Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/timer.h>
46 #include <linux/cache.h>
47 #include <linux/module.h>
48 #include <linux/lockdep.h>
49 #include <linux/netdevice.h>
50 #include <linux/skbuff.h> /* struct sk_buff */
51 #include <linux/mm.h>
52 #include <linux/security.h>
53
54 #include <linux/filter.h>
55
56 #include <asm/atomic.h>
57 #include <net/dst.h>
58 #include <net/checksum.h>
59 #include <net/net_namespace.h>
60
61 /*
62 * This structure really needs to be cleaned up.
63 * Most of it is for TCP, and not used by any of
64 * the other protocols.
65 */
66
67 /* Define this to get the SOCK_DBG debugging facility. */
68 #define SOCK_DEBUGGING
69 #ifdef SOCK_DEBUGGING
70 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
71 printk(KERN_DEBUG msg); } while (0)
72 #else
73 #define SOCK_DEBUG(sk, msg...) do { } while (0)
74 #endif
75
76 /* This is the per-socket lock. The spinlock provides a synchronization
77 * between user contexts and software interrupt processing, whereas the
78 * mini-semaphore synchronizes multiple users amongst themselves.
79 */
80 typedef struct {
81 spinlock_t slock;
82 int owned;
83 wait_queue_head_t wq;
84 /*
85 * We express the mutex-alike socket_lock semantics
86 * to the lock validator by explicitly managing
87 * the slock as a lock variant (in addition to
88 * the slock itself):
89 */
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91 struct lockdep_map dep_map;
92 #endif
93 } socket_lock_t;
94
95 struct sock;
96 struct proto;
97
98 /**
99 * struct sock_common - minimal network layer representation of sockets
100 * @skc_family: network address family
101 * @skc_state: Connection state
102 * @skc_reuse: %SO_REUSEADDR setting
103 * @skc_bound_dev_if: bound device index if != 0
104 * @skc_node: main hash linkage for various protocol lookup tables
105 * @skc_bind_node: bind hash linkage for various protocol lookup tables
106 * @skc_refcnt: reference count
107 * @skc_hash: hash value used with various protocol lookup tables
108 * @skc_prot: protocol handlers inside a network family
109 * @skc_net: reference to the network namespace of this socket
110 *
111 * This is the minimal network layer representation of sockets, the header
112 * for struct sock and struct inet_timewait_sock.
113 */
114 struct sock_common {
115 unsigned short skc_family;
116 volatile unsigned char skc_state;
117 unsigned char skc_reuse;
118 int skc_bound_dev_if;
119 struct hlist_node skc_node;
120 struct hlist_node skc_bind_node;
121 atomic_t skc_refcnt;
122 unsigned int skc_hash;
123 struct proto *skc_prot;
124 struct net *skc_net;
125 };
126
127 /**
128 * struct sock - network layer representation of sockets
129 * @__sk_common: shared layout with inet_timewait_sock
130 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
131 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
132 * @sk_lock: synchronizer
133 * @sk_rcvbuf: size of receive buffer in bytes
134 * @sk_sleep: sock wait queue
135 * @sk_dst_cache: destination cache
136 * @sk_dst_lock: destination cache lock
137 * @sk_policy: flow policy
138 * @sk_rmem_alloc: receive queue bytes committed
139 * @sk_receive_queue: incoming packets
140 * @sk_wmem_alloc: transmit queue bytes committed
141 * @sk_write_queue: Packet sending queue
142 * @sk_async_wait_queue: DMA copied packets
143 * @sk_omem_alloc: "o" is "option" or "other"
144 * @sk_wmem_queued: persistent queue size
145 * @sk_forward_alloc: space allocated forward
146 * @sk_allocation: allocation mode
147 * @sk_sndbuf: size of send buffer in bytes
148 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
149 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
150 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
151 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
152 * @sk_lingertime: %SO_LINGER l_linger setting
153 * @sk_backlog: always used with the per-socket spinlock held
154 * @sk_callback_lock: used with the callbacks in the end of this struct
155 * @sk_error_queue: rarely used
156 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
157 * @sk_err: last error
158 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
159 * @sk_ack_backlog: current listen backlog
160 * @sk_max_ack_backlog: listen backlog set in listen()
161 * @sk_priority: %SO_PRIORITY setting
162 * @sk_type: socket type (%SOCK_STREAM, etc)
163 * @sk_protocol: which protocol this socket belongs in this network family
164 * @sk_peercred: %SO_PEERCRED setting
165 * @sk_rcvlowat: %SO_RCVLOWAT setting
166 * @sk_rcvtimeo: %SO_RCVTIMEO setting
167 * @sk_sndtimeo: %SO_SNDTIMEO setting
168 * @sk_filter: socket filtering instructions
169 * @sk_protinfo: private area, net family specific, when not using slab
170 * @sk_timer: sock cleanup timer
171 * @sk_stamp: time stamp of last packet received
172 * @sk_socket: Identd and reporting IO signals
173 * @sk_user_data: RPC layer private data
174 * @sk_sndmsg_page: cached page for sendmsg
175 * @sk_sndmsg_off: cached offset for sendmsg
176 * @sk_send_head: front of stuff to transmit
177 * @sk_security: used by security modules
178 * @sk_write_pending: a write to stream socket waits to start
179 * @sk_state_change: callback to indicate change in the state of the sock
180 * @sk_data_ready: callback to indicate there is data to be processed
181 * @sk_write_space: callback to indicate there is bf sending space available
182 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
183 * @sk_backlog_rcv: callback to process the backlog
184 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
185 */
186 struct sock {
187 /*
188 * Now struct inet_timewait_sock also uses sock_common, so please just
189 * don't add nothing before this first member (__sk_common) --acme
190 */
191 struct sock_common __sk_common;
192 #define sk_family __sk_common.skc_family
193 #define sk_state __sk_common.skc_state
194 #define sk_reuse __sk_common.skc_reuse
195 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
196 #define sk_node __sk_common.skc_node
197 #define sk_bind_node __sk_common.skc_bind_node
198 #define sk_refcnt __sk_common.skc_refcnt
199 #define sk_hash __sk_common.skc_hash
200 #define sk_prot __sk_common.skc_prot
201 #define sk_net __sk_common.skc_net
202 unsigned char sk_shutdown : 2,
203 sk_no_check : 2,
204 sk_userlocks : 4;
205 unsigned char sk_protocol;
206 unsigned short sk_type;
207 int sk_rcvbuf;
208 socket_lock_t sk_lock;
209 /*
210 * The backlog queue is special, it is always used with
211 * the per-socket spinlock held and requires low latency
212 * access. Therefore we special case it's implementation.
213 */
214 struct {
215 struct sk_buff *head;
216 struct sk_buff *tail;
217 } sk_backlog;
218 wait_queue_head_t *sk_sleep;
219 struct dst_entry *sk_dst_cache;
220 struct xfrm_policy *sk_policy[2];
221 rwlock_t sk_dst_lock;
222 atomic_t sk_rmem_alloc;
223 atomic_t sk_wmem_alloc;
224 atomic_t sk_omem_alloc;
225 int sk_sndbuf;
226 struct sk_buff_head sk_receive_queue;
227 struct sk_buff_head sk_write_queue;
228 struct sk_buff_head sk_async_wait_queue;
229 int sk_wmem_queued;
230 int sk_forward_alloc;
231 gfp_t sk_allocation;
232 int sk_route_caps;
233 int sk_gso_type;
234 int sk_rcvlowat;
235 unsigned long sk_flags;
236 unsigned long sk_lingertime;
237 struct sk_buff_head sk_error_queue;
238 struct proto *sk_prot_creator;
239 rwlock_t sk_callback_lock;
240 int sk_err,
241 sk_err_soft;
242 unsigned short sk_ack_backlog;
243 unsigned short sk_max_ack_backlog;
244 __u32 sk_priority;
245 struct ucred sk_peercred;
246 long sk_rcvtimeo;
247 long sk_sndtimeo;
248 struct sk_filter *sk_filter;
249 void *sk_protinfo;
250 struct timer_list sk_timer;
251 ktime_t sk_stamp;
252 struct socket *sk_socket;
253 void *sk_user_data;
254 struct page *sk_sndmsg_page;
255 struct sk_buff *sk_send_head;
256 __u32 sk_sndmsg_off;
257 int sk_write_pending;
258 void *sk_security;
259 void (*sk_state_change)(struct sock *sk);
260 void (*sk_data_ready)(struct sock *sk, int bytes);
261 void (*sk_write_space)(struct sock *sk);
262 void (*sk_error_report)(struct sock *sk);
263 int (*sk_backlog_rcv)(struct sock *sk,
264 struct sk_buff *skb);
265 void (*sk_destruct)(struct sock *sk);
266 };
267
268 /*
269 * Hashed lists helper routines
270 */
271 static inline struct sock *__sk_head(const struct hlist_head *head)
272 {
273 return hlist_entry(head->first, struct sock, sk_node);
274 }
275
276 static inline struct sock *sk_head(const struct hlist_head *head)
277 {
278 return hlist_empty(head) ? NULL : __sk_head(head);
279 }
280
281 static inline struct sock *sk_next(const struct sock *sk)
282 {
283 return sk->sk_node.next ?
284 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
285 }
286
287 static inline int sk_unhashed(const struct sock *sk)
288 {
289 return hlist_unhashed(&sk->sk_node);
290 }
291
292 static inline int sk_hashed(const struct sock *sk)
293 {
294 return !sk_unhashed(sk);
295 }
296
297 static __inline__ void sk_node_init(struct hlist_node *node)
298 {
299 node->pprev = NULL;
300 }
301
302 static __inline__ void __sk_del_node(struct sock *sk)
303 {
304 __hlist_del(&sk->sk_node);
305 }
306
307 static __inline__ int __sk_del_node_init(struct sock *sk)
308 {
309 if (sk_hashed(sk)) {
310 __sk_del_node(sk);
311 sk_node_init(&sk->sk_node);
312 return 1;
313 }
314 return 0;
315 }
316
317 /* Grab socket reference count. This operation is valid only
318 when sk is ALREADY grabbed f.e. it is found in hash table
319 or a list and the lookup is made under lock preventing hash table
320 modifications.
321 */
322
323 static inline void sock_hold(struct sock *sk)
324 {
325 atomic_inc(&sk->sk_refcnt);
326 }
327
328 /* Ungrab socket in the context, which assumes that socket refcnt
329 cannot hit zero, f.e. it is true in context of any socketcall.
330 */
331 static inline void __sock_put(struct sock *sk)
332 {
333 atomic_dec(&sk->sk_refcnt);
334 }
335
336 static __inline__ int sk_del_node_init(struct sock *sk)
337 {
338 int rc = __sk_del_node_init(sk);
339
340 if (rc) {
341 /* paranoid for a while -acme */
342 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
343 __sock_put(sk);
344 }
345 return rc;
346 }
347
348 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
349 {
350 hlist_add_head(&sk->sk_node, list);
351 }
352
353 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
354 {
355 sock_hold(sk);
356 __sk_add_node(sk, list);
357 }
358
359 static __inline__ void __sk_del_bind_node(struct sock *sk)
360 {
361 __hlist_del(&sk->sk_bind_node);
362 }
363
364 static __inline__ void sk_add_bind_node(struct sock *sk,
365 struct hlist_head *list)
366 {
367 hlist_add_head(&sk->sk_bind_node, list);
368 }
369
370 #define sk_for_each(__sk, node, list) \
371 hlist_for_each_entry(__sk, node, list, sk_node)
372 #define sk_for_each_from(__sk, node) \
373 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
374 hlist_for_each_entry_from(__sk, node, sk_node)
375 #define sk_for_each_continue(__sk, node) \
376 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
377 hlist_for_each_entry_continue(__sk, node, sk_node)
378 #define sk_for_each_safe(__sk, node, tmp, list) \
379 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
380 #define sk_for_each_bound(__sk, node, list) \
381 hlist_for_each_entry(__sk, node, list, sk_bind_node)
382
383 /* Sock flags */
384 enum sock_flags {
385 SOCK_DEAD,
386 SOCK_DONE,
387 SOCK_URGINLINE,
388 SOCK_KEEPOPEN,
389 SOCK_LINGER,
390 SOCK_DESTROY,
391 SOCK_BROADCAST,
392 SOCK_TIMESTAMP,
393 SOCK_ZAPPED,
394 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
395 SOCK_DBG, /* %SO_DEBUG setting */
396 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
397 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
398 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
399 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
400 };
401
402 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
403 {
404 nsk->sk_flags = osk->sk_flags;
405 }
406
407 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
408 {
409 __set_bit(flag, &sk->sk_flags);
410 }
411
412 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
413 {
414 __clear_bit(flag, &sk->sk_flags);
415 }
416
417 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
418 {
419 return test_bit(flag, &sk->sk_flags);
420 }
421
422 static inline void sk_acceptq_removed(struct sock *sk)
423 {
424 sk->sk_ack_backlog--;
425 }
426
427 static inline void sk_acceptq_added(struct sock *sk)
428 {
429 sk->sk_ack_backlog++;
430 }
431
432 static inline int sk_acceptq_is_full(struct sock *sk)
433 {
434 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
435 }
436
437 /*
438 * Compute minimal free write space needed to queue new packets.
439 */
440 static inline int sk_stream_min_wspace(struct sock *sk)
441 {
442 return sk->sk_wmem_queued / 2;
443 }
444
445 static inline int sk_stream_wspace(struct sock *sk)
446 {
447 return sk->sk_sndbuf - sk->sk_wmem_queued;
448 }
449
450 extern void sk_stream_write_space(struct sock *sk);
451
452 static inline int sk_stream_memory_free(struct sock *sk)
453 {
454 return sk->sk_wmem_queued < sk->sk_sndbuf;
455 }
456
457 extern void sk_stream_rfree(struct sk_buff *skb);
458
459 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
460 {
461 skb->sk = sk;
462 skb->destructor = sk_stream_rfree;
463 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
464 sk->sk_forward_alloc -= skb->truesize;
465 }
466
467 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
468 {
469 skb_truesize_check(skb);
470 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
471 sk->sk_wmem_queued -= skb->truesize;
472 sk->sk_forward_alloc += skb->truesize;
473 __kfree_skb(skb);
474 }
475
476 /* The per-socket spinlock must be held here. */
477 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
478 {
479 if (!sk->sk_backlog.tail) {
480 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
481 } else {
482 sk->sk_backlog.tail->next = skb;
483 sk->sk_backlog.tail = skb;
484 }
485 skb->next = NULL;
486 }
487
488 #define sk_wait_event(__sk, __timeo, __condition) \
489 ({ int __rc; \
490 release_sock(__sk); \
491 __rc = __condition; \
492 if (!__rc) { \
493 *(__timeo) = schedule_timeout(*(__timeo)); \
494 } \
495 lock_sock(__sk); \
496 __rc = __condition; \
497 __rc; \
498 })
499
500 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
501 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
502 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
503 extern int sk_stream_error(struct sock *sk, int flags, int err);
504 extern void sk_stream_kill_queues(struct sock *sk);
505
506 extern int sk_wait_data(struct sock *sk, long *timeo);
507
508 struct request_sock_ops;
509 struct timewait_sock_ops;
510
511 /* Networking protocol blocks we attach to sockets.
512 * socket layer -> transport layer interface
513 * transport -> network interface is defined by struct inet_proto
514 */
515 struct proto {
516 void (*close)(struct sock *sk,
517 long timeout);
518 int (*connect)(struct sock *sk,
519 struct sockaddr *uaddr,
520 int addr_len);
521 int (*disconnect)(struct sock *sk, int flags);
522
523 struct sock * (*accept) (struct sock *sk, int flags, int *err);
524
525 int (*ioctl)(struct sock *sk, int cmd,
526 unsigned long arg);
527 int (*init)(struct sock *sk);
528 int (*destroy)(struct sock *sk);
529 void (*shutdown)(struct sock *sk, int how);
530 int (*setsockopt)(struct sock *sk, int level,
531 int optname, char __user *optval,
532 int optlen);
533 int (*getsockopt)(struct sock *sk, int level,
534 int optname, char __user *optval,
535 int __user *option);
536 int (*compat_setsockopt)(struct sock *sk,
537 int level,
538 int optname, char __user *optval,
539 int optlen);
540 int (*compat_getsockopt)(struct sock *sk,
541 int level,
542 int optname, char __user *optval,
543 int __user *option);
544 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
545 struct msghdr *msg, size_t len);
546 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
547 struct msghdr *msg,
548 size_t len, int noblock, int flags,
549 int *addr_len);
550 int (*sendpage)(struct sock *sk, struct page *page,
551 int offset, size_t size, int flags);
552 int (*bind)(struct sock *sk,
553 struct sockaddr *uaddr, int addr_len);
554
555 int (*backlog_rcv) (struct sock *sk,
556 struct sk_buff *skb);
557
558 /* Keeping track of sk's, looking them up, and port selection methods. */
559 void (*hash)(struct sock *sk);
560 void (*unhash)(struct sock *sk);
561 int (*get_port)(struct sock *sk, unsigned short snum);
562
563 #ifdef CONFIG_SMP
564 /* Keeping track of sockets in use */
565 void (*inuse_add)(struct proto *prot, int inc);
566 int (*inuse_getval)(const struct proto *prot);
567 int *inuse_ptr;
568 #else
569 int inuse;
570 #endif
571 /* Memory pressure */
572 void (*enter_memory_pressure)(void);
573 atomic_t *memory_allocated; /* Current allocated memory. */
574 atomic_t *sockets_allocated; /* Current number of sockets. */
575 /*
576 * Pressure flag: try to collapse.
577 * Technical note: it is used by multiple contexts non atomically.
578 * All the sk_stream_mem_schedule() is of this nature: accounting
579 * is strict, actions are advisory and have some latency.
580 */
581 int *memory_pressure;
582 int *sysctl_mem;
583 int *sysctl_wmem;
584 int *sysctl_rmem;
585 int max_header;
586
587 struct kmem_cache *slab;
588 unsigned int obj_size;
589
590 atomic_t *orphan_count;
591
592 struct request_sock_ops *rsk_prot;
593 struct timewait_sock_ops *twsk_prot;
594
595 struct module *owner;
596
597 char name[32];
598
599 struct list_head node;
600 #ifdef SOCK_REFCNT_DEBUG
601 atomic_t socks;
602 #endif
603 };
604
605 /*
606 * Special macros to let protos use a fast version of inuse{get|add}
607 * using a static percpu variable per proto instead of an allocated one,
608 * saving one dereference.
609 * This might be changed if/when dynamic percpu vars become fast.
610 */
611 #ifdef CONFIG_SMP
612 # define DEFINE_PROTO_INUSE(NAME) \
613 static DEFINE_PER_CPU(int, NAME##_inuse); \
614 static void NAME##_inuse_add(struct proto *prot, int inc) \
615 { \
616 __get_cpu_var(NAME##_inuse) += inc; \
617 } \
618 \
619 static int NAME##_inuse_getval(const struct proto *prot)\
620 { \
621 int res = 0, cpu; \
622 \
623 for_each_possible_cpu(cpu) \
624 res += per_cpu(NAME##_inuse, cpu); \
625 return res; \
626 }
627 # define REF_PROTO_INUSE(NAME) \
628 .inuse_add = NAME##_inuse_add, \
629 .inuse_getval = NAME##_inuse_getval,
630 #else
631 # define DEFINE_PROTO_INUSE(NAME)
632 # define REF_PROTO_INUSE(NAME)
633 #endif
634
635 extern int proto_register(struct proto *prot, int alloc_slab);
636 extern void proto_unregister(struct proto *prot);
637
638 #ifdef SOCK_REFCNT_DEBUG
639 static inline void sk_refcnt_debug_inc(struct sock *sk)
640 {
641 atomic_inc(&sk->sk_prot->socks);
642 }
643
644 static inline void sk_refcnt_debug_dec(struct sock *sk)
645 {
646 atomic_dec(&sk->sk_prot->socks);
647 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
648 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
649 }
650
651 static inline void sk_refcnt_debug_release(const struct sock *sk)
652 {
653 if (atomic_read(&sk->sk_refcnt) != 1)
654 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
655 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
656 }
657 #else /* SOCK_REFCNT_DEBUG */
658 #define sk_refcnt_debug_inc(sk) do { } while (0)
659 #define sk_refcnt_debug_dec(sk) do { } while (0)
660 #define sk_refcnt_debug_release(sk) do { } while (0)
661 #endif /* SOCK_REFCNT_DEBUG */
662
663 /* Called with local bh disabled */
664 static __inline__ void sock_prot_inc_use(struct proto *prot)
665 {
666 #ifdef CONFIG_SMP
667 prot->inuse_add(prot, 1);
668 #else
669 prot->inuse++;
670 #endif
671 }
672
673 static __inline__ void sock_prot_dec_use(struct proto *prot)
674 {
675 #ifdef CONFIG_SMP
676 prot->inuse_add(prot, -1);
677 #else
678 prot->inuse--;
679 #endif
680 }
681
682 static __inline__ int sock_prot_inuse(struct proto *proto)
683 {
684 #ifdef CONFIG_SMP
685 return proto->inuse_getval(proto);
686 #else
687 return proto->inuse;
688 #endif
689 }
690
691 /* With per-bucket locks this operation is not-atomic, so that
692 * this version is not worse.
693 */
694 static inline void __sk_prot_rehash(struct sock *sk)
695 {
696 sk->sk_prot->unhash(sk);
697 sk->sk_prot->hash(sk);
698 }
699
700 /* About 10 seconds */
701 #define SOCK_DESTROY_TIME (10*HZ)
702
703 /* Sockets 0-1023 can't be bound to unless you are superuser */
704 #define PROT_SOCK 1024
705
706 #define SHUTDOWN_MASK 3
707 #define RCV_SHUTDOWN 1
708 #define SEND_SHUTDOWN 2
709
710 #define SOCK_SNDBUF_LOCK 1
711 #define SOCK_RCVBUF_LOCK 2
712 #define SOCK_BINDADDR_LOCK 4
713 #define SOCK_BINDPORT_LOCK 8
714
715 /* sock_iocb: used to kick off async processing of socket ios */
716 struct sock_iocb {
717 struct list_head list;
718
719 int flags;
720 int size;
721 struct socket *sock;
722 struct sock *sk;
723 struct scm_cookie *scm;
724 struct msghdr *msg, async_msg;
725 struct kiocb *kiocb;
726 };
727
728 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
729 {
730 return (struct sock_iocb *)iocb->private;
731 }
732
733 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
734 {
735 return si->kiocb;
736 }
737
738 struct socket_alloc {
739 struct socket socket;
740 struct inode vfs_inode;
741 };
742
743 static inline struct socket *SOCKET_I(struct inode *inode)
744 {
745 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
746 }
747
748 static inline struct inode *SOCK_INODE(struct socket *socket)
749 {
750 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
751 }
752
753 extern void __sk_stream_mem_reclaim(struct sock *sk);
754 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
755
756 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
757
758 static inline int sk_stream_pages(int amt)
759 {
760 return DIV_ROUND_UP(amt, SK_STREAM_MEM_QUANTUM);
761 }
762
763 static inline void sk_stream_mem_reclaim(struct sock *sk)
764 {
765 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
766 __sk_stream_mem_reclaim(sk);
767 }
768
769 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
770 {
771 return (int)skb->truesize <= sk->sk_forward_alloc ||
772 sk_stream_mem_schedule(sk, skb->truesize, 1);
773 }
774
775 static inline int sk_stream_wmem_schedule(struct sock *sk, int size)
776 {
777 return size <= sk->sk_forward_alloc ||
778 sk_stream_mem_schedule(sk, size, 0);
779 }
780
781 /* Used by processes to "lock" a socket state, so that
782 * interrupts and bottom half handlers won't change it
783 * from under us. It essentially blocks any incoming
784 * packets, so that we won't get any new data or any
785 * packets that change the state of the socket.
786 *
787 * While locked, BH processing will add new packets to
788 * the backlog queue. This queue is processed by the
789 * owner of the socket lock right before it is released.
790 *
791 * Since ~2.3.5 it is also exclusive sleep lock serializing
792 * accesses from user process context.
793 */
794 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
795
796 /*
797 * Macro so as to not evaluate some arguments when
798 * lockdep is not enabled.
799 *
800 * Mark both the sk_lock and the sk_lock.slock as a
801 * per-address-family lock class.
802 */
803 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
804 do { \
805 sk->sk_lock.owned = 0; \
806 init_waitqueue_head(&sk->sk_lock.wq); \
807 spin_lock_init(&(sk)->sk_lock.slock); \
808 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
809 sizeof((sk)->sk_lock)); \
810 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
811 (skey), (sname)); \
812 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
813 } while (0)
814
815 extern void FASTCALL(lock_sock_nested(struct sock *sk, int subclass));
816
817 static inline void lock_sock(struct sock *sk)
818 {
819 lock_sock_nested(sk, 0);
820 }
821
822 extern void FASTCALL(release_sock(struct sock *sk));
823
824 /* BH context may only use the following locking interface. */
825 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
826 #define bh_lock_sock_nested(__sk) \
827 spin_lock_nested(&((__sk)->sk_lock.slock), \
828 SINGLE_DEPTH_NESTING)
829 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
830
831 extern struct sock *sk_alloc(struct net *net, int family,
832 gfp_t priority,
833 struct proto *prot);
834 extern void sk_free(struct sock *sk);
835 extern struct sock *sk_clone(const struct sock *sk,
836 const gfp_t priority);
837
838 extern struct sk_buff *sock_wmalloc(struct sock *sk,
839 unsigned long size, int force,
840 gfp_t priority);
841 extern struct sk_buff *sock_rmalloc(struct sock *sk,
842 unsigned long size, int force,
843 gfp_t priority);
844 extern void sock_wfree(struct sk_buff *skb);
845 extern void sock_rfree(struct sk_buff *skb);
846
847 extern int sock_setsockopt(struct socket *sock, int level,
848 int op, char __user *optval,
849 int optlen);
850
851 extern int sock_getsockopt(struct socket *sock, int level,
852 int op, char __user *optval,
853 int __user *optlen);
854 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
855 unsigned long size,
856 int noblock,
857 int *errcode);
858 extern void *sock_kmalloc(struct sock *sk, int size,
859 gfp_t priority);
860 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
861 extern void sk_send_sigurg(struct sock *sk);
862
863 /*
864 * Functions to fill in entries in struct proto_ops when a protocol
865 * does not implement a particular function.
866 */
867 extern int sock_no_bind(struct socket *,
868 struct sockaddr *, int);
869 extern int sock_no_connect(struct socket *,
870 struct sockaddr *, int, int);
871 extern int sock_no_socketpair(struct socket *,
872 struct socket *);
873 extern int sock_no_accept(struct socket *,
874 struct socket *, int);
875 extern int sock_no_getname(struct socket *,
876 struct sockaddr *, int *, int);
877 extern unsigned int sock_no_poll(struct file *, struct socket *,
878 struct poll_table_struct *);
879 extern int sock_no_ioctl(struct socket *, unsigned int,
880 unsigned long);
881 extern int sock_no_listen(struct socket *, int);
882 extern int sock_no_shutdown(struct socket *, int);
883 extern int sock_no_getsockopt(struct socket *, int , int,
884 char __user *, int __user *);
885 extern int sock_no_setsockopt(struct socket *, int, int,
886 char __user *, int);
887 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
888 struct msghdr *, size_t);
889 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
890 struct msghdr *, size_t, int);
891 extern int sock_no_mmap(struct file *file,
892 struct socket *sock,
893 struct vm_area_struct *vma);
894 extern ssize_t sock_no_sendpage(struct socket *sock,
895 struct page *page,
896 int offset, size_t size,
897 int flags);
898
899 /*
900 * Functions to fill in entries in struct proto_ops when a protocol
901 * uses the inet style.
902 */
903 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
904 char __user *optval, int __user *optlen);
905 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
906 struct msghdr *msg, size_t size, int flags);
907 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
908 char __user *optval, int optlen);
909 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
910 int optname, char __user *optval, int __user *optlen);
911 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
912 int optname, char __user *optval, int optlen);
913
914 extern void sk_common_release(struct sock *sk);
915
916 /*
917 * Default socket callbacks and setup code
918 */
919
920 /* Initialise core socket variables */
921 extern void sock_init_data(struct socket *sock, struct sock *sk);
922
923 /**
924 * sk_filter - run a packet through a socket filter
925 * @sk: sock associated with &sk_buff
926 * @skb: buffer to filter
927 * @needlock: set to 1 if the sock is not locked by caller.
928 *
929 * Run the filter code and then cut skb->data to correct size returned by
930 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
931 * than pkt_len we keep whole skb->data. This is the socket level
932 * wrapper to sk_run_filter. It returns 0 if the packet should
933 * be accepted or -EPERM if the packet should be tossed.
934 *
935 */
936
937 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
938 {
939 int err;
940 struct sk_filter *filter;
941
942 err = security_sock_rcv_skb(sk, skb);
943 if (err)
944 return err;
945
946 rcu_read_lock_bh();
947 filter = sk->sk_filter;
948 if (filter) {
949 unsigned int pkt_len = sk_run_filter(skb, filter->insns,
950 filter->len);
951 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
952 }
953 rcu_read_unlock_bh();
954
955 return err;
956 }
957
958 /**
959 * sk_filter_release: Release a socket filter
960 * @sk: socket
961 * @fp: filter to remove
962 *
963 * Remove a filter from a socket and release its resources.
964 */
965
966 static inline void sk_filter_release(struct sk_filter *fp)
967 {
968 if (atomic_dec_and_test(&fp->refcnt))
969 kfree(fp);
970 }
971
972 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
973 {
974 unsigned int size = sk_filter_len(fp);
975
976 atomic_sub(size, &sk->sk_omem_alloc);
977 sk_filter_release(fp);
978 }
979
980 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
981 {
982 atomic_inc(&fp->refcnt);
983 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
984 }
985
986 /*
987 * Socket reference counting postulates.
988 *
989 * * Each user of socket SHOULD hold a reference count.
990 * * Each access point to socket (an hash table bucket, reference from a list,
991 * running timer, skb in flight MUST hold a reference count.
992 * * When reference count hits 0, it means it will never increase back.
993 * * When reference count hits 0, it means that no references from
994 * outside exist to this socket and current process on current CPU
995 * is last user and may/should destroy this socket.
996 * * sk_free is called from any context: process, BH, IRQ. When
997 * it is called, socket has no references from outside -> sk_free
998 * may release descendant resources allocated by the socket, but
999 * to the time when it is called, socket is NOT referenced by any
1000 * hash tables, lists etc.
1001 * * Packets, delivered from outside (from network or from another process)
1002 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1003 * when they sit in queue. Otherwise, packets will leak to hole, when
1004 * socket is looked up by one cpu and unhasing is made by another CPU.
1005 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1006 * (leak to backlog). Packet socket does all the processing inside
1007 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1008 * use separate SMP lock, so that they are prone too.
1009 */
1010
1011 /* Ungrab socket and destroy it, if it was the last reference. */
1012 static inline void sock_put(struct sock *sk)
1013 {
1014 if (atomic_dec_and_test(&sk->sk_refcnt))
1015 sk_free(sk);
1016 }
1017
1018 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1019 const int nested);
1020
1021 /* Detach socket from process context.
1022 * Announce socket dead, detach it from wait queue and inode.
1023 * Note that parent inode held reference count on this struct sock,
1024 * we do not release it in this function, because protocol
1025 * probably wants some additional cleanups or even continuing
1026 * to work with this socket (TCP).
1027 */
1028 static inline void sock_orphan(struct sock *sk)
1029 {
1030 write_lock_bh(&sk->sk_callback_lock);
1031 sock_set_flag(sk, SOCK_DEAD);
1032 sk->sk_socket = NULL;
1033 sk->sk_sleep = NULL;
1034 write_unlock_bh(&sk->sk_callback_lock);
1035 }
1036
1037 static inline void sock_graft(struct sock *sk, struct socket *parent)
1038 {
1039 write_lock_bh(&sk->sk_callback_lock);
1040 sk->sk_sleep = &parent->wait;
1041 parent->sk = sk;
1042 sk->sk_socket = parent;
1043 security_sock_graft(sk, parent);
1044 write_unlock_bh(&sk->sk_callback_lock);
1045 }
1046
1047 extern int sock_i_uid(struct sock *sk);
1048 extern unsigned long sock_i_ino(struct sock *sk);
1049
1050 static inline struct dst_entry *
1051 __sk_dst_get(struct sock *sk)
1052 {
1053 return sk->sk_dst_cache;
1054 }
1055
1056 static inline struct dst_entry *
1057 sk_dst_get(struct sock *sk)
1058 {
1059 struct dst_entry *dst;
1060
1061 read_lock(&sk->sk_dst_lock);
1062 dst = sk->sk_dst_cache;
1063 if (dst)
1064 dst_hold(dst);
1065 read_unlock(&sk->sk_dst_lock);
1066 return dst;
1067 }
1068
1069 static inline void
1070 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1071 {
1072 struct dst_entry *old_dst;
1073
1074 old_dst = sk->sk_dst_cache;
1075 sk->sk_dst_cache = dst;
1076 dst_release(old_dst);
1077 }
1078
1079 static inline void
1080 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1081 {
1082 write_lock(&sk->sk_dst_lock);
1083 __sk_dst_set(sk, dst);
1084 write_unlock(&sk->sk_dst_lock);
1085 }
1086
1087 static inline void
1088 __sk_dst_reset(struct sock *sk)
1089 {
1090 struct dst_entry *old_dst;
1091
1092 old_dst = sk->sk_dst_cache;
1093 sk->sk_dst_cache = NULL;
1094 dst_release(old_dst);
1095 }
1096
1097 static inline void
1098 sk_dst_reset(struct sock *sk)
1099 {
1100 write_lock(&sk->sk_dst_lock);
1101 __sk_dst_reset(sk);
1102 write_unlock(&sk->sk_dst_lock);
1103 }
1104
1105 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1106
1107 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1108
1109 static inline int sk_can_gso(const struct sock *sk)
1110 {
1111 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1112 }
1113
1114 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1115
1116 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
1117 {
1118 sk->sk_wmem_queued += skb->truesize;
1119 sk->sk_forward_alloc -= skb->truesize;
1120 }
1121
1122 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1123 struct sk_buff *skb, struct page *page,
1124 int off, int copy)
1125 {
1126 if (skb->ip_summed == CHECKSUM_NONE) {
1127 int err = 0;
1128 __wsum csum = csum_and_copy_from_user(from,
1129 page_address(page) + off,
1130 copy, 0, &err);
1131 if (err)
1132 return err;
1133 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1134 } else if (copy_from_user(page_address(page) + off, from, copy))
1135 return -EFAULT;
1136
1137 skb->len += copy;
1138 skb->data_len += copy;
1139 skb->truesize += copy;
1140 sk->sk_wmem_queued += copy;
1141 sk->sk_forward_alloc -= copy;
1142 return 0;
1143 }
1144
1145 /*
1146 * Queue a received datagram if it will fit. Stream and sequenced
1147 * protocols can't normally use this as they need to fit buffers in
1148 * and play with them.
1149 *
1150 * Inlined as it's very short and called for pretty much every
1151 * packet ever received.
1152 */
1153
1154 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1155 {
1156 sock_hold(sk);
1157 skb->sk = sk;
1158 skb->destructor = sock_wfree;
1159 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1160 }
1161
1162 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1163 {
1164 skb->sk = sk;
1165 skb->destructor = sock_rfree;
1166 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1167 }
1168
1169 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1170 unsigned long expires);
1171
1172 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1173
1174 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1175
1176 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1177 {
1178 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1179 number of warnings when compiling with -W --ANK
1180 */
1181 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1182 (unsigned)sk->sk_rcvbuf)
1183 return -ENOMEM;
1184 skb_set_owner_r(skb, sk);
1185 skb_queue_tail(&sk->sk_error_queue, skb);
1186 if (!sock_flag(sk, SOCK_DEAD))
1187 sk->sk_data_ready(sk, skb->len);
1188 return 0;
1189 }
1190
1191 /*
1192 * Recover an error report and clear atomically
1193 */
1194
1195 static inline int sock_error(struct sock *sk)
1196 {
1197 int err;
1198 if (likely(!sk->sk_err))
1199 return 0;
1200 err = xchg(&sk->sk_err, 0);
1201 return -err;
1202 }
1203
1204 static inline unsigned long sock_wspace(struct sock *sk)
1205 {
1206 int amt = 0;
1207
1208 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1209 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1210 if (amt < 0)
1211 amt = 0;
1212 }
1213 return amt;
1214 }
1215
1216 static inline void sk_wake_async(struct sock *sk, int how, int band)
1217 {
1218 if (sk->sk_socket && sk->sk_socket->fasync_list)
1219 sock_wake_async(sk->sk_socket, how, band);
1220 }
1221
1222 #define SOCK_MIN_SNDBUF 2048
1223 #define SOCK_MIN_RCVBUF 256
1224
1225 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1226 {
1227 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1228 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1229 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1230 }
1231 }
1232
1233 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1234 int size, int mem,
1235 gfp_t gfp)
1236 {
1237 struct sk_buff *skb;
1238 int hdr_len;
1239
1240 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1241 skb = alloc_skb_fclone(size + hdr_len, gfp);
1242 if (skb) {
1243 skb->truesize += mem;
1244 if (sk_stream_wmem_schedule(sk, skb->truesize)) {
1245 skb_reserve(skb, hdr_len);
1246 return skb;
1247 }
1248 __kfree_skb(skb);
1249 } else {
1250 sk->sk_prot->enter_memory_pressure();
1251 sk_stream_moderate_sndbuf(sk);
1252 }
1253 return NULL;
1254 }
1255
1256 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1257 int size,
1258 gfp_t gfp)
1259 {
1260 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1261 }
1262
1263 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1264 {
1265 struct page *page = NULL;
1266
1267 page = alloc_pages(sk->sk_allocation, 0);
1268 if (!page) {
1269 sk->sk_prot->enter_memory_pressure();
1270 sk_stream_moderate_sndbuf(sk);
1271 }
1272 return page;
1273 }
1274
1275 /*
1276 * Default write policy as shown to user space via poll/select/SIGIO
1277 */
1278 static inline int sock_writeable(const struct sock *sk)
1279 {
1280 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1281 }
1282
1283 static inline gfp_t gfp_any(void)
1284 {
1285 return in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
1286 }
1287
1288 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1289 {
1290 return noblock ? 0 : sk->sk_rcvtimeo;
1291 }
1292
1293 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1294 {
1295 return noblock ? 0 : sk->sk_sndtimeo;
1296 }
1297
1298 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1299 {
1300 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1301 }
1302
1303 /* Alas, with timeout socket operations are not restartable.
1304 * Compare this to poll().
1305 */
1306 static inline int sock_intr_errno(long timeo)
1307 {
1308 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1309 }
1310
1311 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1312 struct sk_buff *skb);
1313
1314 static __inline__ void
1315 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1316 {
1317 ktime_t kt = skb->tstamp;
1318
1319 if (sock_flag(sk, SOCK_RCVTSTAMP))
1320 __sock_recv_timestamp(msg, sk, skb);
1321 else
1322 sk->sk_stamp = kt;
1323 }
1324
1325 /**
1326 * sk_eat_skb - Release a skb if it is no longer needed
1327 * @sk: socket to eat this skb from
1328 * @skb: socket buffer to eat
1329 * @copied_early: flag indicating whether DMA operations copied this data early
1330 *
1331 * This routine must be called with interrupts disabled or with the socket
1332 * locked so that the sk_buff queue operation is ok.
1333 */
1334 #ifdef CONFIG_NET_DMA
1335 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1336 {
1337 __skb_unlink(skb, &sk->sk_receive_queue);
1338 if (!copied_early)
1339 __kfree_skb(skb);
1340 else
1341 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1342 }
1343 #else
1344 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1345 {
1346 __skb_unlink(skb, &sk->sk_receive_queue);
1347 __kfree_skb(skb);
1348 }
1349 #endif
1350
1351 extern void sock_enable_timestamp(struct sock *sk);
1352 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1353 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1354
1355 /*
1356 * Enable debug/info messages
1357 */
1358 extern int net_msg_warn;
1359 #define NETDEBUG(fmt, args...) \
1360 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1361
1362 #define LIMIT_NETDEBUG(fmt, args...) \
1363 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1364
1365 /*
1366 * Macros for sleeping on a socket. Use them like this:
1367 *
1368 * SOCK_SLEEP_PRE(sk)
1369 * if (condition)
1370 * schedule();
1371 * SOCK_SLEEP_POST(sk)
1372 *
1373 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1374 * and when the last use of them in DECnet has gone, I'm intending to
1375 * remove them.
1376 */
1377
1378 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1379 DECLARE_WAITQUEUE(wait, tsk); \
1380 tsk->state = TASK_INTERRUPTIBLE; \
1381 add_wait_queue((sk)->sk_sleep, &wait); \
1382 release_sock(sk);
1383
1384 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1385 remove_wait_queue((sk)->sk_sleep, &wait); \
1386 lock_sock(sk); \
1387 }
1388
1389 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1390 {
1391 if (valbool)
1392 sock_set_flag(sk, bit);
1393 else
1394 sock_reset_flag(sk, bit);
1395 }
1396
1397 extern __u32 sysctl_wmem_max;
1398 extern __u32 sysctl_rmem_max;
1399
1400 extern void sk_init(void);
1401
1402 #ifdef CONFIG_SYSCTL
1403 extern struct ctl_table core_table[];
1404 #endif
1405
1406 extern int sysctl_optmem_max;
1407
1408 extern __u32 sysctl_wmem_default;
1409 extern __u32 sysctl_rmem_default;
1410
1411 #endif /* _SOCK_H */
This page took 0.057694 seconds and 6 git commands to generate.