2bb2bad21d5c2e0d1b079e7bcf19e192bc126637
[deliverable/linux.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/crypto.h>
31 #include <linux/cryptohash.h>
32 #include <linux/kref.h>
33 #include <linux/ktime.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS 88U
66
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS 1024
69
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL 600
72
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD 8
75
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* urg_data states */
83 #define TCP_URG_VALID 0x0100
84 #define TCP_URG_NOTYET 0x0200
85 #define TCP_URG_READ 0x0400
86
87 #define TCP_RETR1 3 /*
88 * This is how many retries it does before it
89 * tries to figure out if the gateway is
90 * down. Minimal RFC value is 3; it corresponds
91 * to ~3sec-8min depending on RTO.
92 */
93
94 #define TCP_RETR2 15 /*
95 * This should take at least
96 * 90 minutes to time out.
97 * RFC1122 says that the limit is 100 sec.
98 * 15 is ~13-30min depending on RTO.
99 */
100
101 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
102 * when active opening a connection.
103 * RFC1122 says the minimum retry MUST
104 * be at least 180secs. Nevertheless
105 * this value is corresponding to
106 * 63secs of retransmission with the
107 * current initial RTO.
108 */
109
110 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
111 * when passive opening a connection.
112 * This is corresponding to 31secs of
113 * retransmission with the current
114 * initial RTO.
115 */
116
117 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
118 * state, about 60 seconds */
119 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
120 /* BSD style FIN_WAIT2 deadlock breaker.
121 * It used to be 3min, new value is 60sec,
122 * to combine FIN-WAIT-2 timeout with
123 * TIME-WAIT timer.
124 */
125
126 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
127 #if HZ >= 100
128 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
129 #define TCP_ATO_MIN ((unsigned)(HZ/25))
130 #else
131 #define TCP_DELACK_MIN 4U
132 #define TCP_ATO_MIN 4U
133 #endif
134 #define TCP_RTO_MAX ((unsigned)(120*HZ))
135 #define TCP_RTO_MIN ((unsigned)(HZ/5))
136 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
137 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
138 * used as a fallback RTO for the
139 * initial data transmission if no
140 * valid RTT sample has been acquired,
141 * most likely due to retrans in 3WHS.
142 */
143
144 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
145 * for local resources.
146 */
147
148 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
149 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
150 #define TCP_KEEPALIVE_INTVL (75*HZ)
151
152 #define MAX_TCP_KEEPIDLE 32767
153 #define MAX_TCP_KEEPINTVL 32767
154 #define MAX_TCP_KEEPCNT 127
155 #define MAX_TCP_SYNCNT 127
156
157 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
158
159 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
160 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
161 * after this time. It should be equal
162 * (or greater than) TCP_TIMEWAIT_LEN
163 * to provide reliability equal to one
164 * provided by timewait state.
165 */
166 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
167 * timestamps. It must be less than
168 * minimal timewait lifetime.
169 */
170 /*
171 * TCP option
172 */
173
174 #define TCPOPT_NOP 1 /* Padding */
175 #define TCPOPT_EOL 0 /* End of options */
176 #define TCPOPT_MSS 2 /* Segment size negotiating */
177 #define TCPOPT_WINDOW 3 /* Window scaling */
178 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
179 #define TCPOPT_SACK 5 /* SACK Block */
180 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
181 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
182 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
183 #define TCPOPT_EXP 254 /* Experimental */
184 /* Magic number to be after the option value for sharing TCP
185 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
186 */
187 #define TCPOPT_FASTOPEN_MAGIC 0xF989
188
189 /*
190 * TCP option lengths
191 */
192
193 #define TCPOLEN_MSS 4
194 #define TCPOLEN_WINDOW 3
195 #define TCPOLEN_SACK_PERM 2
196 #define TCPOLEN_TIMESTAMP 10
197 #define TCPOLEN_MD5SIG 18
198 #define TCPOLEN_FASTOPEN_BASE 2
199 #define TCPOLEN_EXP_FASTOPEN_BASE 4
200
201 /* But this is what stacks really send out. */
202 #define TCPOLEN_TSTAMP_ALIGNED 12
203 #define TCPOLEN_WSCALE_ALIGNED 4
204 #define TCPOLEN_SACKPERM_ALIGNED 4
205 #define TCPOLEN_SACK_BASE 2
206 #define TCPOLEN_SACK_BASE_ALIGNED 4
207 #define TCPOLEN_SACK_PERBLOCK 8
208 #define TCPOLEN_MD5SIG_ALIGNED 20
209 #define TCPOLEN_MSS_ALIGNED 4
210
211 /* Flags in tp->nonagle */
212 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
213 #define TCP_NAGLE_CORK 2 /* Socket is corked */
214 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
215
216 /* TCP thin-stream limits */
217 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
218
219 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
220 #define TCP_INIT_CWND 10
221
222 /* Bit Flags for sysctl_tcp_fastopen */
223 #define TFO_CLIENT_ENABLE 1
224 #define TFO_SERVER_ENABLE 2
225 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
226
227 /* Accept SYN data w/o any cookie option */
228 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
229
230 /* Force enable TFO on all listeners, i.e., not requiring the
231 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
232 */
233 #define TFO_SERVER_WO_SOCKOPT1 0x400
234 #define TFO_SERVER_WO_SOCKOPT2 0x800
235
236 extern struct inet_timewait_death_row tcp_death_row;
237
238 /* sysctl variables for tcp */
239 extern int sysctl_tcp_timestamps;
240 extern int sysctl_tcp_window_scaling;
241 extern int sysctl_tcp_sack;
242 extern int sysctl_tcp_fin_timeout;
243 extern int sysctl_tcp_keepalive_time;
244 extern int sysctl_tcp_keepalive_probes;
245 extern int sysctl_tcp_keepalive_intvl;
246 extern int sysctl_tcp_syn_retries;
247 extern int sysctl_tcp_synack_retries;
248 extern int sysctl_tcp_retries1;
249 extern int sysctl_tcp_retries2;
250 extern int sysctl_tcp_orphan_retries;
251 extern int sysctl_tcp_syncookies;
252 extern int sysctl_tcp_fastopen;
253 extern int sysctl_tcp_retrans_collapse;
254 extern int sysctl_tcp_stdurg;
255 extern int sysctl_tcp_rfc1337;
256 extern int sysctl_tcp_abort_on_overflow;
257 extern int sysctl_tcp_max_orphans;
258 extern int sysctl_tcp_fack;
259 extern int sysctl_tcp_reordering;
260 extern int sysctl_tcp_max_reordering;
261 extern int sysctl_tcp_dsack;
262 extern long sysctl_tcp_mem[3];
263 extern int sysctl_tcp_wmem[3];
264 extern int sysctl_tcp_rmem[3];
265 extern int sysctl_tcp_app_win;
266 extern int sysctl_tcp_adv_win_scale;
267 extern int sysctl_tcp_tw_reuse;
268 extern int sysctl_tcp_frto;
269 extern int sysctl_tcp_low_latency;
270 extern int sysctl_tcp_nometrics_save;
271 extern int sysctl_tcp_moderate_rcvbuf;
272 extern int sysctl_tcp_tso_win_divisor;
273 extern int sysctl_tcp_workaround_signed_windows;
274 extern int sysctl_tcp_slow_start_after_idle;
275 extern int sysctl_tcp_thin_linear_timeouts;
276 extern int sysctl_tcp_thin_dupack;
277 extern int sysctl_tcp_early_retrans;
278 extern int sysctl_tcp_limit_output_bytes;
279 extern int sysctl_tcp_challenge_ack_limit;
280 extern unsigned int sysctl_tcp_notsent_lowat;
281 extern int sysctl_tcp_min_tso_segs;
282 extern int sysctl_tcp_autocorking;
283 extern int sysctl_tcp_invalid_ratelimit;
284
285 extern atomic_long_t tcp_memory_allocated;
286 extern struct percpu_counter tcp_sockets_allocated;
287 extern int tcp_memory_pressure;
288
289 /* optimized version of sk_under_memory_pressure() for TCP sockets */
290 static inline bool tcp_under_memory_pressure(const struct sock *sk)
291 {
292 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
293 return !!sk->sk_cgrp->memory_pressure;
294
295 return tcp_memory_pressure;
296 }
297 /*
298 * The next routines deal with comparing 32 bit unsigned ints
299 * and worry about wraparound (automatic with unsigned arithmetic).
300 */
301
302 static inline bool before(__u32 seq1, __u32 seq2)
303 {
304 return (__s32)(seq1-seq2) < 0;
305 }
306 #define after(seq2, seq1) before(seq1, seq2)
307
308 /* is s2<=s1<=s3 ? */
309 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
310 {
311 return seq3 - seq2 >= seq1 - seq2;
312 }
313
314 static inline bool tcp_out_of_memory(struct sock *sk)
315 {
316 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
317 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
318 return true;
319 return false;
320 }
321
322 void sk_forced_mem_schedule(struct sock *sk, int size);
323
324 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
325 {
326 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
327 int orphans = percpu_counter_read_positive(ocp);
328
329 if (orphans << shift > sysctl_tcp_max_orphans) {
330 orphans = percpu_counter_sum_positive(ocp);
331 if (orphans << shift > sysctl_tcp_max_orphans)
332 return true;
333 }
334 return false;
335 }
336
337 bool tcp_check_oom(struct sock *sk, int shift);
338
339
340 extern struct proto tcp_prot;
341
342 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
343 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
344 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
345 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
346 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
347
348 void tcp_tasklet_init(void);
349
350 void tcp_v4_err(struct sk_buff *skb, u32);
351
352 void tcp_shutdown(struct sock *sk, int how);
353
354 void tcp_v4_early_demux(struct sk_buff *skb);
355 int tcp_v4_rcv(struct sk_buff *skb);
356
357 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
358 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
359 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
360 int flags);
361 void tcp_release_cb(struct sock *sk);
362 void tcp_wfree(struct sk_buff *skb);
363 void tcp_write_timer_handler(struct sock *sk);
364 void tcp_delack_timer_handler(struct sock *sk);
365 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
366 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
367 const struct tcphdr *th, unsigned int len);
368 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
369 const struct tcphdr *th, unsigned int len);
370 void tcp_rcv_space_adjust(struct sock *sk);
371 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
372 void tcp_twsk_destructor(struct sock *sk);
373 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
374 struct pipe_inode_info *pipe, size_t len,
375 unsigned int flags);
376
377 static inline void tcp_dec_quickack_mode(struct sock *sk,
378 const unsigned int pkts)
379 {
380 struct inet_connection_sock *icsk = inet_csk(sk);
381
382 if (icsk->icsk_ack.quick) {
383 if (pkts >= icsk->icsk_ack.quick) {
384 icsk->icsk_ack.quick = 0;
385 /* Leaving quickack mode we deflate ATO. */
386 icsk->icsk_ack.ato = TCP_ATO_MIN;
387 } else
388 icsk->icsk_ack.quick -= pkts;
389 }
390 }
391
392 #define TCP_ECN_OK 1
393 #define TCP_ECN_QUEUE_CWR 2
394 #define TCP_ECN_DEMAND_CWR 4
395 #define TCP_ECN_SEEN 8
396
397 enum tcp_tw_status {
398 TCP_TW_SUCCESS = 0,
399 TCP_TW_RST = 1,
400 TCP_TW_ACK = 2,
401 TCP_TW_SYN = 3
402 };
403
404
405 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
406 struct sk_buff *skb,
407 const struct tcphdr *th);
408 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
409 struct request_sock *req, bool fastopen);
410 int tcp_child_process(struct sock *parent, struct sock *child,
411 struct sk_buff *skb);
412 void tcp_enter_loss(struct sock *sk);
413 void tcp_clear_retrans(struct tcp_sock *tp);
414 void tcp_update_metrics(struct sock *sk);
415 void tcp_init_metrics(struct sock *sk);
416 void tcp_metrics_init(void);
417 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
418 bool paws_check, bool timestamps);
419 bool tcp_remember_stamp(struct sock *sk);
420 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
421 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
422 void tcp_disable_fack(struct tcp_sock *tp);
423 void tcp_close(struct sock *sk, long timeout);
424 void tcp_init_sock(struct sock *sk);
425 unsigned int tcp_poll(struct file *file, struct socket *sock,
426 struct poll_table_struct *wait);
427 int tcp_getsockopt(struct sock *sk, int level, int optname,
428 char __user *optval, int __user *optlen);
429 int tcp_setsockopt(struct sock *sk, int level, int optname,
430 char __user *optval, unsigned int optlen);
431 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
432 char __user *optval, int __user *optlen);
433 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
434 char __user *optval, unsigned int optlen);
435 void tcp_set_keepalive(struct sock *sk, int val);
436 void tcp_syn_ack_timeout(const struct request_sock *req);
437 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
438 int flags, int *addr_len);
439 void tcp_parse_options(const struct sk_buff *skb,
440 struct tcp_options_received *opt_rx,
441 int estab, struct tcp_fastopen_cookie *foc);
442 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
443
444 /*
445 * TCP v4 functions exported for the inet6 API
446 */
447
448 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
449 void tcp_v4_mtu_reduced(struct sock *sk);
450 void tcp_req_err(struct sock *sk, u32 seq);
451 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
452 struct sock *tcp_create_openreq_child(struct sock *sk,
453 struct request_sock *req,
454 struct sk_buff *skb);
455 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
456 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
457 struct request_sock *req,
458 struct dst_entry *dst);
459 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
460 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
461 int tcp_connect(struct sock *sk);
462 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
463 struct request_sock *req,
464 struct tcp_fastopen_cookie *foc);
465 int tcp_disconnect(struct sock *sk, int flags);
466
467 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
468 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
469 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
470
471 /* From syncookies.c */
472 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
473 u32 cookie);
474 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
475 #ifdef CONFIG_SYN_COOKIES
476
477 /* Syncookies use a monotonic timer which increments every 60 seconds.
478 * This counter is used both as a hash input and partially encoded into
479 * the cookie value. A cookie is only validated further if the delta
480 * between the current counter value and the encoded one is less than this,
481 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
482 * the counter advances immediately after a cookie is generated).
483 */
484 #define MAX_SYNCOOKIE_AGE 2
485 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
486 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
487
488 /* syncookies: remember time of last synqueue overflow
489 * But do not dirty this field too often (once per second is enough)
490 */
491 static inline void tcp_synq_overflow(struct sock *sk)
492 {
493 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
494 unsigned long now = jiffies;
495
496 if (time_after(now, last_overflow + HZ))
497 tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
498 }
499
500 /* syncookies: no recent synqueue overflow on this listening socket? */
501 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
502 {
503 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
504
505 return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
506 }
507
508 static inline u32 tcp_cookie_time(void)
509 {
510 u64 val = get_jiffies_64();
511
512 do_div(val, TCP_SYNCOOKIE_PERIOD);
513 return val;
514 }
515
516 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
517 u16 *mssp);
518 __u32 cookie_v4_init_sequence(struct sock *sk, const struct sk_buff *skb,
519 __u16 *mss);
520 __u32 cookie_init_timestamp(struct request_sock *req);
521 bool cookie_timestamp_decode(struct tcp_options_received *opt);
522 bool cookie_ecn_ok(const struct tcp_options_received *opt,
523 const struct net *net, const struct dst_entry *dst);
524
525 /* From net/ipv6/syncookies.c */
526 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
527 u32 cookie);
528 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
529
530 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
531 const struct tcphdr *th, u16 *mssp);
532 __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
533 __u16 *mss);
534 #endif
535 /* tcp_output.c */
536
537 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
538 int nonagle);
539 bool tcp_may_send_now(struct sock *sk);
540 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
541 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
542 void tcp_retransmit_timer(struct sock *sk);
543 void tcp_xmit_retransmit_queue(struct sock *);
544 void tcp_simple_retransmit(struct sock *);
545 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
546 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
547
548 void tcp_send_probe0(struct sock *);
549 void tcp_send_partial(struct sock *);
550 int tcp_write_wakeup(struct sock *, int mib);
551 void tcp_send_fin(struct sock *sk);
552 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
553 int tcp_send_synack(struct sock *);
554 void tcp_push_one(struct sock *, unsigned int mss_now);
555 void tcp_send_ack(struct sock *sk);
556 void tcp_send_delayed_ack(struct sock *sk);
557 void tcp_send_loss_probe(struct sock *sk);
558 bool tcp_schedule_loss_probe(struct sock *sk);
559
560 /* tcp_input.c */
561 void tcp_resume_early_retransmit(struct sock *sk);
562 void tcp_rearm_rto(struct sock *sk);
563 void tcp_reset(struct sock *sk);
564
565 /* tcp_timer.c */
566 void tcp_init_xmit_timers(struct sock *);
567 static inline void tcp_clear_xmit_timers(struct sock *sk)
568 {
569 inet_csk_clear_xmit_timers(sk);
570 }
571
572 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
573 unsigned int tcp_current_mss(struct sock *sk);
574
575 /* Bound MSS / TSO packet size with the half of the window */
576 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
577 {
578 int cutoff;
579
580 /* When peer uses tiny windows, there is no use in packetizing
581 * to sub-MSS pieces for the sake of SWS or making sure there
582 * are enough packets in the pipe for fast recovery.
583 *
584 * On the other hand, for extremely large MSS devices, handling
585 * smaller than MSS windows in this way does make sense.
586 */
587 if (tp->max_window >= 512)
588 cutoff = (tp->max_window >> 1);
589 else
590 cutoff = tp->max_window;
591
592 if (cutoff && pktsize > cutoff)
593 return max_t(int, cutoff, 68U - tp->tcp_header_len);
594 else
595 return pktsize;
596 }
597
598 /* tcp.c */
599 void tcp_get_info(struct sock *, struct tcp_info *);
600
601 /* Read 'sendfile()'-style from a TCP socket */
602 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
603 unsigned int, size_t);
604 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
605 sk_read_actor_t recv_actor);
606
607 void tcp_initialize_rcv_mss(struct sock *sk);
608
609 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
610 int tcp_mss_to_mtu(struct sock *sk, int mss);
611 void tcp_mtup_init(struct sock *sk);
612 void tcp_init_buffer_space(struct sock *sk);
613
614 static inline void tcp_bound_rto(const struct sock *sk)
615 {
616 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
617 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
618 }
619
620 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
621 {
622 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
623 }
624
625 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
626 {
627 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
628 ntohl(TCP_FLAG_ACK) |
629 snd_wnd);
630 }
631
632 static inline void tcp_fast_path_on(struct tcp_sock *tp)
633 {
634 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
635 }
636
637 static inline void tcp_fast_path_check(struct sock *sk)
638 {
639 struct tcp_sock *tp = tcp_sk(sk);
640
641 if (skb_queue_empty(&tp->out_of_order_queue) &&
642 tp->rcv_wnd &&
643 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
644 !tp->urg_data)
645 tcp_fast_path_on(tp);
646 }
647
648 /* Compute the actual rto_min value */
649 static inline u32 tcp_rto_min(struct sock *sk)
650 {
651 const struct dst_entry *dst = __sk_dst_get(sk);
652 u32 rto_min = TCP_RTO_MIN;
653
654 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
655 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
656 return rto_min;
657 }
658
659 static inline u32 tcp_rto_min_us(struct sock *sk)
660 {
661 return jiffies_to_usecs(tcp_rto_min(sk));
662 }
663
664 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
665 {
666 return dst_metric_locked(dst, RTAX_CC_ALGO);
667 }
668
669 /* Compute the actual receive window we are currently advertising.
670 * Rcv_nxt can be after the window if our peer push more data
671 * than the offered window.
672 */
673 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
674 {
675 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
676
677 if (win < 0)
678 win = 0;
679 return (u32) win;
680 }
681
682 /* Choose a new window, without checks for shrinking, and without
683 * scaling applied to the result. The caller does these things
684 * if necessary. This is a "raw" window selection.
685 */
686 u32 __tcp_select_window(struct sock *sk);
687
688 void tcp_send_window_probe(struct sock *sk);
689
690 /* TCP timestamps are only 32-bits, this causes a slight
691 * complication on 64-bit systems since we store a snapshot
692 * of jiffies in the buffer control blocks below. We decided
693 * to use only the low 32-bits of jiffies and hide the ugly
694 * casts with the following macro.
695 */
696 #define tcp_time_stamp ((__u32)(jiffies))
697
698 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
699 {
700 return skb->skb_mstamp.stamp_jiffies;
701 }
702
703
704 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
705
706 #define TCPHDR_FIN 0x01
707 #define TCPHDR_SYN 0x02
708 #define TCPHDR_RST 0x04
709 #define TCPHDR_PSH 0x08
710 #define TCPHDR_ACK 0x10
711 #define TCPHDR_URG 0x20
712 #define TCPHDR_ECE 0x40
713 #define TCPHDR_CWR 0x80
714
715 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
716
717 /* This is what the send packet queuing engine uses to pass
718 * TCP per-packet control information to the transmission code.
719 * We also store the host-order sequence numbers in here too.
720 * This is 44 bytes if IPV6 is enabled.
721 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
722 */
723 struct tcp_skb_cb {
724 __u32 seq; /* Starting sequence number */
725 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
726 union {
727 /* Note : tcp_tw_isn is used in input path only
728 * (isn chosen by tcp_timewait_state_process())
729 *
730 * tcp_gso_segs is used in write queue only,
731 * cf tcp_skb_pcount()
732 */
733 __u32 tcp_tw_isn;
734 __u32 tcp_gso_segs;
735 };
736 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
737
738 __u8 sacked; /* State flags for SACK/FACK. */
739 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
740 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
741 #define TCPCB_LOST 0x04 /* SKB is lost */
742 #define TCPCB_TAGBITS 0x07 /* All tag bits */
743 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp) */
744 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
745 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
746 TCPCB_REPAIRED)
747
748 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
749 /* 1 byte hole */
750 __u32 ack_seq; /* Sequence number ACK'd */
751 union {
752 struct inet_skb_parm h4;
753 #if IS_ENABLED(CONFIG_IPV6)
754 struct inet6_skb_parm h6;
755 #endif
756 } header; /* For incoming frames */
757 };
758
759 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
760
761
762 #if IS_ENABLED(CONFIG_IPV6)
763 /* This is the variant of inet6_iif() that must be used by TCP,
764 * as TCP moves IP6CB into a different location in skb->cb[]
765 */
766 static inline int tcp_v6_iif(const struct sk_buff *skb)
767 {
768 return TCP_SKB_CB(skb)->header.h6.iif;
769 }
770 #endif
771
772 /* Due to TSO, an SKB can be composed of multiple actual
773 * packets. To keep these tracked properly, we use this.
774 */
775 static inline int tcp_skb_pcount(const struct sk_buff *skb)
776 {
777 return TCP_SKB_CB(skb)->tcp_gso_segs;
778 }
779
780 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
781 {
782 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
783 }
784
785 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
786 {
787 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
788 }
789
790 /* This is valid iff tcp_skb_pcount() > 1. */
791 static inline int tcp_skb_mss(const struct sk_buff *skb)
792 {
793 return skb_shinfo(skb)->gso_size;
794 }
795
796 /* Events passed to congestion control interface */
797 enum tcp_ca_event {
798 CA_EVENT_TX_START, /* first transmit when no packets in flight */
799 CA_EVENT_CWND_RESTART, /* congestion window restart */
800 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
801 CA_EVENT_LOSS, /* loss timeout */
802 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
803 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
804 CA_EVENT_DELAYED_ACK, /* Delayed ack is sent */
805 CA_EVENT_NON_DELAYED_ACK,
806 };
807
808 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
809 enum tcp_ca_ack_event_flags {
810 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
811 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
812 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
813 };
814
815 /*
816 * Interface for adding new TCP congestion control handlers
817 */
818 #define TCP_CA_NAME_MAX 16
819 #define TCP_CA_MAX 128
820 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
821
822 #define TCP_CA_UNSPEC 0
823
824 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
825 #define TCP_CONG_NON_RESTRICTED 0x1
826 /* Requires ECN/ECT set on all packets */
827 #define TCP_CONG_NEEDS_ECN 0x2
828
829 union tcp_cc_info;
830
831 struct tcp_congestion_ops {
832 struct list_head list;
833 u32 key;
834 u32 flags;
835
836 /* initialize private data (optional) */
837 void (*init)(struct sock *sk);
838 /* cleanup private data (optional) */
839 void (*release)(struct sock *sk);
840
841 /* return slow start threshold (required) */
842 u32 (*ssthresh)(struct sock *sk);
843 /* do new cwnd calculation (required) */
844 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
845 /* call before changing ca_state (optional) */
846 void (*set_state)(struct sock *sk, u8 new_state);
847 /* call when cwnd event occurs (optional) */
848 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
849 /* call when ack arrives (optional) */
850 void (*in_ack_event)(struct sock *sk, u32 flags);
851 /* new value of cwnd after loss (optional) */
852 u32 (*undo_cwnd)(struct sock *sk);
853 /* hook for packet ack accounting (optional) */
854 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
855 /* get info for inet_diag (optional) */
856 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
857 union tcp_cc_info *info);
858
859 char name[TCP_CA_NAME_MAX];
860 struct module *owner;
861 };
862
863 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
864 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
865
866 void tcp_assign_congestion_control(struct sock *sk);
867 void tcp_init_congestion_control(struct sock *sk);
868 void tcp_cleanup_congestion_control(struct sock *sk);
869 int tcp_set_default_congestion_control(const char *name);
870 void tcp_get_default_congestion_control(char *name);
871 void tcp_get_available_congestion_control(char *buf, size_t len);
872 void tcp_get_allowed_congestion_control(char *buf, size_t len);
873 int tcp_set_allowed_congestion_control(char *allowed);
874 int tcp_set_congestion_control(struct sock *sk, const char *name);
875 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
876 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
877
878 u32 tcp_reno_ssthresh(struct sock *sk);
879 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
880 extern struct tcp_congestion_ops tcp_reno;
881
882 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
883 u32 tcp_ca_get_key_by_name(const char *name);
884 #ifdef CONFIG_INET
885 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
886 #else
887 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
888 {
889 return NULL;
890 }
891 #endif
892
893 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
894 {
895 const struct inet_connection_sock *icsk = inet_csk(sk);
896
897 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
898 }
899
900 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
901 {
902 struct inet_connection_sock *icsk = inet_csk(sk);
903
904 if (icsk->icsk_ca_ops->set_state)
905 icsk->icsk_ca_ops->set_state(sk, ca_state);
906 icsk->icsk_ca_state = ca_state;
907 }
908
909 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
910 {
911 const struct inet_connection_sock *icsk = inet_csk(sk);
912
913 if (icsk->icsk_ca_ops->cwnd_event)
914 icsk->icsk_ca_ops->cwnd_event(sk, event);
915 }
916
917 /* These functions determine how the current flow behaves in respect of SACK
918 * handling. SACK is negotiated with the peer, and therefore it can vary
919 * between different flows.
920 *
921 * tcp_is_sack - SACK enabled
922 * tcp_is_reno - No SACK
923 * tcp_is_fack - FACK enabled, implies SACK enabled
924 */
925 static inline int tcp_is_sack(const struct tcp_sock *tp)
926 {
927 return tp->rx_opt.sack_ok;
928 }
929
930 static inline bool tcp_is_reno(const struct tcp_sock *tp)
931 {
932 return !tcp_is_sack(tp);
933 }
934
935 static inline bool tcp_is_fack(const struct tcp_sock *tp)
936 {
937 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
938 }
939
940 static inline void tcp_enable_fack(struct tcp_sock *tp)
941 {
942 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
943 }
944
945 /* TCP early-retransmit (ER) is similar to but more conservative than
946 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
947 */
948 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
949 {
950 tp->do_early_retrans = sysctl_tcp_early_retrans &&
951 sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
952 sysctl_tcp_reordering == 3;
953 }
954
955 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
956 {
957 tp->do_early_retrans = 0;
958 }
959
960 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
961 {
962 return tp->sacked_out + tp->lost_out;
963 }
964
965 /* This determines how many packets are "in the network" to the best
966 * of our knowledge. In many cases it is conservative, but where
967 * detailed information is available from the receiver (via SACK
968 * blocks etc.) we can make more aggressive calculations.
969 *
970 * Use this for decisions involving congestion control, use just
971 * tp->packets_out to determine if the send queue is empty or not.
972 *
973 * Read this equation as:
974 *
975 * "Packets sent once on transmission queue" MINUS
976 * "Packets left network, but not honestly ACKed yet" PLUS
977 * "Packets fast retransmitted"
978 */
979 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
980 {
981 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
982 }
983
984 #define TCP_INFINITE_SSTHRESH 0x7fffffff
985
986 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
987 {
988 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
989 }
990
991 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
992 {
993 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
994 (1 << inet_csk(sk)->icsk_ca_state);
995 }
996
997 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
998 * The exception is cwnd reduction phase, when cwnd is decreasing towards
999 * ssthresh.
1000 */
1001 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1002 {
1003 const struct tcp_sock *tp = tcp_sk(sk);
1004
1005 if (tcp_in_cwnd_reduction(sk))
1006 return tp->snd_ssthresh;
1007 else
1008 return max(tp->snd_ssthresh,
1009 ((tp->snd_cwnd >> 1) +
1010 (tp->snd_cwnd >> 2)));
1011 }
1012
1013 /* Use define here intentionally to get WARN_ON location shown at the caller */
1014 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1015
1016 void tcp_enter_cwr(struct sock *sk);
1017 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1018
1019 /* The maximum number of MSS of available cwnd for which TSO defers
1020 * sending if not using sysctl_tcp_tso_win_divisor.
1021 */
1022 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1023 {
1024 return 3;
1025 }
1026
1027 /* Slow start with delack produces 3 packets of burst, so that
1028 * it is safe "de facto". This will be the default - same as
1029 * the default reordering threshold - but if reordering increases,
1030 * we must be able to allow cwnd to burst at least this much in order
1031 * to not pull it back when holes are filled.
1032 */
1033 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
1034 {
1035 return tp->reordering;
1036 }
1037
1038 /* Returns end sequence number of the receiver's advertised window */
1039 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1040 {
1041 return tp->snd_una + tp->snd_wnd;
1042 }
1043
1044 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1045 * flexible approach. The RFC suggests cwnd should not be raised unless
1046 * it was fully used previously. And that's exactly what we do in
1047 * congestion avoidance mode. But in slow start we allow cwnd to grow
1048 * as long as the application has used half the cwnd.
1049 * Example :
1050 * cwnd is 10 (IW10), but application sends 9 frames.
1051 * We allow cwnd to reach 18 when all frames are ACKed.
1052 * This check is safe because it's as aggressive as slow start which already
1053 * risks 100% overshoot. The advantage is that we discourage application to
1054 * either send more filler packets or data to artificially blow up the cwnd
1055 * usage, and allow application-limited process to probe bw more aggressively.
1056 */
1057 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1058 {
1059 const struct tcp_sock *tp = tcp_sk(sk);
1060
1061 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1062 if (tp->snd_cwnd <= tp->snd_ssthresh)
1063 return tp->snd_cwnd < 2 * tp->max_packets_out;
1064
1065 return tp->is_cwnd_limited;
1066 }
1067
1068 /* Something is really bad, we could not queue an additional packet,
1069 * because qdisc is full or receiver sent a 0 window.
1070 * We do not want to add fuel to the fire, or abort too early,
1071 * so make sure the timer we arm now is at least 200ms in the future,
1072 * regardless of current icsk_rto value (as it could be ~2ms)
1073 */
1074 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1075 {
1076 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1077 }
1078
1079 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1080 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1081 unsigned long max_when)
1082 {
1083 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1084
1085 return (unsigned long)min_t(u64, when, max_when);
1086 }
1087
1088 static inline void tcp_check_probe_timer(struct sock *sk)
1089 {
1090 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1091 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1092 tcp_probe0_base(sk), TCP_RTO_MAX);
1093 }
1094
1095 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1096 {
1097 tp->snd_wl1 = seq;
1098 }
1099
1100 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1101 {
1102 tp->snd_wl1 = seq;
1103 }
1104
1105 /*
1106 * Calculate(/check) TCP checksum
1107 */
1108 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1109 __be32 daddr, __wsum base)
1110 {
1111 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1112 }
1113
1114 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1115 {
1116 return __skb_checksum_complete(skb);
1117 }
1118
1119 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1120 {
1121 return !skb_csum_unnecessary(skb) &&
1122 __tcp_checksum_complete(skb);
1123 }
1124
1125 /* Prequeue for VJ style copy to user, combined with checksumming. */
1126
1127 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1128 {
1129 tp->ucopy.task = NULL;
1130 tp->ucopy.len = 0;
1131 tp->ucopy.memory = 0;
1132 skb_queue_head_init(&tp->ucopy.prequeue);
1133 }
1134
1135 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1136
1137 #undef STATE_TRACE
1138
1139 #ifdef STATE_TRACE
1140 static const char *statename[]={
1141 "Unused","Established","Syn Sent","Syn Recv",
1142 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1143 "Close Wait","Last ACK","Listen","Closing"
1144 };
1145 #endif
1146 void tcp_set_state(struct sock *sk, int state);
1147
1148 void tcp_done(struct sock *sk);
1149
1150 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1151 {
1152 rx_opt->dsack = 0;
1153 rx_opt->num_sacks = 0;
1154 }
1155
1156 u32 tcp_default_init_rwnd(u32 mss);
1157
1158 /* Determine a window scaling and initial window to offer. */
1159 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1160 __u32 *window_clamp, int wscale_ok,
1161 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1162
1163 static inline int tcp_win_from_space(int space)
1164 {
1165 return sysctl_tcp_adv_win_scale<=0 ?
1166 (space>>(-sysctl_tcp_adv_win_scale)) :
1167 space - (space>>sysctl_tcp_adv_win_scale);
1168 }
1169
1170 /* Note: caller must be prepared to deal with negative returns */
1171 static inline int tcp_space(const struct sock *sk)
1172 {
1173 return tcp_win_from_space(sk->sk_rcvbuf -
1174 atomic_read(&sk->sk_rmem_alloc));
1175 }
1176
1177 static inline int tcp_full_space(const struct sock *sk)
1178 {
1179 return tcp_win_from_space(sk->sk_rcvbuf);
1180 }
1181
1182 extern void tcp_openreq_init_rwin(struct request_sock *req,
1183 struct sock *sk, struct dst_entry *dst);
1184
1185 void tcp_enter_memory_pressure(struct sock *sk);
1186
1187 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1188 {
1189 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1190 }
1191
1192 static inline int keepalive_time_when(const struct tcp_sock *tp)
1193 {
1194 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1195 }
1196
1197 static inline int keepalive_probes(const struct tcp_sock *tp)
1198 {
1199 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1200 }
1201
1202 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1203 {
1204 const struct inet_connection_sock *icsk = &tp->inet_conn;
1205
1206 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1207 tcp_time_stamp - tp->rcv_tstamp);
1208 }
1209
1210 static inline int tcp_fin_time(const struct sock *sk)
1211 {
1212 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1213 const int rto = inet_csk(sk)->icsk_rto;
1214
1215 if (fin_timeout < (rto << 2) - (rto >> 1))
1216 fin_timeout = (rto << 2) - (rto >> 1);
1217
1218 return fin_timeout;
1219 }
1220
1221 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1222 int paws_win)
1223 {
1224 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1225 return true;
1226 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1227 return true;
1228 /*
1229 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1230 * then following tcp messages have valid values. Ignore 0 value,
1231 * or else 'negative' tsval might forbid us to accept their packets.
1232 */
1233 if (!rx_opt->ts_recent)
1234 return true;
1235 return false;
1236 }
1237
1238 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1239 int rst)
1240 {
1241 if (tcp_paws_check(rx_opt, 0))
1242 return false;
1243
1244 /* RST segments are not recommended to carry timestamp,
1245 and, if they do, it is recommended to ignore PAWS because
1246 "their cleanup function should take precedence over timestamps."
1247 Certainly, it is mistake. It is necessary to understand the reasons
1248 of this constraint to relax it: if peer reboots, clock may go
1249 out-of-sync and half-open connections will not be reset.
1250 Actually, the problem would be not existing if all
1251 the implementations followed draft about maintaining clock
1252 via reboots. Linux-2.2 DOES NOT!
1253
1254 However, we can relax time bounds for RST segments to MSL.
1255 */
1256 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1257 return false;
1258 return true;
1259 }
1260
1261 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1262 int mib_idx, u32 *last_oow_ack_time);
1263
1264 static inline void tcp_mib_init(struct net *net)
1265 {
1266 /* See RFC 2012 */
1267 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1268 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1269 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1270 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1271 }
1272
1273 /* from STCP */
1274 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1275 {
1276 tp->lost_skb_hint = NULL;
1277 }
1278
1279 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1280 {
1281 tcp_clear_retrans_hints_partial(tp);
1282 tp->retransmit_skb_hint = NULL;
1283 }
1284
1285 /* MD5 Signature */
1286 struct crypto_hash;
1287
1288 union tcp_md5_addr {
1289 struct in_addr a4;
1290 #if IS_ENABLED(CONFIG_IPV6)
1291 struct in6_addr a6;
1292 #endif
1293 };
1294
1295 /* - key database */
1296 struct tcp_md5sig_key {
1297 struct hlist_node node;
1298 u8 keylen;
1299 u8 family; /* AF_INET or AF_INET6 */
1300 union tcp_md5_addr addr;
1301 u8 key[TCP_MD5SIG_MAXKEYLEN];
1302 struct rcu_head rcu;
1303 };
1304
1305 /* - sock block */
1306 struct tcp_md5sig_info {
1307 struct hlist_head head;
1308 struct rcu_head rcu;
1309 };
1310
1311 /* - pseudo header */
1312 struct tcp4_pseudohdr {
1313 __be32 saddr;
1314 __be32 daddr;
1315 __u8 pad;
1316 __u8 protocol;
1317 __be16 len;
1318 };
1319
1320 struct tcp6_pseudohdr {
1321 struct in6_addr saddr;
1322 struct in6_addr daddr;
1323 __be32 len;
1324 __be32 protocol; /* including padding */
1325 };
1326
1327 union tcp_md5sum_block {
1328 struct tcp4_pseudohdr ip4;
1329 #if IS_ENABLED(CONFIG_IPV6)
1330 struct tcp6_pseudohdr ip6;
1331 #endif
1332 };
1333
1334 /* - pool: digest algorithm, hash description and scratch buffer */
1335 struct tcp_md5sig_pool {
1336 struct hash_desc md5_desc;
1337 union tcp_md5sum_block md5_blk;
1338 };
1339
1340 /* - functions */
1341 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1342 const struct sock *sk, const struct sk_buff *skb);
1343 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1344 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1345 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1346 int family);
1347 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1348 const struct sock *addr_sk);
1349
1350 #ifdef CONFIG_TCP_MD5SIG
1351 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1352 const union tcp_md5_addr *addr,
1353 int family);
1354 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1355 #else
1356 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1357 const union tcp_md5_addr *addr,
1358 int family)
1359 {
1360 return NULL;
1361 }
1362 #define tcp_twsk_md5_key(twsk) NULL
1363 #endif
1364
1365 bool tcp_alloc_md5sig_pool(void);
1366
1367 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1368 static inline void tcp_put_md5sig_pool(void)
1369 {
1370 local_bh_enable();
1371 }
1372
1373 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1374 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1375 unsigned int header_len);
1376 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1377 const struct tcp_md5sig_key *key);
1378
1379 /* From tcp_fastopen.c */
1380 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1381 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1382 unsigned long *last_syn_loss);
1383 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1384 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1385 u16 try_exp);
1386 struct tcp_fastopen_request {
1387 /* Fast Open cookie. Size 0 means a cookie request */
1388 struct tcp_fastopen_cookie cookie;
1389 struct msghdr *data; /* data in MSG_FASTOPEN */
1390 size_t size;
1391 int copied; /* queued in tcp_connect() */
1392 };
1393 void tcp_free_fastopen_req(struct tcp_sock *tp);
1394
1395 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1396 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1397 bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1398 struct request_sock *req,
1399 struct tcp_fastopen_cookie *foc,
1400 struct dst_entry *dst);
1401 void tcp_fastopen_init_key_once(bool publish);
1402 #define TCP_FASTOPEN_KEY_LENGTH 16
1403
1404 /* Fastopen key context */
1405 struct tcp_fastopen_context {
1406 struct crypto_cipher *tfm;
1407 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1408 struct rcu_head rcu;
1409 };
1410
1411 /* write queue abstraction */
1412 static inline void tcp_write_queue_purge(struct sock *sk)
1413 {
1414 struct sk_buff *skb;
1415
1416 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1417 sk_wmem_free_skb(sk, skb);
1418 sk_mem_reclaim(sk);
1419 tcp_clear_all_retrans_hints(tcp_sk(sk));
1420 }
1421
1422 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1423 {
1424 return skb_peek(&sk->sk_write_queue);
1425 }
1426
1427 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1428 {
1429 return skb_peek_tail(&sk->sk_write_queue);
1430 }
1431
1432 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1433 const struct sk_buff *skb)
1434 {
1435 return skb_queue_next(&sk->sk_write_queue, skb);
1436 }
1437
1438 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1439 const struct sk_buff *skb)
1440 {
1441 return skb_queue_prev(&sk->sk_write_queue, skb);
1442 }
1443
1444 #define tcp_for_write_queue(skb, sk) \
1445 skb_queue_walk(&(sk)->sk_write_queue, skb)
1446
1447 #define tcp_for_write_queue_from(skb, sk) \
1448 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1449
1450 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1451 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1452
1453 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1454 {
1455 return sk->sk_send_head;
1456 }
1457
1458 static inline bool tcp_skb_is_last(const struct sock *sk,
1459 const struct sk_buff *skb)
1460 {
1461 return skb_queue_is_last(&sk->sk_write_queue, skb);
1462 }
1463
1464 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1465 {
1466 if (tcp_skb_is_last(sk, skb))
1467 sk->sk_send_head = NULL;
1468 else
1469 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1470 }
1471
1472 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1473 {
1474 if (sk->sk_send_head == skb_unlinked)
1475 sk->sk_send_head = NULL;
1476 }
1477
1478 static inline void tcp_init_send_head(struct sock *sk)
1479 {
1480 sk->sk_send_head = NULL;
1481 }
1482
1483 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1484 {
1485 __skb_queue_tail(&sk->sk_write_queue, skb);
1486 }
1487
1488 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1489 {
1490 __tcp_add_write_queue_tail(sk, skb);
1491
1492 /* Queue it, remembering where we must start sending. */
1493 if (sk->sk_send_head == NULL) {
1494 sk->sk_send_head = skb;
1495
1496 if (tcp_sk(sk)->highest_sack == NULL)
1497 tcp_sk(sk)->highest_sack = skb;
1498 }
1499 }
1500
1501 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1502 {
1503 __skb_queue_head(&sk->sk_write_queue, skb);
1504 }
1505
1506 /* Insert buff after skb on the write queue of sk. */
1507 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1508 struct sk_buff *buff,
1509 struct sock *sk)
1510 {
1511 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1512 }
1513
1514 /* Insert new before skb on the write queue of sk. */
1515 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1516 struct sk_buff *skb,
1517 struct sock *sk)
1518 {
1519 __skb_queue_before(&sk->sk_write_queue, skb, new);
1520
1521 if (sk->sk_send_head == skb)
1522 sk->sk_send_head = new;
1523 }
1524
1525 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1526 {
1527 __skb_unlink(skb, &sk->sk_write_queue);
1528 }
1529
1530 static inline bool tcp_write_queue_empty(struct sock *sk)
1531 {
1532 return skb_queue_empty(&sk->sk_write_queue);
1533 }
1534
1535 static inline void tcp_push_pending_frames(struct sock *sk)
1536 {
1537 if (tcp_send_head(sk)) {
1538 struct tcp_sock *tp = tcp_sk(sk);
1539
1540 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1541 }
1542 }
1543
1544 /* Start sequence of the skb just after the highest skb with SACKed
1545 * bit, valid only if sacked_out > 0 or when the caller has ensured
1546 * validity by itself.
1547 */
1548 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1549 {
1550 if (!tp->sacked_out)
1551 return tp->snd_una;
1552
1553 if (tp->highest_sack == NULL)
1554 return tp->snd_nxt;
1555
1556 return TCP_SKB_CB(tp->highest_sack)->seq;
1557 }
1558
1559 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1560 {
1561 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1562 tcp_write_queue_next(sk, skb);
1563 }
1564
1565 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1566 {
1567 return tcp_sk(sk)->highest_sack;
1568 }
1569
1570 static inline void tcp_highest_sack_reset(struct sock *sk)
1571 {
1572 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1573 }
1574
1575 /* Called when old skb is about to be deleted (to be combined with new skb) */
1576 static inline void tcp_highest_sack_combine(struct sock *sk,
1577 struct sk_buff *old,
1578 struct sk_buff *new)
1579 {
1580 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1581 tcp_sk(sk)->highest_sack = new;
1582 }
1583
1584 /* Determines whether this is a thin stream (which may suffer from
1585 * increased latency). Used to trigger latency-reducing mechanisms.
1586 */
1587 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1588 {
1589 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1590 }
1591
1592 /* /proc */
1593 enum tcp_seq_states {
1594 TCP_SEQ_STATE_LISTENING,
1595 TCP_SEQ_STATE_OPENREQ,
1596 TCP_SEQ_STATE_ESTABLISHED,
1597 };
1598
1599 int tcp_seq_open(struct inode *inode, struct file *file);
1600
1601 struct tcp_seq_afinfo {
1602 char *name;
1603 sa_family_t family;
1604 const struct file_operations *seq_fops;
1605 struct seq_operations seq_ops;
1606 };
1607
1608 struct tcp_iter_state {
1609 struct seq_net_private p;
1610 sa_family_t family;
1611 enum tcp_seq_states state;
1612 struct sock *syn_wait_sk;
1613 int bucket, offset, sbucket, num;
1614 kuid_t uid;
1615 loff_t last_pos;
1616 };
1617
1618 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1619 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1620
1621 extern struct request_sock_ops tcp_request_sock_ops;
1622 extern struct request_sock_ops tcp6_request_sock_ops;
1623
1624 void tcp_v4_destroy_sock(struct sock *sk);
1625
1626 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1627 netdev_features_t features);
1628 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1629 int tcp_gro_complete(struct sk_buff *skb);
1630
1631 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1632
1633 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1634 {
1635 return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1636 }
1637
1638 static inline bool tcp_stream_memory_free(const struct sock *sk)
1639 {
1640 const struct tcp_sock *tp = tcp_sk(sk);
1641 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1642
1643 return notsent_bytes < tcp_notsent_lowat(tp);
1644 }
1645
1646 #ifdef CONFIG_PROC_FS
1647 int tcp4_proc_init(void);
1648 void tcp4_proc_exit(void);
1649 #endif
1650
1651 int tcp_rtx_synack(struct sock *sk, struct request_sock *req);
1652 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1653 const struct tcp_request_sock_ops *af_ops,
1654 struct sock *sk, struct sk_buff *skb);
1655
1656 /* TCP af-specific functions */
1657 struct tcp_sock_af_ops {
1658 #ifdef CONFIG_TCP_MD5SIG
1659 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1660 const struct sock *addr_sk);
1661 int (*calc_md5_hash)(char *location,
1662 const struct tcp_md5sig_key *md5,
1663 const struct sock *sk,
1664 const struct sk_buff *skb);
1665 int (*md5_parse)(struct sock *sk,
1666 char __user *optval,
1667 int optlen);
1668 #endif
1669 };
1670
1671 struct tcp_request_sock_ops {
1672 u16 mss_clamp;
1673 #ifdef CONFIG_TCP_MD5SIG
1674 struct tcp_md5sig_key *(*req_md5_lookup)(struct sock *sk,
1675 const struct sock *addr_sk);
1676 int (*calc_md5_hash) (char *location,
1677 const struct tcp_md5sig_key *md5,
1678 const struct sock *sk,
1679 const struct sk_buff *skb);
1680 #endif
1681 void (*init_req)(struct request_sock *req, struct sock *sk,
1682 struct sk_buff *skb);
1683 #ifdef CONFIG_SYN_COOKIES
1684 __u32 (*cookie_init_seq)(struct sock *sk, const struct sk_buff *skb,
1685 __u16 *mss);
1686 #endif
1687 struct dst_entry *(*route_req)(struct sock *sk, struct flowi *fl,
1688 const struct request_sock *req,
1689 bool *strict);
1690 __u32 (*init_seq)(const struct sk_buff *skb);
1691 int (*send_synack)(struct sock *sk, struct dst_entry *dst,
1692 struct flowi *fl, struct request_sock *req,
1693 u16 queue_mapping, struct tcp_fastopen_cookie *foc);
1694 void (*queue_hash_add)(struct sock *sk, struct request_sock *req,
1695 const unsigned long timeout);
1696 };
1697
1698 #ifdef CONFIG_SYN_COOKIES
1699 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1700 struct sock *sk, struct sk_buff *skb,
1701 __u16 *mss)
1702 {
1703 return ops->cookie_init_seq(sk, skb, mss);
1704 }
1705 #else
1706 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1707 struct sock *sk, struct sk_buff *skb,
1708 __u16 *mss)
1709 {
1710 return 0;
1711 }
1712 #endif
1713
1714 int tcpv4_offload_init(void);
1715
1716 void tcp_v4_init(void);
1717 void tcp_init(void);
1718
1719 /*
1720 * Save and compile IPv4 options, return a pointer to it
1721 */
1722 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1723 {
1724 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1725 struct ip_options_rcu *dopt = NULL;
1726
1727 if (opt->optlen) {
1728 int opt_size = sizeof(*dopt) + opt->optlen;
1729
1730 dopt = kmalloc(opt_size, GFP_ATOMIC);
1731 if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1732 kfree(dopt);
1733 dopt = NULL;
1734 }
1735 }
1736 return dopt;
1737 }
1738
1739 /* locally generated TCP pure ACKs have skb->truesize == 2
1740 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1741 * This is much faster than dissecting the packet to find out.
1742 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1743 */
1744 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1745 {
1746 return skb->truesize == 2;
1747 }
1748
1749 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1750 {
1751 skb->truesize = 2;
1752 }
1753
1754 #endif /* _TCP_H */
This page took 0.065719 seconds and 4 git commands to generate.