a12f145cfbc3d1b79de330269b3dbe53aeba8b2e
[deliverable/linux.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 #include <linux/ktime.h>
35
36 #include <net/inet_connection_sock.h>
37 #include <net/inet_timewait_sock.h>
38 #include <net/inet_hashtables.h>
39 #include <net/checksum.h>
40 #include <net/request_sock.h>
41 #include <net/sock.h>
42 #include <net/snmp.h>
43 #include <net/ip.h>
44 #include <net/tcp_states.h>
45 #include <net/inet_ecn.h>
46 #include <net/dst.h>
47
48 #include <linux/seq_file.h>
49 #include <linux/memcontrol.h>
50
51 extern struct inet_hashinfo tcp_hashinfo;
52
53 extern struct percpu_counter tcp_orphan_count;
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55
56 #define MAX_TCP_HEADER (128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58
59 /*
60 * Never offer a window over 32767 without using window scaling. Some
61 * poor stacks do signed 16bit maths!
62 */
63 #define MAX_TCP_WINDOW 32767U
64
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS 88U
67
68 /* The least MTU to use for probing */
69 #define TCP_BASE_MSS 512
70
71 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
72 #define TCP_FASTRETRANS_THRESH 3
73
74 /* Maximal reordering. */
75 #define TCP_MAX_REORDERING 127
76
77 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
78 #define TCP_MAX_QUICKACKS 16U
79
80 /* urg_data states */
81 #define TCP_URG_VALID 0x0100
82 #define TCP_URG_NOTYET 0x0200
83 #define TCP_URG_READ 0x0400
84
85 #define TCP_RETR1 3 /*
86 * This is how many retries it does before it
87 * tries to figure out if the gateway is
88 * down. Minimal RFC value is 3; it corresponds
89 * to ~3sec-8min depending on RTO.
90 */
91
92 #define TCP_RETR2 15 /*
93 * This should take at least
94 * 90 minutes to time out.
95 * RFC1122 says that the limit is 100 sec.
96 * 15 is ~13-30min depending on RTO.
97 */
98
99 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
100 * when active opening a connection.
101 * RFC1122 says the minimum retry MUST
102 * be at least 180secs. Nevertheless
103 * this value is corresponding to
104 * 63secs of retransmission with the
105 * current initial RTO.
106 */
107
108 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
109 * when passive opening a connection.
110 * This is corresponding to 31secs of
111 * retransmission with the current
112 * initial RTO.
113 */
114
115 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
116 * state, about 60 seconds */
117 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
118 /* BSD style FIN_WAIT2 deadlock breaker.
119 * It used to be 3min, new value is 60sec,
120 * to combine FIN-WAIT-2 timeout with
121 * TIME-WAIT timer.
122 */
123
124 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
125 #if HZ >= 100
126 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
127 #define TCP_ATO_MIN ((unsigned)(HZ/25))
128 #else
129 #define TCP_DELACK_MIN 4U
130 #define TCP_ATO_MIN 4U
131 #endif
132 #define TCP_RTO_MAX ((unsigned)(120*HZ))
133 #define TCP_RTO_MIN ((unsigned)(HZ/5))
134 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
135 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
136 * used as a fallback RTO for the
137 * initial data transmission if no
138 * valid RTT sample has been acquired,
139 * most likely due to retrans in 3WHS.
140 */
141
142 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
143 * for local resources.
144 */
145
146 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
147 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
148 #define TCP_KEEPALIVE_INTVL (75*HZ)
149
150 #define MAX_TCP_KEEPIDLE 32767
151 #define MAX_TCP_KEEPINTVL 32767
152 #define MAX_TCP_KEEPCNT 127
153 #define MAX_TCP_SYNCNT 127
154
155 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
156
157 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
158 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
159 * after this time. It should be equal
160 * (or greater than) TCP_TIMEWAIT_LEN
161 * to provide reliability equal to one
162 * provided by timewait state.
163 */
164 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
165 * timestamps. It must be less than
166 * minimal timewait lifetime.
167 */
168 /*
169 * TCP option
170 */
171
172 #define TCPOPT_NOP 1 /* Padding */
173 #define TCPOPT_EOL 0 /* End of options */
174 #define TCPOPT_MSS 2 /* Segment size negotiating */
175 #define TCPOPT_WINDOW 3 /* Window scaling */
176 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
177 #define TCPOPT_SACK 5 /* SACK Block */
178 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
179 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
180 #define TCPOPT_EXP 254 /* Experimental */
181 /* Magic number to be after the option value for sharing TCP
182 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
183 */
184 #define TCPOPT_FASTOPEN_MAGIC 0xF989
185
186 /*
187 * TCP option lengths
188 */
189
190 #define TCPOLEN_MSS 4
191 #define TCPOLEN_WINDOW 3
192 #define TCPOLEN_SACK_PERM 2
193 #define TCPOLEN_TIMESTAMP 10
194 #define TCPOLEN_MD5SIG 18
195 #define TCPOLEN_EXP_FASTOPEN_BASE 4
196
197 /* But this is what stacks really send out. */
198 #define TCPOLEN_TSTAMP_ALIGNED 12
199 #define TCPOLEN_WSCALE_ALIGNED 4
200 #define TCPOLEN_SACKPERM_ALIGNED 4
201 #define TCPOLEN_SACK_BASE 2
202 #define TCPOLEN_SACK_BASE_ALIGNED 4
203 #define TCPOLEN_SACK_PERBLOCK 8
204 #define TCPOLEN_MD5SIG_ALIGNED 20
205 #define TCPOLEN_MSS_ALIGNED 4
206
207 /* Flags in tp->nonagle */
208 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
209 #define TCP_NAGLE_CORK 2 /* Socket is corked */
210 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
211
212 /* TCP thin-stream limits */
213 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
214
215 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
216 #define TCP_INIT_CWND 10
217
218 /* Bit Flags for sysctl_tcp_fastopen */
219 #define TFO_CLIENT_ENABLE 1
220 #define TFO_SERVER_ENABLE 2
221 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
222
223 /* Accept SYN data w/o any cookie option */
224 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
225
226 /* Force enable TFO on all listeners, i.e., not requiring the
227 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
228 */
229 #define TFO_SERVER_WO_SOCKOPT1 0x400
230 #define TFO_SERVER_WO_SOCKOPT2 0x800
231
232 extern struct inet_timewait_death_row tcp_death_row;
233
234 /* sysctl variables for tcp */
235 extern int sysctl_tcp_timestamps;
236 extern int sysctl_tcp_window_scaling;
237 extern int sysctl_tcp_sack;
238 extern int sysctl_tcp_fin_timeout;
239 extern int sysctl_tcp_keepalive_time;
240 extern int sysctl_tcp_keepalive_probes;
241 extern int sysctl_tcp_keepalive_intvl;
242 extern int sysctl_tcp_syn_retries;
243 extern int sysctl_tcp_synack_retries;
244 extern int sysctl_tcp_retries1;
245 extern int sysctl_tcp_retries2;
246 extern int sysctl_tcp_orphan_retries;
247 extern int sysctl_tcp_syncookies;
248 extern int sysctl_tcp_fastopen;
249 extern int sysctl_tcp_retrans_collapse;
250 extern int sysctl_tcp_stdurg;
251 extern int sysctl_tcp_rfc1337;
252 extern int sysctl_tcp_abort_on_overflow;
253 extern int sysctl_tcp_max_orphans;
254 extern int sysctl_tcp_fack;
255 extern int sysctl_tcp_reordering;
256 extern int sysctl_tcp_dsack;
257 extern long sysctl_tcp_mem[3];
258 extern int sysctl_tcp_wmem[3];
259 extern int sysctl_tcp_rmem[3];
260 extern int sysctl_tcp_app_win;
261 extern int sysctl_tcp_adv_win_scale;
262 extern int sysctl_tcp_tw_reuse;
263 extern int sysctl_tcp_frto;
264 extern int sysctl_tcp_low_latency;
265 extern int sysctl_tcp_dma_copybreak;
266 extern int sysctl_tcp_nometrics_save;
267 extern int sysctl_tcp_moderate_rcvbuf;
268 extern int sysctl_tcp_tso_win_divisor;
269 extern int sysctl_tcp_mtu_probing;
270 extern int sysctl_tcp_base_mss;
271 extern int sysctl_tcp_workaround_signed_windows;
272 extern int sysctl_tcp_slow_start_after_idle;
273 extern int sysctl_tcp_thin_linear_timeouts;
274 extern int sysctl_tcp_thin_dupack;
275 extern int sysctl_tcp_early_retrans;
276 extern int sysctl_tcp_limit_output_bytes;
277 extern int sysctl_tcp_challenge_ack_limit;
278 extern unsigned int sysctl_tcp_notsent_lowat;
279 extern int sysctl_tcp_min_tso_segs;
280 extern int sysctl_tcp_autocorking;
281
282 extern atomic_long_t tcp_memory_allocated;
283 extern struct percpu_counter tcp_sockets_allocated;
284 extern int tcp_memory_pressure;
285
286 /*
287 * The next routines deal with comparing 32 bit unsigned ints
288 * and worry about wraparound (automatic with unsigned arithmetic).
289 */
290
291 static inline bool before(__u32 seq1, __u32 seq2)
292 {
293 return (__s32)(seq1-seq2) < 0;
294 }
295 #define after(seq2, seq1) before(seq1, seq2)
296
297 /* is s2<=s1<=s3 ? */
298 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
299 {
300 return seq3 - seq2 >= seq1 - seq2;
301 }
302
303 static inline bool tcp_out_of_memory(struct sock *sk)
304 {
305 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
306 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
307 return true;
308 return false;
309 }
310
311 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
312 {
313 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
314 int orphans = percpu_counter_read_positive(ocp);
315
316 if (orphans << shift > sysctl_tcp_max_orphans) {
317 orphans = percpu_counter_sum_positive(ocp);
318 if (orphans << shift > sysctl_tcp_max_orphans)
319 return true;
320 }
321 return false;
322 }
323
324 bool tcp_check_oom(struct sock *sk, int shift);
325
326 /* syncookies: remember time of last synqueue overflow */
327 static inline void tcp_synq_overflow(struct sock *sk)
328 {
329 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
330 }
331
332 /* syncookies: no recent synqueue overflow on this listening socket? */
333 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
334 {
335 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
336 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
337 }
338
339 extern struct proto tcp_prot;
340
341 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
342 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
343 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
344 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
345 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
346
347 void tcp_tasklet_init(void);
348
349 void tcp_v4_err(struct sk_buff *skb, u32);
350
351 void tcp_shutdown(struct sock *sk, int how);
352
353 void tcp_v4_early_demux(struct sk_buff *skb);
354 int tcp_v4_rcv(struct sk_buff *skb);
355
356 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
357 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
358 size_t size);
359 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
360 int flags);
361 void tcp_release_cb(struct sock *sk);
362 void tcp_wfree(struct sk_buff *skb);
363 void tcp_write_timer_handler(struct sock *sk);
364 void tcp_delack_timer_handler(struct sock *sk);
365 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
366 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
367 const struct tcphdr *th, unsigned int len);
368 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
369 const struct tcphdr *th, unsigned int len);
370 void tcp_rcv_space_adjust(struct sock *sk);
371 void tcp_cleanup_rbuf(struct sock *sk, int copied);
372 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
373 void tcp_twsk_destructor(struct sock *sk);
374 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
375 struct pipe_inode_info *pipe, size_t len,
376 unsigned int flags);
377
378 static inline void tcp_dec_quickack_mode(struct sock *sk,
379 const unsigned int pkts)
380 {
381 struct inet_connection_sock *icsk = inet_csk(sk);
382
383 if (icsk->icsk_ack.quick) {
384 if (pkts >= icsk->icsk_ack.quick) {
385 icsk->icsk_ack.quick = 0;
386 /* Leaving quickack mode we deflate ATO. */
387 icsk->icsk_ack.ato = TCP_ATO_MIN;
388 } else
389 icsk->icsk_ack.quick -= pkts;
390 }
391 }
392
393 #define TCP_ECN_OK 1
394 #define TCP_ECN_QUEUE_CWR 2
395 #define TCP_ECN_DEMAND_CWR 4
396 #define TCP_ECN_SEEN 8
397
398 enum tcp_tw_status {
399 TCP_TW_SUCCESS = 0,
400 TCP_TW_RST = 1,
401 TCP_TW_ACK = 2,
402 TCP_TW_SYN = 3
403 };
404
405
406 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
407 struct sk_buff *skb,
408 const struct tcphdr *th);
409 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
410 struct request_sock *req, struct request_sock **prev,
411 bool fastopen);
412 int tcp_child_process(struct sock *parent, struct sock *child,
413 struct sk_buff *skb);
414 void tcp_enter_loss(struct sock *sk);
415 void tcp_clear_retrans(struct tcp_sock *tp);
416 void tcp_update_metrics(struct sock *sk);
417 void tcp_init_metrics(struct sock *sk);
418 void tcp_metrics_init(void);
419 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
420 bool paws_check, bool timestamps);
421 bool tcp_remember_stamp(struct sock *sk);
422 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
423 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
424 void tcp_disable_fack(struct tcp_sock *tp);
425 void tcp_close(struct sock *sk, long timeout);
426 void tcp_init_sock(struct sock *sk);
427 unsigned int tcp_poll(struct file *file, struct socket *sock,
428 struct poll_table_struct *wait);
429 int tcp_getsockopt(struct sock *sk, int level, int optname,
430 char __user *optval, int __user *optlen);
431 int tcp_setsockopt(struct sock *sk, int level, int optname,
432 char __user *optval, unsigned int optlen);
433 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
434 char __user *optval, int __user *optlen);
435 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
436 char __user *optval, unsigned int optlen);
437 void tcp_set_keepalive(struct sock *sk, int val);
438 void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
439 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
440 size_t len, int nonblock, int flags, int *addr_len);
441 void tcp_parse_options(const struct sk_buff *skb,
442 struct tcp_options_received *opt_rx,
443 int estab, struct tcp_fastopen_cookie *foc);
444 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
445
446 /*
447 * TCP v4 functions exported for the inet6 API
448 */
449
450 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
451 void tcp_v4_mtu_reduced(struct sock *sk);
452 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
453 struct sock *tcp_create_openreq_child(struct sock *sk,
454 struct request_sock *req,
455 struct sk_buff *skb);
456 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
457 struct request_sock *req,
458 struct dst_entry *dst);
459 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
460 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
461 int tcp_connect(struct sock *sk);
462 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
463 struct request_sock *req,
464 struct tcp_fastopen_cookie *foc);
465 int tcp_disconnect(struct sock *sk, int flags);
466
467 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
468 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
469 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
470
471 /* From syncookies.c */
472 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
473 u32 cookie);
474 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
475 struct ip_options *opt);
476 #ifdef CONFIG_SYN_COOKIES
477
478 /* Syncookies use a monotonic timer which increments every 60 seconds.
479 * This counter is used both as a hash input and partially encoded into
480 * the cookie value. A cookie is only validated further if the delta
481 * between the current counter value and the encoded one is less than this,
482 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
483 * the counter advances immediately after a cookie is generated).
484 */
485 #define MAX_SYNCOOKIE_AGE 2
486
487 static inline u32 tcp_cookie_time(void)
488 {
489 u64 val = get_jiffies_64();
490
491 do_div(val, 60 * HZ);
492 return val;
493 }
494
495 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
496 u16 *mssp);
497 __u32 cookie_v4_init_sequence(struct sock *sk, const struct sk_buff *skb,
498 __u16 *mss);
499 #endif
500
501 __u32 cookie_init_timestamp(struct request_sock *req);
502 bool cookie_check_timestamp(struct tcp_options_received *opt, struct net *net,
503 bool *ecn_ok);
504
505 /* From net/ipv6/syncookies.c */
506 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
507 u32 cookie);
508 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
509 #ifdef CONFIG_SYN_COOKIES
510 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
511 const struct tcphdr *th, u16 *mssp);
512 __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
513 __u16 *mss);
514 #endif
515 /* tcp_output.c */
516
517 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
518 int nonagle);
519 bool tcp_may_send_now(struct sock *sk);
520 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
521 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
522 void tcp_retransmit_timer(struct sock *sk);
523 void tcp_xmit_retransmit_queue(struct sock *);
524 void tcp_simple_retransmit(struct sock *);
525 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
526 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
527
528 void tcp_send_probe0(struct sock *);
529 void tcp_send_partial(struct sock *);
530 int tcp_write_wakeup(struct sock *);
531 void tcp_send_fin(struct sock *sk);
532 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
533 int tcp_send_synack(struct sock *);
534 bool tcp_syn_flood_action(struct sock *sk, const struct sk_buff *skb,
535 const char *proto);
536 void tcp_push_one(struct sock *, unsigned int mss_now);
537 void tcp_send_ack(struct sock *sk);
538 void tcp_send_delayed_ack(struct sock *sk);
539 void tcp_send_loss_probe(struct sock *sk);
540 bool tcp_schedule_loss_probe(struct sock *sk);
541
542 /* tcp_input.c */
543 void tcp_resume_early_retransmit(struct sock *sk);
544 void tcp_rearm_rto(struct sock *sk);
545 void tcp_reset(struct sock *sk);
546
547 /* tcp_timer.c */
548 void tcp_init_xmit_timers(struct sock *);
549 static inline void tcp_clear_xmit_timers(struct sock *sk)
550 {
551 inet_csk_clear_xmit_timers(sk);
552 }
553
554 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
555 unsigned int tcp_current_mss(struct sock *sk);
556
557 /* Bound MSS / TSO packet size with the half of the window */
558 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
559 {
560 int cutoff;
561
562 /* When peer uses tiny windows, there is no use in packetizing
563 * to sub-MSS pieces for the sake of SWS or making sure there
564 * are enough packets in the pipe for fast recovery.
565 *
566 * On the other hand, for extremely large MSS devices, handling
567 * smaller than MSS windows in this way does make sense.
568 */
569 if (tp->max_window >= 512)
570 cutoff = (tp->max_window >> 1);
571 else
572 cutoff = tp->max_window;
573
574 if (cutoff && pktsize > cutoff)
575 return max_t(int, cutoff, 68U - tp->tcp_header_len);
576 else
577 return pktsize;
578 }
579
580 /* tcp.c */
581 void tcp_get_info(const struct sock *, struct tcp_info *);
582
583 /* Read 'sendfile()'-style from a TCP socket */
584 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
585 unsigned int, size_t);
586 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
587 sk_read_actor_t recv_actor);
588
589 void tcp_initialize_rcv_mss(struct sock *sk);
590
591 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
592 int tcp_mss_to_mtu(struct sock *sk, int mss);
593 void tcp_mtup_init(struct sock *sk);
594 void tcp_init_buffer_space(struct sock *sk);
595
596 static inline void tcp_bound_rto(const struct sock *sk)
597 {
598 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
599 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
600 }
601
602 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
603 {
604 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
605 }
606
607 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
608 {
609 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
610 ntohl(TCP_FLAG_ACK) |
611 snd_wnd);
612 }
613
614 static inline void tcp_fast_path_on(struct tcp_sock *tp)
615 {
616 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
617 }
618
619 static inline void tcp_fast_path_check(struct sock *sk)
620 {
621 struct tcp_sock *tp = tcp_sk(sk);
622
623 if (skb_queue_empty(&tp->out_of_order_queue) &&
624 tp->rcv_wnd &&
625 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
626 !tp->urg_data)
627 tcp_fast_path_on(tp);
628 }
629
630 /* Compute the actual rto_min value */
631 static inline u32 tcp_rto_min(struct sock *sk)
632 {
633 const struct dst_entry *dst = __sk_dst_get(sk);
634 u32 rto_min = TCP_RTO_MIN;
635
636 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
637 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
638 return rto_min;
639 }
640
641 static inline u32 tcp_rto_min_us(struct sock *sk)
642 {
643 return jiffies_to_usecs(tcp_rto_min(sk));
644 }
645
646 /* Compute the actual receive window we are currently advertising.
647 * Rcv_nxt can be after the window if our peer push more data
648 * than the offered window.
649 */
650 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
651 {
652 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
653
654 if (win < 0)
655 win = 0;
656 return (u32) win;
657 }
658
659 /* Choose a new window, without checks for shrinking, and without
660 * scaling applied to the result. The caller does these things
661 * if necessary. This is a "raw" window selection.
662 */
663 u32 __tcp_select_window(struct sock *sk);
664
665 void tcp_send_window_probe(struct sock *sk);
666
667 /* TCP timestamps are only 32-bits, this causes a slight
668 * complication on 64-bit systems since we store a snapshot
669 * of jiffies in the buffer control blocks below. We decided
670 * to use only the low 32-bits of jiffies and hide the ugly
671 * casts with the following macro.
672 */
673 #define tcp_time_stamp ((__u32)(jiffies))
674
675 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
676 {
677 return skb->skb_mstamp.stamp_jiffies;
678 }
679
680
681 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
682
683 #define TCPHDR_FIN 0x01
684 #define TCPHDR_SYN 0x02
685 #define TCPHDR_RST 0x04
686 #define TCPHDR_PSH 0x08
687 #define TCPHDR_ACK 0x10
688 #define TCPHDR_URG 0x20
689 #define TCPHDR_ECE 0x40
690 #define TCPHDR_CWR 0x80
691
692 /* This is what the send packet queuing engine uses to pass
693 * TCP per-packet control information to the transmission code.
694 * We also store the host-order sequence numbers in here too.
695 * This is 44 bytes if IPV6 is enabled.
696 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
697 */
698 struct tcp_skb_cb {
699 __u32 seq; /* Starting sequence number */
700 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
701 union {
702 /* Note : tcp_tw_isn is used in input path only
703 * (isn chosen by tcp_timewait_state_process())
704 *
705 * tcp_gso_segs is used in write queue only,
706 * cf tcp_skb_pcount()
707 */
708 __u32 tcp_tw_isn;
709 __u32 tcp_gso_segs;
710 };
711 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
712
713 __u8 sacked; /* State flags for SACK/FACK. */
714 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
715 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
716 #define TCPCB_LOST 0x04 /* SKB is lost */
717 #define TCPCB_TAGBITS 0x07 /* All tag bits */
718 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp) */
719 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
720 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
721 TCPCB_REPAIRED)
722
723 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
724 /* 1 byte hole */
725 __u32 ack_seq; /* Sequence number ACK'd */
726 union {
727 struct inet_skb_parm h4;
728 #if IS_ENABLED(CONFIG_IPV6)
729 struct inet6_skb_parm h6;
730 #endif
731 } header; /* For incoming frames */
732 };
733
734 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
735
736 /* Due to TSO, an SKB can be composed of multiple actual
737 * packets. To keep these tracked properly, we use this.
738 */
739 static inline int tcp_skb_pcount(const struct sk_buff *skb)
740 {
741 return TCP_SKB_CB(skb)->tcp_gso_segs;
742 }
743
744 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
745 {
746 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
747 }
748
749 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
750 {
751 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
752 }
753
754 /* This is valid iff tcp_skb_pcount() > 1. */
755 static inline int tcp_skb_mss(const struct sk_buff *skb)
756 {
757 return skb_shinfo(skb)->gso_size;
758 }
759
760 /* Events passed to congestion control interface */
761 enum tcp_ca_event {
762 CA_EVENT_TX_START, /* first transmit when no packets in flight */
763 CA_EVENT_CWND_RESTART, /* congestion window restart */
764 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
765 CA_EVENT_LOSS, /* loss timeout */
766 CA_EVENT_FAST_ACK, /* in sequence ack */
767 CA_EVENT_SLOW_ACK, /* other ack */
768 };
769
770 /*
771 * Interface for adding new TCP congestion control handlers
772 */
773 #define TCP_CA_NAME_MAX 16
774 #define TCP_CA_MAX 128
775 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
776
777 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
778 #define TCP_CONG_NON_RESTRICTED 0x1
779 /* Requires ECN/ECT set on all packets */
780 #define TCP_CONG_NEEDS_ECN 0x2
781
782 struct tcp_congestion_ops {
783 struct list_head list;
784 unsigned long flags;
785
786 /* initialize private data (optional) */
787 void (*init)(struct sock *sk);
788 /* cleanup private data (optional) */
789 void (*release)(struct sock *sk);
790
791 /* return slow start threshold (required) */
792 u32 (*ssthresh)(struct sock *sk);
793 /* do new cwnd calculation (required) */
794 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
795 /* call before changing ca_state (optional) */
796 void (*set_state)(struct sock *sk, u8 new_state);
797 /* call when cwnd event occurs (optional) */
798 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
799 /* new value of cwnd after loss (optional) */
800 u32 (*undo_cwnd)(struct sock *sk);
801 /* hook for packet ack accounting (optional) */
802 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
803 /* get info for inet_diag (optional) */
804 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
805
806 char name[TCP_CA_NAME_MAX];
807 struct module *owner;
808 };
809
810 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
811 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
812
813 void tcp_assign_congestion_control(struct sock *sk);
814 void tcp_init_congestion_control(struct sock *sk);
815 void tcp_cleanup_congestion_control(struct sock *sk);
816 int tcp_set_default_congestion_control(const char *name);
817 void tcp_get_default_congestion_control(char *name);
818 void tcp_get_available_congestion_control(char *buf, size_t len);
819 void tcp_get_allowed_congestion_control(char *buf, size_t len);
820 int tcp_set_allowed_congestion_control(char *allowed);
821 int tcp_set_congestion_control(struct sock *sk, const char *name);
822 int tcp_slow_start(struct tcp_sock *tp, u32 acked);
823 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
824
825 u32 tcp_reno_ssthresh(struct sock *sk);
826 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
827 extern struct tcp_congestion_ops tcp_reno;
828
829 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
830 {
831 const struct inet_connection_sock *icsk = inet_csk(sk);
832
833 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
834 }
835
836 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
837 {
838 struct inet_connection_sock *icsk = inet_csk(sk);
839
840 if (icsk->icsk_ca_ops->set_state)
841 icsk->icsk_ca_ops->set_state(sk, ca_state);
842 icsk->icsk_ca_state = ca_state;
843 }
844
845 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
846 {
847 const struct inet_connection_sock *icsk = inet_csk(sk);
848
849 if (icsk->icsk_ca_ops->cwnd_event)
850 icsk->icsk_ca_ops->cwnd_event(sk, event);
851 }
852
853 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
854 *
855 * If we receive a SYN packet with these bits set, it means a
856 * network is playing bad games with TOS bits. In order to
857 * avoid possible false congestion notifications, we disable
858 * TCP ECN negociation.
859 *
860 * Exception: tcp_ca wants ECN. This is required for DCTCP
861 * congestion control; it requires setting ECT on all packets,
862 * including SYN. We inverse the test in this case: If our
863 * local socket wants ECN, but peer only set ece/cwr (but not
864 * ECT in IP header) its probably a non-DCTCP aware sender.
865 */
866 static inline void
867 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb,
868 const struct sock *listen_sk)
869 {
870 const struct tcphdr *th = tcp_hdr(skb);
871 const struct net *net = sock_net(listen_sk);
872 bool th_ecn = th->ece && th->cwr;
873 bool ect, need_ecn;
874
875 if (!th_ecn)
876 return;
877
878 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
879 need_ecn = tcp_ca_needs_ecn(listen_sk);
880
881 if (!ect && !need_ecn && net->ipv4.sysctl_tcp_ecn)
882 inet_rsk(req)->ecn_ok = 1;
883 else if (ect && need_ecn)
884 inet_rsk(req)->ecn_ok = 1;
885 }
886
887 /* These functions determine how the current flow behaves in respect of SACK
888 * handling. SACK is negotiated with the peer, and therefore it can vary
889 * between different flows.
890 *
891 * tcp_is_sack - SACK enabled
892 * tcp_is_reno - No SACK
893 * tcp_is_fack - FACK enabled, implies SACK enabled
894 */
895 static inline int tcp_is_sack(const struct tcp_sock *tp)
896 {
897 return tp->rx_opt.sack_ok;
898 }
899
900 static inline bool tcp_is_reno(const struct tcp_sock *tp)
901 {
902 return !tcp_is_sack(tp);
903 }
904
905 static inline bool tcp_is_fack(const struct tcp_sock *tp)
906 {
907 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
908 }
909
910 static inline void tcp_enable_fack(struct tcp_sock *tp)
911 {
912 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
913 }
914
915 /* TCP early-retransmit (ER) is similar to but more conservative than
916 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
917 */
918 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
919 {
920 tp->do_early_retrans = sysctl_tcp_early_retrans &&
921 sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
922 sysctl_tcp_reordering == 3;
923 }
924
925 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
926 {
927 tp->do_early_retrans = 0;
928 }
929
930 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
931 {
932 return tp->sacked_out + tp->lost_out;
933 }
934
935 /* This determines how many packets are "in the network" to the best
936 * of our knowledge. In many cases it is conservative, but where
937 * detailed information is available from the receiver (via SACK
938 * blocks etc.) we can make more aggressive calculations.
939 *
940 * Use this for decisions involving congestion control, use just
941 * tp->packets_out to determine if the send queue is empty or not.
942 *
943 * Read this equation as:
944 *
945 * "Packets sent once on transmission queue" MINUS
946 * "Packets left network, but not honestly ACKed yet" PLUS
947 * "Packets fast retransmitted"
948 */
949 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
950 {
951 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
952 }
953
954 #define TCP_INFINITE_SSTHRESH 0x7fffffff
955
956 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
957 {
958 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
959 }
960
961 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
962 {
963 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
964 (1 << inet_csk(sk)->icsk_ca_state);
965 }
966
967 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
968 * The exception is cwnd reduction phase, when cwnd is decreasing towards
969 * ssthresh.
970 */
971 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
972 {
973 const struct tcp_sock *tp = tcp_sk(sk);
974
975 if (tcp_in_cwnd_reduction(sk))
976 return tp->snd_ssthresh;
977 else
978 return max(tp->snd_ssthresh,
979 ((tp->snd_cwnd >> 1) +
980 (tp->snd_cwnd >> 2)));
981 }
982
983 /* Use define here intentionally to get WARN_ON location shown at the caller */
984 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
985
986 void tcp_enter_cwr(struct sock *sk);
987 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
988
989 /* The maximum number of MSS of available cwnd for which TSO defers
990 * sending if not using sysctl_tcp_tso_win_divisor.
991 */
992 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
993 {
994 return 3;
995 }
996
997 /* Slow start with delack produces 3 packets of burst, so that
998 * it is safe "de facto". This will be the default - same as
999 * the default reordering threshold - but if reordering increases,
1000 * we must be able to allow cwnd to burst at least this much in order
1001 * to not pull it back when holes are filled.
1002 */
1003 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
1004 {
1005 return tp->reordering;
1006 }
1007
1008 /* Returns end sequence number of the receiver's advertised window */
1009 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1010 {
1011 return tp->snd_una + tp->snd_wnd;
1012 }
1013
1014 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1015 * flexible approach. The RFC suggests cwnd should not be raised unless
1016 * it was fully used previously. And that's exactly what we do in
1017 * congestion avoidance mode. But in slow start we allow cwnd to grow
1018 * as long as the application has used half the cwnd.
1019 * Example :
1020 * cwnd is 10 (IW10), but application sends 9 frames.
1021 * We allow cwnd to reach 18 when all frames are ACKed.
1022 * This check is safe because it's as aggressive as slow start which already
1023 * risks 100% overshoot. The advantage is that we discourage application to
1024 * either send more filler packets or data to artificially blow up the cwnd
1025 * usage, and allow application-limited process to probe bw more aggressively.
1026 */
1027 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1028 {
1029 const struct tcp_sock *tp = tcp_sk(sk);
1030
1031 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1032 if (tp->snd_cwnd <= tp->snd_ssthresh)
1033 return tp->snd_cwnd < 2 * tp->max_packets_out;
1034
1035 return tp->is_cwnd_limited;
1036 }
1037
1038 static inline void tcp_check_probe_timer(struct sock *sk)
1039 {
1040 const struct tcp_sock *tp = tcp_sk(sk);
1041 const struct inet_connection_sock *icsk = inet_csk(sk);
1042
1043 if (!tp->packets_out && !icsk->icsk_pending)
1044 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1045 icsk->icsk_rto, TCP_RTO_MAX);
1046 }
1047
1048 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1049 {
1050 tp->snd_wl1 = seq;
1051 }
1052
1053 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1054 {
1055 tp->snd_wl1 = seq;
1056 }
1057
1058 /*
1059 * Calculate(/check) TCP checksum
1060 */
1061 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1062 __be32 daddr, __wsum base)
1063 {
1064 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1065 }
1066
1067 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1068 {
1069 return __skb_checksum_complete(skb);
1070 }
1071
1072 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1073 {
1074 return !skb_csum_unnecessary(skb) &&
1075 __tcp_checksum_complete(skb);
1076 }
1077
1078 /* Prequeue for VJ style copy to user, combined with checksumming. */
1079
1080 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1081 {
1082 tp->ucopy.task = NULL;
1083 tp->ucopy.len = 0;
1084 tp->ucopy.memory = 0;
1085 skb_queue_head_init(&tp->ucopy.prequeue);
1086 #ifdef CONFIG_NET_DMA
1087 tp->ucopy.dma_chan = NULL;
1088 tp->ucopy.wakeup = 0;
1089 tp->ucopy.pinned_list = NULL;
1090 tp->ucopy.dma_cookie = 0;
1091 #endif
1092 }
1093
1094 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1095
1096 #undef STATE_TRACE
1097
1098 #ifdef STATE_TRACE
1099 static const char *statename[]={
1100 "Unused","Established","Syn Sent","Syn Recv",
1101 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1102 "Close Wait","Last ACK","Listen","Closing"
1103 };
1104 #endif
1105 void tcp_set_state(struct sock *sk, int state);
1106
1107 void tcp_done(struct sock *sk);
1108
1109 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1110 {
1111 rx_opt->dsack = 0;
1112 rx_opt->num_sacks = 0;
1113 }
1114
1115 u32 tcp_default_init_rwnd(u32 mss);
1116
1117 /* Determine a window scaling and initial window to offer. */
1118 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1119 __u32 *window_clamp, int wscale_ok,
1120 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1121
1122 static inline int tcp_win_from_space(int space)
1123 {
1124 return sysctl_tcp_adv_win_scale<=0 ?
1125 (space>>(-sysctl_tcp_adv_win_scale)) :
1126 space - (space>>sysctl_tcp_adv_win_scale);
1127 }
1128
1129 /* Note: caller must be prepared to deal with negative returns */
1130 static inline int tcp_space(const struct sock *sk)
1131 {
1132 return tcp_win_from_space(sk->sk_rcvbuf -
1133 atomic_read(&sk->sk_rmem_alloc));
1134 }
1135
1136 static inline int tcp_full_space(const struct sock *sk)
1137 {
1138 return tcp_win_from_space(sk->sk_rcvbuf);
1139 }
1140
1141 static inline void tcp_openreq_init(struct request_sock *req,
1142 struct tcp_options_received *rx_opt,
1143 struct sk_buff *skb, struct sock *sk)
1144 {
1145 struct inet_request_sock *ireq = inet_rsk(req);
1146
1147 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
1148 req->cookie_ts = 0;
1149 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1150 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
1151 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1152 req->mss = rx_opt->mss_clamp;
1153 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1154 ireq->tstamp_ok = rx_opt->tstamp_ok;
1155 ireq->sack_ok = rx_opt->sack_ok;
1156 ireq->snd_wscale = rx_opt->snd_wscale;
1157 ireq->wscale_ok = rx_opt->wscale_ok;
1158 ireq->acked = 0;
1159 ireq->ecn_ok = 0;
1160 ireq->ir_rmt_port = tcp_hdr(skb)->source;
1161 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
1162 ireq->ir_mark = inet_request_mark(sk, skb);
1163 }
1164
1165 extern void tcp_openreq_init_rwin(struct request_sock *req,
1166 struct sock *sk, struct dst_entry *dst);
1167
1168 void tcp_enter_memory_pressure(struct sock *sk);
1169
1170 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1171 {
1172 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1173 }
1174
1175 static inline int keepalive_time_when(const struct tcp_sock *tp)
1176 {
1177 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1178 }
1179
1180 static inline int keepalive_probes(const struct tcp_sock *tp)
1181 {
1182 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1183 }
1184
1185 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1186 {
1187 const struct inet_connection_sock *icsk = &tp->inet_conn;
1188
1189 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1190 tcp_time_stamp - tp->rcv_tstamp);
1191 }
1192
1193 static inline int tcp_fin_time(const struct sock *sk)
1194 {
1195 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1196 const int rto = inet_csk(sk)->icsk_rto;
1197
1198 if (fin_timeout < (rto << 2) - (rto >> 1))
1199 fin_timeout = (rto << 2) - (rto >> 1);
1200
1201 return fin_timeout;
1202 }
1203
1204 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1205 int paws_win)
1206 {
1207 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1208 return true;
1209 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1210 return true;
1211 /*
1212 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1213 * then following tcp messages have valid values. Ignore 0 value,
1214 * or else 'negative' tsval might forbid us to accept their packets.
1215 */
1216 if (!rx_opt->ts_recent)
1217 return true;
1218 return false;
1219 }
1220
1221 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1222 int rst)
1223 {
1224 if (tcp_paws_check(rx_opt, 0))
1225 return false;
1226
1227 /* RST segments are not recommended to carry timestamp,
1228 and, if they do, it is recommended to ignore PAWS because
1229 "their cleanup function should take precedence over timestamps."
1230 Certainly, it is mistake. It is necessary to understand the reasons
1231 of this constraint to relax it: if peer reboots, clock may go
1232 out-of-sync and half-open connections will not be reset.
1233 Actually, the problem would be not existing if all
1234 the implementations followed draft about maintaining clock
1235 via reboots. Linux-2.2 DOES NOT!
1236
1237 However, we can relax time bounds for RST segments to MSL.
1238 */
1239 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1240 return false;
1241 return true;
1242 }
1243
1244 static inline void tcp_mib_init(struct net *net)
1245 {
1246 /* See RFC 2012 */
1247 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1248 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1249 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1250 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1251 }
1252
1253 /* from STCP */
1254 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1255 {
1256 tp->lost_skb_hint = NULL;
1257 }
1258
1259 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1260 {
1261 tcp_clear_retrans_hints_partial(tp);
1262 tp->retransmit_skb_hint = NULL;
1263 }
1264
1265 /* MD5 Signature */
1266 struct crypto_hash;
1267
1268 union tcp_md5_addr {
1269 struct in_addr a4;
1270 #if IS_ENABLED(CONFIG_IPV6)
1271 struct in6_addr a6;
1272 #endif
1273 };
1274
1275 /* - key database */
1276 struct tcp_md5sig_key {
1277 struct hlist_node node;
1278 u8 keylen;
1279 u8 family; /* AF_INET or AF_INET6 */
1280 union tcp_md5_addr addr;
1281 u8 key[TCP_MD5SIG_MAXKEYLEN];
1282 struct rcu_head rcu;
1283 };
1284
1285 /* - sock block */
1286 struct tcp_md5sig_info {
1287 struct hlist_head head;
1288 struct rcu_head rcu;
1289 };
1290
1291 /* - pseudo header */
1292 struct tcp4_pseudohdr {
1293 __be32 saddr;
1294 __be32 daddr;
1295 __u8 pad;
1296 __u8 protocol;
1297 __be16 len;
1298 };
1299
1300 struct tcp6_pseudohdr {
1301 struct in6_addr saddr;
1302 struct in6_addr daddr;
1303 __be32 len;
1304 __be32 protocol; /* including padding */
1305 };
1306
1307 union tcp_md5sum_block {
1308 struct tcp4_pseudohdr ip4;
1309 #if IS_ENABLED(CONFIG_IPV6)
1310 struct tcp6_pseudohdr ip6;
1311 #endif
1312 };
1313
1314 /* - pool: digest algorithm, hash description and scratch buffer */
1315 struct tcp_md5sig_pool {
1316 struct hash_desc md5_desc;
1317 union tcp_md5sum_block md5_blk;
1318 };
1319
1320 /* - functions */
1321 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1322 const struct sock *sk, const struct request_sock *req,
1323 const struct sk_buff *skb);
1324 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1325 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1326 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1327 int family);
1328 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1329 struct sock *addr_sk);
1330
1331 #ifdef CONFIG_TCP_MD5SIG
1332 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1333 const union tcp_md5_addr *addr,
1334 int family);
1335 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1336 #else
1337 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1338 const union tcp_md5_addr *addr,
1339 int family)
1340 {
1341 return NULL;
1342 }
1343 #define tcp_twsk_md5_key(twsk) NULL
1344 #endif
1345
1346 bool tcp_alloc_md5sig_pool(void);
1347
1348 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1349 static inline void tcp_put_md5sig_pool(void)
1350 {
1351 local_bh_enable();
1352 }
1353
1354 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1355 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1356 unsigned int header_len);
1357 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1358 const struct tcp_md5sig_key *key);
1359
1360 /* From tcp_fastopen.c */
1361 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1362 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1363 unsigned long *last_syn_loss);
1364 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1365 struct tcp_fastopen_cookie *cookie, bool syn_lost);
1366 struct tcp_fastopen_request {
1367 /* Fast Open cookie. Size 0 means a cookie request */
1368 struct tcp_fastopen_cookie cookie;
1369 struct msghdr *data; /* data in MSG_FASTOPEN */
1370 size_t size;
1371 int copied; /* queued in tcp_connect() */
1372 };
1373 void tcp_free_fastopen_req(struct tcp_sock *tp);
1374
1375 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1376 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1377 bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1378 struct request_sock *req,
1379 struct tcp_fastopen_cookie *foc,
1380 struct dst_entry *dst);
1381 void tcp_fastopen_init_key_once(bool publish);
1382 #define TCP_FASTOPEN_KEY_LENGTH 16
1383
1384 /* Fastopen key context */
1385 struct tcp_fastopen_context {
1386 struct crypto_cipher *tfm;
1387 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1388 struct rcu_head rcu;
1389 };
1390
1391 /* write queue abstraction */
1392 static inline void tcp_write_queue_purge(struct sock *sk)
1393 {
1394 struct sk_buff *skb;
1395
1396 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1397 sk_wmem_free_skb(sk, skb);
1398 sk_mem_reclaim(sk);
1399 tcp_clear_all_retrans_hints(tcp_sk(sk));
1400 }
1401
1402 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1403 {
1404 return skb_peek(&sk->sk_write_queue);
1405 }
1406
1407 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1408 {
1409 return skb_peek_tail(&sk->sk_write_queue);
1410 }
1411
1412 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1413 const struct sk_buff *skb)
1414 {
1415 return skb_queue_next(&sk->sk_write_queue, skb);
1416 }
1417
1418 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1419 const struct sk_buff *skb)
1420 {
1421 return skb_queue_prev(&sk->sk_write_queue, skb);
1422 }
1423
1424 #define tcp_for_write_queue(skb, sk) \
1425 skb_queue_walk(&(sk)->sk_write_queue, skb)
1426
1427 #define tcp_for_write_queue_from(skb, sk) \
1428 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1429
1430 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1431 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1432
1433 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1434 {
1435 return sk->sk_send_head;
1436 }
1437
1438 static inline bool tcp_skb_is_last(const struct sock *sk,
1439 const struct sk_buff *skb)
1440 {
1441 return skb_queue_is_last(&sk->sk_write_queue, skb);
1442 }
1443
1444 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1445 {
1446 if (tcp_skb_is_last(sk, skb))
1447 sk->sk_send_head = NULL;
1448 else
1449 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1450 }
1451
1452 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1453 {
1454 if (sk->sk_send_head == skb_unlinked)
1455 sk->sk_send_head = NULL;
1456 }
1457
1458 static inline void tcp_init_send_head(struct sock *sk)
1459 {
1460 sk->sk_send_head = NULL;
1461 }
1462
1463 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1464 {
1465 __skb_queue_tail(&sk->sk_write_queue, skb);
1466 }
1467
1468 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1469 {
1470 __tcp_add_write_queue_tail(sk, skb);
1471
1472 /* Queue it, remembering where we must start sending. */
1473 if (sk->sk_send_head == NULL) {
1474 sk->sk_send_head = skb;
1475
1476 if (tcp_sk(sk)->highest_sack == NULL)
1477 tcp_sk(sk)->highest_sack = skb;
1478 }
1479 }
1480
1481 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1482 {
1483 __skb_queue_head(&sk->sk_write_queue, skb);
1484 }
1485
1486 /* Insert buff after skb on the write queue of sk. */
1487 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1488 struct sk_buff *buff,
1489 struct sock *sk)
1490 {
1491 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1492 }
1493
1494 /* Insert new before skb on the write queue of sk. */
1495 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1496 struct sk_buff *skb,
1497 struct sock *sk)
1498 {
1499 __skb_queue_before(&sk->sk_write_queue, skb, new);
1500
1501 if (sk->sk_send_head == skb)
1502 sk->sk_send_head = new;
1503 }
1504
1505 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1506 {
1507 __skb_unlink(skb, &sk->sk_write_queue);
1508 }
1509
1510 static inline bool tcp_write_queue_empty(struct sock *sk)
1511 {
1512 return skb_queue_empty(&sk->sk_write_queue);
1513 }
1514
1515 static inline void tcp_push_pending_frames(struct sock *sk)
1516 {
1517 if (tcp_send_head(sk)) {
1518 struct tcp_sock *tp = tcp_sk(sk);
1519
1520 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1521 }
1522 }
1523
1524 /* Start sequence of the skb just after the highest skb with SACKed
1525 * bit, valid only if sacked_out > 0 or when the caller has ensured
1526 * validity by itself.
1527 */
1528 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1529 {
1530 if (!tp->sacked_out)
1531 return tp->snd_una;
1532
1533 if (tp->highest_sack == NULL)
1534 return tp->snd_nxt;
1535
1536 return TCP_SKB_CB(tp->highest_sack)->seq;
1537 }
1538
1539 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1540 {
1541 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1542 tcp_write_queue_next(sk, skb);
1543 }
1544
1545 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1546 {
1547 return tcp_sk(sk)->highest_sack;
1548 }
1549
1550 static inline void tcp_highest_sack_reset(struct sock *sk)
1551 {
1552 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1553 }
1554
1555 /* Called when old skb is about to be deleted (to be combined with new skb) */
1556 static inline void tcp_highest_sack_combine(struct sock *sk,
1557 struct sk_buff *old,
1558 struct sk_buff *new)
1559 {
1560 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1561 tcp_sk(sk)->highest_sack = new;
1562 }
1563
1564 /* Determines whether this is a thin stream (which may suffer from
1565 * increased latency). Used to trigger latency-reducing mechanisms.
1566 */
1567 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1568 {
1569 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1570 }
1571
1572 /* /proc */
1573 enum tcp_seq_states {
1574 TCP_SEQ_STATE_LISTENING,
1575 TCP_SEQ_STATE_OPENREQ,
1576 TCP_SEQ_STATE_ESTABLISHED,
1577 };
1578
1579 int tcp_seq_open(struct inode *inode, struct file *file);
1580
1581 struct tcp_seq_afinfo {
1582 char *name;
1583 sa_family_t family;
1584 const struct file_operations *seq_fops;
1585 struct seq_operations seq_ops;
1586 };
1587
1588 struct tcp_iter_state {
1589 struct seq_net_private p;
1590 sa_family_t family;
1591 enum tcp_seq_states state;
1592 struct sock *syn_wait_sk;
1593 int bucket, offset, sbucket, num;
1594 kuid_t uid;
1595 loff_t last_pos;
1596 };
1597
1598 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1599 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1600
1601 extern struct request_sock_ops tcp_request_sock_ops;
1602 extern struct request_sock_ops tcp6_request_sock_ops;
1603
1604 void tcp_v4_destroy_sock(struct sock *sk);
1605
1606 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1607 netdev_features_t features);
1608 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1609 int tcp_gro_complete(struct sk_buff *skb);
1610
1611 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1612
1613 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1614 {
1615 return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1616 }
1617
1618 static inline bool tcp_stream_memory_free(const struct sock *sk)
1619 {
1620 const struct tcp_sock *tp = tcp_sk(sk);
1621 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1622
1623 return notsent_bytes < tcp_notsent_lowat(tp);
1624 }
1625
1626 #ifdef CONFIG_PROC_FS
1627 int tcp4_proc_init(void);
1628 void tcp4_proc_exit(void);
1629 #endif
1630
1631 int tcp_rtx_synack(struct sock *sk, struct request_sock *req);
1632 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1633 const struct tcp_request_sock_ops *af_ops,
1634 struct sock *sk, struct sk_buff *skb);
1635
1636 /* TCP af-specific functions */
1637 struct tcp_sock_af_ops {
1638 #ifdef CONFIG_TCP_MD5SIG
1639 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1640 struct sock *addr_sk);
1641 int (*calc_md5_hash) (char *location,
1642 struct tcp_md5sig_key *md5,
1643 const struct sock *sk,
1644 const struct request_sock *req,
1645 const struct sk_buff *skb);
1646 int (*md5_parse) (struct sock *sk,
1647 char __user *optval,
1648 int optlen);
1649 #endif
1650 };
1651
1652 struct tcp_request_sock_ops {
1653 u16 mss_clamp;
1654 #ifdef CONFIG_TCP_MD5SIG
1655 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1656 struct request_sock *req);
1657 int (*calc_md5_hash) (char *location,
1658 struct tcp_md5sig_key *md5,
1659 const struct sock *sk,
1660 const struct request_sock *req,
1661 const struct sk_buff *skb);
1662 #endif
1663 void (*init_req)(struct request_sock *req, struct sock *sk,
1664 struct sk_buff *skb);
1665 #ifdef CONFIG_SYN_COOKIES
1666 __u32 (*cookie_init_seq)(struct sock *sk, const struct sk_buff *skb,
1667 __u16 *mss);
1668 #endif
1669 struct dst_entry *(*route_req)(struct sock *sk, struct flowi *fl,
1670 const struct request_sock *req,
1671 bool *strict);
1672 __u32 (*init_seq)(const struct sk_buff *skb);
1673 int (*send_synack)(struct sock *sk, struct dst_entry *dst,
1674 struct flowi *fl, struct request_sock *req,
1675 u16 queue_mapping, struct tcp_fastopen_cookie *foc);
1676 void (*queue_hash_add)(struct sock *sk, struct request_sock *req,
1677 const unsigned long timeout);
1678 };
1679
1680 #ifdef CONFIG_SYN_COOKIES
1681 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1682 struct sock *sk, struct sk_buff *skb,
1683 __u16 *mss)
1684 {
1685 return ops->cookie_init_seq(sk, skb, mss);
1686 }
1687 #else
1688 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1689 struct sock *sk, struct sk_buff *skb,
1690 __u16 *mss)
1691 {
1692 return 0;
1693 }
1694 #endif
1695
1696 int tcpv4_offload_init(void);
1697
1698 void tcp_v4_init(void);
1699 void tcp_init(void);
1700
1701 #endif /* _TCP_H */
This page took 0.070604 seconds and 5 git commands to generate.