[UDP]: Use __skb_pull since we have checked it won't fail with pskb_may_pull
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/list.h>
44 #include <linux/timer.h>
45 #include <linux/cache.h>
46 #include <linux/module.h>
47 #include <linux/lockdep.h>
48 #include <linux/netdevice.h>
49 #include <linux/skbuff.h> /* struct sk_buff */
50 #include <linux/mm.h>
51 #include <linux/security.h>
52
53 #include <linux/filter.h>
54
55 #include <asm/atomic.h>
56 #include <net/dst.h>
57 #include <net/checksum.h>
58
59 /*
60 * This structure really needs to be cleaned up.
61 * Most of it is for TCP, and not used by any of
62 * the other protocols.
63 */
64
65 /* Define this to get the SOCK_DBG debugging facility. */
66 #define SOCK_DEBUGGING
67 #ifdef SOCK_DEBUGGING
68 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
69 printk(KERN_DEBUG msg); } while (0)
70 #else
71 #define SOCK_DEBUG(sk, msg...) do { } while (0)
72 #endif
73
74 /* This is the per-socket lock. The spinlock provides a synchronization
75 * between user contexts and software interrupt processing, whereas the
76 * mini-semaphore synchronizes multiple users amongst themselves.
77 */
78 struct sock_iocb;
79 typedef struct {
80 spinlock_t slock;
81 struct sock_iocb *owner;
82 wait_queue_head_t wq;
83 /*
84 * We express the mutex-alike socket_lock semantics
85 * to the lock validator by explicitly managing
86 * the slock as a lock variant (in addition to
87 * the slock itself):
88 */
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 struct lockdep_map dep_map;
91 #endif
92 } socket_lock_t;
93
94 struct sock;
95 struct proto;
96
97 /**
98 * struct sock_common - minimal network layer representation of sockets
99 * @skc_family: network address family
100 * @skc_state: Connection state
101 * @skc_reuse: %SO_REUSEADDR setting
102 * @skc_bound_dev_if: bound device index if != 0
103 * @skc_node: main hash linkage for various protocol lookup tables
104 * @skc_bind_node: bind hash linkage for various protocol lookup tables
105 * @skc_refcnt: reference count
106 * @skc_hash: hash value used with various protocol lookup tables
107 * @skc_prot: protocol handlers inside a network family
108 *
109 * This is the minimal network layer representation of sockets, the header
110 * for struct sock and struct inet_timewait_sock.
111 */
112 struct sock_common {
113 unsigned short skc_family;
114 volatile unsigned char skc_state;
115 unsigned char skc_reuse;
116 int skc_bound_dev_if;
117 struct hlist_node skc_node;
118 struct hlist_node skc_bind_node;
119 atomic_t skc_refcnt;
120 unsigned int skc_hash;
121 struct proto *skc_prot;
122 };
123
124 /**
125 * struct sock - network layer representation of sockets
126 * @__sk_common: shared layout with inet_timewait_sock
127 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
128 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
129 * @sk_lock: synchronizer
130 * @sk_rcvbuf: size of receive buffer in bytes
131 * @sk_sleep: sock wait queue
132 * @sk_dst_cache: destination cache
133 * @sk_dst_lock: destination cache lock
134 * @sk_policy: flow policy
135 * @sk_rmem_alloc: receive queue bytes committed
136 * @sk_receive_queue: incoming packets
137 * @sk_wmem_alloc: transmit queue bytes committed
138 * @sk_write_queue: Packet sending queue
139 * @sk_async_wait_queue: DMA copied packets
140 * @sk_omem_alloc: "o" is "option" or "other"
141 * @sk_wmem_queued: persistent queue size
142 * @sk_forward_alloc: space allocated forward
143 * @sk_allocation: allocation mode
144 * @sk_sndbuf: size of send buffer in bytes
145 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
146 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
147 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
148 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
149 * @sk_lingertime: %SO_LINGER l_linger setting
150 * @sk_backlog: always used with the per-socket spinlock held
151 * @sk_callback_lock: used with the callbacks in the end of this struct
152 * @sk_error_queue: rarely used
153 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
154 * @sk_err: last error
155 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
156 * @sk_ack_backlog: current listen backlog
157 * @sk_max_ack_backlog: listen backlog set in listen()
158 * @sk_priority: %SO_PRIORITY setting
159 * @sk_type: socket type (%SOCK_STREAM, etc)
160 * @sk_protocol: which protocol this socket belongs in this network family
161 * @sk_peercred: %SO_PEERCRED setting
162 * @sk_rcvlowat: %SO_RCVLOWAT setting
163 * @sk_rcvtimeo: %SO_RCVTIMEO setting
164 * @sk_sndtimeo: %SO_SNDTIMEO setting
165 * @sk_filter: socket filtering instructions
166 * @sk_protinfo: private area, net family specific, when not using slab
167 * @sk_timer: sock cleanup timer
168 * @sk_stamp: time stamp of last packet received
169 * @sk_socket: Identd and reporting IO signals
170 * @sk_user_data: RPC layer private data
171 * @sk_sndmsg_page: cached page for sendmsg
172 * @sk_sndmsg_off: cached offset for sendmsg
173 * @sk_send_head: front of stuff to transmit
174 * @sk_security: used by security modules
175 * @sk_write_pending: a write to stream socket waits to start
176 * @sk_state_change: callback to indicate change in the state of the sock
177 * @sk_data_ready: callback to indicate there is data to be processed
178 * @sk_write_space: callback to indicate there is bf sending space available
179 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
180 * @sk_backlog_rcv: callback to process the backlog
181 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
182 */
183 struct sock {
184 /*
185 * Now struct inet_timewait_sock also uses sock_common, so please just
186 * don't add nothing before this first member (__sk_common) --acme
187 */
188 struct sock_common __sk_common;
189 #define sk_family __sk_common.skc_family
190 #define sk_state __sk_common.skc_state
191 #define sk_reuse __sk_common.skc_reuse
192 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
193 #define sk_node __sk_common.skc_node
194 #define sk_bind_node __sk_common.skc_bind_node
195 #define sk_refcnt __sk_common.skc_refcnt
196 #define sk_hash __sk_common.skc_hash
197 #define sk_prot __sk_common.skc_prot
198 unsigned char sk_shutdown : 2,
199 sk_no_check : 2,
200 sk_userlocks : 4;
201 unsigned char sk_protocol;
202 unsigned short sk_type;
203 int sk_rcvbuf;
204 socket_lock_t sk_lock;
205 /*
206 * The backlog queue is special, it is always used with
207 * the per-socket spinlock held and requires low latency
208 * access. Therefore we special case it's implementation.
209 */
210 struct {
211 struct sk_buff *head;
212 struct sk_buff *tail;
213 } sk_backlog;
214 wait_queue_head_t *sk_sleep;
215 struct dst_entry *sk_dst_cache;
216 struct xfrm_policy *sk_policy[2];
217 rwlock_t sk_dst_lock;
218 atomic_t sk_rmem_alloc;
219 atomic_t sk_wmem_alloc;
220 atomic_t sk_omem_alloc;
221 struct sk_buff_head sk_receive_queue;
222 struct sk_buff_head sk_write_queue;
223 struct sk_buff_head sk_async_wait_queue;
224 int sk_wmem_queued;
225 int sk_forward_alloc;
226 gfp_t sk_allocation;
227 int sk_sndbuf;
228 int sk_route_caps;
229 int sk_gso_type;
230 int sk_rcvlowat;
231 unsigned long sk_flags;
232 unsigned long sk_lingertime;
233 struct sk_buff_head sk_error_queue;
234 struct proto *sk_prot_creator;
235 rwlock_t sk_callback_lock;
236 int sk_err,
237 sk_err_soft;
238 unsigned short sk_ack_backlog;
239 unsigned short sk_max_ack_backlog;
240 __u32 sk_priority;
241 struct ucred sk_peercred;
242 long sk_rcvtimeo;
243 long sk_sndtimeo;
244 struct sk_filter *sk_filter;
245 void *sk_protinfo;
246 struct timer_list sk_timer;
247 ktime_t sk_stamp;
248 struct socket *sk_socket;
249 void *sk_user_data;
250 struct page *sk_sndmsg_page;
251 struct sk_buff *sk_send_head;
252 __u32 sk_sndmsg_off;
253 int sk_write_pending;
254 void *sk_security;
255 void (*sk_state_change)(struct sock *sk);
256 void (*sk_data_ready)(struct sock *sk, int bytes);
257 void (*sk_write_space)(struct sock *sk);
258 void (*sk_error_report)(struct sock *sk);
259 int (*sk_backlog_rcv)(struct sock *sk,
260 struct sk_buff *skb);
261 void (*sk_destruct)(struct sock *sk);
262 };
263
264 /*
265 * Hashed lists helper routines
266 */
267 static inline struct sock *__sk_head(const struct hlist_head *head)
268 {
269 return hlist_entry(head->first, struct sock, sk_node);
270 }
271
272 static inline struct sock *sk_head(const struct hlist_head *head)
273 {
274 return hlist_empty(head) ? NULL : __sk_head(head);
275 }
276
277 static inline struct sock *sk_next(const struct sock *sk)
278 {
279 return sk->sk_node.next ?
280 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
281 }
282
283 static inline int sk_unhashed(const struct sock *sk)
284 {
285 return hlist_unhashed(&sk->sk_node);
286 }
287
288 static inline int sk_hashed(const struct sock *sk)
289 {
290 return !sk_unhashed(sk);
291 }
292
293 static __inline__ void sk_node_init(struct hlist_node *node)
294 {
295 node->pprev = NULL;
296 }
297
298 static __inline__ void __sk_del_node(struct sock *sk)
299 {
300 __hlist_del(&sk->sk_node);
301 }
302
303 static __inline__ int __sk_del_node_init(struct sock *sk)
304 {
305 if (sk_hashed(sk)) {
306 __sk_del_node(sk);
307 sk_node_init(&sk->sk_node);
308 return 1;
309 }
310 return 0;
311 }
312
313 /* Grab socket reference count. This operation is valid only
314 when sk is ALREADY grabbed f.e. it is found in hash table
315 or a list and the lookup is made under lock preventing hash table
316 modifications.
317 */
318
319 static inline void sock_hold(struct sock *sk)
320 {
321 atomic_inc(&sk->sk_refcnt);
322 }
323
324 /* Ungrab socket in the context, which assumes that socket refcnt
325 cannot hit zero, f.e. it is true in context of any socketcall.
326 */
327 static inline void __sock_put(struct sock *sk)
328 {
329 atomic_dec(&sk->sk_refcnt);
330 }
331
332 static __inline__ int sk_del_node_init(struct sock *sk)
333 {
334 int rc = __sk_del_node_init(sk);
335
336 if (rc) {
337 /* paranoid for a while -acme */
338 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
339 __sock_put(sk);
340 }
341 return rc;
342 }
343
344 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
345 {
346 hlist_add_head(&sk->sk_node, list);
347 }
348
349 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
350 {
351 sock_hold(sk);
352 __sk_add_node(sk, list);
353 }
354
355 static __inline__ void __sk_del_bind_node(struct sock *sk)
356 {
357 __hlist_del(&sk->sk_bind_node);
358 }
359
360 static __inline__ void sk_add_bind_node(struct sock *sk,
361 struct hlist_head *list)
362 {
363 hlist_add_head(&sk->sk_bind_node, list);
364 }
365
366 #define sk_for_each(__sk, node, list) \
367 hlist_for_each_entry(__sk, node, list, sk_node)
368 #define sk_for_each_from(__sk, node) \
369 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
370 hlist_for_each_entry_from(__sk, node, sk_node)
371 #define sk_for_each_continue(__sk, node) \
372 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
373 hlist_for_each_entry_continue(__sk, node, sk_node)
374 #define sk_for_each_safe(__sk, node, tmp, list) \
375 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
376 #define sk_for_each_bound(__sk, node, list) \
377 hlist_for_each_entry(__sk, node, list, sk_bind_node)
378
379 /* Sock flags */
380 enum sock_flags {
381 SOCK_DEAD,
382 SOCK_DONE,
383 SOCK_URGINLINE,
384 SOCK_KEEPOPEN,
385 SOCK_LINGER,
386 SOCK_DESTROY,
387 SOCK_BROADCAST,
388 SOCK_TIMESTAMP,
389 SOCK_ZAPPED,
390 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
391 SOCK_DBG, /* %SO_DEBUG setting */
392 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
393 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
394 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
395 };
396
397 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
398 {
399 nsk->sk_flags = osk->sk_flags;
400 }
401
402 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
403 {
404 __set_bit(flag, &sk->sk_flags);
405 }
406
407 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
408 {
409 __clear_bit(flag, &sk->sk_flags);
410 }
411
412 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
413 {
414 return test_bit(flag, &sk->sk_flags);
415 }
416
417 static inline void sk_acceptq_removed(struct sock *sk)
418 {
419 sk->sk_ack_backlog--;
420 }
421
422 static inline void sk_acceptq_added(struct sock *sk)
423 {
424 sk->sk_ack_backlog++;
425 }
426
427 static inline int sk_acceptq_is_full(struct sock *sk)
428 {
429 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
430 }
431
432 /*
433 * Compute minimal free write space needed to queue new packets.
434 */
435 static inline int sk_stream_min_wspace(struct sock *sk)
436 {
437 return sk->sk_wmem_queued / 2;
438 }
439
440 static inline int sk_stream_wspace(struct sock *sk)
441 {
442 return sk->sk_sndbuf - sk->sk_wmem_queued;
443 }
444
445 extern void sk_stream_write_space(struct sock *sk);
446
447 static inline int sk_stream_memory_free(struct sock *sk)
448 {
449 return sk->sk_wmem_queued < sk->sk_sndbuf;
450 }
451
452 extern void sk_stream_rfree(struct sk_buff *skb);
453
454 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
455 {
456 skb->sk = sk;
457 skb->destructor = sk_stream_rfree;
458 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
459 sk->sk_forward_alloc -= skb->truesize;
460 }
461
462 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
463 {
464 skb_truesize_check(skb);
465 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
466 sk->sk_wmem_queued -= skb->truesize;
467 sk->sk_forward_alloc += skb->truesize;
468 __kfree_skb(skb);
469 }
470
471 /* The per-socket spinlock must be held here. */
472 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
473 {
474 if (!sk->sk_backlog.tail) {
475 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
476 } else {
477 sk->sk_backlog.tail->next = skb;
478 sk->sk_backlog.tail = skb;
479 }
480 skb->next = NULL;
481 }
482
483 #define sk_wait_event(__sk, __timeo, __condition) \
484 ({ int rc; \
485 release_sock(__sk); \
486 rc = __condition; \
487 if (!rc) { \
488 *(__timeo) = schedule_timeout(*(__timeo)); \
489 } \
490 lock_sock(__sk); \
491 rc = __condition; \
492 rc; \
493 })
494
495 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
496 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
497 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
498 extern int sk_stream_error(struct sock *sk, int flags, int err);
499 extern void sk_stream_kill_queues(struct sock *sk);
500
501 extern int sk_wait_data(struct sock *sk, long *timeo);
502
503 struct request_sock_ops;
504 struct timewait_sock_ops;
505
506 /* Networking protocol blocks we attach to sockets.
507 * socket layer -> transport layer interface
508 * transport -> network interface is defined by struct inet_proto
509 */
510 struct proto {
511 void (*close)(struct sock *sk,
512 long timeout);
513 int (*connect)(struct sock *sk,
514 struct sockaddr *uaddr,
515 int addr_len);
516 int (*disconnect)(struct sock *sk, int flags);
517
518 struct sock * (*accept) (struct sock *sk, int flags, int *err);
519
520 int (*ioctl)(struct sock *sk, int cmd,
521 unsigned long arg);
522 int (*init)(struct sock *sk);
523 int (*destroy)(struct sock *sk);
524 void (*shutdown)(struct sock *sk, int how);
525 int (*setsockopt)(struct sock *sk, int level,
526 int optname, char __user *optval,
527 int optlen);
528 int (*getsockopt)(struct sock *sk, int level,
529 int optname, char __user *optval,
530 int __user *option);
531 int (*compat_setsockopt)(struct sock *sk,
532 int level,
533 int optname, char __user *optval,
534 int optlen);
535 int (*compat_getsockopt)(struct sock *sk,
536 int level,
537 int optname, char __user *optval,
538 int __user *option);
539 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
540 struct msghdr *msg, size_t len);
541 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
542 struct msghdr *msg,
543 size_t len, int noblock, int flags,
544 int *addr_len);
545 int (*sendpage)(struct sock *sk, struct page *page,
546 int offset, size_t size, int flags);
547 int (*bind)(struct sock *sk,
548 struct sockaddr *uaddr, int addr_len);
549
550 int (*backlog_rcv) (struct sock *sk,
551 struct sk_buff *skb);
552
553 /* Keeping track of sk's, looking them up, and port selection methods. */
554 void (*hash)(struct sock *sk);
555 void (*unhash)(struct sock *sk);
556 int (*get_port)(struct sock *sk, unsigned short snum);
557
558 /* Memory pressure */
559 void (*enter_memory_pressure)(void);
560 atomic_t *memory_allocated; /* Current allocated memory. */
561 atomic_t *sockets_allocated; /* Current number of sockets. */
562 /*
563 * Pressure flag: try to collapse.
564 * Technical note: it is used by multiple contexts non atomically.
565 * All the sk_stream_mem_schedule() is of this nature: accounting
566 * is strict, actions are advisory and have some latency.
567 */
568 int *memory_pressure;
569 int *sysctl_mem;
570 int *sysctl_wmem;
571 int *sysctl_rmem;
572 int max_header;
573
574 struct kmem_cache *slab;
575 unsigned int obj_size;
576
577 atomic_t *orphan_count;
578
579 struct request_sock_ops *rsk_prot;
580 struct timewait_sock_ops *twsk_prot;
581
582 struct module *owner;
583
584 char name[32];
585
586 struct list_head node;
587 #ifdef SOCK_REFCNT_DEBUG
588 atomic_t socks;
589 #endif
590 struct {
591 int inuse;
592 u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
593 } stats[NR_CPUS];
594 };
595
596 extern int proto_register(struct proto *prot, int alloc_slab);
597 extern void proto_unregister(struct proto *prot);
598
599 #ifdef SOCK_REFCNT_DEBUG
600 static inline void sk_refcnt_debug_inc(struct sock *sk)
601 {
602 atomic_inc(&sk->sk_prot->socks);
603 }
604
605 static inline void sk_refcnt_debug_dec(struct sock *sk)
606 {
607 atomic_dec(&sk->sk_prot->socks);
608 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
609 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
610 }
611
612 static inline void sk_refcnt_debug_release(const struct sock *sk)
613 {
614 if (atomic_read(&sk->sk_refcnt) != 1)
615 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
616 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
617 }
618 #else /* SOCK_REFCNT_DEBUG */
619 #define sk_refcnt_debug_inc(sk) do { } while (0)
620 #define sk_refcnt_debug_dec(sk) do { } while (0)
621 #define sk_refcnt_debug_release(sk) do { } while (0)
622 #endif /* SOCK_REFCNT_DEBUG */
623
624 /* Called with local bh disabled */
625 static __inline__ void sock_prot_inc_use(struct proto *prot)
626 {
627 prot->stats[smp_processor_id()].inuse++;
628 }
629
630 static __inline__ void sock_prot_dec_use(struct proto *prot)
631 {
632 prot->stats[smp_processor_id()].inuse--;
633 }
634
635 /* With per-bucket locks this operation is not-atomic, so that
636 * this version is not worse.
637 */
638 static inline void __sk_prot_rehash(struct sock *sk)
639 {
640 sk->sk_prot->unhash(sk);
641 sk->sk_prot->hash(sk);
642 }
643
644 /* About 10 seconds */
645 #define SOCK_DESTROY_TIME (10*HZ)
646
647 /* Sockets 0-1023 can't be bound to unless you are superuser */
648 #define PROT_SOCK 1024
649
650 #define SHUTDOWN_MASK 3
651 #define RCV_SHUTDOWN 1
652 #define SEND_SHUTDOWN 2
653
654 #define SOCK_SNDBUF_LOCK 1
655 #define SOCK_RCVBUF_LOCK 2
656 #define SOCK_BINDADDR_LOCK 4
657 #define SOCK_BINDPORT_LOCK 8
658
659 /* sock_iocb: used to kick off async processing of socket ios */
660 struct sock_iocb {
661 struct list_head list;
662
663 int flags;
664 int size;
665 struct socket *sock;
666 struct sock *sk;
667 struct scm_cookie *scm;
668 struct msghdr *msg, async_msg;
669 struct kiocb *kiocb;
670 };
671
672 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
673 {
674 return (struct sock_iocb *)iocb->private;
675 }
676
677 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
678 {
679 return si->kiocb;
680 }
681
682 struct socket_alloc {
683 struct socket socket;
684 struct inode vfs_inode;
685 };
686
687 static inline struct socket *SOCKET_I(struct inode *inode)
688 {
689 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
690 }
691
692 static inline struct inode *SOCK_INODE(struct socket *socket)
693 {
694 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
695 }
696
697 extern void __sk_stream_mem_reclaim(struct sock *sk);
698 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
699
700 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
701
702 static inline int sk_stream_pages(int amt)
703 {
704 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
705 }
706
707 static inline void sk_stream_mem_reclaim(struct sock *sk)
708 {
709 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
710 __sk_stream_mem_reclaim(sk);
711 }
712
713 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
714 {
715 return (int)skb->truesize <= sk->sk_forward_alloc ||
716 sk_stream_mem_schedule(sk, skb->truesize, 1);
717 }
718
719 static inline int sk_stream_wmem_schedule(struct sock *sk, int size)
720 {
721 return size <= sk->sk_forward_alloc ||
722 sk_stream_mem_schedule(sk, size, 0);
723 }
724
725 /* Used by processes to "lock" a socket state, so that
726 * interrupts and bottom half handlers won't change it
727 * from under us. It essentially blocks any incoming
728 * packets, so that we won't get any new data or any
729 * packets that change the state of the socket.
730 *
731 * While locked, BH processing will add new packets to
732 * the backlog queue. This queue is processed by the
733 * owner of the socket lock right before it is released.
734 *
735 * Since ~2.3.5 it is also exclusive sleep lock serializing
736 * accesses from user process context.
737 */
738 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner)
739
740 /*
741 * Macro so as to not evaluate some arguments when
742 * lockdep is not enabled.
743 *
744 * Mark both the sk_lock and the sk_lock.slock as a
745 * per-address-family lock class.
746 */
747 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
748 do { \
749 sk->sk_lock.owner = NULL; \
750 init_waitqueue_head(&sk->sk_lock.wq); \
751 spin_lock_init(&(sk)->sk_lock.slock); \
752 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
753 sizeof((sk)->sk_lock)); \
754 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
755 (skey), (sname)); \
756 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
757 } while (0)
758
759 extern void FASTCALL(lock_sock_nested(struct sock *sk, int subclass));
760
761 static inline void lock_sock(struct sock *sk)
762 {
763 lock_sock_nested(sk, 0);
764 }
765
766 extern void FASTCALL(release_sock(struct sock *sk));
767
768 /* BH context may only use the following locking interface. */
769 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
770 #define bh_lock_sock_nested(__sk) \
771 spin_lock_nested(&((__sk)->sk_lock.slock), \
772 SINGLE_DEPTH_NESTING)
773 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
774
775 extern struct sock *sk_alloc(int family,
776 gfp_t priority,
777 struct proto *prot, int zero_it);
778 extern void sk_free(struct sock *sk);
779 extern struct sock *sk_clone(const struct sock *sk,
780 const gfp_t priority);
781
782 extern struct sk_buff *sock_wmalloc(struct sock *sk,
783 unsigned long size, int force,
784 gfp_t priority);
785 extern struct sk_buff *sock_rmalloc(struct sock *sk,
786 unsigned long size, int force,
787 gfp_t priority);
788 extern void sock_wfree(struct sk_buff *skb);
789 extern void sock_rfree(struct sk_buff *skb);
790
791 extern int sock_setsockopt(struct socket *sock, int level,
792 int op, char __user *optval,
793 int optlen);
794
795 extern int sock_getsockopt(struct socket *sock, int level,
796 int op, char __user *optval,
797 int __user *optlen);
798 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
799 unsigned long size,
800 int noblock,
801 int *errcode);
802 extern void *sock_kmalloc(struct sock *sk, int size,
803 gfp_t priority);
804 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
805 extern void sk_send_sigurg(struct sock *sk);
806
807 /*
808 * Functions to fill in entries in struct proto_ops when a protocol
809 * does not implement a particular function.
810 */
811 extern int sock_no_bind(struct socket *,
812 struct sockaddr *, int);
813 extern int sock_no_connect(struct socket *,
814 struct sockaddr *, int, int);
815 extern int sock_no_socketpair(struct socket *,
816 struct socket *);
817 extern int sock_no_accept(struct socket *,
818 struct socket *, int);
819 extern int sock_no_getname(struct socket *,
820 struct sockaddr *, int *, int);
821 extern unsigned int sock_no_poll(struct file *, struct socket *,
822 struct poll_table_struct *);
823 extern int sock_no_ioctl(struct socket *, unsigned int,
824 unsigned long);
825 extern int sock_no_listen(struct socket *, int);
826 extern int sock_no_shutdown(struct socket *, int);
827 extern int sock_no_getsockopt(struct socket *, int , int,
828 char __user *, int __user *);
829 extern int sock_no_setsockopt(struct socket *, int, int,
830 char __user *, int);
831 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
832 struct msghdr *, size_t);
833 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
834 struct msghdr *, size_t, int);
835 extern int sock_no_mmap(struct file *file,
836 struct socket *sock,
837 struct vm_area_struct *vma);
838 extern ssize_t sock_no_sendpage(struct socket *sock,
839 struct page *page,
840 int offset, size_t size,
841 int flags);
842
843 /*
844 * Functions to fill in entries in struct proto_ops when a protocol
845 * uses the inet style.
846 */
847 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
848 char __user *optval, int __user *optlen);
849 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
850 struct msghdr *msg, size_t size, int flags);
851 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
852 char __user *optval, int optlen);
853 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
854 int optname, char __user *optval, int __user *optlen);
855 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
856 int optname, char __user *optval, int optlen);
857
858 extern void sk_common_release(struct sock *sk);
859
860 /*
861 * Default socket callbacks and setup code
862 */
863
864 /* Initialise core socket variables */
865 extern void sock_init_data(struct socket *sock, struct sock *sk);
866
867 /**
868 * sk_filter - run a packet through a socket filter
869 * @sk: sock associated with &sk_buff
870 * @skb: buffer to filter
871 * @needlock: set to 1 if the sock is not locked by caller.
872 *
873 * Run the filter code and then cut skb->data to correct size returned by
874 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
875 * than pkt_len we keep whole skb->data. This is the socket level
876 * wrapper to sk_run_filter. It returns 0 if the packet should
877 * be accepted or -EPERM if the packet should be tossed.
878 *
879 */
880
881 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
882 {
883 int err;
884 struct sk_filter *filter;
885
886 err = security_sock_rcv_skb(sk, skb);
887 if (err)
888 return err;
889
890 rcu_read_lock_bh();
891 filter = sk->sk_filter;
892 if (filter) {
893 unsigned int pkt_len = sk_run_filter(skb, filter->insns,
894 filter->len);
895 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
896 }
897 rcu_read_unlock_bh();
898
899 return err;
900 }
901
902 /**
903 * sk_filter_rcu_free: Free a socket filter
904 * @rcu: rcu_head that contains the sk_filter to free
905 */
906 static inline void sk_filter_rcu_free(struct rcu_head *rcu)
907 {
908 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
909 kfree(fp);
910 }
911
912 /**
913 * sk_filter_release: Release a socket filter
914 * @sk: socket
915 * @fp: filter to remove
916 *
917 * Remove a filter from a socket and release its resources.
918 */
919
920 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
921 {
922 unsigned int size = sk_filter_len(fp);
923
924 atomic_sub(size, &sk->sk_omem_alloc);
925
926 if (atomic_dec_and_test(&fp->refcnt))
927 call_rcu_bh(&fp->rcu, sk_filter_rcu_free);
928 }
929
930 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
931 {
932 atomic_inc(&fp->refcnt);
933 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
934 }
935
936 /*
937 * Socket reference counting postulates.
938 *
939 * * Each user of socket SHOULD hold a reference count.
940 * * Each access point to socket (an hash table bucket, reference from a list,
941 * running timer, skb in flight MUST hold a reference count.
942 * * When reference count hits 0, it means it will never increase back.
943 * * When reference count hits 0, it means that no references from
944 * outside exist to this socket and current process on current CPU
945 * is last user and may/should destroy this socket.
946 * * sk_free is called from any context: process, BH, IRQ. When
947 * it is called, socket has no references from outside -> sk_free
948 * may release descendant resources allocated by the socket, but
949 * to the time when it is called, socket is NOT referenced by any
950 * hash tables, lists etc.
951 * * Packets, delivered from outside (from network or from another process)
952 * and enqueued on receive/error queues SHOULD NOT grab reference count,
953 * when they sit in queue. Otherwise, packets will leak to hole, when
954 * socket is looked up by one cpu and unhasing is made by another CPU.
955 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
956 * (leak to backlog). Packet socket does all the processing inside
957 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
958 * use separate SMP lock, so that they are prone too.
959 */
960
961 /* Ungrab socket and destroy it, if it was the last reference. */
962 static inline void sock_put(struct sock *sk)
963 {
964 if (atomic_dec_and_test(&sk->sk_refcnt))
965 sk_free(sk);
966 }
967
968 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
969 const int nested);
970
971 /* Detach socket from process context.
972 * Announce socket dead, detach it from wait queue and inode.
973 * Note that parent inode held reference count on this struct sock,
974 * we do not release it in this function, because protocol
975 * probably wants some additional cleanups or even continuing
976 * to work with this socket (TCP).
977 */
978 static inline void sock_orphan(struct sock *sk)
979 {
980 write_lock_bh(&sk->sk_callback_lock);
981 sock_set_flag(sk, SOCK_DEAD);
982 sk->sk_socket = NULL;
983 sk->sk_sleep = NULL;
984 write_unlock_bh(&sk->sk_callback_lock);
985 }
986
987 static inline void sock_graft(struct sock *sk, struct socket *parent)
988 {
989 write_lock_bh(&sk->sk_callback_lock);
990 sk->sk_sleep = &parent->wait;
991 parent->sk = sk;
992 sk->sk_socket = parent;
993 security_sock_graft(sk, parent);
994 write_unlock_bh(&sk->sk_callback_lock);
995 }
996
997 static inline void sock_copy(struct sock *nsk, const struct sock *osk)
998 {
999 #ifdef CONFIG_SECURITY_NETWORK
1000 void *sptr = nsk->sk_security;
1001 #endif
1002
1003 memcpy(nsk, osk, osk->sk_prot->obj_size);
1004 #ifdef CONFIG_SECURITY_NETWORK
1005 nsk->sk_security = sptr;
1006 security_sk_clone(osk, nsk);
1007 #endif
1008 }
1009
1010 extern int sock_i_uid(struct sock *sk);
1011 extern unsigned long sock_i_ino(struct sock *sk);
1012
1013 static inline struct dst_entry *
1014 __sk_dst_get(struct sock *sk)
1015 {
1016 return sk->sk_dst_cache;
1017 }
1018
1019 static inline struct dst_entry *
1020 sk_dst_get(struct sock *sk)
1021 {
1022 struct dst_entry *dst;
1023
1024 read_lock(&sk->sk_dst_lock);
1025 dst = sk->sk_dst_cache;
1026 if (dst)
1027 dst_hold(dst);
1028 read_unlock(&sk->sk_dst_lock);
1029 return dst;
1030 }
1031
1032 static inline void
1033 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1034 {
1035 struct dst_entry *old_dst;
1036
1037 old_dst = sk->sk_dst_cache;
1038 sk->sk_dst_cache = dst;
1039 dst_release(old_dst);
1040 }
1041
1042 static inline void
1043 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1044 {
1045 write_lock(&sk->sk_dst_lock);
1046 __sk_dst_set(sk, dst);
1047 write_unlock(&sk->sk_dst_lock);
1048 }
1049
1050 static inline void
1051 __sk_dst_reset(struct sock *sk)
1052 {
1053 struct dst_entry *old_dst;
1054
1055 old_dst = sk->sk_dst_cache;
1056 sk->sk_dst_cache = NULL;
1057 dst_release(old_dst);
1058 }
1059
1060 static inline void
1061 sk_dst_reset(struct sock *sk)
1062 {
1063 write_lock(&sk->sk_dst_lock);
1064 __sk_dst_reset(sk);
1065 write_unlock(&sk->sk_dst_lock);
1066 }
1067
1068 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1069
1070 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1071
1072 static inline int sk_can_gso(const struct sock *sk)
1073 {
1074 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1075 }
1076
1077 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1078 {
1079 __sk_dst_set(sk, dst);
1080 sk->sk_route_caps = dst->dev->features;
1081 if (sk->sk_route_caps & NETIF_F_GSO)
1082 sk->sk_route_caps |= NETIF_F_GSO_MASK;
1083 if (sk_can_gso(sk)) {
1084 if (dst->header_len)
1085 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1086 else
1087 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1088 }
1089 }
1090
1091 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
1092 {
1093 sk->sk_wmem_queued += skb->truesize;
1094 sk->sk_forward_alloc -= skb->truesize;
1095 }
1096
1097 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1098 struct sk_buff *skb, struct page *page,
1099 int off, int copy)
1100 {
1101 if (skb->ip_summed == CHECKSUM_NONE) {
1102 int err = 0;
1103 __wsum csum = csum_and_copy_from_user(from,
1104 page_address(page) + off,
1105 copy, 0, &err);
1106 if (err)
1107 return err;
1108 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1109 } else if (copy_from_user(page_address(page) + off, from, copy))
1110 return -EFAULT;
1111
1112 skb->len += copy;
1113 skb->data_len += copy;
1114 skb->truesize += copy;
1115 sk->sk_wmem_queued += copy;
1116 sk->sk_forward_alloc -= copy;
1117 return 0;
1118 }
1119
1120 /*
1121 * Queue a received datagram if it will fit. Stream and sequenced
1122 * protocols can't normally use this as they need to fit buffers in
1123 * and play with them.
1124 *
1125 * Inlined as it's very short and called for pretty much every
1126 * packet ever received.
1127 */
1128
1129 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1130 {
1131 sock_hold(sk);
1132 skb->sk = sk;
1133 skb->destructor = sock_wfree;
1134 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1135 }
1136
1137 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1138 {
1139 skb->sk = sk;
1140 skb->destructor = sock_rfree;
1141 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1142 }
1143
1144 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1145 unsigned long expires);
1146
1147 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1148
1149 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1150
1151 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1152 {
1153 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1154 number of warnings when compiling with -W --ANK
1155 */
1156 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1157 (unsigned)sk->sk_rcvbuf)
1158 return -ENOMEM;
1159 skb_set_owner_r(skb, sk);
1160 skb_queue_tail(&sk->sk_error_queue, skb);
1161 if (!sock_flag(sk, SOCK_DEAD))
1162 sk->sk_data_ready(sk, skb->len);
1163 return 0;
1164 }
1165
1166 /*
1167 * Recover an error report and clear atomically
1168 */
1169
1170 static inline int sock_error(struct sock *sk)
1171 {
1172 int err;
1173 if (likely(!sk->sk_err))
1174 return 0;
1175 err = xchg(&sk->sk_err, 0);
1176 return -err;
1177 }
1178
1179 static inline unsigned long sock_wspace(struct sock *sk)
1180 {
1181 int amt = 0;
1182
1183 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1184 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1185 if (amt < 0)
1186 amt = 0;
1187 }
1188 return amt;
1189 }
1190
1191 static inline void sk_wake_async(struct sock *sk, int how, int band)
1192 {
1193 if (sk->sk_socket && sk->sk_socket->fasync_list)
1194 sock_wake_async(sk->sk_socket, how, band);
1195 }
1196
1197 #define SOCK_MIN_SNDBUF 2048
1198 #define SOCK_MIN_RCVBUF 256
1199
1200 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1201 {
1202 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1203 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1204 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1205 }
1206 }
1207
1208 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1209 int size, int mem,
1210 gfp_t gfp)
1211 {
1212 struct sk_buff *skb;
1213 int hdr_len;
1214
1215 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1216 skb = alloc_skb_fclone(size + hdr_len, gfp);
1217 if (skb) {
1218 skb->truesize += mem;
1219 if (sk_stream_wmem_schedule(sk, skb->truesize)) {
1220 skb_reserve(skb, hdr_len);
1221 return skb;
1222 }
1223 __kfree_skb(skb);
1224 } else {
1225 sk->sk_prot->enter_memory_pressure();
1226 sk_stream_moderate_sndbuf(sk);
1227 }
1228 return NULL;
1229 }
1230
1231 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1232 int size,
1233 gfp_t gfp)
1234 {
1235 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1236 }
1237
1238 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1239 {
1240 struct page *page = NULL;
1241
1242 page = alloc_pages(sk->sk_allocation, 0);
1243 if (!page) {
1244 sk->sk_prot->enter_memory_pressure();
1245 sk_stream_moderate_sndbuf(sk);
1246 }
1247 return page;
1248 }
1249
1250 /*
1251 * Default write policy as shown to user space via poll/select/SIGIO
1252 */
1253 static inline int sock_writeable(const struct sock *sk)
1254 {
1255 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1256 }
1257
1258 static inline gfp_t gfp_any(void)
1259 {
1260 return in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
1261 }
1262
1263 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1264 {
1265 return noblock ? 0 : sk->sk_rcvtimeo;
1266 }
1267
1268 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1269 {
1270 return noblock ? 0 : sk->sk_sndtimeo;
1271 }
1272
1273 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1274 {
1275 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1276 }
1277
1278 /* Alas, with timeout socket operations are not restartable.
1279 * Compare this to poll().
1280 */
1281 static inline int sock_intr_errno(long timeo)
1282 {
1283 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1284 }
1285
1286 static __inline__ void
1287 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1288 {
1289 ktime_t kt = skb->tstamp;
1290
1291 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1292 struct timeval tv;
1293 /* Race occurred between timestamp enabling and packet
1294 receiving. Fill in the current time for now. */
1295 if (kt.tv64 == 0)
1296 kt = ktime_get_real();
1297 skb->tstamp = kt;
1298 tv = ktime_to_timeval(kt);
1299 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(tv), &tv);
1300 } else
1301 sk->sk_stamp = kt;
1302 }
1303
1304 /**
1305 * sk_eat_skb - Release a skb if it is no longer needed
1306 * @sk: socket to eat this skb from
1307 * @skb: socket buffer to eat
1308 * @copied_early: flag indicating whether DMA operations copied this data early
1309 *
1310 * This routine must be called with interrupts disabled or with the socket
1311 * locked so that the sk_buff queue operation is ok.
1312 */
1313 #ifdef CONFIG_NET_DMA
1314 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1315 {
1316 __skb_unlink(skb, &sk->sk_receive_queue);
1317 if (!copied_early)
1318 __kfree_skb(skb);
1319 else
1320 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1321 }
1322 #else
1323 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1324 {
1325 __skb_unlink(skb, &sk->sk_receive_queue);
1326 __kfree_skb(skb);
1327 }
1328 #endif
1329
1330 extern void sock_enable_timestamp(struct sock *sk);
1331 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1332 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1333
1334 /*
1335 * Enable debug/info messages
1336 */
1337 extern int net_msg_warn;
1338 #define NETDEBUG(fmt, args...) \
1339 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1340
1341 #define LIMIT_NETDEBUG(fmt, args...) \
1342 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1343
1344 /*
1345 * Macros for sleeping on a socket. Use them like this:
1346 *
1347 * SOCK_SLEEP_PRE(sk)
1348 * if (condition)
1349 * schedule();
1350 * SOCK_SLEEP_POST(sk)
1351 *
1352 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1353 * and when the last use of them in DECnet has gone, I'm intending to
1354 * remove them.
1355 */
1356
1357 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1358 DECLARE_WAITQUEUE(wait, tsk); \
1359 tsk->state = TASK_INTERRUPTIBLE; \
1360 add_wait_queue((sk)->sk_sleep, &wait); \
1361 release_sock(sk);
1362
1363 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1364 remove_wait_queue((sk)->sk_sleep, &wait); \
1365 lock_sock(sk); \
1366 }
1367
1368 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1369 {
1370 if (valbool)
1371 sock_set_flag(sk, bit);
1372 else
1373 sock_reset_flag(sk, bit);
1374 }
1375
1376 extern __u32 sysctl_wmem_max;
1377 extern __u32 sysctl_rmem_max;
1378
1379 #ifdef CONFIG_NET
1380 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
1381 #else
1382 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
1383 {
1384 return -ENODEV;
1385 }
1386 #endif
1387
1388 extern void sk_init(void);
1389
1390 #ifdef CONFIG_SYSCTL
1391 extern struct ctl_table core_table[];
1392 #endif
1393
1394 extern int sysctl_optmem_max;
1395
1396 extern __u32 sysctl_wmem_default;
1397 extern __u32 sysctl_rmem_default;
1398
1399 #endif /* _SOCK_H */
This page took 0.057785 seconds and 6 git commands to generate.