inet: remove sk_listener parameter from syn_ack_timeout()
[deliverable/linux.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/crypto.h>
31 #include <linux/cryptohash.h>
32 #include <linux/kref.h>
33 #include <linux/ktime.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS 88U
66
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS 1024
69
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL 600
72
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD 8
75
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* urg_data states */
83 #define TCP_URG_VALID 0x0100
84 #define TCP_URG_NOTYET 0x0200
85 #define TCP_URG_READ 0x0400
86
87 #define TCP_RETR1 3 /*
88 * This is how many retries it does before it
89 * tries to figure out if the gateway is
90 * down. Minimal RFC value is 3; it corresponds
91 * to ~3sec-8min depending on RTO.
92 */
93
94 #define TCP_RETR2 15 /*
95 * This should take at least
96 * 90 minutes to time out.
97 * RFC1122 says that the limit is 100 sec.
98 * 15 is ~13-30min depending on RTO.
99 */
100
101 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
102 * when active opening a connection.
103 * RFC1122 says the minimum retry MUST
104 * be at least 180secs. Nevertheless
105 * this value is corresponding to
106 * 63secs of retransmission with the
107 * current initial RTO.
108 */
109
110 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
111 * when passive opening a connection.
112 * This is corresponding to 31secs of
113 * retransmission with the current
114 * initial RTO.
115 */
116
117 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
118 * state, about 60 seconds */
119 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
120 /* BSD style FIN_WAIT2 deadlock breaker.
121 * It used to be 3min, new value is 60sec,
122 * to combine FIN-WAIT-2 timeout with
123 * TIME-WAIT timer.
124 */
125
126 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
127 #if HZ >= 100
128 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
129 #define TCP_ATO_MIN ((unsigned)(HZ/25))
130 #else
131 #define TCP_DELACK_MIN 4U
132 #define TCP_ATO_MIN 4U
133 #endif
134 #define TCP_RTO_MAX ((unsigned)(120*HZ))
135 #define TCP_RTO_MIN ((unsigned)(HZ/5))
136 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
137 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
138 * used as a fallback RTO for the
139 * initial data transmission if no
140 * valid RTT sample has been acquired,
141 * most likely due to retrans in 3WHS.
142 */
143
144 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
145 * for local resources.
146 */
147
148 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
149 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
150 #define TCP_KEEPALIVE_INTVL (75*HZ)
151
152 #define MAX_TCP_KEEPIDLE 32767
153 #define MAX_TCP_KEEPINTVL 32767
154 #define MAX_TCP_KEEPCNT 127
155 #define MAX_TCP_SYNCNT 127
156
157 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
158
159 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
160 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
161 * after this time. It should be equal
162 * (or greater than) TCP_TIMEWAIT_LEN
163 * to provide reliability equal to one
164 * provided by timewait state.
165 */
166 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
167 * timestamps. It must be less than
168 * minimal timewait lifetime.
169 */
170 /*
171 * TCP option
172 */
173
174 #define TCPOPT_NOP 1 /* Padding */
175 #define TCPOPT_EOL 0 /* End of options */
176 #define TCPOPT_MSS 2 /* Segment size negotiating */
177 #define TCPOPT_WINDOW 3 /* Window scaling */
178 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
179 #define TCPOPT_SACK 5 /* SACK Block */
180 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
181 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
182 #define TCPOPT_EXP 254 /* Experimental */
183 /* Magic number to be after the option value for sharing TCP
184 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
185 */
186 #define TCPOPT_FASTOPEN_MAGIC 0xF989
187
188 /*
189 * TCP option lengths
190 */
191
192 #define TCPOLEN_MSS 4
193 #define TCPOLEN_WINDOW 3
194 #define TCPOLEN_SACK_PERM 2
195 #define TCPOLEN_TIMESTAMP 10
196 #define TCPOLEN_MD5SIG 18
197 #define TCPOLEN_EXP_FASTOPEN_BASE 4
198
199 /* But this is what stacks really send out. */
200 #define TCPOLEN_TSTAMP_ALIGNED 12
201 #define TCPOLEN_WSCALE_ALIGNED 4
202 #define TCPOLEN_SACKPERM_ALIGNED 4
203 #define TCPOLEN_SACK_BASE 2
204 #define TCPOLEN_SACK_BASE_ALIGNED 4
205 #define TCPOLEN_SACK_PERBLOCK 8
206 #define TCPOLEN_MD5SIG_ALIGNED 20
207 #define TCPOLEN_MSS_ALIGNED 4
208
209 /* Flags in tp->nonagle */
210 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
211 #define TCP_NAGLE_CORK 2 /* Socket is corked */
212 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
213
214 /* TCP thin-stream limits */
215 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
216
217 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
218 #define TCP_INIT_CWND 10
219
220 /* Bit Flags for sysctl_tcp_fastopen */
221 #define TFO_CLIENT_ENABLE 1
222 #define TFO_SERVER_ENABLE 2
223 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
224
225 /* Accept SYN data w/o any cookie option */
226 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
227
228 /* Force enable TFO on all listeners, i.e., not requiring the
229 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
230 */
231 #define TFO_SERVER_WO_SOCKOPT1 0x400
232 #define TFO_SERVER_WO_SOCKOPT2 0x800
233
234 extern struct inet_timewait_death_row tcp_death_row;
235
236 /* sysctl variables for tcp */
237 extern int sysctl_tcp_timestamps;
238 extern int sysctl_tcp_window_scaling;
239 extern int sysctl_tcp_sack;
240 extern int sysctl_tcp_fin_timeout;
241 extern int sysctl_tcp_keepalive_time;
242 extern int sysctl_tcp_keepalive_probes;
243 extern int sysctl_tcp_keepalive_intvl;
244 extern int sysctl_tcp_syn_retries;
245 extern int sysctl_tcp_synack_retries;
246 extern int sysctl_tcp_retries1;
247 extern int sysctl_tcp_retries2;
248 extern int sysctl_tcp_orphan_retries;
249 extern int sysctl_tcp_syncookies;
250 extern int sysctl_tcp_fastopen;
251 extern int sysctl_tcp_retrans_collapse;
252 extern int sysctl_tcp_stdurg;
253 extern int sysctl_tcp_rfc1337;
254 extern int sysctl_tcp_abort_on_overflow;
255 extern int sysctl_tcp_max_orphans;
256 extern int sysctl_tcp_fack;
257 extern int sysctl_tcp_reordering;
258 extern int sysctl_tcp_max_reordering;
259 extern int sysctl_tcp_dsack;
260 extern long sysctl_tcp_mem[3];
261 extern int sysctl_tcp_wmem[3];
262 extern int sysctl_tcp_rmem[3];
263 extern int sysctl_tcp_app_win;
264 extern int sysctl_tcp_adv_win_scale;
265 extern int sysctl_tcp_tw_reuse;
266 extern int sysctl_tcp_frto;
267 extern int sysctl_tcp_low_latency;
268 extern int sysctl_tcp_nometrics_save;
269 extern int sysctl_tcp_moderate_rcvbuf;
270 extern int sysctl_tcp_tso_win_divisor;
271 extern int sysctl_tcp_workaround_signed_windows;
272 extern int sysctl_tcp_slow_start_after_idle;
273 extern int sysctl_tcp_thin_linear_timeouts;
274 extern int sysctl_tcp_thin_dupack;
275 extern int sysctl_tcp_early_retrans;
276 extern int sysctl_tcp_limit_output_bytes;
277 extern int sysctl_tcp_challenge_ack_limit;
278 extern unsigned int sysctl_tcp_notsent_lowat;
279 extern int sysctl_tcp_min_tso_segs;
280 extern int sysctl_tcp_autocorking;
281 extern int sysctl_tcp_invalid_ratelimit;
282
283 extern atomic_long_t tcp_memory_allocated;
284 extern struct percpu_counter tcp_sockets_allocated;
285 extern int tcp_memory_pressure;
286
287 /*
288 * The next routines deal with comparing 32 bit unsigned ints
289 * and worry about wraparound (automatic with unsigned arithmetic).
290 */
291
292 static inline bool before(__u32 seq1, __u32 seq2)
293 {
294 return (__s32)(seq1-seq2) < 0;
295 }
296 #define after(seq2, seq1) before(seq1, seq2)
297
298 /* is s2<=s1<=s3 ? */
299 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
300 {
301 return seq3 - seq2 >= seq1 - seq2;
302 }
303
304 static inline bool tcp_out_of_memory(struct sock *sk)
305 {
306 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
307 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
308 return true;
309 return false;
310 }
311
312 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
313 {
314 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
315 int orphans = percpu_counter_read_positive(ocp);
316
317 if (orphans << shift > sysctl_tcp_max_orphans) {
318 orphans = percpu_counter_sum_positive(ocp);
319 if (orphans << shift > sysctl_tcp_max_orphans)
320 return true;
321 }
322 return false;
323 }
324
325 bool tcp_check_oom(struct sock *sk, int shift);
326
327 /* syncookies: remember time of last synqueue overflow */
328 static inline void tcp_synq_overflow(struct sock *sk)
329 {
330 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
331 }
332
333 /* syncookies: no recent synqueue overflow on this listening socket? */
334 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
335 {
336 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
337 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
338 }
339
340 extern struct proto tcp_prot;
341
342 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
343 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
344 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
345 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
346 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
347
348 void tcp_tasklet_init(void);
349
350 void tcp_v4_err(struct sk_buff *skb, u32);
351
352 void tcp_shutdown(struct sock *sk, int how);
353
354 void tcp_v4_early_demux(struct sk_buff *skb);
355 int tcp_v4_rcv(struct sk_buff *skb);
356
357 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
358 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
359 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
360 int flags);
361 void tcp_release_cb(struct sock *sk);
362 void tcp_wfree(struct sk_buff *skb);
363 void tcp_write_timer_handler(struct sock *sk);
364 void tcp_delack_timer_handler(struct sock *sk);
365 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
366 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
367 const struct tcphdr *th, unsigned int len);
368 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
369 const struct tcphdr *th, unsigned int len);
370 void tcp_rcv_space_adjust(struct sock *sk);
371 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
372 void tcp_twsk_destructor(struct sock *sk);
373 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
374 struct pipe_inode_info *pipe, size_t len,
375 unsigned int flags);
376
377 static inline void tcp_dec_quickack_mode(struct sock *sk,
378 const unsigned int pkts)
379 {
380 struct inet_connection_sock *icsk = inet_csk(sk);
381
382 if (icsk->icsk_ack.quick) {
383 if (pkts >= icsk->icsk_ack.quick) {
384 icsk->icsk_ack.quick = 0;
385 /* Leaving quickack mode we deflate ATO. */
386 icsk->icsk_ack.ato = TCP_ATO_MIN;
387 } else
388 icsk->icsk_ack.quick -= pkts;
389 }
390 }
391
392 #define TCP_ECN_OK 1
393 #define TCP_ECN_QUEUE_CWR 2
394 #define TCP_ECN_DEMAND_CWR 4
395 #define TCP_ECN_SEEN 8
396
397 enum tcp_tw_status {
398 TCP_TW_SUCCESS = 0,
399 TCP_TW_RST = 1,
400 TCP_TW_ACK = 2,
401 TCP_TW_SYN = 3
402 };
403
404
405 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
406 struct sk_buff *skb,
407 const struct tcphdr *th);
408 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
409 struct request_sock *req, bool fastopen);
410 int tcp_child_process(struct sock *parent, struct sock *child,
411 struct sk_buff *skb);
412 void tcp_enter_loss(struct sock *sk);
413 void tcp_clear_retrans(struct tcp_sock *tp);
414 void tcp_update_metrics(struct sock *sk);
415 void tcp_init_metrics(struct sock *sk);
416 void tcp_metrics_init(void);
417 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
418 bool paws_check, bool timestamps);
419 bool tcp_remember_stamp(struct sock *sk);
420 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
421 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
422 void tcp_disable_fack(struct tcp_sock *tp);
423 void tcp_close(struct sock *sk, long timeout);
424 void tcp_init_sock(struct sock *sk);
425 unsigned int tcp_poll(struct file *file, struct socket *sock,
426 struct poll_table_struct *wait);
427 int tcp_getsockopt(struct sock *sk, int level, int optname,
428 char __user *optval, int __user *optlen);
429 int tcp_setsockopt(struct sock *sk, int level, int optname,
430 char __user *optval, unsigned int optlen);
431 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
432 char __user *optval, int __user *optlen);
433 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
434 char __user *optval, unsigned int optlen);
435 void tcp_set_keepalive(struct sock *sk, int val);
436 void tcp_syn_ack_timeout(const struct request_sock *req);
437 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
438 int flags, int *addr_len);
439 void tcp_parse_options(const struct sk_buff *skb,
440 struct tcp_options_received *opt_rx,
441 int estab, struct tcp_fastopen_cookie *foc);
442 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
443
444 /*
445 * TCP v4 functions exported for the inet6 API
446 */
447
448 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
449 void tcp_v4_mtu_reduced(struct sock *sk);
450 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
451 struct sock *tcp_create_openreq_child(struct sock *sk,
452 struct request_sock *req,
453 struct sk_buff *skb);
454 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
455 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
456 struct request_sock *req,
457 struct dst_entry *dst);
458 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
459 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
460 int tcp_connect(struct sock *sk);
461 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
462 struct request_sock *req,
463 struct tcp_fastopen_cookie *foc);
464 int tcp_disconnect(struct sock *sk, int flags);
465
466 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
467 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
468 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
469
470 /* From syncookies.c */
471 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
472 u32 cookie);
473 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
474 #ifdef CONFIG_SYN_COOKIES
475
476 /* Syncookies use a monotonic timer which increments every 60 seconds.
477 * This counter is used both as a hash input and partially encoded into
478 * the cookie value. A cookie is only validated further if the delta
479 * between the current counter value and the encoded one is less than this,
480 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
481 * the counter advances immediately after a cookie is generated).
482 */
483 #define MAX_SYNCOOKIE_AGE 2
484
485 static inline u32 tcp_cookie_time(void)
486 {
487 u64 val = get_jiffies_64();
488
489 do_div(val, 60 * HZ);
490 return val;
491 }
492
493 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
494 u16 *mssp);
495 __u32 cookie_v4_init_sequence(struct sock *sk, const struct sk_buff *skb,
496 __u16 *mss);
497 __u32 cookie_init_timestamp(struct request_sock *req);
498 bool cookie_timestamp_decode(struct tcp_options_received *opt);
499 bool cookie_ecn_ok(const struct tcp_options_received *opt,
500 const struct net *net, const struct dst_entry *dst);
501
502 /* From net/ipv6/syncookies.c */
503 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
504 u32 cookie);
505 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
506
507 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
508 const struct tcphdr *th, u16 *mssp);
509 __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
510 __u16 *mss);
511 #endif
512 /* tcp_output.c */
513
514 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
515 int nonagle);
516 bool tcp_may_send_now(struct sock *sk);
517 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
518 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
519 void tcp_retransmit_timer(struct sock *sk);
520 void tcp_xmit_retransmit_queue(struct sock *);
521 void tcp_simple_retransmit(struct sock *);
522 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
523 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
524
525 void tcp_send_probe0(struct sock *);
526 void tcp_send_partial(struct sock *);
527 int tcp_write_wakeup(struct sock *);
528 void tcp_send_fin(struct sock *sk);
529 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
530 int tcp_send_synack(struct sock *);
531 bool tcp_syn_flood_action(struct sock *sk, const struct sk_buff *skb,
532 const char *proto);
533 void tcp_push_one(struct sock *, unsigned int mss_now);
534 void tcp_send_ack(struct sock *sk);
535 void tcp_send_delayed_ack(struct sock *sk);
536 void tcp_send_loss_probe(struct sock *sk);
537 bool tcp_schedule_loss_probe(struct sock *sk);
538
539 /* tcp_input.c */
540 void tcp_resume_early_retransmit(struct sock *sk);
541 void tcp_rearm_rto(struct sock *sk);
542 void tcp_reset(struct sock *sk);
543
544 /* tcp_timer.c */
545 void tcp_init_xmit_timers(struct sock *);
546 static inline void tcp_clear_xmit_timers(struct sock *sk)
547 {
548 inet_csk_clear_xmit_timers(sk);
549 }
550
551 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
552 unsigned int tcp_current_mss(struct sock *sk);
553
554 /* Bound MSS / TSO packet size with the half of the window */
555 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
556 {
557 int cutoff;
558
559 /* When peer uses tiny windows, there is no use in packetizing
560 * to sub-MSS pieces for the sake of SWS or making sure there
561 * are enough packets in the pipe for fast recovery.
562 *
563 * On the other hand, for extremely large MSS devices, handling
564 * smaller than MSS windows in this way does make sense.
565 */
566 if (tp->max_window >= 512)
567 cutoff = (tp->max_window >> 1);
568 else
569 cutoff = tp->max_window;
570
571 if (cutoff && pktsize > cutoff)
572 return max_t(int, cutoff, 68U - tp->tcp_header_len);
573 else
574 return pktsize;
575 }
576
577 /* tcp.c */
578 void tcp_get_info(const struct sock *, struct tcp_info *);
579
580 /* Read 'sendfile()'-style from a TCP socket */
581 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
582 unsigned int, size_t);
583 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
584 sk_read_actor_t recv_actor);
585
586 void tcp_initialize_rcv_mss(struct sock *sk);
587
588 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
589 int tcp_mss_to_mtu(struct sock *sk, int mss);
590 void tcp_mtup_init(struct sock *sk);
591 void tcp_init_buffer_space(struct sock *sk);
592
593 static inline void tcp_bound_rto(const struct sock *sk)
594 {
595 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
596 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
597 }
598
599 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
600 {
601 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
602 }
603
604 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
605 {
606 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
607 ntohl(TCP_FLAG_ACK) |
608 snd_wnd);
609 }
610
611 static inline void tcp_fast_path_on(struct tcp_sock *tp)
612 {
613 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
614 }
615
616 static inline void tcp_fast_path_check(struct sock *sk)
617 {
618 struct tcp_sock *tp = tcp_sk(sk);
619
620 if (skb_queue_empty(&tp->out_of_order_queue) &&
621 tp->rcv_wnd &&
622 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
623 !tp->urg_data)
624 tcp_fast_path_on(tp);
625 }
626
627 /* Compute the actual rto_min value */
628 static inline u32 tcp_rto_min(struct sock *sk)
629 {
630 const struct dst_entry *dst = __sk_dst_get(sk);
631 u32 rto_min = TCP_RTO_MIN;
632
633 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
634 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
635 return rto_min;
636 }
637
638 static inline u32 tcp_rto_min_us(struct sock *sk)
639 {
640 return jiffies_to_usecs(tcp_rto_min(sk));
641 }
642
643 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
644 {
645 return dst_metric_locked(dst, RTAX_CC_ALGO);
646 }
647
648 /* Compute the actual receive window we are currently advertising.
649 * Rcv_nxt can be after the window if our peer push more data
650 * than the offered window.
651 */
652 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
653 {
654 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
655
656 if (win < 0)
657 win = 0;
658 return (u32) win;
659 }
660
661 /* Choose a new window, without checks for shrinking, and without
662 * scaling applied to the result. The caller does these things
663 * if necessary. This is a "raw" window selection.
664 */
665 u32 __tcp_select_window(struct sock *sk);
666
667 void tcp_send_window_probe(struct sock *sk);
668
669 /* TCP timestamps are only 32-bits, this causes a slight
670 * complication on 64-bit systems since we store a snapshot
671 * of jiffies in the buffer control blocks below. We decided
672 * to use only the low 32-bits of jiffies and hide the ugly
673 * casts with the following macro.
674 */
675 #define tcp_time_stamp ((__u32)(jiffies))
676
677 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
678 {
679 return skb->skb_mstamp.stamp_jiffies;
680 }
681
682
683 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
684
685 #define TCPHDR_FIN 0x01
686 #define TCPHDR_SYN 0x02
687 #define TCPHDR_RST 0x04
688 #define TCPHDR_PSH 0x08
689 #define TCPHDR_ACK 0x10
690 #define TCPHDR_URG 0x20
691 #define TCPHDR_ECE 0x40
692 #define TCPHDR_CWR 0x80
693
694 /* This is what the send packet queuing engine uses to pass
695 * TCP per-packet control information to the transmission code.
696 * We also store the host-order sequence numbers in here too.
697 * This is 44 bytes if IPV6 is enabled.
698 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
699 */
700 struct tcp_skb_cb {
701 __u32 seq; /* Starting sequence number */
702 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
703 union {
704 /* Note : tcp_tw_isn is used in input path only
705 * (isn chosen by tcp_timewait_state_process())
706 *
707 * tcp_gso_segs is used in write queue only,
708 * cf tcp_skb_pcount()
709 */
710 __u32 tcp_tw_isn;
711 __u32 tcp_gso_segs;
712 };
713 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
714
715 __u8 sacked; /* State flags for SACK/FACK. */
716 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
717 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
718 #define TCPCB_LOST 0x04 /* SKB is lost */
719 #define TCPCB_TAGBITS 0x07 /* All tag bits */
720 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp) */
721 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
722 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
723 TCPCB_REPAIRED)
724
725 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
726 /* 1 byte hole */
727 __u32 ack_seq; /* Sequence number ACK'd */
728 union {
729 struct inet_skb_parm h4;
730 #if IS_ENABLED(CONFIG_IPV6)
731 struct inet6_skb_parm h6;
732 #endif
733 } header; /* For incoming frames */
734 };
735
736 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
737
738
739 #if IS_ENABLED(CONFIG_IPV6)
740 /* This is the variant of inet6_iif() that must be used by TCP,
741 * as TCP moves IP6CB into a different location in skb->cb[]
742 */
743 static inline int tcp_v6_iif(const struct sk_buff *skb)
744 {
745 return TCP_SKB_CB(skb)->header.h6.iif;
746 }
747 #endif
748
749 /* Due to TSO, an SKB can be composed of multiple actual
750 * packets. To keep these tracked properly, we use this.
751 */
752 static inline int tcp_skb_pcount(const struct sk_buff *skb)
753 {
754 return TCP_SKB_CB(skb)->tcp_gso_segs;
755 }
756
757 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
758 {
759 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
760 }
761
762 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
763 {
764 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
765 }
766
767 /* This is valid iff tcp_skb_pcount() > 1. */
768 static inline int tcp_skb_mss(const struct sk_buff *skb)
769 {
770 return skb_shinfo(skb)->gso_size;
771 }
772
773 /* Events passed to congestion control interface */
774 enum tcp_ca_event {
775 CA_EVENT_TX_START, /* first transmit when no packets in flight */
776 CA_EVENT_CWND_RESTART, /* congestion window restart */
777 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
778 CA_EVENT_LOSS, /* loss timeout */
779 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
780 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
781 CA_EVENT_DELAYED_ACK, /* Delayed ack is sent */
782 CA_EVENT_NON_DELAYED_ACK,
783 };
784
785 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
786 enum tcp_ca_ack_event_flags {
787 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
788 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
789 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
790 };
791
792 /*
793 * Interface for adding new TCP congestion control handlers
794 */
795 #define TCP_CA_NAME_MAX 16
796 #define TCP_CA_MAX 128
797 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
798
799 #define TCP_CA_UNSPEC 0
800
801 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
802 #define TCP_CONG_NON_RESTRICTED 0x1
803 /* Requires ECN/ECT set on all packets */
804 #define TCP_CONG_NEEDS_ECN 0x2
805
806 struct tcp_congestion_ops {
807 struct list_head list;
808 u32 key;
809 u32 flags;
810
811 /* initialize private data (optional) */
812 void (*init)(struct sock *sk);
813 /* cleanup private data (optional) */
814 void (*release)(struct sock *sk);
815
816 /* return slow start threshold (required) */
817 u32 (*ssthresh)(struct sock *sk);
818 /* do new cwnd calculation (required) */
819 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
820 /* call before changing ca_state (optional) */
821 void (*set_state)(struct sock *sk, u8 new_state);
822 /* call when cwnd event occurs (optional) */
823 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
824 /* call when ack arrives (optional) */
825 void (*in_ack_event)(struct sock *sk, u32 flags);
826 /* new value of cwnd after loss (optional) */
827 u32 (*undo_cwnd)(struct sock *sk);
828 /* hook for packet ack accounting (optional) */
829 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
830 /* get info for inet_diag (optional) */
831 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
832
833 char name[TCP_CA_NAME_MAX];
834 struct module *owner;
835 };
836
837 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
838 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
839
840 void tcp_assign_congestion_control(struct sock *sk);
841 void tcp_init_congestion_control(struct sock *sk);
842 void tcp_cleanup_congestion_control(struct sock *sk);
843 int tcp_set_default_congestion_control(const char *name);
844 void tcp_get_default_congestion_control(char *name);
845 void tcp_get_available_congestion_control(char *buf, size_t len);
846 void tcp_get_allowed_congestion_control(char *buf, size_t len);
847 int tcp_set_allowed_congestion_control(char *allowed);
848 int tcp_set_congestion_control(struct sock *sk, const char *name);
849 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
850 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
851
852 u32 tcp_reno_ssthresh(struct sock *sk);
853 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
854 extern struct tcp_congestion_ops tcp_reno;
855
856 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
857 u32 tcp_ca_get_key_by_name(const char *name);
858 #ifdef CONFIG_INET
859 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
860 #else
861 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
862 {
863 return NULL;
864 }
865 #endif
866
867 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
868 {
869 const struct inet_connection_sock *icsk = inet_csk(sk);
870
871 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
872 }
873
874 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
875 {
876 struct inet_connection_sock *icsk = inet_csk(sk);
877
878 if (icsk->icsk_ca_ops->set_state)
879 icsk->icsk_ca_ops->set_state(sk, ca_state);
880 icsk->icsk_ca_state = ca_state;
881 }
882
883 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
884 {
885 const struct inet_connection_sock *icsk = inet_csk(sk);
886
887 if (icsk->icsk_ca_ops->cwnd_event)
888 icsk->icsk_ca_ops->cwnd_event(sk, event);
889 }
890
891 /* These functions determine how the current flow behaves in respect of SACK
892 * handling. SACK is negotiated with the peer, and therefore it can vary
893 * between different flows.
894 *
895 * tcp_is_sack - SACK enabled
896 * tcp_is_reno - No SACK
897 * tcp_is_fack - FACK enabled, implies SACK enabled
898 */
899 static inline int tcp_is_sack(const struct tcp_sock *tp)
900 {
901 return tp->rx_opt.sack_ok;
902 }
903
904 static inline bool tcp_is_reno(const struct tcp_sock *tp)
905 {
906 return !tcp_is_sack(tp);
907 }
908
909 static inline bool tcp_is_fack(const struct tcp_sock *tp)
910 {
911 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
912 }
913
914 static inline void tcp_enable_fack(struct tcp_sock *tp)
915 {
916 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
917 }
918
919 /* TCP early-retransmit (ER) is similar to but more conservative than
920 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
921 */
922 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
923 {
924 tp->do_early_retrans = sysctl_tcp_early_retrans &&
925 sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
926 sysctl_tcp_reordering == 3;
927 }
928
929 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
930 {
931 tp->do_early_retrans = 0;
932 }
933
934 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
935 {
936 return tp->sacked_out + tp->lost_out;
937 }
938
939 /* This determines how many packets are "in the network" to the best
940 * of our knowledge. In many cases it is conservative, but where
941 * detailed information is available from the receiver (via SACK
942 * blocks etc.) we can make more aggressive calculations.
943 *
944 * Use this for decisions involving congestion control, use just
945 * tp->packets_out to determine if the send queue is empty or not.
946 *
947 * Read this equation as:
948 *
949 * "Packets sent once on transmission queue" MINUS
950 * "Packets left network, but not honestly ACKed yet" PLUS
951 * "Packets fast retransmitted"
952 */
953 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
954 {
955 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
956 }
957
958 #define TCP_INFINITE_SSTHRESH 0x7fffffff
959
960 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
961 {
962 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
963 }
964
965 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
966 {
967 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
968 (1 << inet_csk(sk)->icsk_ca_state);
969 }
970
971 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
972 * The exception is cwnd reduction phase, when cwnd is decreasing towards
973 * ssthresh.
974 */
975 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
976 {
977 const struct tcp_sock *tp = tcp_sk(sk);
978
979 if (tcp_in_cwnd_reduction(sk))
980 return tp->snd_ssthresh;
981 else
982 return max(tp->snd_ssthresh,
983 ((tp->snd_cwnd >> 1) +
984 (tp->snd_cwnd >> 2)));
985 }
986
987 /* Use define here intentionally to get WARN_ON location shown at the caller */
988 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
989
990 void tcp_enter_cwr(struct sock *sk);
991 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
992
993 /* The maximum number of MSS of available cwnd for which TSO defers
994 * sending if not using sysctl_tcp_tso_win_divisor.
995 */
996 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
997 {
998 return 3;
999 }
1000
1001 /* Slow start with delack produces 3 packets of burst, so that
1002 * it is safe "de facto". This will be the default - same as
1003 * the default reordering threshold - but if reordering increases,
1004 * we must be able to allow cwnd to burst at least this much in order
1005 * to not pull it back when holes are filled.
1006 */
1007 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
1008 {
1009 return tp->reordering;
1010 }
1011
1012 /* Returns end sequence number of the receiver's advertised window */
1013 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1014 {
1015 return tp->snd_una + tp->snd_wnd;
1016 }
1017
1018 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1019 * flexible approach. The RFC suggests cwnd should not be raised unless
1020 * it was fully used previously. And that's exactly what we do in
1021 * congestion avoidance mode. But in slow start we allow cwnd to grow
1022 * as long as the application has used half the cwnd.
1023 * Example :
1024 * cwnd is 10 (IW10), but application sends 9 frames.
1025 * We allow cwnd to reach 18 when all frames are ACKed.
1026 * This check is safe because it's as aggressive as slow start which already
1027 * risks 100% overshoot. The advantage is that we discourage application to
1028 * either send more filler packets or data to artificially blow up the cwnd
1029 * usage, and allow application-limited process to probe bw more aggressively.
1030 */
1031 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1032 {
1033 const struct tcp_sock *tp = tcp_sk(sk);
1034
1035 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1036 if (tp->snd_cwnd <= tp->snd_ssthresh)
1037 return tp->snd_cwnd < 2 * tp->max_packets_out;
1038
1039 return tp->is_cwnd_limited;
1040 }
1041
1042 static inline void tcp_check_probe_timer(struct sock *sk)
1043 {
1044 const struct tcp_sock *tp = tcp_sk(sk);
1045 const struct inet_connection_sock *icsk = inet_csk(sk);
1046
1047 if (!tp->packets_out && !icsk->icsk_pending)
1048 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1049 icsk->icsk_rto, TCP_RTO_MAX);
1050 }
1051
1052 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1053 {
1054 tp->snd_wl1 = seq;
1055 }
1056
1057 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1058 {
1059 tp->snd_wl1 = seq;
1060 }
1061
1062 /*
1063 * Calculate(/check) TCP checksum
1064 */
1065 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1066 __be32 daddr, __wsum base)
1067 {
1068 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1069 }
1070
1071 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1072 {
1073 return __skb_checksum_complete(skb);
1074 }
1075
1076 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1077 {
1078 return !skb_csum_unnecessary(skb) &&
1079 __tcp_checksum_complete(skb);
1080 }
1081
1082 /* Prequeue for VJ style copy to user, combined with checksumming. */
1083
1084 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1085 {
1086 tp->ucopy.task = NULL;
1087 tp->ucopy.len = 0;
1088 tp->ucopy.memory = 0;
1089 skb_queue_head_init(&tp->ucopy.prequeue);
1090 }
1091
1092 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1093
1094 #undef STATE_TRACE
1095
1096 #ifdef STATE_TRACE
1097 static const char *statename[]={
1098 "Unused","Established","Syn Sent","Syn Recv",
1099 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1100 "Close Wait","Last ACK","Listen","Closing"
1101 };
1102 #endif
1103 void tcp_set_state(struct sock *sk, int state);
1104
1105 void tcp_done(struct sock *sk);
1106
1107 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1108 {
1109 rx_opt->dsack = 0;
1110 rx_opt->num_sacks = 0;
1111 }
1112
1113 u32 tcp_default_init_rwnd(u32 mss);
1114
1115 /* Determine a window scaling and initial window to offer. */
1116 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1117 __u32 *window_clamp, int wscale_ok,
1118 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1119
1120 static inline int tcp_win_from_space(int space)
1121 {
1122 return sysctl_tcp_adv_win_scale<=0 ?
1123 (space>>(-sysctl_tcp_adv_win_scale)) :
1124 space - (space>>sysctl_tcp_adv_win_scale);
1125 }
1126
1127 /* Note: caller must be prepared to deal with negative returns */
1128 static inline int tcp_space(const struct sock *sk)
1129 {
1130 return tcp_win_from_space(sk->sk_rcvbuf -
1131 atomic_read(&sk->sk_rmem_alloc));
1132 }
1133
1134 static inline int tcp_full_space(const struct sock *sk)
1135 {
1136 return tcp_win_from_space(sk->sk_rcvbuf);
1137 }
1138
1139 extern void tcp_openreq_init_rwin(struct request_sock *req,
1140 struct sock *sk, struct dst_entry *dst);
1141
1142 void tcp_enter_memory_pressure(struct sock *sk);
1143
1144 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1145 {
1146 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1147 }
1148
1149 static inline int keepalive_time_when(const struct tcp_sock *tp)
1150 {
1151 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1152 }
1153
1154 static inline int keepalive_probes(const struct tcp_sock *tp)
1155 {
1156 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1157 }
1158
1159 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1160 {
1161 const struct inet_connection_sock *icsk = &tp->inet_conn;
1162
1163 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1164 tcp_time_stamp - tp->rcv_tstamp);
1165 }
1166
1167 static inline int tcp_fin_time(const struct sock *sk)
1168 {
1169 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1170 const int rto = inet_csk(sk)->icsk_rto;
1171
1172 if (fin_timeout < (rto << 2) - (rto >> 1))
1173 fin_timeout = (rto << 2) - (rto >> 1);
1174
1175 return fin_timeout;
1176 }
1177
1178 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1179 int paws_win)
1180 {
1181 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1182 return true;
1183 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1184 return true;
1185 /*
1186 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1187 * then following tcp messages have valid values. Ignore 0 value,
1188 * or else 'negative' tsval might forbid us to accept their packets.
1189 */
1190 if (!rx_opt->ts_recent)
1191 return true;
1192 return false;
1193 }
1194
1195 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1196 int rst)
1197 {
1198 if (tcp_paws_check(rx_opt, 0))
1199 return false;
1200
1201 /* RST segments are not recommended to carry timestamp,
1202 and, if they do, it is recommended to ignore PAWS because
1203 "their cleanup function should take precedence over timestamps."
1204 Certainly, it is mistake. It is necessary to understand the reasons
1205 of this constraint to relax it: if peer reboots, clock may go
1206 out-of-sync and half-open connections will not be reset.
1207 Actually, the problem would be not existing if all
1208 the implementations followed draft about maintaining clock
1209 via reboots. Linux-2.2 DOES NOT!
1210
1211 However, we can relax time bounds for RST segments to MSL.
1212 */
1213 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1214 return false;
1215 return true;
1216 }
1217
1218 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1219 int mib_idx, u32 *last_oow_ack_time);
1220
1221 static inline void tcp_mib_init(struct net *net)
1222 {
1223 /* See RFC 2012 */
1224 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1225 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1226 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1227 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1228 }
1229
1230 /* from STCP */
1231 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1232 {
1233 tp->lost_skb_hint = NULL;
1234 }
1235
1236 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1237 {
1238 tcp_clear_retrans_hints_partial(tp);
1239 tp->retransmit_skb_hint = NULL;
1240 }
1241
1242 /* MD5 Signature */
1243 struct crypto_hash;
1244
1245 union tcp_md5_addr {
1246 struct in_addr a4;
1247 #if IS_ENABLED(CONFIG_IPV6)
1248 struct in6_addr a6;
1249 #endif
1250 };
1251
1252 /* - key database */
1253 struct tcp_md5sig_key {
1254 struct hlist_node node;
1255 u8 keylen;
1256 u8 family; /* AF_INET or AF_INET6 */
1257 union tcp_md5_addr addr;
1258 u8 key[TCP_MD5SIG_MAXKEYLEN];
1259 struct rcu_head rcu;
1260 };
1261
1262 /* - sock block */
1263 struct tcp_md5sig_info {
1264 struct hlist_head head;
1265 struct rcu_head rcu;
1266 };
1267
1268 /* - pseudo header */
1269 struct tcp4_pseudohdr {
1270 __be32 saddr;
1271 __be32 daddr;
1272 __u8 pad;
1273 __u8 protocol;
1274 __be16 len;
1275 };
1276
1277 struct tcp6_pseudohdr {
1278 struct in6_addr saddr;
1279 struct in6_addr daddr;
1280 __be32 len;
1281 __be32 protocol; /* including padding */
1282 };
1283
1284 union tcp_md5sum_block {
1285 struct tcp4_pseudohdr ip4;
1286 #if IS_ENABLED(CONFIG_IPV6)
1287 struct tcp6_pseudohdr ip6;
1288 #endif
1289 };
1290
1291 /* - pool: digest algorithm, hash description and scratch buffer */
1292 struct tcp_md5sig_pool {
1293 struct hash_desc md5_desc;
1294 union tcp_md5sum_block md5_blk;
1295 };
1296
1297 /* - functions */
1298 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1299 const struct sock *sk, const struct request_sock *req,
1300 const struct sk_buff *skb);
1301 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1302 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1303 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1304 int family);
1305 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1306 struct sock *addr_sk);
1307
1308 #ifdef CONFIG_TCP_MD5SIG
1309 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1310 const union tcp_md5_addr *addr,
1311 int family);
1312 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1313 #else
1314 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1315 const union tcp_md5_addr *addr,
1316 int family)
1317 {
1318 return NULL;
1319 }
1320 #define tcp_twsk_md5_key(twsk) NULL
1321 #endif
1322
1323 bool tcp_alloc_md5sig_pool(void);
1324
1325 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1326 static inline void tcp_put_md5sig_pool(void)
1327 {
1328 local_bh_enable();
1329 }
1330
1331 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1332 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1333 unsigned int header_len);
1334 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1335 const struct tcp_md5sig_key *key);
1336
1337 /* From tcp_fastopen.c */
1338 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1339 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1340 unsigned long *last_syn_loss);
1341 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1342 struct tcp_fastopen_cookie *cookie, bool syn_lost);
1343 struct tcp_fastopen_request {
1344 /* Fast Open cookie. Size 0 means a cookie request */
1345 struct tcp_fastopen_cookie cookie;
1346 struct msghdr *data; /* data in MSG_FASTOPEN */
1347 size_t size;
1348 int copied; /* queued in tcp_connect() */
1349 };
1350 void tcp_free_fastopen_req(struct tcp_sock *tp);
1351
1352 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1353 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1354 bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1355 struct request_sock *req,
1356 struct tcp_fastopen_cookie *foc,
1357 struct dst_entry *dst);
1358 void tcp_fastopen_init_key_once(bool publish);
1359 #define TCP_FASTOPEN_KEY_LENGTH 16
1360
1361 /* Fastopen key context */
1362 struct tcp_fastopen_context {
1363 struct crypto_cipher *tfm;
1364 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1365 struct rcu_head rcu;
1366 };
1367
1368 /* write queue abstraction */
1369 static inline void tcp_write_queue_purge(struct sock *sk)
1370 {
1371 struct sk_buff *skb;
1372
1373 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1374 sk_wmem_free_skb(sk, skb);
1375 sk_mem_reclaim(sk);
1376 tcp_clear_all_retrans_hints(tcp_sk(sk));
1377 }
1378
1379 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1380 {
1381 return skb_peek(&sk->sk_write_queue);
1382 }
1383
1384 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1385 {
1386 return skb_peek_tail(&sk->sk_write_queue);
1387 }
1388
1389 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1390 const struct sk_buff *skb)
1391 {
1392 return skb_queue_next(&sk->sk_write_queue, skb);
1393 }
1394
1395 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1396 const struct sk_buff *skb)
1397 {
1398 return skb_queue_prev(&sk->sk_write_queue, skb);
1399 }
1400
1401 #define tcp_for_write_queue(skb, sk) \
1402 skb_queue_walk(&(sk)->sk_write_queue, skb)
1403
1404 #define tcp_for_write_queue_from(skb, sk) \
1405 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1406
1407 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1408 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1409
1410 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1411 {
1412 return sk->sk_send_head;
1413 }
1414
1415 static inline bool tcp_skb_is_last(const struct sock *sk,
1416 const struct sk_buff *skb)
1417 {
1418 return skb_queue_is_last(&sk->sk_write_queue, skb);
1419 }
1420
1421 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1422 {
1423 if (tcp_skb_is_last(sk, skb))
1424 sk->sk_send_head = NULL;
1425 else
1426 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1427 }
1428
1429 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1430 {
1431 if (sk->sk_send_head == skb_unlinked)
1432 sk->sk_send_head = NULL;
1433 }
1434
1435 static inline void tcp_init_send_head(struct sock *sk)
1436 {
1437 sk->sk_send_head = NULL;
1438 }
1439
1440 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1441 {
1442 __skb_queue_tail(&sk->sk_write_queue, skb);
1443 }
1444
1445 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1446 {
1447 __tcp_add_write_queue_tail(sk, skb);
1448
1449 /* Queue it, remembering where we must start sending. */
1450 if (sk->sk_send_head == NULL) {
1451 sk->sk_send_head = skb;
1452
1453 if (tcp_sk(sk)->highest_sack == NULL)
1454 tcp_sk(sk)->highest_sack = skb;
1455 }
1456 }
1457
1458 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1459 {
1460 __skb_queue_head(&sk->sk_write_queue, skb);
1461 }
1462
1463 /* Insert buff after skb on the write queue of sk. */
1464 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1465 struct sk_buff *buff,
1466 struct sock *sk)
1467 {
1468 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1469 }
1470
1471 /* Insert new before skb on the write queue of sk. */
1472 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1473 struct sk_buff *skb,
1474 struct sock *sk)
1475 {
1476 __skb_queue_before(&sk->sk_write_queue, skb, new);
1477
1478 if (sk->sk_send_head == skb)
1479 sk->sk_send_head = new;
1480 }
1481
1482 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1483 {
1484 __skb_unlink(skb, &sk->sk_write_queue);
1485 }
1486
1487 static inline bool tcp_write_queue_empty(struct sock *sk)
1488 {
1489 return skb_queue_empty(&sk->sk_write_queue);
1490 }
1491
1492 static inline void tcp_push_pending_frames(struct sock *sk)
1493 {
1494 if (tcp_send_head(sk)) {
1495 struct tcp_sock *tp = tcp_sk(sk);
1496
1497 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1498 }
1499 }
1500
1501 /* Start sequence of the skb just after the highest skb with SACKed
1502 * bit, valid only if sacked_out > 0 or when the caller has ensured
1503 * validity by itself.
1504 */
1505 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1506 {
1507 if (!tp->sacked_out)
1508 return tp->snd_una;
1509
1510 if (tp->highest_sack == NULL)
1511 return tp->snd_nxt;
1512
1513 return TCP_SKB_CB(tp->highest_sack)->seq;
1514 }
1515
1516 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1517 {
1518 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1519 tcp_write_queue_next(sk, skb);
1520 }
1521
1522 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1523 {
1524 return tcp_sk(sk)->highest_sack;
1525 }
1526
1527 static inline void tcp_highest_sack_reset(struct sock *sk)
1528 {
1529 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1530 }
1531
1532 /* Called when old skb is about to be deleted (to be combined with new skb) */
1533 static inline void tcp_highest_sack_combine(struct sock *sk,
1534 struct sk_buff *old,
1535 struct sk_buff *new)
1536 {
1537 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1538 tcp_sk(sk)->highest_sack = new;
1539 }
1540
1541 /* Determines whether this is a thin stream (which may suffer from
1542 * increased latency). Used to trigger latency-reducing mechanisms.
1543 */
1544 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1545 {
1546 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1547 }
1548
1549 /* /proc */
1550 enum tcp_seq_states {
1551 TCP_SEQ_STATE_LISTENING,
1552 TCP_SEQ_STATE_OPENREQ,
1553 TCP_SEQ_STATE_ESTABLISHED,
1554 };
1555
1556 int tcp_seq_open(struct inode *inode, struct file *file);
1557
1558 struct tcp_seq_afinfo {
1559 char *name;
1560 sa_family_t family;
1561 const struct file_operations *seq_fops;
1562 struct seq_operations seq_ops;
1563 };
1564
1565 struct tcp_iter_state {
1566 struct seq_net_private p;
1567 sa_family_t family;
1568 enum tcp_seq_states state;
1569 struct sock *syn_wait_sk;
1570 int bucket, offset, sbucket, num;
1571 kuid_t uid;
1572 loff_t last_pos;
1573 };
1574
1575 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1576 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1577
1578 extern struct request_sock_ops tcp_request_sock_ops;
1579 extern struct request_sock_ops tcp6_request_sock_ops;
1580
1581 void tcp_v4_destroy_sock(struct sock *sk);
1582
1583 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1584 netdev_features_t features);
1585 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1586 int tcp_gro_complete(struct sk_buff *skb);
1587
1588 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1589
1590 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1591 {
1592 return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1593 }
1594
1595 static inline bool tcp_stream_memory_free(const struct sock *sk)
1596 {
1597 const struct tcp_sock *tp = tcp_sk(sk);
1598 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1599
1600 return notsent_bytes < tcp_notsent_lowat(tp);
1601 }
1602
1603 #ifdef CONFIG_PROC_FS
1604 int tcp4_proc_init(void);
1605 void tcp4_proc_exit(void);
1606 #endif
1607
1608 int tcp_rtx_synack(struct sock *sk, struct request_sock *req);
1609 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1610 const struct tcp_request_sock_ops *af_ops,
1611 struct sock *sk, struct sk_buff *skb);
1612
1613 /* TCP af-specific functions */
1614 struct tcp_sock_af_ops {
1615 #ifdef CONFIG_TCP_MD5SIG
1616 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1617 struct sock *addr_sk);
1618 int (*calc_md5_hash) (char *location,
1619 struct tcp_md5sig_key *md5,
1620 const struct sock *sk,
1621 const struct request_sock *req,
1622 const struct sk_buff *skb);
1623 int (*md5_parse) (struct sock *sk,
1624 char __user *optval,
1625 int optlen);
1626 #endif
1627 };
1628
1629 struct tcp_request_sock_ops {
1630 u16 mss_clamp;
1631 #ifdef CONFIG_TCP_MD5SIG
1632 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1633 struct request_sock *req);
1634 int (*calc_md5_hash) (char *location,
1635 struct tcp_md5sig_key *md5,
1636 const struct sock *sk,
1637 const struct request_sock *req,
1638 const struct sk_buff *skb);
1639 #endif
1640 void (*init_req)(struct request_sock *req, struct sock *sk,
1641 struct sk_buff *skb);
1642 #ifdef CONFIG_SYN_COOKIES
1643 __u32 (*cookie_init_seq)(struct sock *sk, const struct sk_buff *skb,
1644 __u16 *mss);
1645 #endif
1646 struct dst_entry *(*route_req)(struct sock *sk, struct flowi *fl,
1647 const struct request_sock *req,
1648 bool *strict);
1649 __u32 (*init_seq)(const struct sk_buff *skb);
1650 int (*send_synack)(struct sock *sk, struct dst_entry *dst,
1651 struct flowi *fl, struct request_sock *req,
1652 u16 queue_mapping, struct tcp_fastopen_cookie *foc);
1653 void (*queue_hash_add)(struct sock *sk, struct request_sock *req,
1654 const unsigned long timeout);
1655 };
1656
1657 #ifdef CONFIG_SYN_COOKIES
1658 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1659 struct sock *sk, struct sk_buff *skb,
1660 __u16 *mss)
1661 {
1662 return ops->cookie_init_seq(sk, skb, mss);
1663 }
1664 #else
1665 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1666 struct sock *sk, struct sk_buff *skb,
1667 __u16 *mss)
1668 {
1669 return 0;
1670 }
1671 #endif
1672
1673 int tcpv4_offload_init(void);
1674
1675 void tcp_v4_init(void);
1676 void tcp_init(void);
1677
1678 /*
1679 * Save and compile IPv4 options, return a pointer to it
1680 */
1681 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1682 {
1683 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1684 struct ip_options_rcu *dopt = NULL;
1685
1686 if (opt->optlen) {
1687 int opt_size = sizeof(*dopt) + opt->optlen;
1688
1689 dopt = kmalloc(opt_size, GFP_ATOMIC);
1690 if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1691 kfree(dopt);
1692 dopt = NULL;
1693 }
1694 }
1695 return dopt;
1696 }
1697
1698 /* locally generated TCP pure ACKs have skb->truesize == 2
1699 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1700 * This is much faster than dissecting the packet to find out.
1701 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1702 */
1703 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1704 {
1705 return skb->truesize == 2;
1706 }
1707
1708 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1709 {
1710 skb->truesize = 2;
1711 }
1712
1713 #endif /* _TCP_H */
This page took 0.078873 seconds and 5 git commands to generate.