Merge with /pub/scm/linux/kernel/git/torvalds/linux-2.6.git
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/config.h>
44 #include <linux/list.h>
45 #include <linux/timer.h>
46 #include <linux/cache.h>
47 #include <linux/module.h>
48 #include <linux/netdevice.h>
49 #include <linux/skbuff.h> /* struct sk_buff */
50 #include <linux/security.h>
51
52 #include <linux/filter.h>
53
54 #include <asm/atomic.h>
55 #include <net/dst.h>
56 #include <net/checksum.h>
57
58 /*
59 * This structure really needs to be cleaned up.
60 * Most of it is for TCP, and not used by any of
61 * the other protocols.
62 */
63
64 /* Define this to get the SOCK_DBG debugging facility. */
65 #define SOCK_DEBUGGING
66 #ifdef SOCK_DEBUGGING
67 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
68 printk(KERN_DEBUG msg); } while (0)
69 #else
70 #define SOCK_DEBUG(sk, msg...) do { } while (0)
71 #endif
72
73 /* This is the per-socket lock. The spinlock provides a synchronization
74 * between user contexts and software interrupt processing, whereas the
75 * mini-semaphore synchronizes multiple users amongst themselves.
76 */
77 struct sock_iocb;
78 typedef struct {
79 spinlock_t slock;
80 struct sock_iocb *owner;
81 wait_queue_head_t wq;
82 } socket_lock_t;
83
84 #define sock_lock_init(__sk) \
85 do { spin_lock_init(&((__sk)->sk_lock.slock)); \
86 (__sk)->sk_lock.owner = NULL; \
87 init_waitqueue_head(&((__sk)->sk_lock.wq)); \
88 } while(0)
89
90 struct sock;
91
92 /**
93 * struct sock_common - minimal network layer representation of sockets
94 * @skc_family: network address family
95 * @skc_state: Connection state
96 * @skc_reuse: %SO_REUSEADDR setting
97 * @skc_bound_dev_if: bound device index if != 0
98 * @skc_node: main hash linkage for various protocol lookup tables
99 * @skc_bind_node: bind hash linkage for various protocol lookup tables
100 * @skc_refcnt: reference count
101 *
102 * This is the minimal network layer representation of sockets, the header
103 * for struct sock and struct tcp_tw_bucket.
104 */
105 struct sock_common {
106 unsigned short skc_family;
107 volatile unsigned char skc_state;
108 unsigned char skc_reuse;
109 int skc_bound_dev_if;
110 struct hlist_node skc_node;
111 struct hlist_node skc_bind_node;
112 atomic_t skc_refcnt;
113 };
114
115 /**
116 * struct sock - network layer representation of sockets
117 * @__sk_common: shared layout with tcp_tw_bucket
118 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
119 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
120 * @sk_lock: synchronizer
121 * @sk_rcvbuf: size of receive buffer in bytes
122 * @sk_sleep: sock wait queue
123 * @sk_dst_cache: destination cache
124 * @sk_dst_lock: destination cache lock
125 * @sk_policy: flow policy
126 * @sk_rmem_alloc: receive queue bytes committed
127 * @sk_receive_queue: incoming packets
128 * @sk_wmem_alloc: transmit queue bytes committed
129 * @sk_write_queue: Packet sending queue
130 * @sk_omem_alloc: "o" is "option" or "other"
131 * @sk_wmem_queued: persistent queue size
132 * @sk_forward_alloc: space allocated forward
133 * @sk_allocation: allocation mode
134 * @sk_sndbuf: size of send buffer in bytes
135 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
136 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
137 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
138 * @sk_lingertime: %SO_LINGER l_linger setting
139 * @sk_hashent: hash entry in several tables (e.g. tcp_ehash)
140 * @sk_backlog: always used with the per-socket spinlock held
141 * @sk_callback_lock: used with the callbacks in the end of this struct
142 * @sk_error_queue: rarely used
143 * @sk_prot: protocol handlers inside a network family
144 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
145 * @sk_err: last error
146 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
147 * @sk_ack_backlog: current listen backlog
148 * @sk_max_ack_backlog: listen backlog set in listen()
149 * @sk_priority: %SO_PRIORITY setting
150 * @sk_type: socket type (%SOCK_STREAM, etc)
151 * @sk_protocol: which protocol this socket belongs in this network family
152 * @sk_peercred: %SO_PEERCRED setting
153 * @sk_rcvlowat: %SO_RCVLOWAT setting
154 * @sk_rcvtimeo: %SO_RCVTIMEO setting
155 * @sk_sndtimeo: %SO_SNDTIMEO setting
156 * @sk_filter: socket filtering instructions
157 * @sk_protinfo: private area, net family specific, when not using slab
158 * @sk_timer: sock cleanup timer
159 * @sk_stamp: time stamp of last packet received
160 * @sk_socket: Identd and reporting IO signals
161 * @sk_user_data: RPC layer private data
162 * @sk_sndmsg_page: cached page for sendmsg
163 * @sk_sndmsg_off: cached offset for sendmsg
164 * @sk_send_head: front of stuff to transmit
165 * @sk_security: used by security modules
166 * @sk_write_pending: a write to stream socket waits to start
167 * @sk_state_change: callback to indicate change in the state of the sock
168 * @sk_data_ready: callback to indicate there is data to be processed
169 * @sk_write_space: callback to indicate there is bf sending space available
170 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
171 * @sk_backlog_rcv: callback to process the backlog
172 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
173 */
174 struct sock {
175 /*
176 * Now struct tcp_tw_bucket also uses sock_common, so please just
177 * don't add nothing before this first member (__sk_common) --acme
178 */
179 struct sock_common __sk_common;
180 #define sk_family __sk_common.skc_family
181 #define sk_state __sk_common.skc_state
182 #define sk_reuse __sk_common.skc_reuse
183 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
184 #define sk_node __sk_common.skc_node
185 #define sk_bind_node __sk_common.skc_bind_node
186 #define sk_refcnt __sk_common.skc_refcnt
187 unsigned char sk_shutdown : 2,
188 sk_no_check : 2,
189 sk_userlocks : 4;
190 unsigned char sk_protocol;
191 unsigned short sk_type;
192 int sk_rcvbuf;
193 socket_lock_t sk_lock;
194 wait_queue_head_t *sk_sleep;
195 struct dst_entry *sk_dst_cache;
196 struct xfrm_policy *sk_policy[2];
197 rwlock_t sk_dst_lock;
198 atomic_t sk_rmem_alloc;
199 atomic_t sk_wmem_alloc;
200 atomic_t sk_omem_alloc;
201 struct sk_buff_head sk_receive_queue;
202 struct sk_buff_head sk_write_queue;
203 int sk_wmem_queued;
204 int sk_forward_alloc;
205 unsigned int sk_allocation;
206 int sk_sndbuf;
207 int sk_route_caps;
208 int sk_hashent;
209 unsigned long sk_flags;
210 unsigned long sk_lingertime;
211 /*
212 * The backlog queue is special, it is always used with
213 * the per-socket spinlock held and requires low latency
214 * access. Therefore we special case it's implementation.
215 */
216 struct {
217 struct sk_buff *head;
218 struct sk_buff *tail;
219 } sk_backlog;
220 struct sk_buff_head sk_error_queue;
221 struct proto *sk_prot;
222 struct proto *sk_prot_creator;
223 rwlock_t sk_callback_lock;
224 int sk_err,
225 sk_err_soft;
226 unsigned short sk_ack_backlog;
227 unsigned short sk_max_ack_backlog;
228 __u32 sk_priority;
229 struct ucred sk_peercred;
230 int sk_rcvlowat;
231 long sk_rcvtimeo;
232 long sk_sndtimeo;
233 struct sk_filter *sk_filter;
234 void *sk_protinfo;
235 struct timer_list sk_timer;
236 struct timeval sk_stamp;
237 struct socket *sk_socket;
238 void *sk_user_data;
239 struct page *sk_sndmsg_page;
240 struct sk_buff *sk_send_head;
241 __u32 sk_sndmsg_off;
242 int sk_write_pending;
243 void *sk_security;
244 void (*sk_state_change)(struct sock *sk);
245 void (*sk_data_ready)(struct sock *sk, int bytes);
246 void (*sk_write_space)(struct sock *sk);
247 void (*sk_error_report)(struct sock *sk);
248 int (*sk_backlog_rcv)(struct sock *sk,
249 struct sk_buff *skb);
250 void (*sk_destruct)(struct sock *sk);
251 };
252
253 /*
254 * Hashed lists helper routines
255 */
256 static inline struct sock *__sk_head(struct hlist_head *head)
257 {
258 return hlist_entry(head->first, struct sock, sk_node);
259 }
260
261 static inline struct sock *sk_head(struct hlist_head *head)
262 {
263 return hlist_empty(head) ? NULL : __sk_head(head);
264 }
265
266 static inline struct sock *sk_next(struct sock *sk)
267 {
268 return sk->sk_node.next ?
269 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
270 }
271
272 static inline int sk_unhashed(struct sock *sk)
273 {
274 return hlist_unhashed(&sk->sk_node);
275 }
276
277 static inline int sk_hashed(struct sock *sk)
278 {
279 return sk->sk_node.pprev != NULL;
280 }
281
282 static __inline__ void sk_node_init(struct hlist_node *node)
283 {
284 node->pprev = NULL;
285 }
286
287 static __inline__ void __sk_del_node(struct sock *sk)
288 {
289 __hlist_del(&sk->sk_node);
290 }
291
292 static __inline__ int __sk_del_node_init(struct sock *sk)
293 {
294 if (sk_hashed(sk)) {
295 __sk_del_node(sk);
296 sk_node_init(&sk->sk_node);
297 return 1;
298 }
299 return 0;
300 }
301
302 /* Grab socket reference count. This operation is valid only
303 when sk is ALREADY grabbed f.e. it is found in hash table
304 or a list and the lookup is made under lock preventing hash table
305 modifications.
306 */
307
308 static inline void sock_hold(struct sock *sk)
309 {
310 atomic_inc(&sk->sk_refcnt);
311 }
312
313 /* Ungrab socket in the context, which assumes that socket refcnt
314 cannot hit zero, f.e. it is true in context of any socketcall.
315 */
316 static inline void __sock_put(struct sock *sk)
317 {
318 atomic_dec(&sk->sk_refcnt);
319 }
320
321 static __inline__ int sk_del_node_init(struct sock *sk)
322 {
323 int rc = __sk_del_node_init(sk);
324
325 if (rc) {
326 /* paranoid for a while -acme */
327 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
328 __sock_put(sk);
329 }
330 return rc;
331 }
332
333 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
334 {
335 hlist_add_head(&sk->sk_node, list);
336 }
337
338 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
339 {
340 sock_hold(sk);
341 __sk_add_node(sk, list);
342 }
343
344 static __inline__ void __sk_del_bind_node(struct sock *sk)
345 {
346 __hlist_del(&sk->sk_bind_node);
347 }
348
349 static __inline__ void sk_add_bind_node(struct sock *sk,
350 struct hlist_head *list)
351 {
352 hlist_add_head(&sk->sk_bind_node, list);
353 }
354
355 #define sk_for_each(__sk, node, list) \
356 hlist_for_each_entry(__sk, node, list, sk_node)
357 #define sk_for_each_from(__sk, node) \
358 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
359 hlist_for_each_entry_from(__sk, node, sk_node)
360 #define sk_for_each_continue(__sk, node) \
361 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
362 hlist_for_each_entry_continue(__sk, node, sk_node)
363 #define sk_for_each_safe(__sk, node, tmp, list) \
364 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
365 #define sk_for_each_bound(__sk, node, list) \
366 hlist_for_each_entry(__sk, node, list, sk_bind_node)
367
368 /* Sock flags */
369 enum sock_flags {
370 SOCK_DEAD,
371 SOCK_DONE,
372 SOCK_URGINLINE,
373 SOCK_KEEPOPEN,
374 SOCK_LINGER,
375 SOCK_DESTROY,
376 SOCK_BROADCAST,
377 SOCK_TIMESTAMP,
378 SOCK_ZAPPED,
379 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
380 SOCK_DBG, /* %SO_DEBUG setting */
381 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
382 SOCK_NO_LARGESEND, /* whether to sent large segments or not */
383 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
384 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
385 };
386
387 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
388 {
389 __set_bit(flag, &sk->sk_flags);
390 }
391
392 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
393 {
394 __clear_bit(flag, &sk->sk_flags);
395 }
396
397 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
398 {
399 return test_bit(flag, &sk->sk_flags);
400 }
401
402 static inline void sk_acceptq_removed(struct sock *sk)
403 {
404 sk->sk_ack_backlog--;
405 }
406
407 static inline void sk_acceptq_added(struct sock *sk)
408 {
409 sk->sk_ack_backlog++;
410 }
411
412 static inline int sk_acceptq_is_full(struct sock *sk)
413 {
414 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
415 }
416
417 /*
418 * Compute minimal free write space needed to queue new packets.
419 */
420 static inline int sk_stream_min_wspace(struct sock *sk)
421 {
422 return sk->sk_wmem_queued / 2;
423 }
424
425 static inline int sk_stream_wspace(struct sock *sk)
426 {
427 return sk->sk_sndbuf - sk->sk_wmem_queued;
428 }
429
430 extern void sk_stream_write_space(struct sock *sk);
431
432 static inline int sk_stream_memory_free(struct sock *sk)
433 {
434 return sk->sk_wmem_queued < sk->sk_sndbuf;
435 }
436
437 extern void sk_stream_rfree(struct sk_buff *skb);
438
439 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
440 {
441 skb->sk = sk;
442 skb->destructor = sk_stream_rfree;
443 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
444 sk->sk_forward_alloc -= skb->truesize;
445 }
446
447 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
448 {
449 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
450 sk->sk_wmem_queued -= skb->truesize;
451 sk->sk_forward_alloc += skb->truesize;
452 __kfree_skb(skb);
453 }
454
455 /* The per-socket spinlock must be held here. */
456 #define sk_add_backlog(__sk, __skb) \
457 do { if (!(__sk)->sk_backlog.tail) { \
458 (__sk)->sk_backlog.head = \
459 (__sk)->sk_backlog.tail = (__skb); \
460 } else { \
461 ((__sk)->sk_backlog.tail)->next = (__skb); \
462 (__sk)->sk_backlog.tail = (__skb); \
463 } \
464 (__skb)->next = NULL; \
465 } while(0)
466
467 #define sk_wait_event(__sk, __timeo, __condition) \
468 ({ int rc; \
469 release_sock(__sk); \
470 rc = __condition; \
471 if (!rc) { \
472 *(__timeo) = schedule_timeout(*(__timeo)); \
473 rc = __condition; \
474 } \
475 lock_sock(__sk); \
476 rc; \
477 })
478
479 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
480 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
481 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
482 extern int sk_stream_error(struct sock *sk, int flags, int err);
483 extern void sk_stream_kill_queues(struct sock *sk);
484
485 extern int sk_wait_data(struct sock *sk, long *timeo);
486
487 struct request_sock_ops;
488
489 /* Networking protocol blocks we attach to sockets.
490 * socket layer -> transport layer interface
491 * transport -> network interface is defined by struct inet_proto
492 */
493 struct proto {
494 void (*close)(struct sock *sk,
495 long timeout);
496 int (*connect)(struct sock *sk,
497 struct sockaddr *uaddr,
498 int addr_len);
499 int (*disconnect)(struct sock *sk, int flags);
500
501 struct sock * (*accept) (struct sock *sk, int flags, int *err);
502
503 int (*ioctl)(struct sock *sk, int cmd,
504 unsigned long arg);
505 int (*init)(struct sock *sk);
506 int (*destroy)(struct sock *sk);
507 void (*shutdown)(struct sock *sk, int how);
508 int (*setsockopt)(struct sock *sk, int level,
509 int optname, char __user *optval,
510 int optlen);
511 int (*getsockopt)(struct sock *sk, int level,
512 int optname, char __user *optval,
513 int __user *option);
514 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
515 struct msghdr *msg, size_t len);
516 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
517 struct msghdr *msg,
518 size_t len, int noblock, int flags,
519 int *addr_len);
520 int (*sendpage)(struct sock *sk, struct page *page,
521 int offset, size_t size, int flags);
522 int (*bind)(struct sock *sk,
523 struct sockaddr *uaddr, int addr_len);
524
525 int (*backlog_rcv) (struct sock *sk,
526 struct sk_buff *skb);
527
528 /* Keeping track of sk's, looking them up, and port selection methods. */
529 void (*hash)(struct sock *sk);
530 void (*unhash)(struct sock *sk);
531 int (*get_port)(struct sock *sk, unsigned short snum);
532
533 /* Memory pressure */
534 void (*enter_memory_pressure)(void);
535 atomic_t *memory_allocated; /* Current allocated memory. */
536 atomic_t *sockets_allocated; /* Current number of sockets. */
537 /*
538 * Pressure flag: try to collapse.
539 * Technical note: it is used by multiple contexts non atomically.
540 * All the sk_stream_mem_schedule() is of this nature: accounting
541 * is strict, actions are advisory and have some latency.
542 */
543 int *memory_pressure;
544 int *sysctl_mem;
545 int *sysctl_wmem;
546 int *sysctl_rmem;
547 int max_header;
548
549 kmem_cache_t *slab;
550 unsigned int obj_size;
551
552 struct request_sock_ops *rsk_prot;
553
554 struct module *owner;
555
556 char name[32];
557
558 struct list_head node;
559
560 struct {
561 int inuse;
562 u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
563 } stats[NR_CPUS];
564 };
565
566 extern int proto_register(struct proto *prot, int alloc_slab);
567 extern void proto_unregister(struct proto *prot);
568
569 /* Called with local bh disabled */
570 static __inline__ void sock_prot_inc_use(struct proto *prot)
571 {
572 prot->stats[smp_processor_id()].inuse++;
573 }
574
575 static __inline__ void sock_prot_dec_use(struct proto *prot)
576 {
577 prot->stats[smp_processor_id()].inuse--;
578 }
579
580 /* About 10 seconds */
581 #define SOCK_DESTROY_TIME (10*HZ)
582
583 /* Sockets 0-1023 can't be bound to unless you are superuser */
584 #define PROT_SOCK 1024
585
586 #define SHUTDOWN_MASK 3
587 #define RCV_SHUTDOWN 1
588 #define SEND_SHUTDOWN 2
589
590 #define SOCK_SNDBUF_LOCK 1
591 #define SOCK_RCVBUF_LOCK 2
592 #define SOCK_BINDADDR_LOCK 4
593 #define SOCK_BINDPORT_LOCK 8
594
595 /* sock_iocb: used to kick off async processing of socket ios */
596 struct sock_iocb {
597 struct list_head list;
598
599 int flags;
600 int size;
601 struct socket *sock;
602 struct sock *sk;
603 struct scm_cookie *scm;
604 struct msghdr *msg, async_msg;
605 struct iovec async_iov;
606 struct kiocb *kiocb;
607 };
608
609 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
610 {
611 return (struct sock_iocb *)iocb->private;
612 }
613
614 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
615 {
616 return si->kiocb;
617 }
618
619 struct socket_alloc {
620 struct socket socket;
621 struct inode vfs_inode;
622 };
623
624 static inline struct socket *SOCKET_I(struct inode *inode)
625 {
626 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
627 }
628
629 static inline struct inode *SOCK_INODE(struct socket *socket)
630 {
631 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
632 }
633
634 extern void __sk_stream_mem_reclaim(struct sock *sk);
635 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
636
637 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
638
639 static inline int sk_stream_pages(int amt)
640 {
641 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
642 }
643
644 static inline void sk_stream_mem_reclaim(struct sock *sk)
645 {
646 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
647 __sk_stream_mem_reclaim(sk);
648 }
649
650 static inline void sk_stream_writequeue_purge(struct sock *sk)
651 {
652 struct sk_buff *skb;
653
654 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
655 sk_stream_free_skb(sk, skb);
656 sk_stream_mem_reclaim(sk);
657 }
658
659 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
660 {
661 return (int)skb->truesize <= sk->sk_forward_alloc ||
662 sk_stream_mem_schedule(sk, skb->truesize, 1);
663 }
664
665 /* Used by processes to "lock" a socket state, so that
666 * interrupts and bottom half handlers won't change it
667 * from under us. It essentially blocks any incoming
668 * packets, so that we won't get any new data or any
669 * packets that change the state of the socket.
670 *
671 * While locked, BH processing will add new packets to
672 * the backlog queue. This queue is processed by the
673 * owner of the socket lock right before it is released.
674 *
675 * Since ~2.3.5 it is also exclusive sleep lock serializing
676 * accesses from user process context.
677 */
678 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner)
679
680 extern void FASTCALL(lock_sock(struct sock *sk));
681 extern void FASTCALL(release_sock(struct sock *sk));
682
683 /* BH context may only use the following locking interface. */
684 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
685 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
686
687 extern struct sock *sk_alloc(int family, int priority,
688 struct proto *prot, int zero_it);
689 extern void sk_free(struct sock *sk);
690
691 extern struct sk_buff *sock_wmalloc(struct sock *sk,
692 unsigned long size, int force,
693 int priority);
694 extern struct sk_buff *sock_rmalloc(struct sock *sk,
695 unsigned long size, int force,
696 int priority);
697 extern void sock_wfree(struct sk_buff *skb);
698 extern void sock_rfree(struct sk_buff *skb);
699
700 extern int sock_setsockopt(struct socket *sock, int level,
701 int op, char __user *optval,
702 int optlen);
703
704 extern int sock_getsockopt(struct socket *sock, int level,
705 int op, char __user *optval,
706 int __user *optlen);
707 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
708 unsigned long size,
709 int noblock,
710 int *errcode);
711 extern void *sock_kmalloc(struct sock *sk, int size, int priority);
712 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
713 extern void sk_send_sigurg(struct sock *sk);
714
715 /*
716 * Functions to fill in entries in struct proto_ops when a protocol
717 * does not implement a particular function.
718 */
719 extern int sock_no_bind(struct socket *,
720 struct sockaddr *, int);
721 extern int sock_no_connect(struct socket *,
722 struct sockaddr *, int, int);
723 extern int sock_no_socketpair(struct socket *,
724 struct socket *);
725 extern int sock_no_accept(struct socket *,
726 struct socket *, int);
727 extern int sock_no_getname(struct socket *,
728 struct sockaddr *, int *, int);
729 extern unsigned int sock_no_poll(struct file *, struct socket *,
730 struct poll_table_struct *);
731 extern int sock_no_ioctl(struct socket *, unsigned int,
732 unsigned long);
733 extern int sock_no_listen(struct socket *, int);
734 extern int sock_no_shutdown(struct socket *, int);
735 extern int sock_no_getsockopt(struct socket *, int , int,
736 char __user *, int __user *);
737 extern int sock_no_setsockopt(struct socket *, int, int,
738 char __user *, int);
739 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
740 struct msghdr *, size_t);
741 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
742 struct msghdr *, size_t, int);
743 extern int sock_no_mmap(struct file *file,
744 struct socket *sock,
745 struct vm_area_struct *vma);
746 extern ssize_t sock_no_sendpage(struct socket *sock,
747 struct page *page,
748 int offset, size_t size,
749 int flags);
750
751 /*
752 * Functions to fill in entries in struct proto_ops when a protocol
753 * uses the inet style.
754 */
755 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
756 char __user *optval, int __user *optlen);
757 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
758 struct msghdr *msg, size_t size, int flags);
759 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
760 char __user *optval, int optlen);
761
762 extern void sk_common_release(struct sock *sk);
763
764 /*
765 * Default socket callbacks and setup code
766 */
767
768 /* Initialise core socket variables */
769 extern void sock_init_data(struct socket *sock, struct sock *sk);
770
771 /**
772 * sk_filter - run a packet through a socket filter
773 * @sk: sock associated with &sk_buff
774 * @skb: buffer to filter
775 * @needlock: set to 1 if the sock is not locked by caller.
776 *
777 * Run the filter code and then cut skb->data to correct size returned by
778 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
779 * than pkt_len we keep whole skb->data. This is the socket level
780 * wrapper to sk_run_filter. It returns 0 if the packet should
781 * be accepted or -EPERM if the packet should be tossed.
782 *
783 */
784
785 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock)
786 {
787 int err;
788
789 err = security_sock_rcv_skb(sk, skb);
790 if (err)
791 return err;
792
793 if (sk->sk_filter) {
794 struct sk_filter *filter;
795
796 if (needlock)
797 bh_lock_sock(sk);
798
799 filter = sk->sk_filter;
800 if (filter) {
801 int pkt_len = sk_run_filter(skb, filter->insns,
802 filter->len);
803 if (!pkt_len)
804 err = -EPERM;
805 else
806 skb_trim(skb, pkt_len);
807 }
808
809 if (needlock)
810 bh_unlock_sock(sk);
811 }
812 return err;
813 }
814
815 /**
816 * sk_filter_release: Release a socket filter
817 * @sk: socket
818 * @fp: filter to remove
819 *
820 * Remove a filter from a socket and release its resources.
821 */
822
823 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
824 {
825 unsigned int size = sk_filter_len(fp);
826
827 atomic_sub(size, &sk->sk_omem_alloc);
828
829 if (atomic_dec_and_test(&fp->refcnt))
830 kfree(fp);
831 }
832
833 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
834 {
835 atomic_inc(&fp->refcnt);
836 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
837 }
838
839 /*
840 * Socket reference counting postulates.
841 *
842 * * Each user of socket SHOULD hold a reference count.
843 * * Each access point to socket (an hash table bucket, reference from a list,
844 * running timer, skb in flight MUST hold a reference count.
845 * * When reference count hits 0, it means it will never increase back.
846 * * When reference count hits 0, it means that no references from
847 * outside exist to this socket and current process on current CPU
848 * is last user and may/should destroy this socket.
849 * * sk_free is called from any context: process, BH, IRQ. When
850 * it is called, socket has no references from outside -> sk_free
851 * may release descendant resources allocated by the socket, but
852 * to the time when it is called, socket is NOT referenced by any
853 * hash tables, lists etc.
854 * * Packets, delivered from outside (from network or from another process)
855 * and enqueued on receive/error queues SHOULD NOT grab reference count,
856 * when they sit in queue. Otherwise, packets will leak to hole, when
857 * socket is looked up by one cpu and unhasing is made by another CPU.
858 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
859 * (leak to backlog). Packet socket does all the processing inside
860 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
861 * use separate SMP lock, so that they are prone too.
862 */
863
864 /* Ungrab socket and destroy it, if it was the last reference. */
865 static inline void sock_put(struct sock *sk)
866 {
867 if (atomic_dec_and_test(&sk->sk_refcnt))
868 sk_free(sk);
869 }
870
871 /* Detach socket from process context.
872 * Announce socket dead, detach it from wait queue and inode.
873 * Note that parent inode held reference count on this struct sock,
874 * we do not release it in this function, because protocol
875 * probably wants some additional cleanups or even continuing
876 * to work with this socket (TCP).
877 */
878 static inline void sock_orphan(struct sock *sk)
879 {
880 write_lock_bh(&sk->sk_callback_lock);
881 sock_set_flag(sk, SOCK_DEAD);
882 sk->sk_socket = NULL;
883 sk->sk_sleep = NULL;
884 write_unlock_bh(&sk->sk_callback_lock);
885 }
886
887 static inline void sock_graft(struct sock *sk, struct socket *parent)
888 {
889 write_lock_bh(&sk->sk_callback_lock);
890 sk->sk_sleep = &parent->wait;
891 parent->sk = sk;
892 sk->sk_socket = parent;
893 write_unlock_bh(&sk->sk_callback_lock);
894 }
895
896 extern int sock_i_uid(struct sock *sk);
897 extern unsigned long sock_i_ino(struct sock *sk);
898
899 static inline struct dst_entry *
900 __sk_dst_get(struct sock *sk)
901 {
902 return sk->sk_dst_cache;
903 }
904
905 static inline struct dst_entry *
906 sk_dst_get(struct sock *sk)
907 {
908 struct dst_entry *dst;
909
910 read_lock(&sk->sk_dst_lock);
911 dst = sk->sk_dst_cache;
912 if (dst)
913 dst_hold(dst);
914 read_unlock(&sk->sk_dst_lock);
915 return dst;
916 }
917
918 static inline void
919 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
920 {
921 struct dst_entry *old_dst;
922
923 old_dst = sk->sk_dst_cache;
924 sk->sk_dst_cache = dst;
925 dst_release(old_dst);
926 }
927
928 static inline void
929 sk_dst_set(struct sock *sk, struct dst_entry *dst)
930 {
931 write_lock(&sk->sk_dst_lock);
932 __sk_dst_set(sk, dst);
933 write_unlock(&sk->sk_dst_lock);
934 }
935
936 static inline void
937 __sk_dst_reset(struct sock *sk)
938 {
939 struct dst_entry *old_dst;
940
941 old_dst = sk->sk_dst_cache;
942 sk->sk_dst_cache = NULL;
943 dst_release(old_dst);
944 }
945
946 static inline void
947 sk_dst_reset(struct sock *sk)
948 {
949 write_lock(&sk->sk_dst_lock);
950 __sk_dst_reset(sk);
951 write_unlock(&sk->sk_dst_lock);
952 }
953
954 static inline struct dst_entry *
955 __sk_dst_check(struct sock *sk, u32 cookie)
956 {
957 struct dst_entry *dst = sk->sk_dst_cache;
958
959 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
960 sk->sk_dst_cache = NULL;
961 dst_release(dst);
962 return NULL;
963 }
964
965 return dst;
966 }
967
968 static inline struct dst_entry *
969 sk_dst_check(struct sock *sk, u32 cookie)
970 {
971 struct dst_entry *dst = sk_dst_get(sk);
972
973 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
974 sk_dst_reset(sk);
975 dst_release(dst);
976 return NULL;
977 }
978
979 return dst;
980 }
981
982 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
983 {
984 sk->sk_wmem_queued += skb->truesize;
985 sk->sk_forward_alloc -= skb->truesize;
986 }
987
988 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
989 struct sk_buff *skb, struct page *page,
990 int off, int copy)
991 {
992 if (skb->ip_summed == CHECKSUM_NONE) {
993 int err = 0;
994 unsigned int csum = csum_and_copy_from_user(from,
995 page_address(page) + off,
996 copy, 0, &err);
997 if (err)
998 return err;
999 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1000 } else if (copy_from_user(page_address(page) + off, from, copy))
1001 return -EFAULT;
1002
1003 skb->len += copy;
1004 skb->data_len += copy;
1005 skb->truesize += copy;
1006 sk->sk_wmem_queued += copy;
1007 sk->sk_forward_alloc -= copy;
1008 return 0;
1009 }
1010
1011 /*
1012 * Queue a received datagram if it will fit. Stream and sequenced
1013 * protocols can't normally use this as they need to fit buffers in
1014 * and play with them.
1015 *
1016 * Inlined as it's very short and called for pretty much every
1017 * packet ever received.
1018 */
1019
1020 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1021 {
1022 sock_hold(sk);
1023 skb->sk = sk;
1024 skb->destructor = sock_wfree;
1025 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1026 }
1027
1028 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1029 {
1030 skb->sk = sk;
1031 skb->destructor = sock_rfree;
1032 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1033 }
1034
1035 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1036 unsigned long expires);
1037
1038 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1039
1040 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1041 {
1042 int err = 0;
1043 int skb_len;
1044
1045 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1046 number of warnings when compiling with -W --ANK
1047 */
1048 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1049 (unsigned)sk->sk_rcvbuf) {
1050 err = -ENOMEM;
1051 goto out;
1052 }
1053
1054 /* It would be deadlock, if sock_queue_rcv_skb is used
1055 with socket lock! We assume that users of this
1056 function are lock free.
1057 */
1058 err = sk_filter(sk, skb, 1);
1059 if (err)
1060 goto out;
1061
1062 skb->dev = NULL;
1063 skb_set_owner_r(skb, sk);
1064
1065 /* Cache the SKB length before we tack it onto the receive
1066 * queue. Once it is added it no longer belongs to us and
1067 * may be freed by other threads of control pulling packets
1068 * from the queue.
1069 */
1070 skb_len = skb->len;
1071
1072 skb_queue_tail(&sk->sk_receive_queue, skb);
1073
1074 if (!sock_flag(sk, SOCK_DEAD))
1075 sk->sk_data_ready(sk, skb_len);
1076 out:
1077 return err;
1078 }
1079
1080 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1081 {
1082 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1083 number of warnings when compiling with -W --ANK
1084 */
1085 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1086 (unsigned)sk->sk_rcvbuf)
1087 return -ENOMEM;
1088 skb_set_owner_r(skb, sk);
1089 skb_queue_tail(&sk->sk_error_queue, skb);
1090 if (!sock_flag(sk, SOCK_DEAD))
1091 sk->sk_data_ready(sk, skb->len);
1092 return 0;
1093 }
1094
1095 /*
1096 * Recover an error report and clear atomically
1097 */
1098
1099 static inline int sock_error(struct sock *sk)
1100 {
1101 int err = xchg(&sk->sk_err, 0);
1102 return -err;
1103 }
1104
1105 static inline unsigned long sock_wspace(struct sock *sk)
1106 {
1107 int amt = 0;
1108
1109 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1110 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1111 if (amt < 0)
1112 amt = 0;
1113 }
1114 return amt;
1115 }
1116
1117 static inline void sk_wake_async(struct sock *sk, int how, int band)
1118 {
1119 if (sk->sk_socket && sk->sk_socket->fasync_list)
1120 sock_wake_async(sk->sk_socket, how, band);
1121 }
1122
1123 #define SOCK_MIN_SNDBUF 2048
1124 #define SOCK_MIN_RCVBUF 256
1125
1126 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1127 {
1128 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1129 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1130 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1131 }
1132 }
1133
1134 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1135 int size, int mem, int gfp)
1136 {
1137 struct sk_buff *skb = alloc_skb(size + sk->sk_prot->max_header, gfp);
1138
1139 if (skb) {
1140 skb->truesize += mem;
1141 if (sk->sk_forward_alloc >= (int)skb->truesize ||
1142 sk_stream_mem_schedule(sk, skb->truesize, 0)) {
1143 skb_reserve(skb, sk->sk_prot->max_header);
1144 return skb;
1145 }
1146 __kfree_skb(skb);
1147 } else {
1148 sk->sk_prot->enter_memory_pressure();
1149 sk_stream_moderate_sndbuf(sk);
1150 }
1151 return NULL;
1152 }
1153
1154 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1155 int size, int gfp)
1156 {
1157 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1158 }
1159
1160 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1161 {
1162 struct page *page = NULL;
1163
1164 if (sk->sk_forward_alloc >= (int)PAGE_SIZE ||
1165 sk_stream_mem_schedule(sk, PAGE_SIZE, 0))
1166 page = alloc_pages(sk->sk_allocation, 0);
1167 else {
1168 sk->sk_prot->enter_memory_pressure();
1169 sk_stream_moderate_sndbuf(sk);
1170 }
1171 return page;
1172 }
1173
1174 #define sk_stream_for_retrans_queue(skb, sk) \
1175 for (skb = (sk)->sk_write_queue.next; \
1176 (skb != (sk)->sk_send_head) && \
1177 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1178 skb = skb->next)
1179
1180 /*
1181 * Default write policy as shown to user space via poll/select/SIGIO
1182 */
1183 static inline int sock_writeable(const struct sock *sk)
1184 {
1185 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1186 }
1187
1188 static inline int gfp_any(void)
1189 {
1190 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1191 }
1192
1193 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1194 {
1195 return noblock ? 0 : sk->sk_rcvtimeo;
1196 }
1197
1198 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1199 {
1200 return noblock ? 0 : sk->sk_sndtimeo;
1201 }
1202
1203 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1204 {
1205 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1206 }
1207
1208 /* Alas, with timeout socket operations are not restartable.
1209 * Compare this to poll().
1210 */
1211 static inline int sock_intr_errno(long timeo)
1212 {
1213 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1214 }
1215
1216 static __inline__ void
1217 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1218 {
1219 struct timeval *stamp = &skb->stamp;
1220 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1221 /* Race occurred between timestamp enabling and packet
1222 receiving. Fill in the current time for now. */
1223 if (stamp->tv_sec == 0)
1224 do_gettimeofday(stamp);
1225 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval),
1226 stamp);
1227 } else
1228 sk->sk_stamp = *stamp;
1229 }
1230
1231 /**
1232 * sk_eat_skb - Release a skb if it is no longer needed
1233 * @sk: socket to eat this skb from
1234 * @skb: socket buffer to eat
1235 *
1236 * This routine must be called with interrupts disabled or with the socket
1237 * locked so that the sk_buff queue operation is ok.
1238 */
1239 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
1240 {
1241 __skb_unlink(skb, &sk->sk_receive_queue);
1242 __kfree_skb(skb);
1243 }
1244
1245 extern void sock_enable_timestamp(struct sock *sk);
1246 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1247
1248 /*
1249 * Enable debug/info messages
1250 */
1251
1252 #if 0
1253 #define NETDEBUG(x) do { } while (0)
1254 #define LIMIT_NETDEBUG(x) do {} while(0)
1255 #else
1256 #define NETDEBUG(x) do { x; } while (0)
1257 #define LIMIT_NETDEBUG(x) do { if (net_ratelimit()) { x; } } while(0)
1258 #endif
1259
1260 /*
1261 * Macros for sleeping on a socket. Use them like this:
1262 *
1263 * SOCK_SLEEP_PRE(sk)
1264 * if (condition)
1265 * schedule();
1266 * SOCK_SLEEP_POST(sk)
1267 *
1268 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1269 * and when the last use of them in DECnet has gone, I'm intending to
1270 * remove them.
1271 */
1272
1273 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1274 DECLARE_WAITQUEUE(wait, tsk); \
1275 tsk->state = TASK_INTERRUPTIBLE; \
1276 add_wait_queue((sk)->sk_sleep, &wait); \
1277 release_sock(sk);
1278
1279 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1280 remove_wait_queue((sk)->sk_sleep, &wait); \
1281 lock_sock(sk); \
1282 }
1283
1284 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1285 {
1286 if (valbool)
1287 sock_set_flag(sk, bit);
1288 else
1289 sock_reset_flag(sk, bit);
1290 }
1291
1292 extern __u32 sysctl_wmem_max;
1293 extern __u32 sysctl_rmem_max;
1294
1295 #ifdef CONFIG_NET
1296 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
1297 #else
1298 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
1299 {
1300 return -ENODEV;
1301 }
1302 #endif
1303
1304 #endif /* _SOCK_H */
This page took 0.056992 seconds and 6 git commands to generate.