userns: Print out socket uids in a user namespace aware fashion.
[deliverable/linux.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Offer an initial receive window of 10 mss. */
65 #define TCP_DEFAULT_INIT_RCVWND 10
66
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS 88U
69
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS 512
72
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75
76 /* Maximal reordering. */
77 #define TCP_MAX_REORDERING 127
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* urg_data states */
83 #define TCP_URG_VALID 0x0100
84 #define TCP_URG_NOTYET 0x0200
85 #define TCP_URG_READ 0x0400
86
87 #define TCP_RETR1 3 /*
88 * This is how many retries it does before it
89 * tries to figure out if the gateway is
90 * down. Minimal RFC value is 3; it corresponds
91 * to ~3sec-8min depending on RTO.
92 */
93
94 #define TCP_RETR2 15 /*
95 * This should take at least
96 * 90 minutes to time out.
97 * RFC1122 says that the limit is 100 sec.
98 * 15 is ~13-30min depending on RTO.
99 */
100
101 #define TCP_SYN_RETRIES 5 /* number of times to retry active opening a
102 * connection: ~180sec is RFC minimum */
103
104 #define TCP_SYNACK_RETRIES 5 /* number of times to retry passive opening a
105 * connection: ~180sec is RFC minimum */
106
107 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
108 * state, about 60 seconds */
109 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
110 /* BSD style FIN_WAIT2 deadlock breaker.
111 * It used to be 3min, new value is 60sec,
112 * to combine FIN-WAIT-2 timeout with
113 * TIME-WAIT timer.
114 */
115
116 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
117 #if HZ >= 100
118 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
119 #define TCP_ATO_MIN ((unsigned)(HZ/25))
120 #else
121 #define TCP_DELACK_MIN 4U
122 #define TCP_ATO_MIN 4U
123 #endif
124 #define TCP_RTO_MAX ((unsigned)(120*HZ))
125 #define TCP_RTO_MIN ((unsigned)(HZ/5))
126 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
127 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
128 * used as a fallback RTO for the
129 * initial data transmission if no
130 * valid RTT sample has been acquired,
131 * most likely due to retrans in 3WHS.
132 */
133
134 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
135 * for local resources.
136 */
137
138 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
139 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
140 #define TCP_KEEPALIVE_INTVL (75*HZ)
141
142 #define MAX_TCP_KEEPIDLE 32767
143 #define MAX_TCP_KEEPINTVL 32767
144 #define MAX_TCP_KEEPCNT 127
145 #define MAX_TCP_SYNCNT 127
146
147 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
148
149 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
150 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
151 * after this time. It should be equal
152 * (or greater than) TCP_TIMEWAIT_LEN
153 * to provide reliability equal to one
154 * provided by timewait state.
155 */
156 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
157 * timestamps. It must be less than
158 * minimal timewait lifetime.
159 */
160 /*
161 * TCP option
162 */
163
164 #define TCPOPT_NOP 1 /* Padding */
165 #define TCPOPT_EOL 0 /* End of options */
166 #define TCPOPT_MSS 2 /* Segment size negotiating */
167 #define TCPOPT_WINDOW 3 /* Window scaling */
168 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
169 #define TCPOPT_SACK 5 /* SACK Block */
170 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
171 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
172 #define TCPOPT_COOKIE 253 /* Cookie extension (experimental) */
173 #define TCPOPT_EXP 254 /* Experimental */
174 /* Magic number to be after the option value for sharing TCP
175 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
176 */
177 #define TCPOPT_FASTOPEN_MAGIC 0xF989
178
179 /*
180 * TCP option lengths
181 */
182
183 #define TCPOLEN_MSS 4
184 #define TCPOLEN_WINDOW 3
185 #define TCPOLEN_SACK_PERM 2
186 #define TCPOLEN_TIMESTAMP 10
187 #define TCPOLEN_MD5SIG 18
188 #define TCPOLEN_EXP_FASTOPEN_BASE 4
189 #define TCPOLEN_COOKIE_BASE 2 /* Cookie-less header extension */
190 #define TCPOLEN_COOKIE_PAIR 3 /* Cookie pair header extension */
191 #define TCPOLEN_COOKIE_MIN (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
192 #define TCPOLEN_COOKIE_MAX (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
193
194 /* But this is what stacks really send out. */
195 #define TCPOLEN_TSTAMP_ALIGNED 12
196 #define TCPOLEN_WSCALE_ALIGNED 4
197 #define TCPOLEN_SACKPERM_ALIGNED 4
198 #define TCPOLEN_SACK_BASE 2
199 #define TCPOLEN_SACK_BASE_ALIGNED 4
200 #define TCPOLEN_SACK_PERBLOCK 8
201 #define TCPOLEN_MD5SIG_ALIGNED 20
202 #define TCPOLEN_MSS_ALIGNED 4
203
204 /* Flags in tp->nonagle */
205 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
206 #define TCP_NAGLE_CORK 2 /* Socket is corked */
207 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
208
209 /* TCP thin-stream limits */
210 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
211
212 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
213 #define TCP_INIT_CWND 10
214
215 /* Bit Flags for sysctl_tcp_fastopen */
216 #define TFO_CLIENT_ENABLE 1
217 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
218
219 extern struct inet_timewait_death_row tcp_death_row;
220
221 /* sysctl variables for tcp */
222 extern int sysctl_tcp_timestamps;
223 extern int sysctl_tcp_window_scaling;
224 extern int sysctl_tcp_sack;
225 extern int sysctl_tcp_fin_timeout;
226 extern int sysctl_tcp_keepalive_time;
227 extern int sysctl_tcp_keepalive_probes;
228 extern int sysctl_tcp_keepalive_intvl;
229 extern int sysctl_tcp_syn_retries;
230 extern int sysctl_tcp_synack_retries;
231 extern int sysctl_tcp_retries1;
232 extern int sysctl_tcp_retries2;
233 extern int sysctl_tcp_orphan_retries;
234 extern int sysctl_tcp_syncookies;
235 extern int sysctl_tcp_fastopen;
236 extern int sysctl_tcp_retrans_collapse;
237 extern int sysctl_tcp_stdurg;
238 extern int sysctl_tcp_rfc1337;
239 extern int sysctl_tcp_abort_on_overflow;
240 extern int sysctl_tcp_max_orphans;
241 extern int sysctl_tcp_fack;
242 extern int sysctl_tcp_reordering;
243 extern int sysctl_tcp_ecn;
244 extern int sysctl_tcp_dsack;
245 extern int sysctl_tcp_wmem[3];
246 extern int sysctl_tcp_rmem[3];
247 extern int sysctl_tcp_app_win;
248 extern int sysctl_tcp_adv_win_scale;
249 extern int sysctl_tcp_tw_reuse;
250 extern int sysctl_tcp_frto;
251 extern int sysctl_tcp_frto_response;
252 extern int sysctl_tcp_low_latency;
253 extern int sysctl_tcp_dma_copybreak;
254 extern int sysctl_tcp_nometrics_save;
255 extern int sysctl_tcp_moderate_rcvbuf;
256 extern int sysctl_tcp_tso_win_divisor;
257 extern int sysctl_tcp_abc;
258 extern int sysctl_tcp_mtu_probing;
259 extern int sysctl_tcp_base_mss;
260 extern int sysctl_tcp_workaround_signed_windows;
261 extern int sysctl_tcp_slow_start_after_idle;
262 extern int sysctl_tcp_max_ssthresh;
263 extern int sysctl_tcp_cookie_size;
264 extern int sysctl_tcp_thin_linear_timeouts;
265 extern int sysctl_tcp_thin_dupack;
266 extern int sysctl_tcp_early_retrans;
267 extern int sysctl_tcp_limit_output_bytes;
268 extern int sysctl_tcp_challenge_ack_limit;
269
270 extern atomic_long_t tcp_memory_allocated;
271 extern struct percpu_counter tcp_sockets_allocated;
272 extern int tcp_memory_pressure;
273
274 /*
275 * The next routines deal with comparing 32 bit unsigned ints
276 * and worry about wraparound (automatic with unsigned arithmetic).
277 */
278
279 static inline bool before(__u32 seq1, __u32 seq2)
280 {
281 return (__s32)(seq1-seq2) < 0;
282 }
283 #define after(seq2, seq1) before(seq1, seq2)
284
285 /* is s2<=s1<=s3 ? */
286 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
287 {
288 return seq3 - seq2 >= seq1 - seq2;
289 }
290
291 static inline bool tcp_out_of_memory(struct sock *sk)
292 {
293 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
294 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
295 return true;
296 return false;
297 }
298
299 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
300 {
301 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
302 int orphans = percpu_counter_read_positive(ocp);
303
304 if (orphans << shift > sysctl_tcp_max_orphans) {
305 orphans = percpu_counter_sum_positive(ocp);
306 if (orphans << shift > sysctl_tcp_max_orphans)
307 return true;
308 }
309 return false;
310 }
311
312 extern bool tcp_check_oom(struct sock *sk, int shift);
313
314 /* syncookies: remember time of last synqueue overflow */
315 static inline void tcp_synq_overflow(struct sock *sk)
316 {
317 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
318 }
319
320 /* syncookies: no recent synqueue overflow on this listening socket? */
321 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
322 {
323 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
324 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
325 }
326
327 extern struct proto tcp_prot;
328
329 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
330 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
331 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
332 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
333 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
334
335 extern void tcp_init_mem(struct net *net);
336
337 extern void tcp_tasklet_init(void);
338
339 extern void tcp_v4_err(struct sk_buff *skb, u32);
340
341 extern void tcp_shutdown (struct sock *sk, int how);
342
343 extern void tcp_v4_early_demux(struct sk_buff *skb);
344 extern int tcp_v4_rcv(struct sk_buff *skb);
345
346 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk);
347 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
348 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
349 size_t size);
350 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
351 size_t size, int flags);
352 extern void tcp_release_cb(struct sock *sk);
353 extern void tcp_write_timer_handler(struct sock *sk);
354 extern void tcp_delack_timer_handler(struct sock *sk);
355 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
356 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
357 const struct tcphdr *th, unsigned int len);
358 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
359 const struct tcphdr *th, unsigned int len);
360 extern void tcp_rcv_space_adjust(struct sock *sk);
361 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
362 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
363 extern void tcp_twsk_destructor(struct sock *sk);
364 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
365 struct pipe_inode_info *pipe, size_t len,
366 unsigned int flags);
367
368 static inline void tcp_dec_quickack_mode(struct sock *sk,
369 const unsigned int pkts)
370 {
371 struct inet_connection_sock *icsk = inet_csk(sk);
372
373 if (icsk->icsk_ack.quick) {
374 if (pkts >= icsk->icsk_ack.quick) {
375 icsk->icsk_ack.quick = 0;
376 /* Leaving quickack mode we deflate ATO. */
377 icsk->icsk_ack.ato = TCP_ATO_MIN;
378 } else
379 icsk->icsk_ack.quick -= pkts;
380 }
381 }
382
383 #define TCP_ECN_OK 1
384 #define TCP_ECN_QUEUE_CWR 2
385 #define TCP_ECN_DEMAND_CWR 4
386 #define TCP_ECN_SEEN 8
387
388 enum tcp_tw_status {
389 TCP_TW_SUCCESS = 0,
390 TCP_TW_RST = 1,
391 TCP_TW_ACK = 2,
392 TCP_TW_SYN = 3
393 };
394
395
396 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
397 struct sk_buff *skb,
398 const struct tcphdr *th);
399 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
400 struct request_sock *req,
401 struct request_sock **prev);
402 extern int tcp_child_process(struct sock *parent, struct sock *child,
403 struct sk_buff *skb);
404 extern bool tcp_use_frto(struct sock *sk);
405 extern void tcp_enter_frto(struct sock *sk);
406 extern void tcp_enter_loss(struct sock *sk, int how);
407 extern void tcp_clear_retrans(struct tcp_sock *tp);
408 extern void tcp_update_metrics(struct sock *sk);
409 extern void tcp_init_metrics(struct sock *sk);
410 extern void tcp_metrics_init(void);
411 extern bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst, bool paws_check);
412 extern bool tcp_remember_stamp(struct sock *sk);
413 extern bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
414 extern void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
415 struct tcp_fastopen_cookie *cookie,
416 int *syn_loss, unsigned long *last_syn_loss);
417 extern void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
418 struct tcp_fastopen_cookie *cookie,
419 bool syn_lost);
420 extern void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
421 extern void tcp_disable_fack(struct tcp_sock *tp);
422 extern void tcp_close(struct sock *sk, long timeout);
423 extern void tcp_init_sock(struct sock *sk);
424 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
425 struct poll_table_struct *wait);
426 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
427 char __user *optval, int __user *optlen);
428 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
429 char __user *optval, unsigned int optlen);
430 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
431 char __user *optval, int __user *optlen);
432 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
433 char __user *optval, unsigned int optlen);
434 extern void tcp_set_keepalive(struct sock *sk, int val);
435 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
436 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
437 size_t len, int nonblock, int flags, int *addr_len);
438 extern void tcp_parse_options(const struct sk_buff *skb,
439 struct tcp_options_received *opt_rx, const u8 **hvpp,
440 int estab, struct tcp_fastopen_cookie *foc);
441 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
442
443 /*
444 * TCP v4 functions exported for the inet6 API
445 */
446
447 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
448 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
449 extern struct sock * tcp_create_openreq_child(struct sock *sk,
450 struct request_sock *req,
451 struct sk_buff *skb);
452 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
453 struct request_sock *req,
454 struct dst_entry *dst);
455 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
456 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
457 int addr_len);
458 extern int tcp_connect(struct sock *sk);
459 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
460 struct request_sock *req,
461 struct request_values *rvp);
462 extern int tcp_disconnect(struct sock *sk, int flags);
463
464 void tcp_connect_init(struct sock *sk);
465 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
466 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
467
468 /* From syncookies.c */
469 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
470 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
471 struct ip_options *opt);
472 #ifdef CONFIG_SYN_COOKIES
473 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
474 __u16 *mss);
475 #else
476 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
477 struct sk_buff *skb,
478 __u16 *mss)
479 {
480 return 0;
481 }
482 #endif
483
484 extern __u32 cookie_init_timestamp(struct request_sock *req);
485 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
486
487 /* From net/ipv6/syncookies.c */
488 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
489 #ifdef CONFIG_SYN_COOKIES
490 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
491 __u16 *mss);
492 #else
493 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
494 struct sk_buff *skb,
495 __u16 *mss)
496 {
497 return 0;
498 }
499 #endif
500 /* tcp_output.c */
501
502 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
503 int nonagle);
504 extern bool tcp_may_send_now(struct sock *sk);
505 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
506 extern void tcp_retransmit_timer(struct sock *sk);
507 extern void tcp_xmit_retransmit_queue(struct sock *);
508 extern void tcp_simple_retransmit(struct sock *);
509 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
510 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
511
512 extern void tcp_send_probe0(struct sock *);
513 extern void tcp_send_partial(struct sock *);
514 extern int tcp_write_wakeup(struct sock *);
515 extern void tcp_send_fin(struct sock *sk);
516 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
517 extern int tcp_send_synack(struct sock *);
518 extern bool tcp_syn_flood_action(struct sock *sk,
519 const struct sk_buff *skb,
520 const char *proto);
521 extern void tcp_push_one(struct sock *, unsigned int mss_now);
522 extern void tcp_send_ack(struct sock *sk);
523 extern void tcp_send_delayed_ack(struct sock *sk);
524
525 /* tcp_input.c */
526 extern void tcp_cwnd_application_limited(struct sock *sk);
527 extern void tcp_resume_early_retransmit(struct sock *sk);
528 extern void tcp_rearm_rto(struct sock *sk);
529
530 /* tcp_timer.c */
531 extern void tcp_init_xmit_timers(struct sock *);
532 static inline void tcp_clear_xmit_timers(struct sock *sk)
533 {
534 inet_csk_clear_xmit_timers(sk);
535 }
536
537 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
538 extern unsigned int tcp_current_mss(struct sock *sk);
539
540 /* Bound MSS / TSO packet size with the half of the window */
541 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
542 {
543 int cutoff;
544
545 /* When peer uses tiny windows, there is no use in packetizing
546 * to sub-MSS pieces for the sake of SWS or making sure there
547 * are enough packets in the pipe for fast recovery.
548 *
549 * On the other hand, for extremely large MSS devices, handling
550 * smaller than MSS windows in this way does make sense.
551 */
552 if (tp->max_window >= 512)
553 cutoff = (tp->max_window >> 1);
554 else
555 cutoff = tp->max_window;
556
557 if (cutoff && pktsize > cutoff)
558 return max_t(int, cutoff, 68U - tp->tcp_header_len);
559 else
560 return pktsize;
561 }
562
563 /* tcp.c */
564 extern void tcp_get_info(const struct sock *, struct tcp_info *);
565
566 /* Read 'sendfile()'-style from a TCP socket */
567 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
568 unsigned int, size_t);
569 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
570 sk_read_actor_t recv_actor);
571
572 extern void tcp_initialize_rcv_mss(struct sock *sk);
573
574 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
575 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
576 extern void tcp_mtup_init(struct sock *sk);
577 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
578
579 static inline void tcp_bound_rto(const struct sock *sk)
580 {
581 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
582 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
583 }
584
585 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
586 {
587 return (tp->srtt >> 3) + tp->rttvar;
588 }
589
590 extern void tcp_set_rto(struct sock *sk);
591
592 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
593 {
594 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
595 ntohl(TCP_FLAG_ACK) |
596 snd_wnd);
597 }
598
599 static inline void tcp_fast_path_on(struct tcp_sock *tp)
600 {
601 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
602 }
603
604 static inline void tcp_fast_path_check(struct sock *sk)
605 {
606 struct tcp_sock *tp = tcp_sk(sk);
607
608 if (skb_queue_empty(&tp->out_of_order_queue) &&
609 tp->rcv_wnd &&
610 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
611 !tp->urg_data)
612 tcp_fast_path_on(tp);
613 }
614
615 /* Compute the actual rto_min value */
616 static inline u32 tcp_rto_min(struct sock *sk)
617 {
618 const struct dst_entry *dst = __sk_dst_get(sk);
619 u32 rto_min = TCP_RTO_MIN;
620
621 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
622 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
623 return rto_min;
624 }
625
626 /* Compute the actual receive window we are currently advertising.
627 * Rcv_nxt can be after the window if our peer push more data
628 * than the offered window.
629 */
630 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
631 {
632 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
633
634 if (win < 0)
635 win = 0;
636 return (u32) win;
637 }
638
639 /* Choose a new window, without checks for shrinking, and without
640 * scaling applied to the result. The caller does these things
641 * if necessary. This is a "raw" window selection.
642 */
643 extern u32 __tcp_select_window(struct sock *sk);
644
645 void tcp_send_window_probe(struct sock *sk);
646
647 /* TCP timestamps are only 32-bits, this causes a slight
648 * complication on 64-bit systems since we store a snapshot
649 * of jiffies in the buffer control blocks below. We decided
650 * to use only the low 32-bits of jiffies and hide the ugly
651 * casts with the following macro.
652 */
653 #define tcp_time_stamp ((__u32)(jiffies))
654
655 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
656
657 #define TCPHDR_FIN 0x01
658 #define TCPHDR_SYN 0x02
659 #define TCPHDR_RST 0x04
660 #define TCPHDR_PSH 0x08
661 #define TCPHDR_ACK 0x10
662 #define TCPHDR_URG 0x20
663 #define TCPHDR_ECE 0x40
664 #define TCPHDR_CWR 0x80
665
666 /* This is what the send packet queuing engine uses to pass
667 * TCP per-packet control information to the transmission code.
668 * We also store the host-order sequence numbers in here too.
669 * This is 44 bytes if IPV6 is enabled.
670 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
671 */
672 struct tcp_skb_cb {
673 union {
674 struct inet_skb_parm h4;
675 #if IS_ENABLED(CONFIG_IPV6)
676 struct inet6_skb_parm h6;
677 #endif
678 } header; /* For incoming frames */
679 __u32 seq; /* Starting sequence number */
680 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
681 __u32 when; /* used to compute rtt's */
682 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
683
684 __u8 sacked; /* State flags for SACK/FACK. */
685 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
686 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
687 #define TCPCB_LOST 0x04 /* SKB is lost */
688 #define TCPCB_TAGBITS 0x07 /* All tag bits */
689 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
690 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
691
692 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
693 /* 1 byte hole */
694 __u32 ack_seq; /* Sequence number ACK'd */
695 };
696
697 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
698
699 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
700 *
701 * If we receive a SYN packet with these bits set, it means a network is
702 * playing bad games with TOS bits. In order to avoid possible false congestion
703 * notifications, we disable TCP ECN negociation.
704 */
705 static inline void
706 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb)
707 {
708 const struct tcphdr *th = tcp_hdr(skb);
709
710 if (sysctl_tcp_ecn && th->ece && th->cwr &&
711 INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
712 inet_rsk(req)->ecn_ok = 1;
713 }
714
715 /* Due to TSO, an SKB can be composed of multiple actual
716 * packets. To keep these tracked properly, we use this.
717 */
718 static inline int tcp_skb_pcount(const struct sk_buff *skb)
719 {
720 return skb_shinfo(skb)->gso_segs;
721 }
722
723 /* This is valid iff tcp_skb_pcount() > 1. */
724 static inline int tcp_skb_mss(const struct sk_buff *skb)
725 {
726 return skb_shinfo(skb)->gso_size;
727 }
728
729 /* Events passed to congestion control interface */
730 enum tcp_ca_event {
731 CA_EVENT_TX_START, /* first transmit when no packets in flight */
732 CA_EVENT_CWND_RESTART, /* congestion window restart */
733 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
734 CA_EVENT_FRTO, /* fast recovery timeout */
735 CA_EVENT_LOSS, /* loss timeout */
736 CA_EVENT_FAST_ACK, /* in sequence ack */
737 CA_EVENT_SLOW_ACK, /* other ack */
738 };
739
740 /*
741 * Interface for adding new TCP congestion control handlers
742 */
743 #define TCP_CA_NAME_MAX 16
744 #define TCP_CA_MAX 128
745 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
746
747 #define TCP_CONG_NON_RESTRICTED 0x1
748 #define TCP_CONG_RTT_STAMP 0x2
749
750 struct tcp_congestion_ops {
751 struct list_head list;
752 unsigned long flags;
753
754 /* initialize private data (optional) */
755 void (*init)(struct sock *sk);
756 /* cleanup private data (optional) */
757 void (*release)(struct sock *sk);
758
759 /* return slow start threshold (required) */
760 u32 (*ssthresh)(struct sock *sk);
761 /* lower bound for congestion window (optional) */
762 u32 (*min_cwnd)(const struct sock *sk);
763 /* do new cwnd calculation (required) */
764 void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
765 /* call before changing ca_state (optional) */
766 void (*set_state)(struct sock *sk, u8 new_state);
767 /* call when cwnd event occurs (optional) */
768 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
769 /* new value of cwnd after loss (optional) */
770 u32 (*undo_cwnd)(struct sock *sk);
771 /* hook for packet ack accounting (optional) */
772 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
773 /* get info for inet_diag (optional) */
774 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
775
776 char name[TCP_CA_NAME_MAX];
777 struct module *owner;
778 };
779
780 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
781 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
782
783 extern void tcp_init_congestion_control(struct sock *sk);
784 extern void tcp_cleanup_congestion_control(struct sock *sk);
785 extern int tcp_set_default_congestion_control(const char *name);
786 extern void tcp_get_default_congestion_control(char *name);
787 extern void tcp_get_available_congestion_control(char *buf, size_t len);
788 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
789 extern int tcp_set_allowed_congestion_control(char *allowed);
790 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
791 extern void tcp_slow_start(struct tcp_sock *tp);
792 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
793
794 extern struct tcp_congestion_ops tcp_init_congestion_ops;
795 extern u32 tcp_reno_ssthresh(struct sock *sk);
796 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
797 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
798 extern struct tcp_congestion_ops tcp_reno;
799
800 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
801 {
802 struct inet_connection_sock *icsk = inet_csk(sk);
803
804 if (icsk->icsk_ca_ops->set_state)
805 icsk->icsk_ca_ops->set_state(sk, ca_state);
806 icsk->icsk_ca_state = ca_state;
807 }
808
809 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
810 {
811 const struct inet_connection_sock *icsk = inet_csk(sk);
812
813 if (icsk->icsk_ca_ops->cwnd_event)
814 icsk->icsk_ca_ops->cwnd_event(sk, event);
815 }
816
817 /* These functions determine how the current flow behaves in respect of SACK
818 * handling. SACK is negotiated with the peer, and therefore it can vary
819 * between different flows.
820 *
821 * tcp_is_sack - SACK enabled
822 * tcp_is_reno - No SACK
823 * tcp_is_fack - FACK enabled, implies SACK enabled
824 */
825 static inline int tcp_is_sack(const struct tcp_sock *tp)
826 {
827 return tp->rx_opt.sack_ok;
828 }
829
830 static inline bool tcp_is_reno(const struct tcp_sock *tp)
831 {
832 return !tcp_is_sack(tp);
833 }
834
835 static inline bool tcp_is_fack(const struct tcp_sock *tp)
836 {
837 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
838 }
839
840 static inline void tcp_enable_fack(struct tcp_sock *tp)
841 {
842 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
843 }
844
845 /* TCP early-retransmit (ER) is similar to but more conservative than
846 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
847 */
848 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
849 {
850 tp->do_early_retrans = sysctl_tcp_early_retrans &&
851 !sysctl_tcp_thin_dupack && sysctl_tcp_reordering == 3;
852 tp->early_retrans_delayed = 0;
853 }
854
855 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
856 {
857 tp->do_early_retrans = 0;
858 }
859
860 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
861 {
862 return tp->sacked_out + tp->lost_out;
863 }
864
865 /* This determines how many packets are "in the network" to the best
866 * of our knowledge. In many cases it is conservative, but where
867 * detailed information is available from the receiver (via SACK
868 * blocks etc.) we can make more aggressive calculations.
869 *
870 * Use this for decisions involving congestion control, use just
871 * tp->packets_out to determine if the send queue is empty or not.
872 *
873 * Read this equation as:
874 *
875 * "Packets sent once on transmission queue" MINUS
876 * "Packets left network, but not honestly ACKed yet" PLUS
877 * "Packets fast retransmitted"
878 */
879 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
880 {
881 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
882 }
883
884 #define TCP_INFINITE_SSTHRESH 0x7fffffff
885
886 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
887 {
888 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
889 }
890
891 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
892 * The exception is rate halving phase, when cwnd is decreasing towards
893 * ssthresh.
894 */
895 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
896 {
897 const struct tcp_sock *tp = tcp_sk(sk);
898
899 if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
900 return tp->snd_ssthresh;
901 else
902 return max(tp->snd_ssthresh,
903 ((tp->snd_cwnd >> 1) +
904 (tp->snd_cwnd >> 2)));
905 }
906
907 /* Use define here intentionally to get WARN_ON location shown at the caller */
908 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
909
910 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
911 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
912
913 /* The maximum number of MSS of available cwnd for which TSO defers
914 * sending if not using sysctl_tcp_tso_win_divisor.
915 */
916 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
917 {
918 return 3;
919 }
920
921 /* Slow start with delack produces 3 packets of burst, so that
922 * it is safe "de facto". This will be the default - same as
923 * the default reordering threshold - but if reordering increases,
924 * we must be able to allow cwnd to burst at least this much in order
925 * to not pull it back when holes are filled.
926 */
927 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
928 {
929 return tp->reordering;
930 }
931
932 /* Returns end sequence number of the receiver's advertised window */
933 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
934 {
935 return tp->snd_una + tp->snd_wnd;
936 }
937 extern bool tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
938
939 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
940 const struct sk_buff *skb)
941 {
942 if (skb->len < mss)
943 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
944 }
945
946 static inline void tcp_check_probe_timer(struct sock *sk)
947 {
948 const struct tcp_sock *tp = tcp_sk(sk);
949 const struct inet_connection_sock *icsk = inet_csk(sk);
950
951 if (!tp->packets_out && !icsk->icsk_pending)
952 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
953 icsk->icsk_rto, TCP_RTO_MAX);
954 }
955
956 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
957 {
958 tp->snd_wl1 = seq;
959 }
960
961 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
962 {
963 tp->snd_wl1 = seq;
964 }
965
966 /*
967 * Calculate(/check) TCP checksum
968 */
969 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
970 __be32 daddr, __wsum base)
971 {
972 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
973 }
974
975 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
976 {
977 return __skb_checksum_complete(skb);
978 }
979
980 static inline bool tcp_checksum_complete(struct sk_buff *skb)
981 {
982 return !skb_csum_unnecessary(skb) &&
983 __tcp_checksum_complete(skb);
984 }
985
986 /* Prequeue for VJ style copy to user, combined with checksumming. */
987
988 static inline void tcp_prequeue_init(struct tcp_sock *tp)
989 {
990 tp->ucopy.task = NULL;
991 tp->ucopy.len = 0;
992 tp->ucopy.memory = 0;
993 skb_queue_head_init(&tp->ucopy.prequeue);
994 #ifdef CONFIG_NET_DMA
995 tp->ucopy.dma_chan = NULL;
996 tp->ucopy.wakeup = 0;
997 tp->ucopy.pinned_list = NULL;
998 tp->ucopy.dma_cookie = 0;
999 #endif
1000 }
1001
1002 /* Packet is added to VJ-style prequeue for processing in process
1003 * context, if a reader task is waiting. Apparently, this exciting
1004 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1005 * failed somewhere. Latency? Burstiness? Well, at least now we will
1006 * see, why it failed. 8)8) --ANK
1007 *
1008 * NOTE: is this not too big to inline?
1009 */
1010 static inline bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1011 {
1012 struct tcp_sock *tp = tcp_sk(sk);
1013
1014 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1015 return false;
1016
1017 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1018 tp->ucopy.memory += skb->truesize;
1019 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1020 struct sk_buff *skb1;
1021
1022 BUG_ON(sock_owned_by_user(sk));
1023
1024 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1025 sk_backlog_rcv(sk, skb1);
1026 NET_INC_STATS_BH(sock_net(sk),
1027 LINUX_MIB_TCPPREQUEUEDROPPED);
1028 }
1029
1030 tp->ucopy.memory = 0;
1031 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1032 wake_up_interruptible_sync_poll(sk_sleep(sk),
1033 POLLIN | POLLRDNORM | POLLRDBAND);
1034 if (!inet_csk_ack_scheduled(sk))
1035 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1036 (3 * tcp_rto_min(sk)) / 4,
1037 TCP_RTO_MAX);
1038 }
1039 return true;
1040 }
1041
1042
1043 #undef STATE_TRACE
1044
1045 #ifdef STATE_TRACE
1046 static const char *statename[]={
1047 "Unused","Established","Syn Sent","Syn Recv",
1048 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1049 "Close Wait","Last ACK","Listen","Closing"
1050 };
1051 #endif
1052 extern void tcp_set_state(struct sock *sk, int state);
1053
1054 extern void tcp_done(struct sock *sk);
1055
1056 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1057 {
1058 rx_opt->dsack = 0;
1059 rx_opt->num_sacks = 0;
1060 }
1061
1062 /* Determine a window scaling and initial window to offer. */
1063 extern void tcp_select_initial_window(int __space, __u32 mss,
1064 __u32 *rcv_wnd, __u32 *window_clamp,
1065 int wscale_ok, __u8 *rcv_wscale,
1066 __u32 init_rcv_wnd);
1067
1068 static inline int tcp_win_from_space(int space)
1069 {
1070 return sysctl_tcp_adv_win_scale<=0 ?
1071 (space>>(-sysctl_tcp_adv_win_scale)) :
1072 space - (space>>sysctl_tcp_adv_win_scale);
1073 }
1074
1075 /* Note: caller must be prepared to deal with negative returns */
1076 static inline int tcp_space(const struct sock *sk)
1077 {
1078 return tcp_win_from_space(sk->sk_rcvbuf -
1079 atomic_read(&sk->sk_rmem_alloc));
1080 }
1081
1082 static inline int tcp_full_space(const struct sock *sk)
1083 {
1084 return tcp_win_from_space(sk->sk_rcvbuf);
1085 }
1086
1087 static inline void tcp_openreq_init(struct request_sock *req,
1088 struct tcp_options_received *rx_opt,
1089 struct sk_buff *skb)
1090 {
1091 struct inet_request_sock *ireq = inet_rsk(req);
1092
1093 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
1094 req->cookie_ts = 0;
1095 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1096 req->mss = rx_opt->mss_clamp;
1097 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1098 ireq->tstamp_ok = rx_opt->tstamp_ok;
1099 ireq->sack_ok = rx_opt->sack_ok;
1100 ireq->snd_wscale = rx_opt->snd_wscale;
1101 ireq->wscale_ok = rx_opt->wscale_ok;
1102 ireq->acked = 0;
1103 ireq->ecn_ok = 0;
1104 ireq->rmt_port = tcp_hdr(skb)->source;
1105 ireq->loc_port = tcp_hdr(skb)->dest;
1106 }
1107
1108 extern void tcp_enter_memory_pressure(struct sock *sk);
1109
1110 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1111 {
1112 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1113 }
1114
1115 static inline int keepalive_time_when(const struct tcp_sock *tp)
1116 {
1117 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1118 }
1119
1120 static inline int keepalive_probes(const struct tcp_sock *tp)
1121 {
1122 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1123 }
1124
1125 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1126 {
1127 const struct inet_connection_sock *icsk = &tp->inet_conn;
1128
1129 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1130 tcp_time_stamp - tp->rcv_tstamp);
1131 }
1132
1133 static inline int tcp_fin_time(const struct sock *sk)
1134 {
1135 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1136 const int rto = inet_csk(sk)->icsk_rto;
1137
1138 if (fin_timeout < (rto << 2) - (rto >> 1))
1139 fin_timeout = (rto << 2) - (rto >> 1);
1140
1141 return fin_timeout;
1142 }
1143
1144 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1145 int paws_win)
1146 {
1147 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1148 return true;
1149 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1150 return true;
1151 /*
1152 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1153 * then following tcp messages have valid values. Ignore 0 value,
1154 * or else 'negative' tsval might forbid us to accept their packets.
1155 */
1156 if (!rx_opt->ts_recent)
1157 return true;
1158 return false;
1159 }
1160
1161 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1162 int rst)
1163 {
1164 if (tcp_paws_check(rx_opt, 0))
1165 return false;
1166
1167 /* RST segments are not recommended to carry timestamp,
1168 and, if they do, it is recommended to ignore PAWS because
1169 "their cleanup function should take precedence over timestamps."
1170 Certainly, it is mistake. It is necessary to understand the reasons
1171 of this constraint to relax it: if peer reboots, clock may go
1172 out-of-sync and half-open connections will not be reset.
1173 Actually, the problem would be not existing if all
1174 the implementations followed draft about maintaining clock
1175 via reboots. Linux-2.2 DOES NOT!
1176
1177 However, we can relax time bounds for RST segments to MSL.
1178 */
1179 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1180 return false;
1181 return true;
1182 }
1183
1184 static inline void tcp_mib_init(struct net *net)
1185 {
1186 /* See RFC 2012 */
1187 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1188 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1189 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1190 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1191 }
1192
1193 /* from STCP */
1194 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1195 {
1196 tp->lost_skb_hint = NULL;
1197 tp->scoreboard_skb_hint = NULL;
1198 }
1199
1200 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1201 {
1202 tcp_clear_retrans_hints_partial(tp);
1203 tp->retransmit_skb_hint = NULL;
1204 }
1205
1206 /* MD5 Signature */
1207 struct crypto_hash;
1208
1209 union tcp_md5_addr {
1210 struct in_addr a4;
1211 #if IS_ENABLED(CONFIG_IPV6)
1212 struct in6_addr a6;
1213 #endif
1214 };
1215
1216 /* - key database */
1217 struct tcp_md5sig_key {
1218 struct hlist_node node;
1219 u8 keylen;
1220 u8 family; /* AF_INET or AF_INET6 */
1221 union tcp_md5_addr addr;
1222 u8 key[TCP_MD5SIG_MAXKEYLEN];
1223 struct rcu_head rcu;
1224 };
1225
1226 /* - sock block */
1227 struct tcp_md5sig_info {
1228 struct hlist_head head;
1229 struct rcu_head rcu;
1230 };
1231
1232 /* - pseudo header */
1233 struct tcp4_pseudohdr {
1234 __be32 saddr;
1235 __be32 daddr;
1236 __u8 pad;
1237 __u8 protocol;
1238 __be16 len;
1239 };
1240
1241 struct tcp6_pseudohdr {
1242 struct in6_addr saddr;
1243 struct in6_addr daddr;
1244 __be32 len;
1245 __be32 protocol; /* including padding */
1246 };
1247
1248 union tcp_md5sum_block {
1249 struct tcp4_pseudohdr ip4;
1250 #if IS_ENABLED(CONFIG_IPV6)
1251 struct tcp6_pseudohdr ip6;
1252 #endif
1253 };
1254
1255 /* - pool: digest algorithm, hash description and scratch buffer */
1256 struct tcp_md5sig_pool {
1257 struct hash_desc md5_desc;
1258 union tcp_md5sum_block md5_blk;
1259 };
1260
1261 /* - functions */
1262 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1263 const struct sock *sk,
1264 const struct request_sock *req,
1265 const struct sk_buff *skb);
1266 extern int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1267 int family, const u8 *newkey,
1268 u8 newkeylen, gfp_t gfp);
1269 extern int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1270 int family);
1271 extern struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1272 struct sock *addr_sk);
1273
1274 #ifdef CONFIG_TCP_MD5SIG
1275 extern struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1276 const union tcp_md5_addr *addr, int family);
1277 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1278 #else
1279 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1280 const union tcp_md5_addr *addr,
1281 int family)
1282 {
1283 return NULL;
1284 }
1285 #define tcp_twsk_md5_key(twsk) NULL
1286 #endif
1287
1288 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1289 extern void tcp_free_md5sig_pool(void);
1290
1291 extern struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1292 extern void tcp_put_md5sig_pool(void);
1293
1294 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1295 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1296 unsigned int header_len);
1297 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1298 const struct tcp_md5sig_key *key);
1299
1300 struct tcp_fastopen_request {
1301 /* Fast Open cookie. Size 0 means a cookie request */
1302 struct tcp_fastopen_cookie cookie;
1303 struct msghdr *data; /* data in MSG_FASTOPEN */
1304 u16 copied; /* queued in tcp_connect() */
1305 };
1306
1307 void tcp_free_fastopen_req(struct tcp_sock *tp);
1308
1309 /* write queue abstraction */
1310 static inline void tcp_write_queue_purge(struct sock *sk)
1311 {
1312 struct sk_buff *skb;
1313
1314 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1315 sk_wmem_free_skb(sk, skb);
1316 sk_mem_reclaim(sk);
1317 tcp_clear_all_retrans_hints(tcp_sk(sk));
1318 }
1319
1320 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1321 {
1322 return skb_peek(&sk->sk_write_queue);
1323 }
1324
1325 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1326 {
1327 return skb_peek_tail(&sk->sk_write_queue);
1328 }
1329
1330 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1331 const struct sk_buff *skb)
1332 {
1333 return skb_queue_next(&sk->sk_write_queue, skb);
1334 }
1335
1336 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1337 const struct sk_buff *skb)
1338 {
1339 return skb_queue_prev(&sk->sk_write_queue, skb);
1340 }
1341
1342 #define tcp_for_write_queue(skb, sk) \
1343 skb_queue_walk(&(sk)->sk_write_queue, skb)
1344
1345 #define tcp_for_write_queue_from(skb, sk) \
1346 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1347
1348 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1349 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1350
1351 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1352 {
1353 return sk->sk_send_head;
1354 }
1355
1356 static inline bool tcp_skb_is_last(const struct sock *sk,
1357 const struct sk_buff *skb)
1358 {
1359 return skb_queue_is_last(&sk->sk_write_queue, skb);
1360 }
1361
1362 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1363 {
1364 if (tcp_skb_is_last(sk, skb))
1365 sk->sk_send_head = NULL;
1366 else
1367 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1368 }
1369
1370 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1371 {
1372 if (sk->sk_send_head == skb_unlinked)
1373 sk->sk_send_head = NULL;
1374 }
1375
1376 static inline void tcp_init_send_head(struct sock *sk)
1377 {
1378 sk->sk_send_head = NULL;
1379 }
1380
1381 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1382 {
1383 __skb_queue_tail(&sk->sk_write_queue, skb);
1384 }
1385
1386 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1387 {
1388 __tcp_add_write_queue_tail(sk, skb);
1389
1390 /* Queue it, remembering where we must start sending. */
1391 if (sk->sk_send_head == NULL) {
1392 sk->sk_send_head = skb;
1393
1394 if (tcp_sk(sk)->highest_sack == NULL)
1395 tcp_sk(sk)->highest_sack = skb;
1396 }
1397 }
1398
1399 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1400 {
1401 __skb_queue_head(&sk->sk_write_queue, skb);
1402 }
1403
1404 /* Insert buff after skb on the write queue of sk. */
1405 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1406 struct sk_buff *buff,
1407 struct sock *sk)
1408 {
1409 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1410 }
1411
1412 /* Insert new before skb on the write queue of sk. */
1413 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1414 struct sk_buff *skb,
1415 struct sock *sk)
1416 {
1417 __skb_queue_before(&sk->sk_write_queue, skb, new);
1418
1419 if (sk->sk_send_head == skb)
1420 sk->sk_send_head = new;
1421 }
1422
1423 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1424 {
1425 __skb_unlink(skb, &sk->sk_write_queue);
1426 }
1427
1428 static inline bool tcp_write_queue_empty(struct sock *sk)
1429 {
1430 return skb_queue_empty(&sk->sk_write_queue);
1431 }
1432
1433 static inline void tcp_push_pending_frames(struct sock *sk)
1434 {
1435 if (tcp_send_head(sk)) {
1436 struct tcp_sock *tp = tcp_sk(sk);
1437
1438 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1439 }
1440 }
1441
1442 /* Start sequence of the skb just after the highest skb with SACKed
1443 * bit, valid only if sacked_out > 0 or when the caller has ensured
1444 * validity by itself.
1445 */
1446 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1447 {
1448 if (!tp->sacked_out)
1449 return tp->snd_una;
1450
1451 if (tp->highest_sack == NULL)
1452 return tp->snd_nxt;
1453
1454 return TCP_SKB_CB(tp->highest_sack)->seq;
1455 }
1456
1457 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1458 {
1459 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1460 tcp_write_queue_next(sk, skb);
1461 }
1462
1463 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1464 {
1465 return tcp_sk(sk)->highest_sack;
1466 }
1467
1468 static inline void tcp_highest_sack_reset(struct sock *sk)
1469 {
1470 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1471 }
1472
1473 /* Called when old skb is about to be deleted (to be combined with new skb) */
1474 static inline void tcp_highest_sack_combine(struct sock *sk,
1475 struct sk_buff *old,
1476 struct sk_buff *new)
1477 {
1478 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1479 tcp_sk(sk)->highest_sack = new;
1480 }
1481
1482 /* Determines whether this is a thin stream (which may suffer from
1483 * increased latency). Used to trigger latency-reducing mechanisms.
1484 */
1485 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1486 {
1487 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1488 }
1489
1490 /* /proc */
1491 enum tcp_seq_states {
1492 TCP_SEQ_STATE_LISTENING,
1493 TCP_SEQ_STATE_OPENREQ,
1494 TCP_SEQ_STATE_ESTABLISHED,
1495 TCP_SEQ_STATE_TIME_WAIT,
1496 };
1497
1498 int tcp_seq_open(struct inode *inode, struct file *file);
1499
1500 struct tcp_seq_afinfo {
1501 char *name;
1502 sa_family_t family;
1503 const struct file_operations *seq_fops;
1504 struct seq_operations seq_ops;
1505 };
1506
1507 struct tcp_iter_state {
1508 struct seq_net_private p;
1509 sa_family_t family;
1510 enum tcp_seq_states state;
1511 struct sock *syn_wait_sk;
1512 int bucket, offset, sbucket, num;
1513 kuid_t uid;
1514 loff_t last_pos;
1515 };
1516
1517 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1518 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1519
1520 extern struct request_sock_ops tcp_request_sock_ops;
1521 extern struct request_sock_ops tcp6_request_sock_ops;
1522
1523 extern void tcp_v4_destroy_sock(struct sock *sk);
1524
1525 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1526 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1527 netdev_features_t features);
1528 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1529 struct sk_buff *skb);
1530 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1531 struct sk_buff *skb);
1532 extern int tcp_gro_complete(struct sk_buff *skb);
1533 extern int tcp4_gro_complete(struct sk_buff *skb);
1534
1535 #ifdef CONFIG_PROC_FS
1536 extern int tcp4_proc_init(void);
1537 extern void tcp4_proc_exit(void);
1538 #endif
1539
1540 /* TCP af-specific functions */
1541 struct tcp_sock_af_ops {
1542 #ifdef CONFIG_TCP_MD5SIG
1543 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1544 struct sock *addr_sk);
1545 int (*calc_md5_hash) (char *location,
1546 struct tcp_md5sig_key *md5,
1547 const struct sock *sk,
1548 const struct request_sock *req,
1549 const struct sk_buff *skb);
1550 int (*md5_parse) (struct sock *sk,
1551 char __user *optval,
1552 int optlen);
1553 #endif
1554 };
1555
1556 struct tcp_request_sock_ops {
1557 #ifdef CONFIG_TCP_MD5SIG
1558 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1559 struct request_sock *req);
1560 int (*calc_md5_hash) (char *location,
1561 struct tcp_md5sig_key *md5,
1562 const struct sock *sk,
1563 const struct request_sock *req,
1564 const struct sk_buff *skb);
1565 #endif
1566 };
1567
1568 /* Using SHA1 for now, define some constants.
1569 */
1570 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1571 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1572 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1573
1574 extern int tcp_cookie_generator(u32 *bakery);
1575
1576 /**
1577 * struct tcp_cookie_values - each socket needs extra space for the
1578 * cookies, together with (optional) space for any SYN data.
1579 *
1580 * A tcp_sock contains a pointer to the current value, and this is
1581 * cloned to the tcp_timewait_sock.
1582 *
1583 * @cookie_pair: variable data from the option exchange.
1584 *
1585 * @cookie_desired: user specified tcpct_cookie_desired. Zero
1586 * indicates default (sysctl_tcp_cookie_size).
1587 * After cookie sent, remembers size of cookie.
1588 * Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1589 *
1590 * @s_data_desired: user specified tcpct_s_data_desired. When the
1591 * constant payload is specified (@s_data_constant),
1592 * holds its length instead.
1593 * Range 0 to TCP_MSS_DESIRED.
1594 *
1595 * @s_data_payload: constant data that is to be included in the
1596 * payload of SYN or SYNACK segments when the
1597 * cookie option is present.
1598 */
1599 struct tcp_cookie_values {
1600 struct kref kref;
1601 u8 cookie_pair[TCP_COOKIE_PAIR_SIZE];
1602 u8 cookie_pair_size;
1603 u8 cookie_desired;
1604 u16 s_data_desired:11,
1605 s_data_constant:1,
1606 s_data_in:1,
1607 s_data_out:1,
1608 s_data_unused:2;
1609 u8 s_data_payload[0];
1610 };
1611
1612 static inline void tcp_cookie_values_release(struct kref *kref)
1613 {
1614 kfree(container_of(kref, struct tcp_cookie_values, kref));
1615 }
1616
1617 /* The length of constant payload data. Note that s_data_desired is
1618 * overloaded, depending on s_data_constant: either the length of constant
1619 * data (returned here) or the limit on variable data.
1620 */
1621 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1622 {
1623 return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1624 ? tp->cookie_values->s_data_desired
1625 : 0;
1626 }
1627
1628 /**
1629 * struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1630 *
1631 * As tcp_request_sock has already been extended in other places, the
1632 * only remaining method is to pass stack values along as function
1633 * parameters. These parameters are not needed after sending SYNACK.
1634 *
1635 * @cookie_bakery: cryptographic secret and message workspace.
1636 *
1637 * @cookie_plus: bytes in authenticator/cookie option, copied from
1638 * struct tcp_options_received (above).
1639 */
1640 struct tcp_extend_values {
1641 struct request_values rv;
1642 u32 cookie_bakery[COOKIE_WORKSPACE_WORDS];
1643 u8 cookie_plus:6,
1644 cookie_out_never:1,
1645 cookie_in_always:1;
1646 };
1647
1648 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1649 {
1650 return (struct tcp_extend_values *)rvp;
1651 }
1652
1653 extern void tcp_v4_init(void);
1654 extern void tcp_init(void);
1655
1656 #endif /* _TCP_H */
This page took 0.080153 seconds and 5 git commands to generate.