Merge remote branch 'nouveau/for-airlied' into drm-linus
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54
55 #include <linux/filter.h>
56 #include <linux/rculist_nulls.h>
57 #include <linux/poll.h>
58
59 #include <asm/atomic.h>
60 #include <net/dst.h>
61 #include <net/checksum.h>
62
63 /*
64 * This structure really needs to be cleaned up.
65 * Most of it is for TCP, and not used by any of
66 * the other protocols.
67 */
68
69 /* Define this to get the SOCK_DBG debugging facility. */
70 #define SOCK_DEBUGGING
71 #ifdef SOCK_DEBUGGING
72 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
73 printk(KERN_DEBUG msg); } while (0)
74 #else
75 /* Validate arguments and do nothing */
76 static void inline int __attribute__ ((format (printf, 2, 3)))
77 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
78 {
79 }
80 #endif
81
82 /* This is the per-socket lock. The spinlock provides a synchronization
83 * between user contexts and software interrupt processing, whereas the
84 * mini-semaphore synchronizes multiple users amongst themselves.
85 */
86 typedef struct {
87 spinlock_t slock;
88 int owned;
89 wait_queue_head_t wq;
90 /*
91 * We express the mutex-alike socket_lock semantics
92 * to the lock validator by explicitly managing
93 * the slock as a lock variant (in addition to
94 * the slock itself):
95 */
96 #ifdef CONFIG_DEBUG_LOCK_ALLOC
97 struct lockdep_map dep_map;
98 #endif
99 } socket_lock_t;
100
101 struct sock;
102 struct proto;
103 struct net;
104
105 /**
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_node: main hash linkage for various protocol lookup tables
108 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
109 * @skc_refcnt: reference count
110 * @skc_tx_queue_mapping: tx queue number for this connection
111 * @skc_hash: hash value used with various protocol lookup tables
112 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
113 * @skc_family: network address family
114 * @skc_state: Connection state
115 * @skc_reuse: %SO_REUSEADDR setting
116 * @skc_bound_dev_if: bound device index if != 0
117 * @skc_bind_node: bind hash linkage for various protocol lookup tables
118 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
119 * @skc_prot: protocol handlers inside a network family
120 * @skc_net: reference to the network namespace of this socket
121 *
122 * This is the minimal network layer representation of sockets, the header
123 * for struct sock and struct inet_timewait_sock.
124 */
125 struct sock_common {
126 /*
127 * first fields are not copied in sock_copy()
128 */
129 union {
130 struct hlist_node skc_node;
131 struct hlist_nulls_node skc_nulls_node;
132 };
133 atomic_t skc_refcnt;
134 int skc_tx_queue_mapping;
135
136 union {
137 unsigned int skc_hash;
138 __u16 skc_u16hashes[2];
139 };
140 unsigned short skc_family;
141 volatile unsigned char skc_state;
142 unsigned char skc_reuse;
143 int skc_bound_dev_if;
144 union {
145 struct hlist_node skc_bind_node;
146 struct hlist_nulls_node skc_portaddr_node;
147 };
148 struct proto *skc_prot;
149 #ifdef CONFIG_NET_NS
150 struct net *skc_net;
151 #endif
152 };
153
154 /**
155 * struct sock - network layer representation of sockets
156 * @__sk_common: shared layout with inet_timewait_sock
157 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
158 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
159 * @sk_lock: synchronizer
160 * @sk_rcvbuf: size of receive buffer in bytes
161 * @sk_sleep: sock wait queue
162 * @sk_dst_cache: destination cache
163 * @sk_dst_lock: destination cache lock
164 * @sk_policy: flow policy
165 * @sk_rmem_alloc: receive queue bytes committed
166 * @sk_receive_queue: incoming packets
167 * @sk_wmem_alloc: transmit queue bytes committed
168 * @sk_write_queue: Packet sending queue
169 * @sk_async_wait_queue: DMA copied packets
170 * @sk_omem_alloc: "o" is "option" or "other"
171 * @sk_wmem_queued: persistent queue size
172 * @sk_forward_alloc: space allocated forward
173 * @sk_allocation: allocation mode
174 * @sk_sndbuf: size of send buffer in bytes
175 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
176 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
177 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
178 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
179 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
180 * @sk_gso_max_size: Maximum GSO segment size to build
181 * @sk_lingertime: %SO_LINGER l_linger setting
182 * @sk_backlog: always used with the per-socket spinlock held
183 * @sk_callback_lock: used with the callbacks in the end of this struct
184 * @sk_error_queue: rarely used
185 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
186 * IPV6_ADDRFORM for instance)
187 * @sk_err: last error
188 * @sk_err_soft: errors that don't cause failure but are the cause of a
189 * persistent failure not just 'timed out'
190 * @sk_drops: raw/udp drops counter
191 * @sk_ack_backlog: current listen backlog
192 * @sk_max_ack_backlog: listen backlog set in listen()
193 * @sk_priority: %SO_PRIORITY setting
194 * @sk_type: socket type (%SOCK_STREAM, etc)
195 * @sk_protocol: which protocol this socket belongs in this network family
196 * @sk_peercred: %SO_PEERCRED setting
197 * @sk_rcvlowat: %SO_RCVLOWAT setting
198 * @sk_rcvtimeo: %SO_RCVTIMEO setting
199 * @sk_sndtimeo: %SO_SNDTIMEO setting
200 * @sk_filter: socket filtering instructions
201 * @sk_protinfo: private area, net family specific, when not using slab
202 * @sk_timer: sock cleanup timer
203 * @sk_stamp: time stamp of last packet received
204 * @sk_socket: Identd and reporting IO signals
205 * @sk_user_data: RPC layer private data
206 * @sk_sndmsg_page: cached page for sendmsg
207 * @sk_sndmsg_off: cached offset for sendmsg
208 * @sk_send_head: front of stuff to transmit
209 * @sk_security: used by security modules
210 * @sk_mark: generic packet mark
211 * @sk_write_pending: a write to stream socket waits to start
212 * @sk_state_change: callback to indicate change in the state of the sock
213 * @sk_data_ready: callback to indicate there is data to be processed
214 * @sk_write_space: callback to indicate there is bf sending space available
215 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
216 * @sk_backlog_rcv: callback to process the backlog
217 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
218 */
219 struct sock {
220 /*
221 * Now struct inet_timewait_sock also uses sock_common, so please just
222 * don't add nothing before this first member (__sk_common) --acme
223 */
224 struct sock_common __sk_common;
225 #define sk_node __sk_common.skc_node
226 #define sk_nulls_node __sk_common.skc_nulls_node
227 #define sk_refcnt __sk_common.skc_refcnt
228 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
229
230 #define sk_copy_start __sk_common.skc_hash
231 #define sk_hash __sk_common.skc_hash
232 #define sk_family __sk_common.skc_family
233 #define sk_state __sk_common.skc_state
234 #define sk_reuse __sk_common.skc_reuse
235 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
236 #define sk_bind_node __sk_common.skc_bind_node
237 #define sk_prot __sk_common.skc_prot
238 #define sk_net __sk_common.skc_net
239 kmemcheck_bitfield_begin(flags);
240 unsigned int sk_shutdown : 2,
241 sk_no_check : 2,
242 sk_userlocks : 4,
243 sk_protocol : 8,
244 sk_type : 16;
245 kmemcheck_bitfield_end(flags);
246 int sk_rcvbuf;
247 socket_lock_t sk_lock;
248 /*
249 * The backlog queue is special, it is always used with
250 * the per-socket spinlock held and requires low latency
251 * access. Therefore we special case it's implementation.
252 */
253 struct {
254 struct sk_buff *head;
255 struct sk_buff *tail;
256 } sk_backlog;
257 wait_queue_head_t *sk_sleep;
258 struct dst_entry *sk_dst_cache;
259 #ifdef CONFIG_XFRM
260 struct xfrm_policy *sk_policy[2];
261 #endif
262 rwlock_t sk_dst_lock;
263 atomic_t sk_rmem_alloc;
264 atomic_t sk_wmem_alloc;
265 atomic_t sk_omem_alloc;
266 int sk_sndbuf;
267 struct sk_buff_head sk_receive_queue;
268 struct sk_buff_head sk_write_queue;
269 #ifdef CONFIG_NET_DMA
270 struct sk_buff_head sk_async_wait_queue;
271 #endif
272 int sk_wmem_queued;
273 int sk_forward_alloc;
274 gfp_t sk_allocation;
275 int sk_route_caps;
276 int sk_gso_type;
277 unsigned int sk_gso_max_size;
278 int sk_rcvlowat;
279 unsigned long sk_flags;
280 unsigned long sk_lingertime;
281 struct sk_buff_head sk_error_queue;
282 struct proto *sk_prot_creator;
283 rwlock_t sk_callback_lock;
284 int sk_err,
285 sk_err_soft;
286 atomic_t sk_drops;
287 unsigned short sk_ack_backlog;
288 unsigned short sk_max_ack_backlog;
289 __u32 sk_priority;
290 struct ucred sk_peercred;
291 long sk_rcvtimeo;
292 long sk_sndtimeo;
293 struct sk_filter *sk_filter;
294 void *sk_protinfo;
295 struct timer_list sk_timer;
296 ktime_t sk_stamp;
297 struct socket *sk_socket;
298 void *sk_user_data;
299 struct page *sk_sndmsg_page;
300 struct sk_buff *sk_send_head;
301 __u32 sk_sndmsg_off;
302 int sk_write_pending;
303 #ifdef CONFIG_SECURITY
304 void *sk_security;
305 #endif
306 __u32 sk_mark;
307 /* XXX 4 bytes hole on 64 bit */
308 void (*sk_state_change)(struct sock *sk);
309 void (*sk_data_ready)(struct sock *sk, int bytes);
310 void (*sk_write_space)(struct sock *sk);
311 void (*sk_error_report)(struct sock *sk);
312 int (*sk_backlog_rcv)(struct sock *sk,
313 struct sk_buff *skb);
314 void (*sk_destruct)(struct sock *sk);
315 };
316
317 /*
318 * Hashed lists helper routines
319 */
320 static inline struct sock *__sk_head(const struct hlist_head *head)
321 {
322 return hlist_entry(head->first, struct sock, sk_node);
323 }
324
325 static inline struct sock *sk_head(const struct hlist_head *head)
326 {
327 return hlist_empty(head) ? NULL : __sk_head(head);
328 }
329
330 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
331 {
332 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
333 }
334
335 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
336 {
337 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
338 }
339
340 static inline struct sock *sk_next(const struct sock *sk)
341 {
342 return sk->sk_node.next ?
343 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
344 }
345
346 static inline struct sock *sk_nulls_next(const struct sock *sk)
347 {
348 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
349 hlist_nulls_entry(sk->sk_nulls_node.next,
350 struct sock, sk_nulls_node) :
351 NULL;
352 }
353
354 static inline int sk_unhashed(const struct sock *sk)
355 {
356 return hlist_unhashed(&sk->sk_node);
357 }
358
359 static inline int sk_hashed(const struct sock *sk)
360 {
361 return !sk_unhashed(sk);
362 }
363
364 static __inline__ void sk_node_init(struct hlist_node *node)
365 {
366 node->pprev = NULL;
367 }
368
369 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
370 {
371 node->pprev = NULL;
372 }
373
374 static __inline__ void __sk_del_node(struct sock *sk)
375 {
376 __hlist_del(&sk->sk_node);
377 }
378
379 static __inline__ int __sk_del_node_init(struct sock *sk)
380 {
381 if (sk_hashed(sk)) {
382 __sk_del_node(sk);
383 sk_node_init(&sk->sk_node);
384 return 1;
385 }
386 return 0;
387 }
388
389 /* Grab socket reference count. This operation is valid only
390 when sk is ALREADY grabbed f.e. it is found in hash table
391 or a list and the lookup is made under lock preventing hash table
392 modifications.
393 */
394
395 static inline void sock_hold(struct sock *sk)
396 {
397 atomic_inc(&sk->sk_refcnt);
398 }
399
400 /* Ungrab socket in the context, which assumes that socket refcnt
401 cannot hit zero, f.e. it is true in context of any socketcall.
402 */
403 static inline void __sock_put(struct sock *sk)
404 {
405 atomic_dec(&sk->sk_refcnt);
406 }
407
408 static __inline__ int sk_del_node_init(struct sock *sk)
409 {
410 int rc = __sk_del_node_init(sk);
411
412 if (rc) {
413 /* paranoid for a while -acme */
414 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
415 __sock_put(sk);
416 }
417 return rc;
418 }
419
420 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
421 {
422 if (sk_hashed(sk)) {
423 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
424 return 1;
425 }
426 return 0;
427 }
428
429 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
430 {
431 int rc = __sk_nulls_del_node_init_rcu(sk);
432
433 if (rc) {
434 /* paranoid for a while -acme */
435 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
436 __sock_put(sk);
437 }
438 return rc;
439 }
440
441 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
442 {
443 hlist_add_head(&sk->sk_node, list);
444 }
445
446 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
447 {
448 sock_hold(sk);
449 __sk_add_node(sk, list);
450 }
451
452 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
453 {
454 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
455 }
456
457 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
458 {
459 sock_hold(sk);
460 __sk_nulls_add_node_rcu(sk, list);
461 }
462
463 static __inline__ void __sk_del_bind_node(struct sock *sk)
464 {
465 __hlist_del(&sk->sk_bind_node);
466 }
467
468 static __inline__ void sk_add_bind_node(struct sock *sk,
469 struct hlist_head *list)
470 {
471 hlist_add_head(&sk->sk_bind_node, list);
472 }
473
474 #define sk_for_each(__sk, node, list) \
475 hlist_for_each_entry(__sk, node, list, sk_node)
476 #define sk_nulls_for_each(__sk, node, list) \
477 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
478 #define sk_nulls_for_each_rcu(__sk, node, list) \
479 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
480 #define sk_for_each_from(__sk, node) \
481 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
482 hlist_for_each_entry_from(__sk, node, sk_node)
483 #define sk_nulls_for_each_from(__sk, node) \
484 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
485 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
486 #define sk_for_each_continue(__sk, node) \
487 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
488 hlist_for_each_entry_continue(__sk, node, sk_node)
489 #define sk_for_each_safe(__sk, node, tmp, list) \
490 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
491 #define sk_for_each_bound(__sk, node, list) \
492 hlist_for_each_entry(__sk, node, list, sk_bind_node)
493
494 /* Sock flags */
495 enum sock_flags {
496 SOCK_DEAD,
497 SOCK_DONE,
498 SOCK_URGINLINE,
499 SOCK_KEEPOPEN,
500 SOCK_LINGER,
501 SOCK_DESTROY,
502 SOCK_BROADCAST,
503 SOCK_TIMESTAMP,
504 SOCK_ZAPPED,
505 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
506 SOCK_DBG, /* %SO_DEBUG setting */
507 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
508 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
509 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
510 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
511 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
512 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
513 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
514 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
515 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
516 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
517 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
518 SOCK_FASYNC, /* fasync() active */
519 SOCK_RXQ_OVFL,
520 };
521
522 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
523 {
524 nsk->sk_flags = osk->sk_flags;
525 }
526
527 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
528 {
529 __set_bit(flag, &sk->sk_flags);
530 }
531
532 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
533 {
534 __clear_bit(flag, &sk->sk_flags);
535 }
536
537 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
538 {
539 return test_bit(flag, &sk->sk_flags);
540 }
541
542 static inline void sk_acceptq_removed(struct sock *sk)
543 {
544 sk->sk_ack_backlog--;
545 }
546
547 static inline void sk_acceptq_added(struct sock *sk)
548 {
549 sk->sk_ack_backlog++;
550 }
551
552 static inline int sk_acceptq_is_full(struct sock *sk)
553 {
554 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
555 }
556
557 /*
558 * Compute minimal free write space needed to queue new packets.
559 */
560 static inline int sk_stream_min_wspace(struct sock *sk)
561 {
562 return sk->sk_wmem_queued >> 1;
563 }
564
565 static inline int sk_stream_wspace(struct sock *sk)
566 {
567 return sk->sk_sndbuf - sk->sk_wmem_queued;
568 }
569
570 extern void sk_stream_write_space(struct sock *sk);
571
572 static inline int sk_stream_memory_free(struct sock *sk)
573 {
574 return sk->sk_wmem_queued < sk->sk_sndbuf;
575 }
576
577 /* The per-socket spinlock must be held here. */
578 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
579 {
580 if (!sk->sk_backlog.tail) {
581 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
582 } else {
583 sk->sk_backlog.tail->next = skb;
584 sk->sk_backlog.tail = skb;
585 }
586 skb->next = NULL;
587 }
588
589 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
590 {
591 return sk->sk_backlog_rcv(sk, skb);
592 }
593
594 #define sk_wait_event(__sk, __timeo, __condition) \
595 ({ int __rc; \
596 release_sock(__sk); \
597 __rc = __condition; \
598 if (!__rc) { \
599 *(__timeo) = schedule_timeout(*(__timeo)); \
600 } \
601 lock_sock(__sk); \
602 __rc = __condition; \
603 __rc; \
604 })
605
606 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
607 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
608 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
609 extern int sk_stream_error(struct sock *sk, int flags, int err);
610 extern void sk_stream_kill_queues(struct sock *sk);
611
612 extern int sk_wait_data(struct sock *sk, long *timeo);
613
614 struct request_sock_ops;
615 struct timewait_sock_ops;
616 struct inet_hashinfo;
617 struct raw_hashinfo;
618
619 /* Networking protocol blocks we attach to sockets.
620 * socket layer -> transport layer interface
621 * transport -> network interface is defined by struct inet_proto
622 */
623 struct proto {
624 void (*close)(struct sock *sk,
625 long timeout);
626 int (*connect)(struct sock *sk,
627 struct sockaddr *uaddr,
628 int addr_len);
629 int (*disconnect)(struct sock *sk, int flags);
630
631 struct sock * (*accept) (struct sock *sk, int flags, int *err);
632
633 int (*ioctl)(struct sock *sk, int cmd,
634 unsigned long arg);
635 int (*init)(struct sock *sk);
636 void (*destroy)(struct sock *sk);
637 void (*shutdown)(struct sock *sk, int how);
638 int (*setsockopt)(struct sock *sk, int level,
639 int optname, char __user *optval,
640 unsigned int optlen);
641 int (*getsockopt)(struct sock *sk, int level,
642 int optname, char __user *optval,
643 int __user *option);
644 #ifdef CONFIG_COMPAT
645 int (*compat_setsockopt)(struct sock *sk,
646 int level,
647 int optname, char __user *optval,
648 unsigned int optlen);
649 int (*compat_getsockopt)(struct sock *sk,
650 int level,
651 int optname, char __user *optval,
652 int __user *option);
653 #endif
654 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
655 struct msghdr *msg, size_t len);
656 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
657 struct msghdr *msg,
658 size_t len, int noblock, int flags,
659 int *addr_len);
660 int (*sendpage)(struct sock *sk, struct page *page,
661 int offset, size_t size, int flags);
662 int (*bind)(struct sock *sk,
663 struct sockaddr *uaddr, int addr_len);
664
665 int (*backlog_rcv) (struct sock *sk,
666 struct sk_buff *skb);
667
668 /* Keeping track of sk's, looking them up, and port selection methods. */
669 void (*hash)(struct sock *sk);
670 void (*unhash)(struct sock *sk);
671 int (*get_port)(struct sock *sk, unsigned short snum);
672
673 /* Keeping track of sockets in use */
674 #ifdef CONFIG_PROC_FS
675 unsigned int inuse_idx;
676 #endif
677
678 /* Memory pressure */
679 void (*enter_memory_pressure)(struct sock *sk);
680 atomic_t *memory_allocated; /* Current allocated memory. */
681 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
682 /*
683 * Pressure flag: try to collapse.
684 * Technical note: it is used by multiple contexts non atomically.
685 * All the __sk_mem_schedule() is of this nature: accounting
686 * is strict, actions are advisory and have some latency.
687 */
688 int *memory_pressure;
689 int *sysctl_mem;
690 int *sysctl_wmem;
691 int *sysctl_rmem;
692 int max_header;
693
694 struct kmem_cache *slab;
695 unsigned int obj_size;
696 int slab_flags;
697
698 struct percpu_counter *orphan_count;
699
700 struct request_sock_ops *rsk_prot;
701 struct timewait_sock_ops *twsk_prot;
702
703 union {
704 struct inet_hashinfo *hashinfo;
705 struct udp_table *udp_table;
706 struct raw_hashinfo *raw_hash;
707 } h;
708
709 struct module *owner;
710
711 char name[32];
712
713 struct list_head node;
714 #ifdef SOCK_REFCNT_DEBUG
715 atomic_t socks;
716 #endif
717 };
718
719 extern int proto_register(struct proto *prot, int alloc_slab);
720 extern void proto_unregister(struct proto *prot);
721
722 #ifdef SOCK_REFCNT_DEBUG
723 static inline void sk_refcnt_debug_inc(struct sock *sk)
724 {
725 atomic_inc(&sk->sk_prot->socks);
726 }
727
728 static inline void sk_refcnt_debug_dec(struct sock *sk)
729 {
730 atomic_dec(&sk->sk_prot->socks);
731 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
732 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
733 }
734
735 static inline void sk_refcnt_debug_release(const struct sock *sk)
736 {
737 if (atomic_read(&sk->sk_refcnt) != 1)
738 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
739 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
740 }
741 #else /* SOCK_REFCNT_DEBUG */
742 #define sk_refcnt_debug_inc(sk) do { } while (0)
743 #define sk_refcnt_debug_dec(sk) do { } while (0)
744 #define sk_refcnt_debug_release(sk) do { } while (0)
745 #endif /* SOCK_REFCNT_DEBUG */
746
747
748 #ifdef CONFIG_PROC_FS
749 /* Called with local bh disabled */
750 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
751 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
752 #else
753 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
754 int inc)
755 {
756 }
757 #endif
758
759
760 /* With per-bucket locks this operation is not-atomic, so that
761 * this version is not worse.
762 */
763 static inline void __sk_prot_rehash(struct sock *sk)
764 {
765 sk->sk_prot->unhash(sk);
766 sk->sk_prot->hash(sk);
767 }
768
769 /* About 10 seconds */
770 #define SOCK_DESTROY_TIME (10*HZ)
771
772 /* Sockets 0-1023 can't be bound to unless you are superuser */
773 #define PROT_SOCK 1024
774
775 #define SHUTDOWN_MASK 3
776 #define RCV_SHUTDOWN 1
777 #define SEND_SHUTDOWN 2
778
779 #define SOCK_SNDBUF_LOCK 1
780 #define SOCK_RCVBUF_LOCK 2
781 #define SOCK_BINDADDR_LOCK 4
782 #define SOCK_BINDPORT_LOCK 8
783
784 /* sock_iocb: used to kick off async processing of socket ios */
785 struct sock_iocb {
786 struct list_head list;
787
788 int flags;
789 int size;
790 struct socket *sock;
791 struct sock *sk;
792 struct scm_cookie *scm;
793 struct msghdr *msg, async_msg;
794 struct kiocb *kiocb;
795 };
796
797 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
798 {
799 return (struct sock_iocb *)iocb->private;
800 }
801
802 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
803 {
804 return si->kiocb;
805 }
806
807 struct socket_alloc {
808 struct socket socket;
809 struct inode vfs_inode;
810 };
811
812 static inline struct socket *SOCKET_I(struct inode *inode)
813 {
814 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
815 }
816
817 static inline struct inode *SOCK_INODE(struct socket *socket)
818 {
819 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
820 }
821
822 /*
823 * Functions for memory accounting
824 */
825 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
826 extern void __sk_mem_reclaim(struct sock *sk);
827
828 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
829 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
830 #define SK_MEM_SEND 0
831 #define SK_MEM_RECV 1
832
833 static inline int sk_mem_pages(int amt)
834 {
835 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
836 }
837
838 static inline int sk_has_account(struct sock *sk)
839 {
840 /* return true if protocol supports memory accounting */
841 return !!sk->sk_prot->memory_allocated;
842 }
843
844 static inline int sk_wmem_schedule(struct sock *sk, int size)
845 {
846 if (!sk_has_account(sk))
847 return 1;
848 return size <= sk->sk_forward_alloc ||
849 __sk_mem_schedule(sk, size, SK_MEM_SEND);
850 }
851
852 static inline int sk_rmem_schedule(struct sock *sk, int size)
853 {
854 if (!sk_has_account(sk))
855 return 1;
856 return size <= sk->sk_forward_alloc ||
857 __sk_mem_schedule(sk, size, SK_MEM_RECV);
858 }
859
860 static inline void sk_mem_reclaim(struct sock *sk)
861 {
862 if (!sk_has_account(sk))
863 return;
864 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
865 __sk_mem_reclaim(sk);
866 }
867
868 static inline void sk_mem_reclaim_partial(struct sock *sk)
869 {
870 if (!sk_has_account(sk))
871 return;
872 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
873 __sk_mem_reclaim(sk);
874 }
875
876 static inline void sk_mem_charge(struct sock *sk, int size)
877 {
878 if (!sk_has_account(sk))
879 return;
880 sk->sk_forward_alloc -= size;
881 }
882
883 static inline void sk_mem_uncharge(struct sock *sk, int size)
884 {
885 if (!sk_has_account(sk))
886 return;
887 sk->sk_forward_alloc += size;
888 }
889
890 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
891 {
892 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
893 sk->sk_wmem_queued -= skb->truesize;
894 sk_mem_uncharge(sk, skb->truesize);
895 __kfree_skb(skb);
896 }
897
898 /* Used by processes to "lock" a socket state, so that
899 * interrupts and bottom half handlers won't change it
900 * from under us. It essentially blocks any incoming
901 * packets, so that we won't get any new data or any
902 * packets that change the state of the socket.
903 *
904 * While locked, BH processing will add new packets to
905 * the backlog queue. This queue is processed by the
906 * owner of the socket lock right before it is released.
907 *
908 * Since ~2.3.5 it is also exclusive sleep lock serializing
909 * accesses from user process context.
910 */
911 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
912
913 /*
914 * Macro so as to not evaluate some arguments when
915 * lockdep is not enabled.
916 *
917 * Mark both the sk_lock and the sk_lock.slock as a
918 * per-address-family lock class.
919 */
920 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
921 do { \
922 sk->sk_lock.owned = 0; \
923 init_waitqueue_head(&sk->sk_lock.wq); \
924 spin_lock_init(&(sk)->sk_lock.slock); \
925 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
926 sizeof((sk)->sk_lock)); \
927 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
928 (skey), (sname)); \
929 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
930 } while (0)
931
932 extern void lock_sock_nested(struct sock *sk, int subclass);
933
934 static inline void lock_sock(struct sock *sk)
935 {
936 lock_sock_nested(sk, 0);
937 }
938
939 extern void release_sock(struct sock *sk);
940
941 /* BH context may only use the following locking interface. */
942 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
943 #define bh_lock_sock_nested(__sk) \
944 spin_lock_nested(&((__sk)->sk_lock.slock), \
945 SINGLE_DEPTH_NESTING)
946 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
947
948 extern struct sock *sk_alloc(struct net *net, int family,
949 gfp_t priority,
950 struct proto *prot);
951 extern void sk_free(struct sock *sk);
952 extern void sk_release_kernel(struct sock *sk);
953 extern struct sock *sk_clone(const struct sock *sk,
954 const gfp_t priority);
955
956 extern struct sk_buff *sock_wmalloc(struct sock *sk,
957 unsigned long size, int force,
958 gfp_t priority);
959 extern struct sk_buff *sock_rmalloc(struct sock *sk,
960 unsigned long size, int force,
961 gfp_t priority);
962 extern void sock_wfree(struct sk_buff *skb);
963 extern void sock_rfree(struct sk_buff *skb);
964
965 extern int sock_setsockopt(struct socket *sock, int level,
966 int op, char __user *optval,
967 unsigned int optlen);
968
969 extern int sock_getsockopt(struct socket *sock, int level,
970 int op, char __user *optval,
971 int __user *optlen);
972 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
973 unsigned long size,
974 int noblock,
975 int *errcode);
976 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
977 unsigned long header_len,
978 unsigned long data_len,
979 int noblock,
980 int *errcode);
981 extern void *sock_kmalloc(struct sock *sk, int size,
982 gfp_t priority);
983 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
984 extern void sk_send_sigurg(struct sock *sk);
985
986 /*
987 * Functions to fill in entries in struct proto_ops when a protocol
988 * does not implement a particular function.
989 */
990 extern int sock_no_bind(struct socket *,
991 struct sockaddr *, int);
992 extern int sock_no_connect(struct socket *,
993 struct sockaddr *, int, int);
994 extern int sock_no_socketpair(struct socket *,
995 struct socket *);
996 extern int sock_no_accept(struct socket *,
997 struct socket *, int);
998 extern int sock_no_getname(struct socket *,
999 struct sockaddr *, int *, int);
1000 extern unsigned int sock_no_poll(struct file *, struct socket *,
1001 struct poll_table_struct *);
1002 extern int sock_no_ioctl(struct socket *, unsigned int,
1003 unsigned long);
1004 extern int sock_no_listen(struct socket *, int);
1005 extern int sock_no_shutdown(struct socket *, int);
1006 extern int sock_no_getsockopt(struct socket *, int , int,
1007 char __user *, int __user *);
1008 extern int sock_no_setsockopt(struct socket *, int, int,
1009 char __user *, unsigned int);
1010 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1011 struct msghdr *, size_t);
1012 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1013 struct msghdr *, size_t, int);
1014 extern int sock_no_mmap(struct file *file,
1015 struct socket *sock,
1016 struct vm_area_struct *vma);
1017 extern ssize_t sock_no_sendpage(struct socket *sock,
1018 struct page *page,
1019 int offset, size_t size,
1020 int flags);
1021
1022 /*
1023 * Functions to fill in entries in struct proto_ops when a protocol
1024 * uses the inet style.
1025 */
1026 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1027 char __user *optval, int __user *optlen);
1028 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1029 struct msghdr *msg, size_t size, int flags);
1030 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1031 char __user *optval, unsigned int optlen);
1032 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1033 int optname, char __user *optval, int __user *optlen);
1034 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1035 int optname, char __user *optval, unsigned int optlen);
1036
1037 extern void sk_common_release(struct sock *sk);
1038
1039 /*
1040 * Default socket callbacks and setup code
1041 */
1042
1043 /* Initialise core socket variables */
1044 extern void sock_init_data(struct socket *sock, struct sock *sk);
1045
1046 /**
1047 * sk_filter_release: Release a socket filter
1048 * @fp: filter to remove
1049 *
1050 * Remove a filter from a socket and release its resources.
1051 */
1052
1053 static inline void sk_filter_release(struct sk_filter *fp)
1054 {
1055 if (atomic_dec_and_test(&fp->refcnt))
1056 kfree(fp);
1057 }
1058
1059 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1060 {
1061 unsigned int size = sk_filter_len(fp);
1062
1063 atomic_sub(size, &sk->sk_omem_alloc);
1064 sk_filter_release(fp);
1065 }
1066
1067 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1068 {
1069 atomic_inc(&fp->refcnt);
1070 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1071 }
1072
1073 /*
1074 * Socket reference counting postulates.
1075 *
1076 * * Each user of socket SHOULD hold a reference count.
1077 * * Each access point to socket (an hash table bucket, reference from a list,
1078 * running timer, skb in flight MUST hold a reference count.
1079 * * When reference count hits 0, it means it will never increase back.
1080 * * When reference count hits 0, it means that no references from
1081 * outside exist to this socket and current process on current CPU
1082 * is last user and may/should destroy this socket.
1083 * * sk_free is called from any context: process, BH, IRQ. When
1084 * it is called, socket has no references from outside -> sk_free
1085 * may release descendant resources allocated by the socket, but
1086 * to the time when it is called, socket is NOT referenced by any
1087 * hash tables, lists etc.
1088 * * Packets, delivered from outside (from network or from another process)
1089 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1090 * when they sit in queue. Otherwise, packets will leak to hole, when
1091 * socket is looked up by one cpu and unhasing is made by another CPU.
1092 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1093 * (leak to backlog). Packet socket does all the processing inside
1094 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1095 * use separate SMP lock, so that they are prone too.
1096 */
1097
1098 /* Ungrab socket and destroy it, if it was the last reference. */
1099 static inline void sock_put(struct sock *sk)
1100 {
1101 if (atomic_dec_and_test(&sk->sk_refcnt))
1102 sk_free(sk);
1103 }
1104
1105 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1106 const int nested);
1107
1108 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1109 {
1110 sk->sk_tx_queue_mapping = tx_queue;
1111 }
1112
1113 static inline void sk_tx_queue_clear(struct sock *sk)
1114 {
1115 sk->sk_tx_queue_mapping = -1;
1116 }
1117
1118 static inline int sk_tx_queue_get(const struct sock *sk)
1119 {
1120 return sk->sk_tx_queue_mapping;
1121 }
1122
1123 static inline bool sk_tx_queue_recorded(const struct sock *sk)
1124 {
1125 return (sk && sk->sk_tx_queue_mapping >= 0);
1126 }
1127
1128 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1129 {
1130 sk_tx_queue_clear(sk);
1131 sk->sk_socket = sock;
1132 }
1133
1134 /* Detach socket from process context.
1135 * Announce socket dead, detach it from wait queue and inode.
1136 * Note that parent inode held reference count on this struct sock,
1137 * we do not release it in this function, because protocol
1138 * probably wants some additional cleanups or even continuing
1139 * to work with this socket (TCP).
1140 */
1141 static inline void sock_orphan(struct sock *sk)
1142 {
1143 write_lock_bh(&sk->sk_callback_lock);
1144 sock_set_flag(sk, SOCK_DEAD);
1145 sk_set_socket(sk, NULL);
1146 sk->sk_sleep = NULL;
1147 write_unlock_bh(&sk->sk_callback_lock);
1148 }
1149
1150 static inline void sock_graft(struct sock *sk, struct socket *parent)
1151 {
1152 write_lock_bh(&sk->sk_callback_lock);
1153 sk->sk_sleep = &parent->wait;
1154 parent->sk = sk;
1155 sk_set_socket(sk, parent);
1156 security_sock_graft(sk, parent);
1157 write_unlock_bh(&sk->sk_callback_lock);
1158 }
1159
1160 extern int sock_i_uid(struct sock *sk);
1161 extern unsigned long sock_i_ino(struct sock *sk);
1162
1163 static inline struct dst_entry *
1164 __sk_dst_get(struct sock *sk)
1165 {
1166 return sk->sk_dst_cache;
1167 }
1168
1169 static inline struct dst_entry *
1170 sk_dst_get(struct sock *sk)
1171 {
1172 struct dst_entry *dst;
1173
1174 read_lock(&sk->sk_dst_lock);
1175 dst = sk->sk_dst_cache;
1176 if (dst)
1177 dst_hold(dst);
1178 read_unlock(&sk->sk_dst_lock);
1179 return dst;
1180 }
1181
1182 static inline void
1183 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1184 {
1185 struct dst_entry *old_dst;
1186
1187 sk_tx_queue_clear(sk);
1188 old_dst = sk->sk_dst_cache;
1189 sk->sk_dst_cache = dst;
1190 dst_release(old_dst);
1191 }
1192
1193 static inline void
1194 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1195 {
1196 write_lock(&sk->sk_dst_lock);
1197 __sk_dst_set(sk, dst);
1198 write_unlock(&sk->sk_dst_lock);
1199 }
1200
1201 static inline void
1202 __sk_dst_reset(struct sock *sk)
1203 {
1204 struct dst_entry *old_dst;
1205
1206 sk_tx_queue_clear(sk);
1207 old_dst = sk->sk_dst_cache;
1208 sk->sk_dst_cache = NULL;
1209 dst_release(old_dst);
1210 }
1211
1212 static inline void
1213 sk_dst_reset(struct sock *sk)
1214 {
1215 write_lock(&sk->sk_dst_lock);
1216 __sk_dst_reset(sk);
1217 write_unlock(&sk->sk_dst_lock);
1218 }
1219
1220 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1221
1222 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1223
1224 static inline int sk_can_gso(const struct sock *sk)
1225 {
1226 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1227 }
1228
1229 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1230
1231 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1232 struct sk_buff *skb, struct page *page,
1233 int off, int copy)
1234 {
1235 if (skb->ip_summed == CHECKSUM_NONE) {
1236 int err = 0;
1237 __wsum csum = csum_and_copy_from_user(from,
1238 page_address(page) + off,
1239 copy, 0, &err);
1240 if (err)
1241 return err;
1242 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1243 } else if (copy_from_user(page_address(page) + off, from, copy))
1244 return -EFAULT;
1245
1246 skb->len += copy;
1247 skb->data_len += copy;
1248 skb->truesize += copy;
1249 sk->sk_wmem_queued += copy;
1250 sk_mem_charge(sk, copy);
1251 return 0;
1252 }
1253
1254 /**
1255 * sk_wmem_alloc_get - returns write allocations
1256 * @sk: socket
1257 *
1258 * Returns sk_wmem_alloc minus initial offset of one
1259 */
1260 static inline int sk_wmem_alloc_get(const struct sock *sk)
1261 {
1262 return atomic_read(&sk->sk_wmem_alloc) - 1;
1263 }
1264
1265 /**
1266 * sk_rmem_alloc_get - returns read allocations
1267 * @sk: socket
1268 *
1269 * Returns sk_rmem_alloc
1270 */
1271 static inline int sk_rmem_alloc_get(const struct sock *sk)
1272 {
1273 return atomic_read(&sk->sk_rmem_alloc);
1274 }
1275
1276 /**
1277 * sk_has_allocations - check if allocations are outstanding
1278 * @sk: socket
1279 *
1280 * Returns true if socket has write or read allocations
1281 */
1282 static inline int sk_has_allocations(const struct sock *sk)
1283 {
1284 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1285 }
1286
1287 /**
1288 * sk_has_sleeper - check if there are any waiting processes
1289 * @sk: socket
1290 *
1291 * Returns true if socket has waiting processes
1292 *
1293 * The purpose of the sk_has_sleeper and sock_poll_wait is to wrap the memory
1294 * barrier call. They were added due to the race found within the tcp code.
1295 *
1296 * Consider following tcp code paths:
1297 *
1298 * CPU1 CPU2
1299 *
1300 * sys_select receive packet
1301 * ... ...
1302 * __add_wait_queue update tp->rcv_nxt
1303 * ... ...
1304 * tp->rcv_nxt check sock_def_readable
1305 * ... {
1306 * schedule ...
1307 * if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1308 * wake_up_interruptible(sk->sk_sleep)
1309 * ...
1310 * }
1311 *
1312 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1313 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1314 * could then endup calling schedule and sleep forever if there are no more
1315 * data on the socket.
1316 *
1317 * The sk_has_sleeper is always called right after a call to read_lock, so we
1318 * can use smp_mb__after_lock barrier.
1319 */
1320 static inline int sk_has_sleeper(struct sock *sk)
1321 {
1322 /*
1323 * We need to be sure we are in sync with the
1324 * add_wait_queue modifications to the wait queue.
1325 *
1326 * This memory barrier is paired in the sock_poll_wait.
1327 */
1328 smp_mb__after_lock();
1329 return sk->sk_sleep && waitqueue_active(sk->sk_sleep);
1330 }
1331
1332 /**
1333 * sock_poll_wait - place memory barrier behind the poll_wait call.
1334 * @filp: file
1335 * @wait_address: socket wait queue
1336 * @p: poll_table
1337 *
1338 * See the comments in the sk_has_sleeper function.
1339 */
1340 static inline void sock_poll_wait(struct file *filp,
1341 wait_queue_head_t *wait_address, poll_table *p)
1342 {
1343 if (p && wait_address) {
1344 poll_wait(filp, wait_address, p);
1345 /*
1346 * We need to be sure we are in sync with the
1347 * socket flags modification.
1348 *
1349 * This memory barrier is paired in the sk_has_sleeper.
1350 */
1351 smp_mb();
1352 }
1353 }
1354
1355 /*
1356 * Queue a received datagram if it will fit. Stream and sequenced
1357 * protocols can't normally use this as they need to fit buffers in
1358 * and play with them.
1359 *
1360 * Inlined as it's very short and called for pretty much every
1361 * packet ever received.
1362 */
1363
1364 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1365 {
1366 skb_orphan(skb);
1367 skb->sk = sk;
1368 skb->destructor = sock_wfree;
1369 /*
1370 * We used to take a refcount on sk, but following operation
1371 * is enough to guarantee sk_free() wont free this sock until
1372 * all in-flight packets are completed
1373 */
1374 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1375 }
1376
1377 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1378 {
1379 skb_orphan(skb);
1380 skb->sk = sk;
1381 skb->destructor = sock_rfree;
1382 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1383 sk_mem_charge(sk, skb->truesize);
1384 }
1385
1386 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1387 unsigned long expires);
1388
1389 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1390
1391 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1392
1393 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1394 {
1395 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1396 number of warnings when compiling with -W --ANK
1397 */
1398 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1399 (unsigned)sk->sk_rcvbuf)
1400 return -ENOMEM;
1401 skb_set_owner_r(skb, sk);
1402 skb_queue_tail(&sk->sk_error_queue, skb);
1403 if (!sock_flag(sk, SOCK_DEAD))
1404 sk->sk_data_ready(sk, skb->len);
1405 return 0;
1406 }
1407
1408 /*
1409 * Recover an error report and clear atomically
1410 */
1411
1412 static inline int sock_error(struct sock *sk)
1413 {
1414 int err;
1415 if (likely(!sk->sk_err))
1416 return 0;
1417 err = xchg(&sk->sk_err, 0);
1418 return -err;
1419 }
1420
1421 static inline unsigned long sock_wspace(struct sock *sk)
1422 {
1423 int amt = 0;
1424
1425 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1426 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1427 if (amt < 0)
1428 amt = 0;
1429 }
1430 return amt;
1431 }
1432
1433 static inline void sk_wake_async(struct sock *sk, int how, int band)
1434 {
1435 if (sock_flag(sk, SOCK_FASYNC))
1436 sock_wake_async(sk->sk_socket, how, band);
1437 }
1438
1439 #define SOCK_MIN_SNDBUF 2048
1440 #define SOCK_MIN_RCVBUF 256
1441
1442 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1443 {
1444 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1445 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1446 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1447 }
1448 }
1449
1450 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1451
1452 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1453 {
1454 struct page *page = NULL;
1455
1456 page = alloc_pages(sk->sk_allocation, 0);
1457 if (!page) {
1458 sk->sk_prot->enter_memory_pressure(sk);
1459 sk_stream_moderate_sndbuf(sk);
1460 }
1461 return page;
1462 }
1463
1464 /*
1465 * Default write policy as shown to user space via poll/select/SIGIO
1466 */
1467 static inline int sock_writeable(const struct sock *sk)
1468 {
1469 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1470 }
1471
1472 static inline gfp_t gfp_any(void)
1473 {
1474 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1475 }
1476
1477 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1478 {
1479 return noblock ? 0 : sk->sk_rcvtimeo;
1480 }
1481
1482 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1483 {
1484 return noblock ? 0 : sk->sk_sndtimeo;
1485 }
1486
1487 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1488 {
1489 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1490 }
1491
1492 /* Alas, with timeout socket operations are not restartable.
1493 * Compare this to poll().
1494 */
1495 static inline int sock_intr_errno(long timeo)
1496 {
1497 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1498 }
1499
1500 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1501 struct sk_buff *skb);
1502
1503 static __inline__ void
1504 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1505 {
1506 ktime_t kt = skb->tstamp;
1507 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1508
1509 /*
1510 * generate control messages if
1511 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1512 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1513 * - software time stamp available and wanted
1514 * (SOCK_TIMESTAMPING_SOFTWARE)
1515 * - hardware time stamps available and wanted
1516 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1517 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1518 */
1519 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1520 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1521 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1522 (hwtstamps->hwtstamp.tv64 &&
1523 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1524 (hwtstamps->syststamp.tv64 &&
1525 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1526 __sock_recv_timestamp(msg, sk, skb);
1527 else
1528 sk->sk_stamp = kt;
1529 }
1530
1531 extern void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb);
1532
1533 /**
1534 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1535 * @msg: outgoing packet
1536 * @sk: socket sending this packet
1537 * @shtx: filled with instructions for time stamping
1538 *
1539 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1540 * parameters are invalid.
1541 */
1542 extern int sock_tx_timestamp(struct msghdr *msg,
1543 struct sock *sk,
1544 union skb_shared_tx *shtx);
1545
1546
1547 /**
1548 * sk_eat_skb - Release a skb if it is no longer needed
1549 * @sk: socket to eat this skb from
1550 * @skb: socket buffer to eat
1551 * @copied_early: flag indicating whether DMA operations copied this data early
1552 *
1553 * This routine must be called with interrupts disabled or with the socket
1554 * locked so that the sk_buff queue operation is ok.
1555 */
1556 #ifdef CONFIG_NET_DMA
1557 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1558 {
1559 __skb_unlink(skb, &sk->sk_receive_queue);
1560 if (!copied_early)
1561 __kfree_skb(skb);
1562 else
1563 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1564 }
1565 #else
1566 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1567 {
1568 __skb_unlink(skb, &sk->sk_receive_queue);
1569 __kfree_skb(skb);
1570 }
1571 #endif
1572
1573 static inline
1574 struct net *sock_net(const struct sock *sk)
1575 {
1576 #ifdef CONFIG_NET_NS
1577 return sk->sk_net;
1578 #else
1579 return &init_net;
1580 #endif
1581 }
1582
1583 static inline
1584 void sock_net_set(struct sock *sk, struct net *net)
1585 {
1586 #ifdef CONFIG_NET_NS
1587 sk->sk_net = net;
1588 #endif
1589 }
1590
1591 /*
1592 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1593 * They should not hold a referrence to a namespace in order to allow
1594 * to stop it.
1595 * Sockets after sk_change_net should be released using sk_release_kernel
1596 */
1597 static inline void sk_change_net(struct sock *sk, struct net *net)
1598 {
1599 put_net(sock_net(sk));
1600 sock_net_set(sk, hold_net(net));
1601 }
1602
1603 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1604 {
1605 if (unlikely(skb->sk)) {
1606 struct sock *sk = skb->sk;
1607
1608 skb->destructor = NULL;
1609 skb->sk = NULL;
1610 return sk;
1611 }
1612 return NULL;
1613 }
1614
1615 extern void sock_enable_timestamp(struct sock *sk, int flag);
1616 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1617 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1618
1619 /*
1620 * Enable debug/info messages
1621 */
1622 extern int net_msg_warn;
1623 #define NETDEBUG(fmt, args...) \
1624 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1625
1626 #define LIMIT_NETDEBUG(fmt, args...) \
1627 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1628
1629 extern __u32 sysctl_wmem_max;
1630 extern __u32 sysctl_rmem_max;
1631
1632 extern void sk_init(void);
1633
1634 extern int sysctl_optmem_max;
1635
1636 extern __u32 sysctl_wmem_default;
1637 extern __u32 sysctl_rmem_default;
1638
1639 #endif /* _SOCK_H */
This page took 0.133185 seconds and 6 git commands to generate.