulls_add_node_rcu(sk, list);
657 }
658
659 static inline void __sk_del_bind_node(struct sock *sk)
660 {
661 __hlist_del(&sk->sk_bind_node);
662 }
663
664 static inline void sk_add_bind_node(struct sock *sk,
665 struct hlist_head *list)
666 {
667 hlist_add_head(&sk->sk_bind_node, list);
668 }
669
670 #define sk_for_each(__sk, list) \
671 hlist_for_each_entry(__sk, list, sk_node)
672 #define sk_for_each_rcu(__sk, list) \
673 hlist_for_each_entry_rcu(__sk, list, sk_node)
674 #define sk_nulls_for_each(__sk, node, list) \
675 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
676 #define sk_nulls_for_each_rcu(__sk, node, list) \
677 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
678 #define sk_for_each_from(__sk) \
679 hlist_for_each_entry_from(__sk, sk_node)
680 #define sk_nulls_for_each_from(__sk, node) \
681 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
682 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
683 #define sk_for_each_safe(__sk, tmp, list) \
684 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
685 #define sk_for_each_bound(__sk, list) \
686 hlist_for_each_entry(__sk, list, sk_bind_node)
687
688 /**
689 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
690 * @tpos: the type * to use as a loop cursor.
691 * @pos: the &struct hlist_node to use as a loop cursor.
692 * @head: the head for your list.
693 * @offset: offset of hlist_node within the struct.
694 *
695 */
696 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
697 for (pos = (head)->first; \
698 (!is_a_nulls(pos)) && \
699 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
700 pos = pos->next)
701
702 static inline struct user_namespace *sk_user_ns(struct sock *sk)
703 {
704 /* Careful only use this in a context where these parameters
705 * can not change and must all be valid, such as recvmsg from
706 * userspace.
707 */
708 return sk->sk_socket->file->f_cred->user_ns;
709 }
710
711 /* Sock flags */
712 enum sock_flags {
713 SOCK_DEAD,
714 SOCK_DONE,
715 SOCK_URGINLINE,
716 SOCK_KEEPOPEN,
717 SOCK_LINGER,
718 SOCK_DESTROY,
719 SOCK_BROADCAST,
720 SOCK_TIMESTAMP,
721 SOCK_ZAPPED,
722 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
723 SOCK_DBG, /* %SO_DEBUG setting */
724 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
725 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
726 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
727 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
728 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
729 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
730 SOCK_FASYNC, /* fasync() active */
731 SOCK_RXQ_OVFL,
732 SOCK_ZEROCOPY, /* buffers from userspace */
733 SOCK_WIFI_STATUS, /* push wifi status to userspace */
734 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
735 * Will use last 4 bytes of packet sent from
736 * user-space instead.
737 */
738 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
739 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
740 };
741
742 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
743
744 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
745 {
746 nsk->sk_flags = osk->sk_flags;
747 }
748
749 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
750 {
751 __set_bit(flag, &sk->sk_flags);
752 }
753
754 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
755 {
756 __clear_bit(flag, &sk->sk_flags);
757 }
758
759 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
760 {
761 return test_bit(flag, &sk->sk_flags);
762 }
763
764 #ifdef CONFIG_NET
765 extern struct static_key memalloc_socks;
766 static inline int sk_memalloc_socks(void)
767 {
768 return static_key_false(&memalloc_socks);
769 }
770 #else
771
772 static inline int sk_memalloc_socks(void)
773 {
774 return 0;
775 }
776
777 #endif
778
779 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
780 {
781 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
782 }
783
784 static inline void sk_acceptq_removed(struct sock *sk)
785 {
786 sk->sk_ack_backlog--;
787 }
788
789 static inline void sk_acceptq_added(struct sock *sk)
790 {
791 sk->sk_ack_backlog++;
792 }
793
794 static inline bool sk_acceptq_is_full(const struct sock *sk)
795 {
796 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
797 }
798
799 /*
800 * Compute minimal free write space needed to queue new packets.
801 */
802 static inline int sk_stream_min_wspace(const struct sock *sk)
803 {
804 return sk->sk_wmem_queued >> 1;
805 }
806
807 static inline int sk_stream_wspace(const struct sock *sk)
808 {
809 return sk->sk_sndbuf - sk->sk_wmem_queued;
810 }
811
812 void sk_stream_write_space(struct sock *sk);
813
814 /* OOB backlog add */
815 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
816 {
817 /* dont let skb dst not refcounted, we are going to leave rcu lock */
818 skb_dst_force_safe(skb);
819
820 if (!sk->sk_backlog.tail)
821 sk->sk_backlog.head = skb;
822 else
823 sk->sk_backlog.tail->next = skb;
824
825 sk->sk_backlog.tail = skb;
826 skb->next = NULL;
827 }
828
829 /*
830 * Take into account size of receive queue and backlog queue
831 * Do not take into account this skb truesize,
832 * to allow even a single big packet to come.
833 */
834 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
835 {
836 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
837
838 return qsize > limit;
839 }
840
841 /* The per-socket spinlock must be held here. */
842 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
843 unsigned int limit)
844 {
845 if (sk_rcvqueues_full(sk, limit))
846 return -ENOBUFS;
847
848 /*
849 * If the skb was allocated from pfmemalloc reserves, only
850 * allow SOCK_MEMALLOC sockets to use it as this socket is
851 * helping free memory
852 */
853 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
854 return -ENOMEM;
855
856 __sk_add_backlog(sk, skb);
857 sk->sk_backlog.len += skb->truesize;
858 return 0;
859 }
860
861 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
862
863 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
864 {
865 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
866 return __sk_backlog_rcv(sk, skb);
867
868 return sk->sk_backlog_rcv(sk, skb);
869 }
870
871 static inline void sk_incoming_cpu_update(struct sock *sk)
872 {
873 sk->sk_incoming_cpu = raw_smp_processor_id();
874 }
875
876 static inline void sock_rps_record_flow_hash(__u32 hash)
877 {
878 #ifdef CONFIG_RPS
879 struct rps_sock_flow_table *sock_flow_table;
880
881 rcu_read_lock();
882 sock_flow_table = rcu_dereference(rps_sock_flow_table);
883 rps_record_sock_flow(sock_flow_table, hash);
884 rcu_read_unlock();
885 #endif
886 }
887
888 static inline void sock_rps_record_flow(const struct sock *sk)
889 {
890 #ifdef CONFIG_RPS
891 sock_rps_record_flow_hash(sk->sk_rxhash);
892 #endif
893 }
894
895 static inline void sock_rps_save_rxhash(struct sock *sk,
896 const struct sk_buff *skb)
897 {
898 #ifdef CONFIG_RPS
899 if (unlikely(sk->sk_rxhash != skb->hash))
900 sk->sk_rxhash = skb->hash;
901 #endif
902 }
903
904 static inline void sock_rps_reset_rxhash(struct sock *sk)
905 {
906 #ifdef CONFIG_RPS
907 sk->sk_rxhash = 0;
908 #endif
909 }
910
911 #define sk_wait_event(__sk, __timeo, __condition) \
912 ({ int __rc; \
913 release_sock(__sk); \
914 __rc = __condition; \
915 if (!__rc) { \
916 *(__timeo) = schedule_timeout(*(__timeo)); \
917 } \
918 sched_annotate_sleep(); \
919 lock_sock(__sk); \
920 __rc = __condition; \
921 __rc; \
922 })
923
924 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
925 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
926 void sk_stream_wait_close(struct sock *sk, long timeo_p);
927 int sk_stream_error(struct sock *sk, int flags, int err);
928 void sk_stream_kill_queues(struct sock *sk);
929 void sk_set_memalloc(struct sock *sk);
930 void sk_clear_memalloc(struct sock *sk);
931
932 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
933
934 struct request_sock_ops;
935 struct timewait_sock_ops;
936 struct inet_hashinfo;
937 struct raw_hashinfo;
938 struct module;
939
940 /*
941 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
942 * un-modified. Special care is taken when initializing object to zero.
943 */
944 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
945 {
946 if (offsetof(struct sock, sk_node.next) != 0)
947 memset(sk, 0, offsetof(struct sock, sk_node.next));
948 memset(&sk->sk_node.pprev, 0,
949 size - offsetof(struct sock, sk_node.pprev));
950 }
951
952 /* Networking protocol blocks we attach to sockets.
953 * socket layer -> transport layer interface
954 */
955 struct proto {
956 void (*close)(struct sock *sk,
957 long timeout);
958 int (*connect)(struct sock *sk,
959 struct sockaddr *uaddr,
960 int addr_len);
961 int (*disconnect)(struct sock *sk, int flags);
962
963 struct sock * (*accept)(struct sock *sk, int flags, int *err);
964
965 int (*ioctl)(struct sock *sk, int cmd,
966 unsigned long arg);
967 int (*init)(struct sock *sk);
968 void (*destroy)(struct sock *sk);
969 void (*shutdown)(struct sock *sk, int how);
970 int (*setsockopt)(struct sock *sk, int level,
971 int optname, char __user *optval,
972 unsigned int optlen);
973 int (*getsockopt)(struct sock *sk, int level,
974 int optname, char __user *optval,
975 int __user *option);
976 #ifdef CONFIG_COMPAT
977 int (*compat_setsockopt)(struct sock *sk,
978 int level,
979 int optname, char __user *optval,
980 unsigned int optlen);
981 int (*compat_getsockopt)(struct sock *sk,
982 int level,
983 int optname, char __user *optval,
984 int __user *option);
985 int (*compat_ioctl)(struct sock *sk,
986 unsigned int cmd, unsigned long arg);
987 #endif
988 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
989 size_t len);
990 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
991 size_t len, int noblock, int flags,
992 int *addr_len);
993 int (*sendpage)(struct sock *sk, struct page *page,
994 int offset, size_t size, int flags);
995 int (*bind)(struct sock *sk,
996 struct sockaddr *uaddr, int addr_len);
997
998 int (*backlog_rcv) (struct sock *sk,
999 struct sk_buff *skb);
1000
1001 void (*release_cb)(struct sock *sk);
1002
1003 /* Keeping track of sk's, looking them up, and port selection methods. */
1004 void (*hash)(struct sock *sk);
1005 void (*unhash)(struct sock *sk);
1006 void (*rehash)(struct sock *sk);
1007 int (*get_port)(struct sock *sk, unsigned short snum);
1008 void (*clear_sk)(struct sock *sk, int size);
1009
1010 /* Keeping track of sockets in use */
1011 #ifdef CONFIG_PROC_FS
1012 unsigned int inuse_idx;
1013 #endif
1014
1015 bool (*stream_memory_free)(const struct sock *sk);
1016 /* Memory pressure */
1017 void (*enter_memory_pressure)(struct sock *sk);
1018 atomic_long_t *memory_allocated; /* Current allocated memory. */
1019 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1020 /*
1021 * Pressure flag: try to collapse.
1022 * Technical note: it is used by multiple contexts non atomically.
1023 * All the __sk_mem_schedule() is of this nature: accounting
1024 * is strict, actions are advisory and have some latency.
1025 */
1026 int *memory_pressure;
1027 long *sysctl_mem;
1028 int *sysctl_wmem;
1029 int *sysctl_rmem;
1030 int max_header;
1031 bool no_autobind;
1032
1033 struct kmem_cache *slab;
1034 unsigned int obj_size;
1035 int slab_flags;
1036
1037 struct percpu_counter *orphan_count;
1038
1039 struct request_sock_ops *rsk_prot;
1040 struct timewait_sock_ops *twsk_prot;
1041
1042 union {
1043 struct inet_hashinfo *hashinfo;
1044 struct udp_table *udp_table;
1045 struct raw_hashinfo *raw_hash;
1046 } h;
1047
1048 struct module *owner;
1049
1050 char name[32];
1051
1052 struct list_head node;
1053 #ifdef SOCK_REFCNT_DEBUG
1054 atomic_t socks;
1055 #endif
1056 #ifdef CONFIG_MEMCG_KMEM
1057 /*
1058 * cgroup specific init/deinit functions. Called once for all
1059 * protocols that implement it, from cgroups populate function.
1060 * This function has to setup any files the protocol want to
1061 * appear in the kmem cgroup filesystem.
1062 */
1063 int (*init_cgroup)(struct mem_cgroup *memcg,
1064 struct cgroup_subsys *ss);
1065 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1066 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1067 #endif
1068 int (*diag_destroy)(struct sock *sk, int err);
1069 };
1070
1071 int proto_register(struct proto *prot, int alloc_slab);
1072 void proto_unregister(struct proto *prot);
1073
1074 #ifdef SOCK_REFCNT_DEBUG
1075 static inline void sk_refcnt_debug_inc(struct sock *sk)
1076 {
1077 atomic_inc(&sk->sk_prot->socks);
1078 }
1079
1080 static inline void sk_refcnt_debug_dec(struct sock *sk)
1081 {
1082 atomic_dec(&sk->sk_prot->socks);
1083 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1084 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1085 }
1086
1087 static inline void sk_refcnt_debug_release(const struct sock *sk)
1088 {
1089 if (atomic_read(&sk->sk_refcnt) != 1)
1090 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1091 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1092 }
1093 #else /* SOCK_REFCNT_DEBUG */
1094 #define sk_refcnt_debug_inc(sk) do { } while (0)
1095 #define sk_refcnt_debug_dec(sk) do { } while (0)
1096 #define sk_refcnt_debug_release(sk) do { } while (0)
1097 #endif /* SOCK_REFCNT_DEBUG */
1098
1099 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1100 extern struct static_key memcg_socket_limit_enabled;
1101 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1102 struct cg_proto *cg_proto)
1103 {
1104 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1105 }
1106 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1107 #else
1108 #define mem_cgroup_sockets_enabled 0
1109 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1110 struct cg_proto *cg_proto)
1111 {
1112 return NULL;
1113 }
1114 #endif
1115
1116 static inline bool sk_stream_memory_free(const struct sock *sk)
1117 {
1118 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1119 return false;
1120
1121 return sk->sk_prot->stream_memory_free ?
1122 sk->sk_prot->stream_memory_free(sk) : true;
1123 }
1124
1125 static inline bool sk_stream_is_writeable(const struct sock *sk)
1126 {
1127 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1128 sk_stream_memory_free(sk);
1129 }
1130
1131
1132 static inline bool sk_has_memory_pressure(const struct sock *sk)
1133 {
1134 return sk->sk_prot->memory_pressure != NULL;
1135 }
1136
1137 static inline bool sk_under_memory_pressure(const struct sock *sk)
1138 {
1139 if (!sk->sk_prot->memory_pressure)
1140 return false;
1141
1142 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1143 return !!sk->sk_cgrp->memory_pressure;
1144
1145 return !!*sk->sk_prot->memory_pressure;
1146 }
1147
1148 static inline void sk_leave_memory_pressure(struct sock *sk)
1149 {
1150 int *memory_pressure = sk->sk_prot->memory_pressure;
1151
1152 if (!memory_pressure)
1153 return;
1154
1155 if (*memory_pressure)
1156 *memory_pressure = 0;
1157
1158 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1159 struct cg_proto *cg_proto = sk->sk_cgrp;
1160 struct proto *prot = sk->sk_prot;
1161
1162 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1163 cg_proto->memory_pressure = 0;
1164 }
1165
1166 }
1167
1168 static inline void sk_enter_memory_pressure(struct sock *sk)
1169 {
1170 if (!sk->sk_prot->enter_memory_pressure)
1171 return;
1172
1173 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1174 struct cg_proto *cg_proto = sk->sk_cgrp;
1175 struct proto *prot = sk->sk_prot;
1176
1177 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1178 cg_proto->memory_pressure = 1;
1179 }
1180
1181 sk->sk_prot->enter_memory_pressure(sk);
1182 }
1183
1184 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1185 {
1186 long *prot = sk->sk_prot->sysctl_mem;
1187 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1188 prot = sk->sk_cgrp->sysctl_mem;
1189 return prot[index];
1190 }
1191
1192 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1193 unsigned long amt,
1194 int *parent_status)
1195 {
1196 page_counter_charge(&prot->memory_allocated, amt);
1197
1198 if (page_counter_read(&prot->memory_allocated) >
1199 prot->memory_allocated.limit)
1200 *parent_status = OVER_LIMIT;
1201 }
1202
1203 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1204 unsigned long amt)
1205 {
1206 page_counter_uncharge(&prot->memory_allocated, amt);
1207 }
1208
1209 static inline long
1210 sk_memory_allocated(const struct sock *sk)
1211 {
1212 struct proto *prot = sk->sk_prot;
1213
1214 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1215 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1216
1217 return atomic_long_read(prot->memory_allocated);
1218 }
1219
1220 static inline long
1221 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1222 {
1223 struct proto *prot = sk->sk_prot;
1224
1225 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1226 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1227 /* update the root cgroup regardless */
1228 atomic_long_add_return(amt, prot->memory_allocated);
1229 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1230 }
1231
1232 return atomic_long_add_return(amt, prot->memory_allocated);
1233 }
1234
1235 static inline void
1236 sk_memory_allocated_sub(struct sock *sk, int amt)
1237 {
1238 struct proto *prot = sk->sk_prot;
1239
1240 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1241 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1242
1243 atomic_long_sub(amt, prot->memory_allocated);
1244 }
1245
1246 static inline void sk_sockets_allocated_dec(struct sock *sk)
1247 {
1248 struct proto *prot = sk->sk_prot;
1249
1250 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1251 struct cg_proto *cg_proto = sk->sk_cgrp;
1252
1253 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1254 percpu_counter_dec(&cg_proto->sockets_allocated);
1255 }
1256
1257 percpu_counter_dec(prot->sockets_allocated);
1258 }
1259
1260 static inline void sk_sockets_allocated_inc(struct sock *sk)
1261 {
1262 struct proto *prot = sk->sk_prot;
1263
1264 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1265 struct cg_proto *cg_proto = sk->sk_cgrp;
1266
1267 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1268 percpu_counter_inc(&cg_proto->sockets_allocated);
1269 }
1270
1271 percpu_counter_inc(prot->sockets_allocated);
1272 }
1273
1274 static inline int
1275 sk_sockets_allocated_read_positive(struct sock *sk)
1276 {
1277 struct proto *prot = sk->sk_prot;
1278
1279 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1280 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1281
1282 return percpu_counter_read_positive(prot->sockets_allocated);
1283 }
1284
1285 static inline int
1286 proto_sockets_allocated_sum_positive(struct proto *prot)
1287 {
1288 return percpu_counter_sum_positive(prot->sockets_allocated);
1289 }
1290
1291 static inline long
1292 proto_memory_allocated(struct proto *prot)
1293 {
1294 return atomic_long_read(prot->memory_allocated);
1295 }
1296
1297 static inline bool
1298 proto_memory_pressure(struct proto *prot)
1299 {
1300 if (!prot->memory_pressure)
1301 return false;
1302 return !!*prot->memory_pressure;
1303 }
1304
1305
1306 #ifdef CONFIG_PROC_FS
1307 /* Called with local bh disabled */
1308 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1309 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1310 #else
1311 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1312 int inc)
1313 {
1314 }
1315 #endif
1316
1317
1318 /* With per-bucket locks this operation is not-atomic, so that
1319 * this version is not worse.
1320 */
1321 static inline void __sk_prot_rehash(struct sock *sk)
1322 {
1323 sk->sk_prot->unhash(sk);
1324 sk->sk_prot->hash(sk);
1325 }
1326
1327 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1328
1329 /* About 10 seconds */
1330 #define SOCK_DESTROY_TIME (10*HZ)
1331
1332 /* Sockets 0-1023 can't be bound to unless you are superuser */
1333 #define PROT_SOCK 1024
1334
1335 #define SHUTDOWN_MASK 3
1336 #define RCV_SHUTDOWN 1
1337 #define SEND_SHUTDOWN 2
1338
1339 #define SOCK_SNDBUF_LOCK 1
1340 #define SOCK_RCVBUF_LOCK 2
1341 #define SOCK_BINDADDR_LOCK 4
1342 #define SOCK_BINDPORT_LOCK 8
1343
1344 struct socket_alloc {
1345 struct socket socket;
1346 struct inode vfs_inode;
1347 };
1348
1349 static inline struct socket *SOCKET_I(struct inode *inode)
1350 {
1351 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1352 }
1353
1354 static inline struct inode *SOCK_INODE(struct socket *socket)
1355 {
1356 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1357 }
1358
1359 /*
1360 * Functions for memory accounting
1361 */
1362 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1363 void __sk_mem_reclaim(struct sock *sk, int amount);
1364
1365 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1366 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1367 #define SK_MEM_SEND 0
1368 #define SK_MEM_RECV 1
1369
1370 static inline int sk_mem_pages(int amt)
1371 {
1372 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1373 }
1374
1375 static inline bool sk_has_account(struct sock *sk)
1376 {
1377 /* return true if protocol supports memory accounting */
1378 return !!sk->sk_prot->memory_allocated;
1379 }
1380
1381 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1382 {
1383 if (!sk_has_account(sk))
1384 return true;
1385 return size <= sk->sk_forward_alloc ||
1386 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1387 }
1388
1389 static inline bool
1390 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1391 {
1392 if (!sk_has_account(sk))
1393 return true;
1394 return size<= sk->sk_forward_alloc ||
1395 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1396 skb_pfmemalloc(skb);
1397 }
1398
1399 static inline void sk_mem_reclaim(struct sock *sk)
1400 {
1401 if (!sk_has_account(sk))
1402 return;
1403 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1404 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1405 }
1406
1407 static inline void sk_mem_reclaim_partial(struct sock *sk)
1408 {
1409 if (!sk_has_account(sk))
1410 return;
1411 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1412 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1413 }
1414
1415 static inline void sk_mem_charge(struct sock *sk, int size)
1416 {
1417 if (!sk_has_account(sk))
1418 return;
1419 sk->sk_forward_alloc -= size;
1420 }
1421
1422 static inline void sk_mem_uncharge(struct sock *sk, int size)
1423 {
1424 if (!sk_has_account(sk))
1425 return;
1426 sk->sk_forward_alloc += size;
1427 }
1428
1429 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1430 {
1431 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1432 sk->sk_wmem_queued -= skb->truesize;
1433 sk_mem_uncharge(sk, skb->truesize);
1434 __kfree_skb(skb);
1435 }
1436
1437 /* Used by processes to "lock" a socket state, so that
1438 * interrupts and bottom half handlers won't change it
1439 * from under us. It essentially blocks any incoming
1440 * packets, so that we won't get any new data or any
1441 * packets that change the state of the socket.
1442 *
1443 * While locked, BH processing will add new packets to
1444 * the backlog queue. This queue is processed by the
1445 * owner of the socket lock right before it is released.
1446 *
1447 * Since ~2.3.5 it is also exclusive sleep lock serializing
1448 * accesses from user process context.
1449 */
1450 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1451
1452 static inline void sock_release_ownership(struct sock *sk)
1453 {
1454 sk->sk_lock.owned = 0;
1455 }
1456
1457 /*
1458 * Macro so as to not evaluate some arguments when
1459 * lockdep is not enabled.
1460 *
1461 * Mark both the sk_lock and the sk_lock.slock as a
1462 * per-address-family lock class.
1463 */
1464 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1465 do { \
1466 sk->sk_lock.owned = 0; \
1467 init_waitqueue_head(&sk->sk_lock.wq); \
1468 spin_lock_init(&(sk)->sk_lock.slock); \
1469 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1470 sizeof((sk)->sk_lock)); \
1471 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1472 (skey), (sname)); \
1473 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1474 } while (0)
1475
1476 void lock_sock_nested(struct sock *sk, int subclass);
1477
1478 static inline void lock_sock(struct sock *sk)
1479 {
1480 lock_sock_nested(sk, 0);
1481 }
1482
1483 void release_sock(struct sock *sk);
1484
1485 /* BH context may only use the following locking interface. */
1486 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1487 #define bh_lock_sock_nested(__sk) \
1488 spin_lock_nested(&((__sk)->sk_lock.slock), \
1489 SINGLE_DEPTH_NESTING)
1490 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1491
1492 bool lock_sock_fast(struct sock *sk);
1493 /**
1494 * unlock_sock_fast - complement of lock_sock_fast
1495 * @sk: socket
1496 * @slow: slow mode
1497 *
1498 * fast unlock socket for user context.
1499 * If slow mode is on, we call regular release_sock()
1500 */
1501 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1502 {
1503 if (slow)
1504 release_sock(sk);
1505 else
1506 spin_unlock_bh(&sk->sk_lock.slock);
1507 }
1508
1509
1510 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1511 struct proto *prot, int kern);
1512 void sk_free(struct sock *sk);
1513 void sk_destruct(struct sock *sk);
1514 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1515
1516 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1517 gfp_t priority);
1518 void sock_wfree(struct sk_buff *skb);
1519 void skb_orphan_partial(struct sk_buff *skb);
1520 void sock_rfree(struct sk_buff *skb);
1521 void sock_efree(struct sk_buff *skb);
1522 #ifdef CONFIG_INET
1523 void sock_edemux(struct sk_buff *skb);
1524 #else
1525 #define sock_edemux(skb) sock_efree(skb)
1526 #endif
1527
1528 int sock_setsockopt(struct socket *sock, int level, int op,
1529 char __user *optval, unsigned int optlen);
1530
1531 int sock_getsockopt(struct socket *sock, int level, int op,
1532 char __user *optval, int __user *optlen);
1533 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1534 int noblock, int *errcode);
1535 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1536 unsigned long data_len, int noblock,
1537 int *errcode, int max_page_order);
1538 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1539 void sock_kfree_s(struct sock *sk, void *mem, int size);
1540 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1541 void sk_send_sigurg(struct sock *sk);
1542
1543 struct sockcm_cookie {
1544 u32 mark;
1545 };
1546
1547 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1548 struct sockcm_cookie *sockc);
1549
1550 /*
1551 * Functions to fill in entries in struct proto_ops when a protocol
1552 * does not implement a particular function.
1553 */
1554 int sock_no_bind(struct socket *, struct sockaddr *, int);
1555 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1556 int sock_no_socketpair(struct socket *, struct socket *);
1557 int sock_no_accept(struct socket *, struct socket *, int);
1558 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1559 unsigned int sock_no_poll(struct file *, struct socket *,
1560 struct poll_table_struct *);
1561 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1562 int sock_no_listen(struct socket *, int);
1563 int sock_no_shutdown(struct socket *, int);
1564 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1565 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1566 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1567 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1568 int sock_no_mmap(struct file *file, struct socket *sock,
1569 struct vm_area_struct *vma);
1570 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1571 size_t size, int flags);
1572
1573 /*
1574 * Functions to fill in entries in struct proto_ops when a protocol
1575 * uses the inet style.
1576 */
1577 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1578 char __user *optval, int __user *optlen);
1579 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1580 int flags);
1581 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1582 char __user *optval, unsigned int optlen);
1583 int compat_sock_common_getsockopt(struct socket *sock, int level,
1584 int optname, char __user *optval, int __user *optlen);
1585 int compat_sock_common_setsockopt(struct socket *sock, int level,
1586 int optname, char __user *optval, unsigned int optlen);
1587
1588 void sk_common_release(struct sock *sk);
1589
1590 /*
1591 * Default socket callbacks and setup code
1592 */
1593
1594 /* Initialise core socket variables */
1595 void sock_init_data(struct socket *sock, struct sock *sk);
1596
1597 /*
1598 * Socket reference counting postulates.
1599 *
1600 * * Each user of socket SHOULD hold a reference count.
1601 * * Each access point to socket (an hash table bucket, reference from a list,
1602 * running timer, skb in flight MUST hold a reference count.
1603 * * When reference count hits 0, it means it will never increase back.
1604 * * When reference count hits 0, it means that no references from
1605 * outside exist to this socket and current process on current CPU
1606 * is last user and may/should destroy this socket.
1607 * * sk_free is called from any context: process, BH, IRQ. When
1608 * it is called, socket has no references from outside -> sk_free
1609 * may release descendant resources allocated by the socket, but
1610 * to the time when it is called, socket is NOT referenced by any
1611 * hash tables, lists etc.
1612 * * Packets, delivered from outside (from network or from another process)
1613 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1614 * when they sit in queue. Otherwise, packets will leak to hole, when
1615 * socket is looked up by one cpu and unhasing is made by another CPU.
1616 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1617 * (leak to backlog). Packet socket does all the processing inside
1618 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1619 * use separate SMP lock, so that they are prone too.
1620 */
1621
1622 /* Ungrab socket and destroy it, if it was the last reference. */
1623 static inline void sock_put(struct sock *sk)
1624 {
1625 if (atomic_dec_and_test(&sk->sk_refcnt))
1626 sk_free(sk);
1627 }
1628 /* Generic version of sock_put(), dealing with all sockets
1629 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1630 */
1631 void sock_gen_put(struct sock *sk);
1632
1633 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1634
1635 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1636 {
1637 sk->sk_tx_queue_mapping = tx_queue;
1638 }
1639
1640 static inline void sk_tx_queue_clear(struct sock *sk)
1641 {
1642 sk->sk_tx_queue_mapping = -1;
1643 }
1644
1645 static inline int sk_tx_queue_get(const struct sock *sk)
1646 {
1647 return sk ? sk->sk_tx_queue_mapping : -1;
1648 }
1649
1650 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1651 {
1652 sk_tx_queue_clear(sk);
1653 sk->sk_socket = sock;
1654 }
1655
1656 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1657 {
1658 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1659 return &rcu_dereference_raw(sk->sk_wq)->wait;
1660 }
1661 /* Detach socket from process context.
1662 * Announce socket dead, detach it from wait queue and inode.
1663 * Note that parent inode held reference count on this struct sock,
1664 * we do not release it in this function, because protocol
1665 * probably wants some additional cleanups or even continuing
1666 * to work with this socket (TCP).
1667 */
1668 static inline void sock_orphan(struct sock *sk)
1669 {
1670 write_lock_bh(&sk->sk_callback_lock);
1671 sock_set_flag(sk, SOCK_DEAD);
1672 sk_set_socket(sk, NULL);
1673 sk->sk_wq = NULL;
1674 write_unlock_bh(&sk->sk_callback_lock);
1675 }
1676
1677 static inline void sock_graft(struct sock *sk, struct socket *parent)
1678 {
1679 write_lock_bh(&sk->sk_callback_lock);
1680 sk->sk_wq = parent->wq;
1681 parent->sk = sk;
1682 sk_set_socket(sk, parent);
1683 security_sock_graft(sk, parent);
1684 write_unlock_bh(&sk->sk_callback_lock);
1685 }
1686
1687 kuid_t sock_i_uid(struct sock *sk);
1688 unsigned long sock_i_ino(struct sock *sk);
1689
1690 static inline u32 net_tx_rndhash(void)
1691 {
1692 u32 v = prandom_u32();
1693
1694 return v ?: 1;
1695 }
1696
1697 static inline void sk_set_txhash(struct sock *sk)
1698 {
1699 sk->sk_txhash = net_tx_rndhash();
1700 }
1701
1702 static inline void sk_rethink_txhash(struct sock *sk)
1703 {
1704 if (sk->sk_txhash)
1705 sk_set_txhash(sk);
1706 }
1707
1708 static inline struct dst_entry *
1709 __sk_dst_get(struct sock *sk)
1710 {
1711 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1712 lockdep_is_held(&sk->sk_lock.slock));
1713 }
1714
1715 static inline struct dst_entry *
1716 sk_dst_get(struct sock *sk)
1717 {
1718 struct dst_entry *dst;
1719
1720 rcu_read_lock();
1721 dst = rcu_dereference(sk->sk_dst_cache);
1722 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1723 dst = NULL;
1724 rcu_read_unlock();
1725 return dst;
1726 }
1727
1728 static inline void dst_negative_advice(struct sock *sk)
1729 {
1730 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1731
1732 sk_rethink_txhash(sk);
1733
1734 if (dst && dst->ops->negative_advice) {
1735 ndst = dst->ops->negative_advice(dst);
1736
1737 if (ndst != dst) {
1738 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1739 sk_tx_queue_clear(sk);
1740 }
1741 }
1742 }
1743
1744 static inline void
1745 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1746 {
1747 struct dst_entry *old_dst;
1748
1749 sk_tx_queue_clear(sk);
1750 /*
1751 * This can be called while sk is owned by the caller only,
1752 * with no state that can be checked in a rcu_dereference_check() cond
1753 */
1754 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1755 rcu_assign_pointer(sk->sk_dst_cache, dst);
1756 dst_release(old_dst);
1757 }
1758
1759 static inline void
1760 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1761 {
1762 struct dst_entry *old_dst;
1763
1764 sk_tx_queue_clear(sk);
1765 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1766 dst_release(old_dst);
1767 }
1768
1769 static inline void
1770 __sk_dst_reset(struct sock *sk)
1771 {
1772 __sk_dst_set(sk, NULL);
1773 }
1774
1775 static inline void
1776 sk_dst_reset(struct sock *sk)
1777 {
1778 sk_dst_set(sk, NULL);
1779 }
1780
1781 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1782
1783 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1784
1785 bool sk_mc_loop(struct sock *sk);
1786
1787 static inline bool sk_can_gso(const struct sock *sk)
1788 {
1789 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1790 }
1791
1792 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1793
1794 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1795 {
1796 sk->sk_route_nocaps |= flags;
1797 sk->sk_route_caps &= ~flags;
1798 }
1799
1800 static inline bool sk_check_csum_caps(struct sock *sk)
1801 {
1802 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1803 (sk->sk_family == PF_INET &&
1804 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1805 (sk->sk_family == PF_INET6 &&
1806 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1807 }
1808
1809 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1810 struct iov_iter *from, char *to,
1811 int copy, int offset)
1812 {
1813 if (skb->ip_summed == CHECKSUM_NONE) {
1814 __wsum csum = 0;
1815 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1816 return -EFAULT;
1817 skb->csum = csum_block_add(skb->csum, csum, offset);
1818 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1819 if (copy_from_iter_nocache(to, copy, from) != copy)
1820 return -EFAULT;
1821 } else if (copy_from_iter(to, copy, from) != copy)
1822 return -EFAULT;
1823
1824 return 0;
1825 }
1826
1827 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1828 struct iov_iter *from, int copy)
1829 {
1830 int err, offset = skb->len;
1831
1832 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1833 copy, offset);
1834 if (err)
1835 __skb_trim(skb, offset);
1836
1837 return err;
1838 }
1839
1840 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1841 struct sk_buff *skb,
1842 struct page *page,
1843 int off, int copy)
1844 {
1845 int err;
1846
1847 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1848 copy, skb->len);
1849 if (err)
1850 return err;
1851
1852 skb->len += copy;
1853 skb->data_len += copy;
1854 skb->truesize += copy;
1855 sk->sk_wmem_queued += copy;
1856 sk_mem_charge(sk, copy);
1857 return 0;
1858 }
1859
1860 /**
1861 * sk_wmem_alloc_get - returns write allocations
1862 * @sk: socket
1863 *
1864 * Returns sk_wmem_alloc minus initial offset of one
1865 */
1866 static inline int sk_wmem_alloc_get(const struct sock *sk)
1867 {
1868 return atomic_read(&sk->sk_wmem_alloc) - 1;
1869 }
1870
1871 /**
1872 * sk_rmem_alloc_get - returns read allocations
1873 * @sk: socket
1874 *
1875 * Returns sk_rmem_alloc
1876 */
1877 static inline int sk_rmem_alloc_get(const struct sock *sk)
1878 {
1879 return atomic_read(&sk->sk_rmem_alloc);
1880 }
1881
1882 /**
1883 * sk_has_allocations - check if allocations are outstanding
1884 * @sk: socket
1885 *
1886 * Returns true if socket has write or read allocations
1887 */
1888 static inline bool sk_has_allocations(const struct sock *sk)
1889 {
1890 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1891 }
1892
1893 /**
1894 * skwq_has_sleeper - check if there are any waiting processes
1895 * @wq: struct socket_wq
1896 *
1897 * Returns true if socket_wq has waiting processes
1898 *
1899 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1900 * barrier call. They were added due to the race found within the tcp code.
1901 *
1902 * Consider following tcp code paths:
1903 *
1904 * CPU1 CPU2
1905 *
1906 * sys_select receive packet
1907 * ... ...
1908 * __add_wait_queue update tp->rcv_nxt
1909 * ... ...
1910 * tp->rcv_nxt check sock_def_readable
1911 * ... {
1912 * schedule rcu_read_lock();
1913 * wq = rcu_dereference(sk->sk_wq);
1914 * if (wq && waitqueue_active(&wq->wait))
1915 * wake_up_interruptible(&wq->wait)
1916 * ...
1917 * }
1918 *
1919 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1920 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1921 * could then endup calling schedule and sleep forever if there are no more
1922 * data on the socket.
1923 *
1924 */
1925 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1926 {
1927 return wq && wq_has_sleeper(&wq->wait);
1928 }
1929
1930 /**
1931 * sock_poll_wait - place memory barrier behind the poll_wait call.
1932 * @filp: file
1933 * @wait_address: socket wait queue
1934 * @p: poll_table
1935 *
1936 * See the comments in the wq_has_sleeper function.
1937 */
1938 static inline void sock_poll_wait(struct file *filp,
1939 wait_queue_head_t *wait_address, poll_table *p)
1940 {
1941 if (!poll_does_not_wait(p) && wait_address) {
1942 poll_wait(filp, wait_address, p);
1943 /* We need to be sure we are in sync with the
1944 * socket flags modification.
1945 *
1946 * This memory barrier is paired in the wq_has_sleeper.
1947 */
1948 smp_mb();
1949 }
1950 }
1951
1952 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1953 {
1954 if (sk->sk_txhash) {
1955 skb->l4_hash = 1;
1956 skb->hash = sk->sk_txhash;
1957 }
1958 }
1959
1960 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1961
1962 /*
1963 * Queue a received datagram if it will fit. Stream and sequenced
1964 * protocols can't normally use this as they need to fit buffers in
1965 * and play with them.
1966 *
1967 * Inlined as it's very short and called for pretty much every
1968 * packet ever received.
1969 */
1970 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1971 {
1972 skb_orphan(skb);
1973 skb->sk = sk;
1974 skb->destructor = sock_rfree;
1975 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1976 sk_mem_charge(sk, skb->truesize);
1977 }
1978
1979 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1980 unsigned long expires);
1981
1982 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1983
1984 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1985
1986 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1987 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1988
1989 /*
1990 * Recover an error report and clear atomically
1991 */
1992
1993 static inline int sock_error(struct sock *sk)
1994 {
1995 int err;
1996 if (likely(!sk->sk_err))
1997 return 0;
1998 err = xchg(&sk->sk_err, 0);
1999 return -err;
2000 }
2001
2002 static inline unsigned long sock_wspace(struct sock *sk)
2003 {
2004 int amt = 0;
2005
2006 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2007 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2008 if (amt < 0)
2009 amt = 0;
2010 }
2011 return amt;
2012 }
2013
2014 /* Note:
2015 * We use sk->sk_wq_raw, from contexts knowing this
2016 * pointer is not NULL and cannot disappear/change.
2017 */
2018 static inline void sk_set_bit(int nr, struct sock *sk)
2019 {
2020 set_bit(nr, &sk->sk_wq_raw->flags);
2021 }
2022
2023 static inline void sk_clear_bit(int nr, struct sock *sk)
2024 {
2025 clear_bit(nr, &sk->sk_wq_raw->flags);
2026 }
2027
2028 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2029 {
2030 if (sock_flag(sk, SOCK_FASYNC)) {
2031 rcu_read_lock();
2032 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2033 rcu_read_unlock();
2034 }
2035 }
2036
2037 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2038 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2039 * Note: for send buffers, TCP works better if we can build two skbs at
2040 * minimum.
2041 */
2042 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2043
2044 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2045 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2046
2047 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2048 {
2049 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2050 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2051 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2052 }
2053 }
2054
2055 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2056 bool force_schedule);
2057
2058 /**
2059 * sk_page_frag - return an appropriate page_frag
2060 * @sk: socket
2061 *
2062 * If socket allocation mode allows current thread to sleep, it means its
2063 * safe to use the per task page_frag instead of the per socket one.
2064 */
2065 static inline struct page_frag *sk_page_frag(struct sock *sk)
2066 {
2067 if (gfpflags_allow_blocking(sk->sk_allocation))
2068 return &current->task_frag;
2069
2070 return &sk->sk_frag;
2071 }
2072
2073 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2074
2075 /*
2076 * Default write policy as shown to user space via poll/select/SIGIO
2077 */
2078 static inline bool sock_writeable(const struct sock *sk)
2079 {
2080 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2081 }
2082
2083 static inline gfp_t gfp_any(void)
2084 {
2085 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2086 }
2087
2088 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2089 {
2090 return noblock ? 0 : sk->sk_rcvtimeo;
2091 }
2092
2093 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2094 {
2095 return noblock ? 0 : sk->sk_sndtimeo;
2096 }
2097
2098 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2099 {
2100 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2101 }
2102
2103 /* Alas, with timeout socket operations are not restartable.
2104 * Compare this to poll().
2105 */
2106 static inline int sock_intr_errno(long timeo)
2107 {
2108 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2109 }
2110
2111 struct sock_skb_cb {
2112 u32 dropcount;
2113 };
2114
2115 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2116 * using skb->cb[] would keep using it directly and utilize its
2117 * alignement guarantee.
2118 */
2119 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2120 sizeof(struct sock_skb_cb)))
2121
2122 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2123 SOCK_SKB_CB_OFFSET))
2124
2125 #define sock_skb_cb_check_size(size) \
2126 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2127
2128 static inline void
2129 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2130 {
2131 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2132 }
2133
2134 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2135 struct sk_buff *skb);
2136 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2137 struct sk_buff *skb);
2138
2139 static inline void
2140 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2141 {
2142 ktime_t kt = skb->tstamp;
2143 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2144
2145 /*
2146 * generate control messages if
2147 * - receive time stamping in software requested
2148 * - software time stamp available and wanted
2149 * - hardware time stamps available and wanted
2150 */
2151 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2152 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2153 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2154 (hwtstamps->hwtstamp.tv64 &&
2155 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2156 __sock_recv_timestamp(msg, sk, skb);
2157 else
2158 sk->sk_stamp = kt;
2159
2160 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2161 __sock_recv_wifi_status(msg, sk, skb);
2162 }
2163
2164 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2165 struct sk_buff *skb);
2166
2167 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2168 struct sk_buff *skb)
2169 {
2170 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2171 (1UL << SOCK_RCVTSTAMP))
2172 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2173 SOF_TIMESTAMPING_RAW_HARDWARE)
2174
2175 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2176 __sock_recv_ts_and_drops(msg, sk, skb);
2177 else
2178 sk->sk_stamp = skb->tstamp;
2179 }
2180
2181 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2182
2183 /**
2184 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2185 * @sk: socket sending this packet
2186 * @tx_flags: completed with instructions for time stamping
2187 *
2188 * Note : callers should take care of initial *tx_flags value (usually 0)
2189 */
2190 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2191 {
2192 if (unlikely(sk->sk_tsflags))
2193 __sock_tx_timestamp(sk, tx_flags);
2194 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2195 *tx_flags |= SKBTX_WIFI_STATUS;
2196 }
2197
2198 /**
2199 * sk_eat_skb - Release a skb if it is no longer needed
2200 * @sk: socket to eat this skb from
2201 * @skb: socket buffer to eat
2202 *
2203 * This routine must be called with interrupts disabled or with the socket
2204 * locked so that the sk_buff queue operation is ok.
2205 */
2206 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2207 {
2208 __skb_unlink(skb, &sk->sk_receive_queue);
2209 __kfree_skb(skb);
2210 }
2211
2212 static inline
2213 struct net *sock_net(const struct sock *sk)
2214 {
2215 return read_pnet(&sk->sk_net);
2216 }
2217
2218 static inline
2219 void sock_net_set(struct sock *sk, struct net *net)
2220 {
2221 write_pnet(&sk->sk_net, net);
2222 }
2223
2224 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2225 {
2226 if (skb->sk) {
2227 struct sock *sk = skb->sk;
2228
2229 skb->destructor = NULL;
2230 skb->sk = NULL;
2231 return sk;
2232 }
2233 return NULL;
2234 }
2235
2236 /* This helper checks if a socket is a full socket,
2237 * ie _not_ a timewait or request socket.
2238 */
2239 static inline bool sk_fullsock(const struct sock *sk)
2240 {
2241 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2242 }
2243
2244 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2245 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2246 */
2247 static inline bool sk_listener(const struct sock *sk)
2248 {
2249 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2250 }
2251
2252 /**
2253 * sk_state_load - read sk->sk_state for lockless contexts
2254 * @sk: socket pointer
2255 *
2256 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2257 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2258 */
2259 static inline int sk_state_load(const struct sock *sk)
2260 {
2261 return smp_load_acquire(&sk->sk_state);
2262 }
2263
2264 /**
2265 * sk_state_store - update sk->sk_state
2266 * @sk: socket pointer
2267 * @newstate: new state
2268 *
2269 * Paired with sk_state_load(). Should be used in contexts where
2270 * state change might impact lockless readers.
2271 */
2272 static inline void sk_state_store(struct sock *sk, int newstate)
2273 {
2274 smp_store_release(&sk->sk_state, newstate);
2275 }
2276
2277 void sock_enable_timestamp(struct sock *sk, int flag);
2278 int sock_get_timestamp(struct sock *, struct timeval __user *);
2279 int sock_get_timestampns(struct sock *, struct timespec __user *);
2280 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2281 int type);
2282
2283 bool sk_ns_capable(const struct sock *sk,
2284 struct user_namespace *user_ns, int cap);
2285 bool sk_capable(const struct sock *sk, int cap);
2286 bool sk_net_capable(const struct sock *sk, int cap);
2287
2288 extern __u32 sysctl_wmem_max;
2289 extern __u32 sysctl_rmem_max;
2290
2291 extern int sysctl_tstamp_allow_data;
2292 extern int sysctl_optmem_max;
2293
2294 extern __u32 sysctl_wmem_default;
2295 extern __u32 sysctl_rmem_default;
2296
2297 #endif /* _SOCK_H */
This page took 0.075319 seconds and 6 git commands to generate.