[NET]: Cleanup INET_REFCNT_DEBUG code
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/config.h>
44 #include <linux/list.h>
45 #include <linux/timer.h>
46 #include <linux/cache.h>
47 #include <linux/module.h>
48 #include <linux/netdevice.h>
49 #include <linux/skbuff.h> /* struct sk_buff */
50 #include <linux/security.h>
51
52 #include <linux/filter.h>
53
54 #include <asm/atomic.h>
55 #include <net/dst.h>
56 #include <net/checksum.h>
57
58 /*
59 * This structure really needs to be cleaned up.
60 * Most of it is for TCP, and not used by any of
61 * the other protocols.
62 */
63
64 /* Define this to get the SOCK_DBG debugging facility. */
65 #define SOCK_DEBUGGING
66 #ifdef SOCK_DEBUGGING
67 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
68 printk(KERN_DEBUG msg); } while (0)
69 #else
70 #define SOCK_DEBUG(sk, msg...) do { } while (0)
71 #endif
72
73 /* This is the per-socket lock. The spinlock provides a synchronization
74 * between user contexts and software interrupt processing, whereas the
75 * mini-semaphore synchronizes multiple users amongst themselves.
76 */
77 struct sock_iocb;
78 typedef struct {
79 spinlock_t slock;
80 struct sock_iocb *owner;
81 wait_queue_head_t wq;
82 } socket_lock_t;
83
84 #define sock_lock_init(__sk) \
85 do { spin_lock_init(&((__sk)->sk_lock.slock)); \
86 (__sk)->sk_lock.owner = NULL; \
87 init_waitqueue_head(&((__sk)->sk_lock.wq)); \
88 } while(0)
89
90 struct sock;
91
92 /**
93 * struct sock_common - minimal network layer representation of sockets
94 * @skc_family: network address family
95 * @skc_state: Connection state
96 * @skc_reuse: %SO_REUSEADDR setting
97 * @skc_bound_dev_if: bound device index if != 0
98 * @skc_node: main hash linkage for various protocol lookup tables
99 * @skc_bind_node: bind hash linkage for various protocol lookup tables
100 * @skc_refcnt: reference count
101 *
102 * This is the minimal network layer representation of sockets, the header
103 * for struct sock and struct tcp_tw_bucket.
104 */
105 struct sock_common {
106 unsigned short skc_family;
107 volatile unsigned char skc_state;
108 unsigned char skc_reuse;
109 int skc_bound_dev_if;
110 struct hlist_node skc_node;
111 struct hlist_node skc_bind_node;
112 atomic_t skc_refcnt;
113 };
114
115 /**
116 * struct sock - network layer representation of sockets
117 * @__sk_common: shared layout with tcp_tw_bucket
118 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
119 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
120 * @sk_lock: synchronizer
121 * @sk_rcvbuf: size of receive buffer in bytes
122 * @sk_sleep: sock wait queue
123 * @sk_dst_cache: destination cache
124 * @sk_dst_lock: destination cache lock
125 * @sk_policy: flow policy
126 * @sk_rmem_alloc: receive queue bytes committed
127 * @sk_receive_queue: incoming packets
128 * @sk_wmem_alloc: transmit queue bytes committed
129 * @sk_write_queue: Packet sending queue
130 * @sk_omem_alloc: "o" is "option" or "other"
131 * @sk_wmem_queued: persistent queue size
132 * @sk_forward_alloc: space allocated forward
133 * @sk_allocation: allocation mode
134 * @sk_sndbuf: size of send buffer in bytes
135 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
136 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
137 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
138 * @sk_lingertime: %SO_LINGER l_linger setting
139 * @sk_hashent: hash entry in several tables (e.g. tcp_ehash)
140 * @sk_backlog: always used with the per-socket spinlock held
141 * @sk_callback_lock: used with the callbacks in the end of this struct
142 * @sk_error_queue: rarely used
143 * @sk_prot: protocol handlers inside a network family
144 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
145 * @sk_err: last error
146 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
147 * @sk_ack_backlog: current listen backlog
148 * @sk_max_ack_backlog: listen backlog set in listen()
149 * @sk_priority: %SO_PRIORITY setting
150 * @sk_type: socket type (%SOCK_STREAM, etc)
151 * @sk_protocol: which protocol this socket belongs in this network family
152 * @sk_peercred: %SO_PEERCRED setting
153 * @sk_rcvlowat: %SO_RCVLOWAT setting
154 * @sk_rcvtimeo: %SO_RCVTIMEO setting
155 * @sk_sndtimeo: %SO_SNDTIMEO setting
156 * @sk_filter: socket filtering instructions
157 * @sk_protinfo: private area, net family specific, when not using slab
158 * @sk_timer: sock cleanup timer
159 * @sk_stamp: time stamp of last packet received
160 * @sk_socket: Identd and reporting IO signals
161 * @sk_user_data: RPC layer private data
162 * @sk_sndmsg_page: cached page for sendmsg
163 * @sk_sndmsg_off: cached offset for sendmsg
164 * @sk_send_head: front of stuff to transmit
165 * @sk_security: used by security modules
166 * @sk_write_pending: a write to stream socket waits to start
167 * @sk_state_change: callback to indicate change in the state of the sock
168 * @sk_data_ready: callback to indicate there is data to be processed
169 * @sk_write_space: callback to indicate there is bf sending space available
170 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
171 * @sk_backlog_rcv: callback to process the backlog
172 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
173 */
174 struct sock {
175 /*
176 * Now struct tcp_tw_bucket also uses sock_common, so please just
177 * don't add nothing before this first member (__sk_common) --acme
178 */
179 struct sock_common __sk_common;
180 #define sk_family __sk_common.skc_family
181 #define sk_state __sk_common.skc_state
182 #define sk_reuse __sk_common.skc_reuse
183 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
184 #define sk_node __sk_common.skc_node
185 #define sk_bind_node __sk_common.skc_bind_node
186 #define sk_refcnt __sk_common.skc_refcnt
187 unsigned char sk_shutdown : 2,
188 sk_no_check : 2,
189 sk_userlocks : 4;
190 unsigned char sk_protocol;
191 unsigned short sk_type;
192 int sk_rcvbuf;
193 socket_lock_t sk_lock;
194 wait_queue_head_t *sk_sleep;
195 struct dst_entry *sk_dst_cache;
196 struct xfrm_policy *sk_policy[2];
197 rwlock_t sk_dst_lock;
198 atomic_t sk_rmem_alloc;
199 atomic_t sk_wmem_alloc;
200 atomic_t sk_omem_alloc;
201 struct sk_buff_head sk_receive_queue;
202 struct sk_buff_head sk_write_queue;
203 int sk_wmem_queued;
204 int sk_forward_alloc;
205 unsigned int sk_allocation;
206 int sk_sndbuf;
207 int sk_route_caps;
208 int sk_hashent;
209 unsigned long sk_flags;
210 unsigned long sk_lingertime;
211 /*
212 * The backlog queue is special, it is always used with
213 * the per-socket spinlock held and requires low latency
214 * access. Therefore we special case it's implementation.
215 */
216 struct {
217 struct sk_buff *head;
218 struct sk_buff *tail;
219 } sk_backlog;
220 struct sk_buff_head sk_error_queue;
221 struct proto *sk_prot;
222 struct proto *sk_prot_creator;
223 rwlock_t sk_callback_lock;
224 int sk_err,
225 sk_err_soft;
226 unsigned short sk_ack_backlog;
227 unsigned short sk_max_ack_backlog;
228 __u32 sk_priority;
229 struct ucred sk_peercred;
230 int sk_rcvlowat;
231 long sk_rcvtimeo;
232 long sk_sndtimeo;
233 struct sk_filter *sk_filter;
234 void *sk_protinfo;
235 struct timer_list sk_timer;
236 struct timeval sk_stamp;
237 struct socket *sk_socket;
238 void *sk_user_data;
239 struct page *sk_sndmsg_page;
240 struct sk_buff *sk_send_head;
241 __u32 sk_sndmsg_off;
242 int sk_write_pending;
243 void *sk_security;
244 void (*sk_state_change)(struct sock *sk);
245 void (*sk_data_ready)(struct sock *sk, int bytes);
246 void (*sk_write_space)(struct sock *sk);
247 void (*sk_error_report)(struct sock *sk);
248 int (*sk_backlog_rcv)(struct sock *sk,
249 struct sk_buff *skb);
250 void (*sk_destruct)(struct sock *sk);
251 };
252
253 /*
254 * Hashed lists helper routines
255 */
256 static inline struct sock *__sk_head(struct hlist_head *head)
257 {
258 return hlist_entry(head->first, struct sock, sk_node);
259 }
260
261 static inline struct sock *sk_head(struct hlist_head *head)
262 {
263 return hlist_empty(head) ? NULL : __sk_head(head);
264 }
265
266 static inline struct sock *sk_next(struct sock *sk)
267 {
268 return sk->sk_node.next ?
269 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
270 }
271
272 static inline int sk_unhashed(struct sock *sk)
273 {
274 return hlist_unhashed(&sk->sk_node);
275 }
276
277 static inline int sk_hashed(struct sock *sk)
278 {
279 return sk->sk_node.pprev != NULL;
280 }
281
282 static __inline__ void sk_node_init(struct hlist_node *node)
283 {
284 node->pprev = NULL;
285 }
286
287 static __inline__ void __sk_del_node(struct sock *sk)
288 {
289 __hlist_del(&sk->sk_node);
290 }
291
292 static __inline__ int __sk_del_node_init(struct sock *sk)
293 {
294 if (sk_hashed(sk)) {
295 __sk_del_node(sk);
296 sk_node_init(&sk->sk_node);
297 return 1;
298 }
299 return 0;
300 }
301
302 /* Grab socket reference count. This operation is valid only
303 when sk is ALREADY grabbed f.e. it is found in hash table
304 or a list and the lookup is made under lock preventing hash table
305 modifications.
306 */
307
308 static inline void sock_hold(struct sock *sk)
309 {
310 atomic_inc(&sk->sk_refcnt);
311 }
312
313 /* Ungrab socket in the context, which assumes that socket refcnt
314 cannot hit zero, f.e. it is true in context of any socketcall.
315 */
316 static inline void __sock_put(struct sock *sk)
317 {
318 atomic_dec(&sk->sk_refcnt);
319 }
320
321 static __inline__ int sk_del_node_init(struct sock *sk)
322 {
323 int rc = __sk_del_node_init(sk);
324
325 if (rc) {
326 /* paranoid for a while -acme */
327 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
328 __sock_put(sk);
329 }
330 return rc;
331 }
332
333 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
334 {
335 hlist_add_head(&sk->sk_node, list);
336 }
337
338 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
339 {
340 sock_hold(sk);
341 __sk_add_node(sk, list);
342 }
343
344 static __inline__ void __sk_del_bind_node(struct sock *sk)
345 {
346 __hlist_del(&sk->sk_bind_node);
347 }
348
349 static __inline__ void sk_add_bind_node(struct sock *sk,
350 struct hlist_head *list)
351 {
352 hlist_add_head(&sk->sk_bind_node, list);
353 }
354
355 #define sk_for_each(__sk, node, list) \
356 hlist_for_each_entry(__sk, node, list, sk_node)
357 #define sk_for_each_from(__sk, node) \
358 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
359 hlist_for_each_entry_from(__sk, node, sk_node)
360 #define sk_for_each_continue(__sk, node) \
361 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
362 hlist_for_each_entry_continue(__sk, node, sk_node)
363 #define sk_for_each_safe(__sk, node, tmp, list) \
364 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
365 #define sk_for_each_bound(__sk, node, list) \
366 hlist_for_each_entry(__sk, node, list, sk_bind_node)
367
368 /* Sock flags */
369 enum sock_flags {
370 SOCK_DEAD,
371 SOCK_DONE,
372 SOCK_URGINLINE,
373 SOCK_KEEPOPEN,
374 SOCK_LINGER,
375 SOCK_DESTROY,
376 SOCK_BROADCAST,
377 SOCK_TIMESTAMP,
378 SOCK_ZAPPED,
379 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
380 SOCK_DBG, /* %SO_DEBUG setting */
381 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
382 SOCK_NO_LARGESEND, /* whether to sent large segments or not */
383 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
384 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
385 };
386
387 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
388 {
389 nsk->sk_flags = osk->sk_flags;
390 }
391
392 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
393 {
394 __set_bit(flag, &sk->sk_flags);
395 }
396
397 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
398 {
399 __clear_bit(flag, &sk->sk_flags);
400 }
401
402 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
403 {
404 return test_bit(flag, &sk->sk_flags);
405 }
406
407 static inline void sk_acceptq_removed(struct sock *sk)
408 {
409 sk->sk_ack_backlog--;
410 }
411
412 static inline void sk_acceptq_added(struct sock *sk)
413 {
414 sk->sk_ack_backlog++;
415 }
416
417 static inline int sk_acceptq_is_full(struct sock *sk)
418 {
419 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
420 }
421
422 /*
423 * Compute minimal free write space needed to queue new packets.
424 */
425 static inline int sk_stream_min_wspace(struct sock *sk)
426 {
427 return sk->sk_wmem_queued / 2;
428 }
429
430 static inline int sk_stream_wspace(struct sock *sk)
431 {
432 return sk->sk_sndbuf - sk->sk_wmem_queued;
433 }
434
435 extern void sk_stream_write_space(struct sock *sk);
436
437 static inline int sk_stream_memory_free(struct sock *sk)
438 {
439 return sk->sk_wmem_queued < sk->sk_sndbuf;
440 }
441
442 extern void sk_stream_rfree(struct sk_buff *skb);
443
444 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
445 {
446 skb->sk = sk;
447 skb->destructor = sk_stream_rfree;
448 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
449 sk->sk_forward_alloc -= skb->truesize;
450 }
451
452 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
453 {
454 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
455 sk->sk_wmem_queued -= skb->truesize;
456 sk->sk_forward_alloc += skb->truesize;
457 __kfree_skb(skb);
458 }
459
460 /* The per-socket spinlock must be held here. */
461 #define sk_add_backlog(__sk, __skb) \
462 do { if (!(__sk)->sk_backlog.tail) { \
463 (__sk)->sk_backlog.head = \
464 (__sk)->sk_backlog.tail = (__skb); \
465 } else { \
466 ((__sk)->sk_backlog.tail)->next = (__skb); \
467 (__sk)->sk_backlog.tail = (__skb); \
468 } \
469 (__skb)->next = NULL; \
470 } while(0)
471
472 #define sk_wait_event(__sk, __timeo, __condition) \
473 ({ int rc; \
474 release_sock(__sk); \
475 rc = __condition; \
476 if (!rc) { \
477 *(__timeo) = schedule_timeout(*(__timeo)); \
478 rc = __condition; \
479 } \
480 lock_sock(__sk); \
481 rc; \
482 })
483
484 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
485 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
486 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
487 extern int sk_stream_error(struct sock *sk, int flags, int err);
488 extern void sk_stream_kill_queues(struct sock *sk);
489
490 extern int sk_wait_data(struct sock *sk, long *timeo);
491
492 struct request_sock_ops;
493
494 /* Here is the right place to enable sock refcounting debugging */
495 #define SOCK_REFCNT_DEBUG
496
497 /* Networking protocol blocks we attach to sockets.
498 * socket layer -> transport layer interface
499 * transport -> network interface is defined by struct inet_proto
500 */
501 struct proto {
502 void (*close)(struct sock *sk,
503 long timeout);
504 int (*connect)(struct sock *sk,
505 struct sockaddr *uaddr,
506 int addr_len);
507 int (*disconnect)(struct sock *sk, int flags);
508
509 struct sock * (*accept) (struct sock *sk, int flags, int *err);
510
511 int (*ioctl)(struct sock *sk, int cmd,
512 unsigned long arg);
513 int (*init)(struct sock *sk);
514 int (*destroy)(struct sock *sk);
515 void (*shutdown)(struct sock *sk, int how);
516 int (*setsockopt)(struct sock *sk, int level,
517 int optname, char __user *optval,
518 int optlen);
519 int (*getsockopt)(struct sock *sk, int level,
520 int optname, char __user *optval,
521 int __user *option);
522 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
523 struct msghdr *msg, size_t len);
524 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
525 struct msghdr *msg,
526 size_t len, int noblock, int flags,
527 int *addr_len);
528 int (*sendpage)(struct sock *sk, struct page *page,
529 int offset, size_t size, int flags);
530 int (*bind)(struct sock *sk,
531 struct sockaddr *uaddr, int addr_len);
532
533 int (*backlog_rcv) (struct sock *sk,
534 struct sk_buff *skb);
535
536 /* Keeping track of sk's, looking them up, and port selection methods. */
537 void (*hash)(struct sock *sk);
538 void (*unhash)(struct sock *sk);
539 int (*get_port)(struct sock *sk, unsigned short snum);
540
541 /* Memory pressure */
542 void (*enter_memory_pressure)(void);
543 atomic_t *memory_allocated; /* Current allocated memory. */
544 atomic_t *sockets_allocated; /* Current number of sockets. */
545 /*
546 * Pressure flag: try to collapse.
547 * Technical note: it is used by multiple contexts non atomically.
548 * All the sk_stream_mem_schedule() is of this nature: accounting
549 * is strict, actions are advisory and have some latency.
550 */
551 int *memory_pressure;
552 int *sysctl_mem;
553 int *sysctl_wmem;
554 int *sysctl_rmem;
555 int max_header;
556
557 kmem_cache_t *slab;
558 unsigned int obj_size;
559
560 struct request_sock_ops *rsk_prot;
561
562 struct module *owner;
563
564 char name[32];
565
566 struct list_head node;
567 #ifdef SOCK_REFCNT_DEBUG
568 atomic_t socks;
569 #endif
570 struct {
571 int inuse;
572 u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
573 } stats[NR_CPUS];
574 };
575
576 extern int proto_register(struct proto *prot, int alloc_slab);
577 extern void proto_unregister(struct proto *prot);
578
579 #ifdef SOCK_REFCNT_DEBUG
580 static inline void sk_refcnt_debug_inc(struct sock *sk)
581 {
582 atomic_inc(&sk->sk_prot->socks);
583 }
584
585 static inline void sk_refcnt_debug_dec(struct sock *sk)
586 {
587 atomic_dec(&sk->sk_prot->socks);
588 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
589 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
590 }
591
592 static inline void sk_refcnt_debug_release(const struct sock *sk)
593 {
594 if (atomic_read(&sk->sk_refcnt) != 1)
595 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
596 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
597 }
598 #else /* SOCK_REFCNT_DEBUG */
599 #define sk_refcnt_debug_inc(sk) do { } while (0)
600 #define sk_refcnt_debug_dec(sk) do { } while (0)
601 #define sk_refcnt_debug_release(sk) do { } while (0)
602 #endif /* SOCK_REFCNT_DEBUG */
603
604 /* Called with local bh disabled */
605 static __inline__ void sock_prot_inc_use(struct proto *prot)
606 {
607 prot->stats[smp_processor_id()].inuse++;
608 }
609
610 static __inline__ void sock_prot_dec_use(struct proto *prot)
611 {
612 prot->stats[smp_processor_id()].inuse--;
613 }
614
615 /* About 10 seconds */
616 #define SOCK_DESTROY_TIME (10*HZ)
617
618 /* Sockets 0-1023 can't be bound to unless you are superuser */
619 #define PROT_SOCK 1024
620
621 #define SHUTDOWN_MASK 3
622 #define RCV_SHUTDOWN 1
623 #define SEND_SHUTDOWN 2
624
625 #define SOCK_SNDBUF_LOCK 1
626 #define SOCK_RCVBUF_LOCK 2
627 #define SOCK_BINDADDR_LOCK 4
628 #define SOCK_BINDPORT_LOCK 8
629
630 /* sock_iocb: used to kick off async processing of socket ios */
631 struct sock_iocb {
632 struct list_head list;
633
634 int flags;
635 int size;
636 struct socket *sock;
637 struct sock *sk;
638 struct scm_cookie *scm;
639 struct msghdr *msg, async_msg;
640 struct iovec async_iov;
641 struct kiocb *kiocb;
642 };
643
644 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
645 {
646 return (struct sock_iocb *)iocb->private;
647 }
648
649 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
650 {
651 return si->kiocb;
652 }
653
654 struct socket_alloc {
655 struct socket socket;
656 struct inode vfs_inode;
657 };
658
659 static inline struct socket *SOCKET_I(struct inode *inode)
660 {
661 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
662 }
663
664 static inline struct inode *SOCK_INODE(struct socket *socket)
665 {
666 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
667 }
668
669 extern void __sk_stream_mem_reclaim(struct sock *sk);
670 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
671
672 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
673
674 static inline int sk_stream_pages(int amt)
675 {
676 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
677 }
678
679 static inline void sk_stream_mem_reclaim(struct sock *sk)
680 {
681 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
682 __sk_stream_mem_reclaim(sk);
683 }
684
685 static inline void sk_stream_writequeue_purge(struct sock *sk)
686 {
687 struct sk_buff *skb;
688
689 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
690 sk_stream_free_skb(sk, skb);
691 sk_stream_mem_reclaim(sk);
692 }
693
694 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
695 {
696 return (int)skb->truesize <= sk->sk_forward_alloc ||
697 sk_stream_mem_schedule(sk, skb->truesize, 1);
698 }
699
700 /* Used by processes to "lock" a socket state, so that
701 * interrupts and bottom half handlers won't change it
702 * from under us. It essentially blocks any incoming
703 * packets, so that we won't get any new data or any
704 * packets that change the state of the socket.
705 *
706 * While locked, BH processing will add new packets to
707 * the backlog queue. This queue is processed by the
708 * owner of the socket lock right before it is released.
709 *
710 * Since ~2.3.5 it is also exclusive sleep lock serializing
711 * accesses from user process context.
712 */
713 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner)
714
715 extern void FASTCALL(lock_sock(struct sock *sk));
716 extern void FASTCALL(release_sock(struct sock *sk));
717
718 /* BH context may only use the following locking interface. */
719 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
720 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
721
722 extern struct sock *sk_alloc(int family,
723 unsigned int __nocast priority,
724 struct proto *prot, int zero_it);
725 extern void sk_free(struct sock *sk);
726
727 extern struct sk_buff *sock_wmalloc(struct sock *sk,
728 unsigned long size, int force,
729 unsigned int __nocast priority);
730 extern struct sk_buff *sock_rmalloc(struct sock *sk,
731 unsigned long size, int force,
732 unsigned int __nocast priority);
733 extern void sock_wfree(struct sk_buff *skb);
734 extern void sock_rfree(struct sk_buff *skb);
735
736 extern int sock_setsockopt(struct socket *sock, int level,
737 int op, char __user *optval,
738 int optlen);
739
740 extern int sock_getsockopt(struct socket *sock, int level,
741 int op, char __user *optval,
742 int __user *optlen);
743 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
744 unsigned long size,
745 int noblock,
746 int *errcode);
747 extern void *sock_kmalloc(struct sock *sk, int size,
748 unsigned int __nocast priority);
749 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
750 extern void sk_send_sigurg(struct sock *sk);
751
752 /*
753 * Functions to fill in entries in struct proto_ops when a protocol
754 * does not implement a particular function.
755 */
756 extern int sock_no_bind(struct socket *,
757 struct sockaddr *, int);
758 extern int sock_no_connect(struct socket *,
759 struct sockaddr *, int, int);
760 extern int sock_no_socketpair(struct socket *,
761 struct socket *);
762 extern int sock_no_accept(struct socket *,
763 struct socket *, int);
764 extern int sock_no_getname(struct socket *,
765 struct sockaddr *, int *, int);
766 extern unsigned int sock_no_poll(struct file *, struct socket *,
767 struct poll_table_struct *);
768 extern int sock_no_ioctl(struct socket *, unsigned int,
769 unsigned long);
770 extern int sock_no_listen(struct socket *, int);
771 extern int sock_no_shutdown(struct socket *, int);
772 extern int sock_no_getsockopt(struct socket *, int , int,
773 char __user *, int __user *);
774 extern int sock_no_setsockopt(struct socket *, int, int,
775 char __user *, int);
776 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
777 struct msghdr *, size_t);
778 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
779 struct msghdr *, size_t, int);
780 extern int sock_no_mmap(struct file *file,
781 struct socket *sock,
782 struct vm_area_struct *vma);
783 extern ssize_t sock_no_sendpage(struct socket *sock,
784 struct page *page,
785 int offset, size_t size,
786 int flags);
787
788 /*
789 * Functions to fill in entries in struct proto_ops when a protocol
790 * uses the inet style.
791 */
792 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
793 char __user *optval, int __user *optlen);
794 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
795 struct msghdr *msg, size_t size, int flags);
796 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
797 char __user *optval, int optlen);
798
799 extern void sk_common_release(struct sock *sk);
800
801 /*
802 * Default socket callbacks and setup code
803 */
804
805 /* Initialise core socket variables */
806 extern void sock_init_data(struct socket *sock, struct sock *sk);
807
808 /**
809 * sk_filter - run a packet through a socket filter
810 * @sk: sock associated with &sk_buff
811 * @skb: buffer to filter
812 * @needlock: set to 1 if the sock is not locked by caller.
813 *
814 * Run the filter code and then cut skb->data to correct size returned by
815 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
816 * than pkt_len we keep whole skb->data. This is the socket level
817 * wrapper to sk_run_filter. It returns 0 if the packet should
818 * be accepted or -EPERM if the packet should be tossed.
819 *
820 */
821
822 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock)
823 {
824 int err;
825
826 err = security_sock_rcv_skb(sk, skb);
827 if (err)
828 return err;
829
830 if (sk->sk_filter) {
831 struct sk_filter *filter;
832
833 if (needlock)
834 bh_lock_sock(sk);
835
836 filter = sk->sk_filter;
837 if (filter) {
838 int pkt_len = sk_run_filter(skb, filter->insns,
839 filter->len);
840 if (!pkt_len)
841 err = -EPERM;
842 else
843 skb_trim(skb, pkt_len);
844 }
845
846 if (needlock)
847 bh_unlock_sock(sk);
848 }
849 return err;
850 }
851
852 /**
853 * sk_filter_release: Release a socket filter
854 * @sk: socket
855 * @fp: filter to remove
856 *
857 * Remove a filter from a socket and release its resources.
858 */
859
860 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
861 {
862 unsigned int size = sk_filter_len(fp);
863
864 atomic_sub(size, &sk->sk_omem_alloc);
865
866 if (atomic_dec_and_test(&fp->refcnt))
867 kfree(fp);
868 }
869
870 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
871 {
872 atomic_inc(&fp->refcnt);
873 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
874 }
875
876 /*
877 * Socket reference counting postulates.
878 *
879 * * Each user of socket SHOULD hold a reference count.
880 * * Each access point to socket (an hash table bucket, reference from a list,
881 * running timer, skb in flight MUST hold a reference count.
882 * * When reference count hits 0, it means it will never increase back.
883 * * When reference count hits 0, it means that no references from
884 * outside exist to this socket and current process on current CPU
885 * is last user and may/should destroy this socket.
886 * * sk_free is called from any context: process, BH, IRQ. When
887 * it is called, socket has no references from outside -> sk_free
888 * may release descendant resources allocated by the socket, but
889 * to the time when it is called, socket is NOT referenced by any
890 * hash tables, lists etc.
891 * * Packets, delivered from outside (from network or from another process)
892 * and enqueued on receive/error queues SHOULD NOT grab reference count,
893 * when they sit in queue. Otherwise, packets will leak to hole, when
894 * socket is looked up by one cpu and unhasing is made by another CPU.
895 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
896 * (leak to backlog). Packet socket does all the processing inside
897 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
898 * use separate SMP lock, so that they are prone too.
899 */
900
901 /* Ungrab socket and destroy it, if it was the last reference. */
902 static inline void sock_put(struct sock *sk)
903 {
904 if (atomic_dec_and_test(&sk->sk_refcnt))
905 sk_free(sk);
906 }
907
908 /* Detach socket from process context.
909 * Announce socket dead, detach it from wait queue and inode.
910 * Note that parent inode held reference count on this struct sock,
911 * we do not release it in this function, because protocol
912 * probably wants some additional cleanups or even continuing
913 * to work with this socket (TCP).
914 */
915 static inline void sock_orphan(struct sock *sk)
916 {
917 write_lock_bh(&sk->sk_callback_lock);
918 sock_set_flag(sk, SOCK_DEAD);
919 sk->sk_socket = NULL;
920 sk->sk_sleep = NULL;
921 write_unlock_bh(&sk->sk_callback_lock);
922 }
923
924 static inline void sock_graft(struct sock *sk, struct socket *parent)
925 {
926 write_lock_bh(&sk->sk_callback_lock);
927 sk->sk_sleep = &parent->wait;
928 parent->sk = sk;
929 sk->sk_socket = parent;
930 write_unlock_bh(&sk->sk_callback_lock);
931 }
932
933 extern int sock_i_uid(struct sock *sk);
934 extern unsigned long sock_i_ino(struct sock *sk);
935
936 static inline struct dst_entry *
937 __sk_dst_get(struct sock *sk)
938 {
939 return sk->sk_dst_cache;
940 }
941
942 static inline struct dst_entry *
943 sk_dst_get(struct sock *sk)
944 {
945 struct dst_entry *dst;
946
947 read_lock(&sk->sk_dst_lock);
948 dst = sk->sk_dst_cache;
949 if (dst)
950 dst_hold(dst);
951 read_unlock(&sk->sk_dst_lock);
952 return dst;
953 }
954
955 static inline void
956 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
957 {
958 struct dst_entry *old_dst;
959
960 old_dst = sk->sk_dst_cache;
961 sk->sk_dst_cache = dst;
962 dst_release(old_dst);
963 }
964
965 static inline void
966 sk_dst_set(struct sock *sk, struct dst_entry *dst)
967 {
968 write_lock(&sk->sk_dst_lock);
969 __sk_dst_set(sk, dst);
970 write_unlock(&sk->sk_dst_lock);
971 }
972
973 static inline void
974 __sk_dst_reset(struct sock *sk)
975 {
976 struct dst_entry *old_dst;
977
978 old_dst = sk->sk_dst_cache;
979 sk->sk_dst_cache = NULL;
980 dst_release(old_dst);
981 }
982
983 static inline void
984 sk_dst_reset(struct sock *sk)
985 {
986 write_lock(&sk->sk_dst_lock);
987 __sk_dst_reset(sk);
988 write_unlock(&sk->sk_dst_lock);
989 }
990
991 static inline struct dst_entry *
992 __sk_dst_check(struct sock *sk, u32 cookie)
993 {
994 struct dst_entry *dst = sk->sk_dst_cache;
995
996 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
997 sk->sk_dst_cache = NULL;
998 dst_release(dst);
999 return NULL;
1000 }
1001
1002 return dst;
1003 }
1004
1005 static inline struct dst_entry *
1006 sk_dst_check(struct sock *sk, u32 cookie)
1007 {
1008 struct dst_entry *dst = sk_dst_get(sk);
1009
1010 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
1011 sk_dst_reset(sk);
1012 dst_release(dst);
1013 return NULL;
1014 }
1015
1016 return dst;
1017 }
1018
1019 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
1020 {
1021 sk->sk_wmem_queued += skb->truesize;
1022 sk->sk_forward_alloc -= skb->truesize;
1023 }
1024
1025 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1026 struct sk_buff *skb, struct page *page,
1027 int off, int copy)
1028 {
1029 if (skb->ip_summed == CHECKSUM_NONE) {
1030 int err = 0;
1031 unsigned int csum = csum_and_copy_from_user(from,
1032 page_address(page) + off,
1033 copy, 0, &err);
1034 if (err)
1035 return err;
1036 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1037 } else if (copy_from_user(page_address(page) + off, from, copy))
1038 return -EFAULT;
1039
1040 skb->len += copy;
1041 skb->data_len += copy;
1042 skb->truesize += copy;
1043 sk->sk_wmem_queued += copy;
1044 sk->sk_forward_alloc -= copy;
1045 return 0;
1046 }
1047
1048 /*
1049 * Queue a received datagram if it will fit. Stream and sequenced
1050 * protocols can't normally use this as they need to fit buffers in
1051 * and play with them.
1052 *
1053 * Inlined as it's very short and called for pretty much every
1054 * packet ever received.
1055 */
1056
1057 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1058 {
1059 sock_hold(sk);
1060 skb->sk = sk;
1061 skb->destructor = sock_wfree;
1062 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1063 }
1064
1065 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1066 {
1067 skb->sk = sk;
1068 skb->destructor = sock_rfree;
1069 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1070 }
1071
1072 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1073 unsigned long expires);
1074
1075 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1076
1077 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1078 {
1079 int err = 0;
1080 int skb_len;
1081
1082 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1083 number of warnings when compiling with -W --ANK
1084 */
1085 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1086 (unsigned)sk->sk_rcvbuf) {
1087 err = -ENOMEM;
1088 goto out;
1089 }
1090
1091 /* It would be deadlock, if sock_queue_rcv_skb is used
1092 with socket lock! We assume that users of this
1093 function are lock free.
1094 */
1095 err = sk_filter(sk, skb, 1);
1096 if (err)
1097 goto out;
1098
1099 skb->dev = NULL;
1100 skb_set_owner_r(skb, sk);
1101
1102 /* Cache the SKB length before we tack it onto the receive
1103 * queue. Once it is added it no longer belongs to us and
1104 * may be freed by other threads of control pulling packets
1105 * from the queue.
1106 */
1107 skb_len = skb->len;
1108
1109 skb_queue_tail(&sk->sk_receive_queue, skb);
1110
1111 if (!sock_flag(sk, SOCK_DEAD))
1112 sk->sk_data_ready(sk, skb_len);
1113 out:
1114 return err;
1115 }
1116
1117 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1118 {
1119 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1120 number of warnings when compiling with -W --ANK
1121 */
1122 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1123 (unsigned)sk->sk_rcvbuf)
1124 return -ENOMEM;
1125 skb_set_owner_r(skb, sk);
1126 skb_queue_tail(&sk->sk_error_queue, skb);
1127 if (!sock_flag(sk, SOCK_DEAD))
1128 sk->sk_data_ready(sk, skb->len);
1129 return 0;
1130 }
1131
1132 /*
1133 * Recover an error report and clear atomically
1134 */
1135
1136 static inline int sock_error(struct sock *sk)
1137 {
1138 int err = xchg(&sk->sk_err, 0);
1139 return -err;
1140 }
1141
1142 static inline unsigned long sock_wspace(struct sock *sk)
1143 {
1144 int amt = 0;
1145
1146 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1147 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1148 if (amt < 0)
1149 amt = 0;
1150 }
1151 return amt;
1152 }
1153
1154 static inline void sk_wake_async(struct sock *sk, int how, int band)
1155 {
1156 if (sk->sk_socket && sk->sk_socket->fasync_list)
1157 sock_wake_async(sk->sk_socket, how, band);
1158 }
1159
1160 #define SOCK_MIN_SNDBUF 2048
1161 #define SOCK_MIN_RCVBUF 256
1162
1163 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1164 {
1165 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1166 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1167 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1168 }
1169 }
1170
1171 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1172 int size, int mem,
1173 unsigned int __nocast gfp)
1174 {
1175 struct sk_buff *skb;
1176 int hdr_len;
1177
1178 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1179 skb = alloc_skb(size + hdr_len, gfp);
1180 if (skb) {
1181 skb->truesize += mem;
1182 if (sk->sk_forward_alloc >= (int)skb->truesize ||
1183 sk_stream_mem_schedule(sk, skb->truesize, 0)) {
1184 skb_reserve(skb, hdr_len);
1185 return skb;
1186 }
1187 __kfree_skb(skb);
1188 } else {
1189 sk->sk_prot->enter_memory_pressure();
1190 sk_stream_moderate_sndbuf(sk);
1191 }
1192 return NULL;
1193 }
1194
1195 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1196 int size,
1197 unsigned int __nocast gfp)
1198 {
1199 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1200 }
1201
1202 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1203 {
1204 struct page *page = NULL;
1205
1206 if (sk->sk_forward_alloc >= (int)PAGE_SIZE ||
1207 sk_stream_mem_schedule(sk, PAGE_SIZE, 0))
1208 page = alloc_pages(sk->sk_allocation, 0);
1209 else {
1210 sk->sk_prot->enter_memory_pressure();
1211 sk_stream_moderate_sndbuf(sk);
1212 }
1213 return page;
1214 }
1215
1216 #define sk_stream_for_retrans_queue(skb, sk) \
1217 for (skb = (sk)->sk_write_queue.next; \
1218 (skb != (sk)->sk_send_head) && \
1219 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1220 skb = skb->next)
1221
1222 /*
1223 * Default write policy as shown to user space via poll/select/SIGIO
1224 */
1225 static inline int sock_writeable(const struct sock *sk)
1226 {
1227 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1228 }
1229
1230 static inline unsigned int __nocast gfp_any(void)
1231 {
1232 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1233 }
1234
1235 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1236 {
1237 return noblock ? 0 : sk->sk_rcvtimeo;
1238 }
1239
1240 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1241 {
1242 return noblock ? 0 : sk->sk_sndtimeo;
1243 }
1244
1245 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1246 {
1247 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1248 }
1249
1250 /* Alas, with timeout socket operations are not restartable.
1251 * Compare this to poll().
1252 */
1253 static inline int sock_intr_errno(long timeo)
1254 {
1255 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1256 }
1257
1258 static __inline__ void
1259 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1260 {
1261 struct timeval *stamp = &skb->stamp;
1262 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1263 /* Race occurred between timestamp enabling and packet
1264 receiving. Fill in the current time for now. */
1265 if (stamp->tv_sec == 0)
1266 do_gettimeofday(stamp);
1267 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval),
1268 stamp);
1269 } else
1270 sk->sk_stamp = *stamp;
1271 }
1272
1273 /**
1274 * sk_eat_skb - Release a skb if it is no longer needed
1275 * @sk: socket to eat this skb from
1276 * @skb: socket buffer to eat
1277 *
1278 * This routine must be called with interrupts disabled or with the socket
1279 * locked so that the sk_buff queue operation is ok.
1280 */
1281 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
1282 {
1283 __skb_unlink(skb, &sk->sk_receive_queue);
1284 __kfree_skb(skb);
1285 }
1286
1287 extern void sock_enable_timestamp(struct sock *sk);
1288 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1289
1290 /*
1291 * Enable debug/info messages
1292 */
1293
1294 #if 0
1295 #define NETDEBUG(x) do { } while (0)
1296 #define LIMIT_NETDEBUG(x) do {} while(0)
1297 #else
1298 #define NETDEBUG(x) do { x; } while (0)
1299 #define LIMIT_NETDEBUG(x) do { if (net_ratelimit()) { x; } } while(0)
1300 #endif
1301
1302 /*
1303 * Macros for sleeping on a socket. Use them like this:
1304 *
1305 * SOCK_SLEEP_PRE(sk)
1306 * if (condition)
1307 * schedule();
1308 * SOCK_SLEEP_POST(sk)
1309 *
1310 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1311 * and when the last use of them in DECnet has gone, I'm intending to
1312 * remove them.
1313 */
1314
1315 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1316 DECLARE_WAITQUEUE(wait, tsk); \
1317 tsk->state = TASK_INTERRUPTIBLE; \
1318 add_wait_queue((sk)->sk_sleep, &wait); \
1319 release_sock(sk);
1320
1321 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1322 remove_wait_queue((sk)->sk_sleep, &wait); \
1323 lock_sock(sk); \
1324 }
1325
1326 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1327 {
1328 if (valbool)
1329 sock_set_flag(sk, bit);
1330 else
1331 sock_reset_flag(sk, bit);
1332 }
1333
1334 extern __u32 sysctl_wmem_max;
1335 extern __u32 sysctl_rmem_max;
1336
1337 #ifdef CONFIG_NET
1338 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
1339 #else
1340 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
1341 {
1342 return -ENODEV;
1343 }
1344 #endif
1345
1346 #endif /* _SOCK_H */
This page took 0.058685 seconds and 6 git commands to generate.