Merge tag 'dm-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper...
[deliverable/linux.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/crypto.h>
31 #include <linux/cryptohash.h>
32 #include <linux/kref.h>
33 #include <linux/ktime.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS 88U
66
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS 512
69
70 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
71 #define TCP_FASTRETRANS_THRESH 3
72
73 /* Maximal reordering. */
74 #define TCP_MAX_REORDERING 127
75
76 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
77 #define TCP_MAX_QUICKACKS 16U
78
79 /* urg_data states */
80 #define TCP_URG_VALID 0x0100
81 #define TCP_URG_NOTYET 0x0200
82 #define TCP_URG_READ 0x0400
83
84 #define TCP_RETR1 3 /*
85 * This is how many retries it does before it
86 * tries to figure out if the gateway is
87 * down. Minimal RFC value is 3; it corresponds
88 * to ~3sec-8min depending on RTO.
89 */
90
91 #define TCP_RETR2 15 /*
92 * This should take at least
93 * 90 minutes to time out.
94 * RFC1122 says that the limit is 100 sec.
95 * 15 is ~13-30min depending on RTO.
96 */
97
98 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
99 * when active opening a connection.
100 * RFC1122 says the minimum retry MUST
101 * be at least 180secs. Nevertheless
102 * this value is corresponding to
103 * 63secs of retransmission with the
104 * current initial RTO.
105 */
106
107 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
108 * when passive opening a connection.
109 * This is corresponding to 31secs of
110 * retransmission with the current
111 * initial RTO.
112 */
113
114 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
115 * state, about 60 seconds */
116 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
117 /* BSD style FIN_WAIT2 deadlock breaker.
118 * It used to be 3min, new value is 60sec,
119 * to combine FIN-WAIT-2 timeout with
120 * TIME-WAIT timer.
121 */
122
123 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
124 #if HZ >= 100
125 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
126 #define TCP_ATO_MIN ((unsigned)(HZ/25))
127 #else
128 #define TCP_DELACK_MIN 4U
129 #define TCP_ATO_MIN 4U
130 #endif
131 #define TCP_RTO_MAX ((unsigned)(120*HZ))
132 #define TCP_RTO_MIN ((unsigned)(HZ/5))
133 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
134 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
135 * used as a fallback RTO for the
136 * initial data transmission if no
137 * valid RTT sample has been acquired,
138 * most likely due to retrans in 3WHS.
139 */
140
141 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
142 * for local resources.
143 */
144
145 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
146 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
147 #define TCP_KEEPALIVE_INTVL (75*HZ)
148
149 #define MAX_TCP_KEEPIDLE 32767
150 #define MAX_TCP_KEEPINTVL 32767
151 #define MAX_TCP_KEEPCNT 127
152 #define MAX_TCP_SYNCNT 127
153
154 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
155
156 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
157 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
158 * after this time. It should be equal
159 * (or greater than) TCP_TIMEWAIT_LEN
160 * to provide reliability equal to one
161 * provided by timewait state.
162 */
163 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
164 * timestamps. It must be less than
165 * minimal timewait lifetime.
166 */
167 /*
168 * TCP option
169 */
170
171 #define TCPOPT_NOP 1 /* Padding */
172 #define TCPOPT_EOL 0 /* End of options */
173 #define TCPOPT_MSS 2 /* Segment size negotiating */
174 #define TCPOPT_WINDOW 3 /* Window scaling */
175 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
176 #define TCPOPT_SACK 5 /* SACK Block */
177 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
178 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
179 #define TCPOPT_EXP 254 /* Experimental */
180 /* Magic number to be after the option value for sharing TCP
181 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
182 */
183 #define TCPOPT_FASTOPEN_MAGIC 0xF989
184
185 /*
186 * TCP option lengths
187 */
188
189 #define TCPOLEN_MSS 4
190 #define TCPOLEN_WINDOW 3
191 #define TCPOLEN_SACK_PERM 2
192 #define TCPOLEN_TIMESTAMP 10
193 #define TCPOLEN_MD5SIG 18
194 #define TCPOLEN_EXP_FASTOPEN_BASE 4
195
196 /* But this is what stacks really send out. */
197 #define TCPOLEN_TSTAMP_ALIGNED 12
198 #define TCPOLEN_WSCALE_ALIGNED 4
199 #define TCPOLEN_SACKPERM_ALIGNED 4
200 #define TCPOLEN_SACK_BASE 2
201 #define TCPOLEN_SACK_BASE_ALIGNED 4
202 #define TCPOLEN_SACK_PERBLOCK 8
203 #define TCPOLEN_MD5SIG_ALIGNED 20
204 #define TCPOLEN_MSS_ALIGNED 4
205
206 /* Flags in tp->nonagle */
207 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
208 #define TCP_NAGLE_CORK 2 /* Socket is corked */
209 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
210
211 /* TCP thin-stream limits */
212 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
213
214 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
215 #define TCP_INIT_CWND 10
216
217 /* Bit Flags for sysctl_tcp_fastopen */
218 #define TFO_CLIENT_ENABLE 1
219 #define TFO_SERVER_ENABLE 2
220 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
221
222 /* Accept SYN data w/o any cookie option */
223 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
224
225 /* Force enable TFO on all listeners, i.e., not requiring the
226 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
227 */
228 #define TFO_SERVER_WO_SOCKOPT1 0x400
229 #define TFO_SERVER_WO_SOCKOPT2 0x800
230
231 extern struct inet_timewait_death_row tcp_death_row;
232
233 /* sysctl variables for tcp */
234 extern int sysctl_tcp_timestamps;
235 extern int sysctl_tcp_window_scaling;
236 extern int sysctl_tcp_sack;
237 extern int sysctl_tcp_fin_timeout;
238 extern int sysctl_tcp_keepalive_time;
239 extern int sysctl_tcp_keepalive_probes;
240 extern int sysctl_tcp_keepalive_intvl;
241 extern int sysctl_tcp_syn_retries;
242 extern int sysctl_tcp_synack_retries;
243 extern int sysctl_tcp_retries1;
244 extern int sysctl_tcp_retries2;
245 extern int sysctl_tcp_orphan_retries;
246 extern int sysctl_tcp_syncookies;
247 extern int sysctl_tcp_fastopen;
248 extern int sysctl_tcp_retrans_collapse;
249 extern int sysctl_tcp_stdurg;
250 extern int sysctl_tcp_rfc1337;
251 extern int sysctl_tcp_abort_on_overflow;
252 extern int sysctl_tcp_max_orphans;
253 extern int sysctl_tcp_fack;
254 extern int sysctl_tcp_reordering;
255 extern int sysctl_tcp_dsack;
256 extern long sysctl_tcp_mem[3];
257 extern int sysctl_tcp_wmem[3];
258 extern int sysctl_tcp_rmem[3];
259 extern int sysctl_tcp_app_win;
260 extern int sysctl_tcp_adv_win_scale;
261 extern int sysctl_tcp_tw_reuse;
262 extern int sysctl_tcp_frto;
263 extern int sysctl_tcp_low_latency;
264 extern int sysctl_tcp_nometrics_save;
265 extern int sysctl_tcp_moderate_rcvbuf;
266 extern int sysctl_tcp_tso_win_divisor;
267 extern int sysctl_tcp_mtu_probing;
268 extern int sysctl_tcp_base_mss;
269 extern int sysctl_tcp_workaround_signed_windows;
270 extern int sysctl_tcp_slow_start_after_idle;
271 extern int sysctl_tcp_thin_linear_timeouts;
272 extern int sysctl_tcp_thin_dupack;
273 extern int sysctl_tcp_early_retrans;
274 extern int sysctl_tcp_limit_output_bytes;
275 extern int sysctl_tcp_challenge_ack_limit;
276 extern unsigned int sysctl_tcp_notsent_lowat;
277 extern int sysctl_tcp_min_tso_segs;
278 extern int sysctl_tcp_autocorking;
279
280 extern atomic_long_t tcp_memory_allocated;
281 extern struct percpu_counter tcp_sockets_allocated;
282 extern int tcp_memory_pressure;
283
284 /*
285 * The next routines deal with comparing 32 bit unsigned ints
286 * and worry about wraparound (automatic with unsigned arithmetic).
287 */
288
289 static inline bool before(__u32 seq1, __u32 seq2)
290 {
291 return (__s32)(seq1-seq2) < 0;
292 }
293 #define after(seq2, seq1) before(seq1, seq2)
294
295 /* is s2<=s1<=s3 ? */
296 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
297 {
298 return seq3 - seq2 >= seq1 - seq2;
299 }
300
301 static inline bool tcp_out_of_memory(struct sock *sk)
302 {
303 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
304 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
305 return true;
306 return false;
307 }
308
309 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
310 {
311 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
312 int orphans = percpu_counter_read_positive(ocp);
313
314 if (orphans << shift > sysctl_tcp_max_orphans) {
315 orphans = percpu_counter_sum_positive(ocp);
316 if (orphans << shift > sysctl_tcp_max_orphans)
317 return true;
318 }
319 return false;
320 }
321
322 bool tcp_check_oom(struct sock *sk, int shift);
323
324 /* syncookies: remember time of last synqueue overflow */
325 static inline void tcp_synq_overflow(struct sock *sk)
326 {
327 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
328 }
329
330 /* syncookies: no recent synqueue overflow on this listening socket? */
331 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
332 {
333 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
334 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
335 }
336
337 extern struct proto tcp_prot;
338
339 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
340 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
341 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
342 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
343 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
344
345 void tcp_tasklet_init(void);
346
347 void tcp_v4_err(struct sk_buff *skb, u32);
348
349 void tcp_shutdown(struct sock *sk, int how);
350
351 void tcp_v4_early_demux(struct sk_buff *skb);
352 int tcp_v4_rcv(struct sk_buff *skb);
353
354 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
355 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
356 size_t size);
357 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
358 int flags);
359 void tcp_release_cb(struct sock *sk);
360 void tcp_wfree(struct sk_buff *skb);
361 void tcp_write_timer_handler(struct sock *sk);
362 void tcp_delack_timer_handler(struct sock *sk);
363 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
364 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
365 const struct tcphdr *th, unsigned int len);
366 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
367 const struct tcphdr *th, unsigned int len);
368 void tcp_rcv_space_adjust(struct sock *sk);
369 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
370 void tcp_twsk_destructor(struct sock *sk);
371 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
372 struct pipe_inode_info *pipe, size_t len,
373 unsigned int flags);
374
375 static inline void tcp_dec_quickack_mode(struct sock *sk,
376 const unsigned int pkts)
377 {
378 struct inet_connection_sock *icsk = inet_csk(sk);
379
380 if (icsk->icsk_ack.quick) {
381 if (pkts >= icsk->icsk_ack.quick) {
382 icsk->icsk_ack.quick = 0;
383 /* Leaving quickack mode we deflate ATO. */
384 icsk->icsk_ack.ato = TCP_ATO_MIN;
385 } else
386 icsk->icsk_ack.quick -= pkts;
387 }
388 }
389
390 #define TCP_ECN_OK 1
391 #define TCP_ECN_QUEUE_CWR 2
392 #define TCP_ECN_DEMAND_CWR 4
393 #define TCP_ECN_SEEN 8
394
395 enum tcp_tw_status {
396 TCP_TW_SUCCESS = 0,
397 TCP_TW_RST = 1,
398 TCP_TW_ACK = 2,
399 TCP_TW_SYN = 3
400 };
401
402
403 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
404 struct sk_buff *skb,
405 const struct tcphdr *th);
406 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
407 struct request_sock *req, struct request_sock **prev,
408 bool fastopen);
409 int tcp_child_process(struct sock *parent, struct sock *child,
410 struct sk_buff *skb);
411 void tcp_enter_loss(struct sock *sk);
412 void tcp_clear_retrans(struct tcp_sock *tp);
413 void tcp_update_metrics(struct sock *sk);
414 void tcp_init_metrics(struct sock *sk);
415 void tcp_metrics_init(void);
416 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
417 bool paws_check, bool timestamps);
418 bool tcp_remember_stamp(struct sock *sk);
419 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
420 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
421 void tcp_disable_fack(struct tcp_sock *tp);
422 void tcp_close(struct sock *sk, long timeout);
423 void tcp_init_sock(struct sock *sk);
424 unsigned int tcp_poll(struct file *file, struct socket *sock,
425 struct poll_table_struct *wait);
426 int tcp_getsockopt(struct sock *sk, int level, int optname,
427 char __user *optval, int __user *optlen);
428 int tcp_setsockopt(struct sock *sk, int level, int optname,
429 char __user *optval, unsigned int optlen);
430 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
431 char __user *optval, int __user *optlen);
432 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
433 char __user *optval, unsigned int optlen);
434 void tcp_set_keepalive(struct sock *sk, int val);
435 void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
436 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
437 size_t len, int nonblock, int flags, int *addr_len);
438 void tcp_parse_options(const struct sk_buff *skb,
439 struct tcp_options_received *opt_rx,
440 int estab, struct tcp_fastopen_cookie *foc);
441 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
442
443 /*
444 * TCP v4 functions exported for the inet6 API
445 */
446
447 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
448 void tcp_v4_mtu_reduced(struct sock *sk);
449 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
450 struct sock *tcp_create_openreq_child(struct sock *sk,
451 struct request_sock *req,
452 struct sk_buff *skb);
453 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
454 struct request_sock *req,
455 struct dst_entry *dst);
456 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
457 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
458 int tcp_connect(struct sock *sk);
459 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
460 struct request_sock *req,
461 struct tcp_fastopen_cookie *foc);
462 int tcp_disconnect(struct sock *sk, int flags);
463
464 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
465 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
466 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
467
468 /* From syncookies.c */
469 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
470 u32 cookie);
471 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
472 #ifdef CONFIG_SYN_COOKIES
473
474 /* Syncookies use a monotonic timer which increments every 60 seconds.
475 * This counter is used both as a hash input and partially encoded into
476 * the cookie value. A cookie is only validated further if the delta
477 * between the current counter value and the encoded one is less than this,
478 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
479 * the counter advances immediately after a cookie is generated).
480 */
481 #define MAX_SYNCOOKIE_AGE 2
482
483 static inline u32 tcp_cookie_time(void)
484 {
485 u64 val = get_jiffies_64();
486
487 do_div(val, 60 * HZ);
488 return val;
489 }
490
491 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
492 u16 *mssp);
493 __u32 cookie_v4_init_sequence(struct sock *sk, const struct sk_buff *skb,
494 __u16 *mss);
495 #endif
496
497 __u32 cookie_init_timestamp(struct request_sock *req);
498 bool cookie_check_timestamp(struct tcp_options_received *opt, struct net *net,
499 bool *ecn_ok);
500
501 /* From net/ipv6/syncookies.c */
502 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
503 u32 cookie);
504 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
505 #ifdef CONFIG_SYN_COOKIES
506 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
507 const struct tcphdr *th, u16 *mssp);
508 __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
509 __u16 *mss);
510 #endif
511 /* tcp_output.c */
512
513 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
514 int nonagle);
515 bool tcp_may_send_now(struct sock *sk);
516 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
517 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
518 void tcp_retransmit_timer(struct sock *sk);
519 void tcp_xmit_retransmit_queue(struct sock *);
520 void tcp_simple_retransmit(struct sock *);
521 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
522 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
523
524 void tcp_send_probe0(struct sock *);
525 void tcp_send_partial(struct sock *);
526 int tcp_write_wakeup(struct sock *);
527 void tcp_send_fin(struct sock *sk);
528 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
529 int tcp_send_synack(struct sock *);
530 bool tcp_syn_flood_action(struct sock *sk, const struct sk_buff *skb,
531 const char *proto);
532 void tcp_push_one(struct sock *, unsigned int mss_now);
533 void tcp_send_ack(struct sock *sk);
534 void tcp_send_delayed_ack(struct sock *sk);
535 void tcp_send_loss_probe(struct sock *sk);
536 bool tcp_schedule_loss_probe(struct sock *sk);
537
538 /* tcp_input.c */
539 void tcp_resume_early_retransmit(struct sock *sk);
540 void tcp_rearm_rto(struct sock *sk);
541 void tcp_reset(struct sock *sk);
542
543 /* tcp_timer.c */
544 void tcp_init_xmit_timers(struct sock *);
545 static inline void tcp_clear_xmit_timers(struct sock *sk)
546 {
547 inet_csk_clear_xmit_timers(sk);
548 }
549
550 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
551 unsigned int tcp_current_mss(struct sock *sk);
552
553 /* Bound MSS / TSO packet size with the half of the window */
554 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
555 {
556 int cutoff;
557
558 /* When peer uses tiny windows, there is no use in packetizing
559 * to sub-MSS pieces for the sake of SWS or making sure there
560 * are enough packets in the pipe for fast recovery.
561 *
562 * On the other hand, for extremely large MSS devices, handling
563 * smaller than MSS windows in this way does make sense.
564 */
565 if (tp->max_window >= 512)
566 cutoff = (tp->max_window >> 1);
567 else
568 cutoff = tp->max_window;
569
570 if (cutoff && pktsize > cutoff)
571 return max_t(int, cutoff, 68U - tp->tcp_header_len);
572 else
573 return pktsize;
574 }
575
576 /* tcp.c */
577 void tcp_get_info(const struct sock *, struct tcp_info *);
578
579 /* Read 'sendfile()'-style from a TCP socket */
580 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
581 unsigned int, size_t);
582 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
583 sk_read_actor_t recv_actor);
584
585 void tcp_initialize_rcv_mss(struct sock *sk);
586
587 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
588 int tcp_mss_to_mtu(struct sock *sk, int mss);
589 void tcp_mtup_init(struct sock *sk);
590 void tcp_init_buffer_space(struct sock *sk);
591
592 static inline void tcp_bound_rto(const struct sock *sk)
593 {
594 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
595 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
596 }
597
598 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
599 {
600 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
601 }
602
603 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
604 {
605 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
606 ntohl(TCP_FLAG_ACK) |
607 snd_wnd);
608 }
609
610 static inline void tcp_fast_path_on(struct tcp_sock *tp)
611 {
612 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
613 }
614
615 static inline void tcp_fast_path_check(struct sock *sk)
616 {
617 struct tcp_sock *tp = tcp_sk(sk);
618
619 if (skb_queue_empty(&tp->out_of_order_queue) &&
620 tp->rcv_wnd &&
621 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
622 !tp->urg_data)
623 tcp_fast_path_on(tp);
624 }
625
626 /* Compute the actual rto_min value */
627 static inline u32 tcp_rto_min(struct sock *sk)
628 {
629 const struct dst_entry *dst = __sk_dst_get(sk);
630 u32 rto_min = TCP_RTO_MIN;
631
632 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
633 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
634 return rto_min;
635 }
636
637 static inline u32 tcp_rto_min_us(struct sock *sk)
638 {
639 return jiffies_to_usecs(tcp_rto_min(sk));
640 }
641
642 /* Compute the actual receive window we are currently advertising.
643 * Rcv_nxt can be after the window if our peer push more data
644 * than the offered window.
645 */
646 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
647 {
648 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
649
650 if (win < 0)
651 win = 0;
652 return (u32) win;
653 }
654
655 /* Choose a new window, without checks for shrinking, and without
656 * scaling applied to the result. The caller does these things
657 * if necessary. This is a "raw" window selection.
658 */
659 u32 __tcp_select_window(struct sock *sk);
660
661 void tcp_send_window_probe(struct sock *sk);
662
663 /* TCP timestamps are only 32-bits, this causes a slight
664 * complication on 64-bit systems since we store a snapshot
665 * of jiffies in the buffer control blocks below. We decided
666 * to use only the low 32-bits of jiffies and hide the ugly
667 * casts with the following macro.
668 */
669 #define tcp_time_stamp ((__u32)(jiffies))
670
671 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
672 {
673 return skb->skb_mstamp.stamp_jiffies;
674 }
675
676
677 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
678
679 #define TCPHDR_FIN 0x01
680 #define TCPHDR_SYN 0x02
681 #define TCPHDR_RST 0x04
682 #define TCPHDR_PSH 0x08
683 #define TCPHDR_ACK 0x10
684 #define TCPHDR_URG 0x20
685 #define TCPHDR_ECE 0x40
686 #define TCPHDR_CWR 0x80
687
688 /* This is what the send packet queuing engine uses to pass
689 * TCP per-packet control information to the transmission code.
690 * We also store the host-order sequence numbers in here too.
691 * This is 44 bytes if IPV6 is enabled.
692 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
693 */
694 struct tcp_skb_cb {
695 __u32 seq; /* Starting sequence number */
696 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
697 union {
698 /* Note : tcp_tw_isn is used in input path only
699 * (isn chosen by tcp_timewait_state_process())
700 *
701 * tcp_gso_segs is used in write queue only,
702 * cf tcp_skb_pcount()
703 */
704 __u32 tcp_tw_isn;
705 __u32 tcp_gso_segs;
706 };
707 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
708
709 __u8 sacked; /* State flags for SACK/FACK. */
710 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
711 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
712 #define TCPCB_LOST 0x04 /* SKB is lost */
713 #define TCPCB_TAGBITS 0x07 /* All tag bits */
714 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp) */
715 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
716 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
717 TCPCB_REPAIRED)
718
719 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
720 /* 1 byte hole */
721 __u32 ack_seq; /* Sequence number ACK'd */
722 union {
723 struct inet_skb_parm h4;
724 #if IS_ENABLED(CONFIG_IPV6)
725 struct inet6_skb_parm h6;
726 #endif
727 } header; /* For incoming frames */
728 };
729
730 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
731
732
733 /* This is the variant of inet6_iif() that must be used by TCP,
734 * as TCP moves IP6CB into a different location in skb->cb[]
735 */
736 static inline int tcp_v6_iif(const struct sk_buff *skb)
737 {
738 return TCP_SKB_CB(skb)->header.h6.iif;
739 }
740
741 /* Due to TSO, an SKB can be composed of multiple actual
742 * packets. To keep these tracked properly, we use this.
743 */
744 static inline int tcp_skb_pcount(const struct sk_buff *skb)
745 {
746 return TCP_SKB_CB(skb)->tcp_gso_segs;
747 }
748
749 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
750 {
751 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
752 }
753
754 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
755 {
756 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
757 }
758
759 /* This is valid iff tcp_skb_pcount() > 1. */
760 static inline int tcp_skb_mss(const struct sk_buff *skb)
761 {
762 return skb_shinfo(skb)->gso_size;
763 }
764
765 /* Events passed to congestion control interface */
766 enum tcp_ca_event {
767 CA_EVENT_TX_START, /* first transmit when no packets in flight */
768 CA_EVENT_CWND_RESTART, /* congestion window restart */
769 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
770 CA_EVENT_LOSS, /* loss timeout */
771 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
772 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
773 CA_EVENT_DELAYED_ACK, /* Delayed ack is sent */
774 CA_EVENT_NON_DELAYED_ACK,
775 };
776
777 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
778 enum tcp_ca_ack_event_flags {
779 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
780 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
781 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
782 };
783
784 /*
785 * Interface for adding new TCP congestion control handlers
786 */
787 #define TCP_CA_NAME_MAX 16
788 #define TCP_CA_MAX 128
789 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
790
791 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
792 #define TCP_CONG_NON_RESTRICTED 0x1
793 /* Requires ECN/ECT set on all packets */
794 #define TCP_CONG_NEEDS_ECN 0x2
795
796 struct tcp_congestion_ops {
797 struct list_head list;
798 unsigned long flags;
799
800 /* initialize private data (optional) */
801 void (*init)(struct sock *sk);
802 /* cleanup private data (optional) */
803 void (*release)(struct sock *sk);
804
805 /* return slow start threshold (required) */
806 u32 (*ssthresh)(struct sock *sk);
807 /* do new cwnd calculation (required) */
808 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
809 /* call before changing ca_state (optional) */
810 void (*set_state)(struct sock *sk, u8 new_state);
811 /* call when cwnd event occurs (optional) */
812 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
813 /* call when ack arrives (optional) */
814 void (*in_ack_event)(struct sock *sk, u32 flags);
815 /* new value of cwnd after loss (optional) */
816 u32 (*undo_cwnd)(struct sock *sk);
817 /* hook for packet ack accounting (optional) */
818 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
819 /* get info for inet_diag (optional) */
820 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
821
822 char name[TCP_CA_NAME_MAX];
823 struct module *owner;
824 };
825
826 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
827 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
828
829 void tcp_assign_congestion_control(struct sock *sk);
830 void tcp_init_congestion_control(struct sock *sk);
831 void tcp_cleanup_congestion_control(struct sock *sk);
832 int tcp_set_default_congestion_control(const char *name);
833 void tcp_get_default_congestion_control(char *name);
834 void tcp_get_available_congestion_control(char *buf, size_t len);
835 void tcp_get_allowed_congestion_control(char *buf, size_t len);
836 int tcp_set_allowed_congestion_control(char *allowed);
837 int tcp_set_congestion_control(struct sock *sk, const char *name);
838 void tcp_slow_start(struct tcp_sock *tp, u32 acked);
839 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
840
841 u32 tcp_reno_ssthresh(struct sock *sk);
842 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
843 extern struct tcp_congestion_ops tcp_reno;
844
845 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
846 {
847 const struct inet_connection_sock *icsk = inet_csk(sk);
848
849 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
850 }
851
852 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
853 {
854 struct inet_connection_sock *icsk = inet_csk(sk);
855
856 if (icsk->icsk_ca_ops->set_state)
857 icsk->icsk_ca_ops->set_state(sk, ca_state);
858 icsk->icsk_ca_state = ca_state;
859 }
860
861 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
862 {
863 const struct inet_connection_sock *icsk = inet_csk(sk);
864
865 if (icsk->icsk_ca_ops->cwnd_event)
866 icsk->icsk_ca_ops->cwnd_event(sk, event);
867 }
868
869 /* These functions determine how the current flow behaves in respect of SACK
870 * handling. SACK is negotiated with the peer, and therefore it can vary
871 * between different flows.
872 *
873 * tcp_is_sack - SACK enabled
874 * tcp_is_reno - No SACK
875 * tcp_is_fack - FACK enabled, implies SACK enabled
876 */
877 static inline int tcp_is_sack(const struct tcp_sock *tp)
878 {
879 return tp->rx_opt.sack_ok;
880 }
881
882 static inline bool tcp_is_reno(const struct tcp_sock *tp)
883 {
884 return !tcp_is_sack(tp);
885 }
886
887 static inline bool tcp_is_fack(const struct tcp_sock *tp)
888 {
889 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
890 }
891
892 static inline void tcp_enable_fack(struct tcp_sock *tp)
893 {
894 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
895 }
896
897 /* TCP early-retransmit (ER) is similar to but more conservative than
898 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
899 */
900 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
901 {
902 tp->do_early_retrans = sysctl_tcp_early_retrans &&
903 sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
904 sysctl_tcp_reordering == 3;
905 }
906
907 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
908 {
909 tp->do_early_retrans = 0;
910 }
911
912 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
913 {
914 return tp->sacked_out + tp->lost_out;
915 }
916
917 /* This determines how many packets are "in the network" to the best
918 * of our knowledge. In many cases it is conservative, but where
919 * detailed information is available from the receiver (via SACK
920 * blocks etc.) we can make more aggressive calculations.
921 *
922 * Use this for decisions involving congestion control, use just
923 * tp->packets_out to determine if the send queue is empty or not.
924 *
925 * Read this equation as:
926 *
927 * "Packets sent once on transmission queue" MINUS
928 * "Packets left network, but not honestly ACKed yet" PLUS
929 * "Packets fast retransmitted"
930 */
931 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
932 {
933 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
934 }
935
936 #define TCP_INFINITE_SSTHRESH 0x7fffffff
937
938 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
939 {
940 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
941 }
942
943 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
944 {
945 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
946 (1 << inet_csk(sk)->icsk_ca_state);
947 }
948
949 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
950 * The exception is cwnd reduction phase, when cwnd is decreasing towards
951 * ssthresh.
952 */
953 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
954 {
955 const struct tcp_sock *tp = tcp_sk(sk);
956
957 if (tcp_in_cwnd_reduction(sk))
958 return tp->snd_ssthresh;
959 else
960 return max(tp->snd_ssthresh,
961 ((tp->snd_cwnd >> 1) +
962 (tp->snd_cwnd >> 2)));
963 }
964
965 /* Use define here intentionally to get WARN_ON location shown at the caller */
966 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
967
968 void tcp_enter_cwr(struct sock *sk);
969 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
970
971 /* The maximum number of MSS of available cwnd for which TSO defers
972 * sending if not using sysctl_tcp_tso_win_divisor.
973 */
974 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
975 {
976 return 3;
977 }
978
979 /* Slow start with delack produces 3 packets of burst, so that
980 * it is safe "de facto". This will be the default - same as
981 * the default reordering threshold - but if reordering increases,
982 * we must be able to allow cwnd to burst at least this much in order
983 * to not pull it back when holes are filled.
984 */
985 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
986 {
987 return tp->reordering;
988 }
989
990 /* Returns end sequence number of the receiver's advertised window */
991 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
992 {
993 return tp->snd_una + tp->snd_wnd;
994 }
995
996 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
997 * flexible approach. The RFC suggests cwnd should not be raised unless
998 * it was fully used previously. And that's exactly what we do in
999 * congestion avoidance mode. But in slow start we allow cwnd to grow
1000 * as long as the application has used half the cwnd.
1001 * Example :
1002 * cwnd is 10 (IW10), but application sends 9 frames.
1003 * We allow cwnd to reach 18 when all frames are ACKed.
1004 * This check is safe because it's as aggressive as slow start which already
1005 * risks 100% overshoot. The advantage is that we discourage application to
1006 * either send more filler packets or data to artificially blow up the cwnd
1007 * usage, and allow application-limited process to probe bw more aggressively.
1008 */
1009 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1010 {
1011 const struct tcp_sock *tp = tcp_sk(sk);
1012
1013 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1014 if (tp->snd_cwnd <= tp->snd_ssthresh)
1015 return tp->snd_cwnd < 2 * tp->max_packets_out;
1016
1017 return tp->is_cwnd_limited;
1018 }
1019
1020 static inline void tcp_check_probe_timer(struct sock *sk)
1021 {
1022 const struct tcp_sock *tp = tcp_sk(sk);
1023 const struct inet_connection_sock *icsk = inet_csk(sk);
1024
1025 if (!tp->packets_out && !icsk->icsk_pending)
1026 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1027 icsk->icsk_rto, TCP_RTO_MAX);
1028 }
1029
1030 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1031 {
1032 tp->snd_wl1 = seq;
1033 }
1034
1035 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1036 {
1037 tp->snd_wl1 = seq;
1038 }
1039
1040 /*
1041 * Calculate(/check) TCP checksum
1042 */
1043 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1044 __be32 daddr, __wsum base)
1045 {
1046 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1047 }
1048
1049 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1050 {
1051 return __skb_checksum_complete(skb);
1052 }
1053
1054 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1055 {
1056 return !skb_csum_unnecessary(skb) &&
1057 __tcp_checksum_complete(skb);
1058 }
1059
1060 /* Prequeue for VJ style copy to user, combined with checksumming. */
1061
1062 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1063 {
1064 tp->ucopy.task = NULL;
1065 tp->ucopy.len = 0;
1066 tp->ucopy.memory = 0;
1067 skb_queue_head_init(&tp->ucopy.prequeue);
1068 }
1069
1070 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1071
1072 #undef STATE_TRACE
1073
1074 #ifdef STATE_TRACE
1075 static const char *statename[]={
1076 "Unused","Established","Syn Sent","Syn Recv",
1077 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1078 "Close Wait","Last ACK","Listen","Closing"
1079 };
1080 #endif
1081 void tcp_set_state(struct sock *sk, int state);
1082
1083 void tcp_done(struct sock *sk);
1084
1085 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1086 {
1087 rx_opt->dsack = 0;
1088 rx_opt->num_sacks = 0;
1089 }
1090
1091 u32 tcp_default_init_rwnd(u32 mss);
1092
1093 /* Determine a window scaling and initial window to offer. */
1094 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1095 __u32 *window_clamp, int wscale_ok,
1096 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1097
1098 static inline int tcp_win_from_space(int space)
1099 {
1100 return sysctl_tcp_adv_win_scale<=0 ?
1101 (space>>(-sysctl_tcp_adv_win_scale)) :
1102 space - (space>>sysctl_tcp_adv_win_scale);
1103 }
1104
1105 /* Note: caller must be prepared to deal with negative returns */
1106 static inline int tcp_space(const struct sock *sk)
1107 {
1108 return tcp_win_from_space(sk->sk_rcvbuf -
1109 atomic_read(&sk->sk_rmem_alloc));
1110 }
1111
1112 static inline int tcp_full_space(const struct sock *sk)
1113 {
1114 return tcp_win_from_space(sk->sk_rcvbuf);
1115 }
1116
1117 static inline void tcp_openreq_init(struct request_sock *req,
1118 struct tcp_options_received *rx_opt,
1119 struct sk_buff *skb, struct sock *sk)
1120 {
1121 struct inet_request_sock *ireq = inet_rsk(req);
1122
1123 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
1124 req->cookie_ts = 0;
1125 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1126 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
1127 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1128 req->mss = rx_opt->mss_clamp;
1129 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1130 ireq->tstamp_ok = rx_opt->tstamp_ok;
1131 ireq->sack_ok = rx_opt->sack_ok;
1132 ireq->snd_wscale = rx_opt->snd_wscale;
1133 ireq->wscale_ok = rx_opt->wscale_ok;
1134 ireq->acked = 0;
1135 ireq->ecn_ok = 0;
1136 ireq->ir_rmt_port = tcp_hdr(skb)->source;
1137 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
1138 ireq->ir_mark = inet_request_mark(sk, skb);
1139 }
1140
1141 extern void tcp_openreq_init_rwin(struct request_sock *req,
1142 struct sock *sk, struct dst_entry *dst);
1143
1144 void tcp_enter_memory_pressure(struct sock *sk);
1145
1146 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1147 {
1148 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1149 }
1150
1151 static inline int keepalive_time_when(const struct tcp_sock *tp)
1152 {
1153 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1154 }
1155
1156 static inline int keepalive_probes(const struct tcp_sock *tp)
1157 {
1158 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1159 }
1160
1161 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1162 {
1163 const struct inet_connection_sock *icsk = &tp->inet_conn;
1164
1165 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1166 tcp_time_stamp - tp->rcv_tstamp);
1167 }
1168
1169 static inline int tcp_fin_time(const struct sock *sk)
1170 {
1171 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1172 const int rto = inet_csk(sk)->icsk_rto;
1173
1174 if (fin_timeout < (rto << 2) - (rto >> 1))
1175 fin_timeout = (rto << 2) - (rto >> 1);
1176
1177 return fin_timeout;
1178 }
1179
1180 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1181 int paws_win)
1182 {
1183 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1184 return true;
1185 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1186 return true;
1187 /*
1188 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1189 * then following tcp messages have valid values. Ignore 0 value,
1190 * or else 'negative' tsval might forbid us to accept their packets.
1191 */
1192 if (!rx_opt->ts_recent)
1193 return true;
1194 return false;
1195 }
1196
1197 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1198 int rst)
1199 {
1200 if (tcp_paws_check(rx_opt, 0))
1201 return false;
1202
1203 /* RST segments are not recommended to carry timestamp,
1204 and, if they do, it is recommended to ignore PAWS because
1205 "their cleanup function should take precedence over timestamps."
1206 Certainly, it is mistake. It is necessary to understand the reasons
1207 of this constraint to relax it: if peer reboots, clock may go
1208 out-of-sync and half-open connections will not be reset.
1209 Actually, the problem would be not existing if all
1210 the implementations followed draft about maintaining clock
1211 via reboots. Linux-2.2 DOES NOT!
1212
1213 However, we can relax time bounds for RST segments to MSL.
1214 */
1215 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1216 return false;
1217 return true;
1218 }
1219
1220 static inline void tcp_mib_init(struct net *net)
1221 {
1222 /* See RFC 2012 */
1223 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1224 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1225 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1226 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1227 }
1228
1229 /* from STCP */
1230 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1231 {
1232 tp->lost_skb_hint = NULL;
1233 }
1234
1235 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1236 {
1237 tcp_clear_retrans_hints_partial(tp);
1238 tp->retransmit_skb_hint = NULL;
1239 }
1240
1241 /* MD5 Signature */
1242 struct crypto_hash;
1243
1244 union tcp_md5_addr {
1245 struct in_addr a4;
1246 #if IS_ENABLED(CONFIG_IPV6)
1247 struct in6_addr a6;
1248 #endif
1249 };
1250
1251 /* - key database */
1252 struct tcp_md5sig_key {
1253 struct hlist_node node;
1254 u8 keylen;
1255 u8 family; /* AF_INET or AF_INET6 */
1256 union tcp_md5_addr addr;
1257 u8 key[TCP_MD5SIG_MAXKEYLEN];
1258 struct rcu_head rcu;
1259 };
1260
1261 /* - sock block */
1262 struct tcp_md5sig_info {
1263 struct hlist_head head;
1264 struct rcu_head rcu;
1265 };
1266
1267 /* - pseudo header */
1268 struct tcp4_pseudohdr {
1269 __be32 saddr;
1270 __be32 daddr;
1271 __u8 pad;
1272 __u8 protocol;
1273 __be16 len;
1274 };
1275
1276 struct tcp6_pseudohdr {
1277 struct in6_addr saddr;
1278 struct in6_addr daddr;
1279 __be32 len;
1280 __be32 protocol; /* including padding */
1281 };
1282
1283 union tcp_md5sum_block {
1284 struct tcp4_pseudohdr ip4;
1285 #if IS_ENABLED(CONFIG_IPV6)
1286 struct tcp6_pseudohdr ip6;
1287 #endif
1288 };
1289
1290 /* - pool: digest algorithm, hash description and scratch buffer */
1291 struct tcp_md5sig_pool {
1292 struct hash_desc md5_desc;
1293 union tcp_md5sum_block md5_blk;
1294 };
1295
1296 /* - functions */
1297 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1298 const struct sock *sk, const struct request_sock *req,
1299 const struct sk_buff *skb);
1300 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1301 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1302 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1303 int family);
1304 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1305 struct sock *addr_sk);
1306
1307 #ifdef CONFIG_TCP_MD5SIG
1308 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1309 const union tcp_md5_addr *addr,
1310 int family);
1311 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1312 #else
1313 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1314 const union tcp_md5_addr *addr,
1315 int family)
1316 {
1317 return NULL;
1318 }
1319 #define tcp_twsk_md5_key(twsk) NULL
1320 #endif
1321
1322 bool tcp_alloc_md5sig_pool(void);
1323
1324 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1325 static inline void tcp_put_md5sig_pool(void)
1326 {
1327 local_bh_enable();
1328 }
1329
1330 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1331 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1332 unsigned int header_len);
1333 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1334 const struct tcp_md5sig_key *key);
1335
1336 /* From tcp_fastopen.c */
1337 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1338 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1339 unsigned long *last_syn_loss);
1340 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1341 struct tcp_fastopen_cookie *cookie, bool syn_lost);
1342 struct tcp_fastopen_request {
1343 /* Fast Open cookie. Size 0 means a cookie request */
1344 struct tcp_fastopen_cookie cookie;
1345 struct msghdr *data; /* data in MSG_FASTOPEN */
1346 size_t size;
1347 int copied; /* queued in tcp_connect() */
1348 };
1349 void tcp_free_fastopen_req(struct tcp_sock *tp);
1350
1351 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1352 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1353 bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1354 struct request_sock *req,
1355 struct tcp_fastopen_cookie *foc,
1356 struct dst_entry *dst);
1357 void tcp_fastopen_init_key_once(bool publish);
1358 #define TCP_FASTOPEN_KEY_LENGTH 16
1359
1360 /* Fastopen key context */
1361 struct tcp_fastopen_context {
1362 struct crypto_cipher *tfm;
1363 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1364 struct rcu_head rcu;
1365 };
1366
1367 /* write queue abstraction */
1368 static inline void tcp_write_queue_purge(struct sock *sk)
1369 {
1370 struct sk_buff *skb;
1371
1372 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1373 sk_wmem_free_skb(sk, skb);
1374 sk_mem_reclaim(sk);
1375 tcp_clear_all_retrans_hints(tcp_sk(sk));
1376 }
1377
1378 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1379 {
1380 return skb_peek(&sk->sk_write_queue);
1381 }
1382
1383 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1384 {
1385 return skb_peek_tail(&sk->sk_write_queue);
1386 }
1387
1388 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1389 const struct sk_buff *skb)
1390 {
1391 return skb_queue_next(&sk->sk_write_queue, skb);
1392 }
1393
1394 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1395 const struct sk_buff *skb)
1396 {
1397 return skb_queue_prev(&sk->sk_write_queue, skb);
1398 }
1399
1400 #define tcp_for_write_queue(skb, sk) \
1401 skb_queue_walk(&(sk)->sk_write_queue, skb)
1402
1403 #define tcp_for_write_queue_from(skb, sk) \
1404 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1405
1406 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1407 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1408
1409 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1410 {
1411 return sk->sk_send_head;
1412 }
1413
1414 static inline bool tcp_skb_is_last(const struct sock *sk,
1415 const struct sk_buff *skb)
1416 {
1417 return skb_queue_is_last(&sk->sk_write_queue, skb);
1418 }
1419
1420 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1421 {
1422 if (tcp_skb_is_last(sk, skb))
1423 sk->sk_send_head = NULL;
1424 else
1425 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1426 }
1427
1428 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1429 {
1430 if (sk->sk_send_head == skb_unlinked)
1431 sk->sk_send_head = NULL;
1432 }
1433
1434 static inline void tcp_init_send_head(struct sock *sk)
1435 {
1436 sk->sk_send_head = NULL;
1437 }
1438
1439 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1440 {
1441 __skb_queue_tail(&sk->sk_write_queue, skb);
1442 }
1443
1444 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1445 {
1446 __tcp_add_write_queue_tail(sk, skb);
1447
1448 /* Queue it, remembering where we must start sending. */
1449 if (sk->sk_send_head == NULL) {
1450 sk->sk_send_head = skb;
1451
1452 if (tcp_sk(sk)->highest_sack == NULL)
1453 tcp_sk(sk)->highest_sack = skb;
1454 }
1455 }
1456
1457 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1458 {
1459 __skb_queue_head(&sk->sk_write_queue, skb);
1460 }
1461
1462 /* Insert buff after skb on the write queue of sk. */
1463 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1464 struct sk_buff *buff,
1465 struct sock *sk)
1466 {
1467 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1468 }
1469
1470 /* Insert new before skb on the write queue of sk. */
1471 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1472 struct sk_buff *skb,
1473 struct sock *sk)
1474 {
1475 __skb_queue_before(&sk->sk_write_queue, skb, new);
1476
1477 if (sk->sk_send_head == skb)
1478 sk->sk_send_head = new;
1479 }
1480
1481 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1482 {
1483 __skb_unlink(skb, &sk->sk_write_queue);
1484 }
1485
1486 static inline bool tcp_write_queue_empty(struct sock *sk)
1487 {
1488 return skb_queue_empty(&sk->sk_write_queue);
1489 }
1490
1491 static inline void tcp_push_pending_frames(struct sock *sk)
1492 {
1493 if (tcp_send_head(sk)) {
1494 struct tcp_sock *tp = tcp_sk(sk);
1495
1496 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1497 }
1498 }
1499
1500 /* Start sequence of the skb just after the highest skb with SACKed
1501 * bit, valid only if sacked_out > 0 or when the caller has ensured
1502 * validity by itself.
1503 */
1504 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1505 {
1506 if (!tp->sacked_out)
1507 return tp->snd_una;
1508
1509 if (tp->highest_sack == NULL)
1510 return tp->snd_nxt;
1511
1512 return TCP_SKB_CB(tp->highest_sack)->seq;
1513 }
1514
1515 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1516 {
1517 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1518 tcp_write_queue_next(sk, skb);
1519 }
1520
1521 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1522 {
1523 return tcp_sk(sk)->highest_sack;
1524 }
1525
1526 static inline void tcp_highest_sack_reset(struct sock *sk)
1527 {
1528 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1529 }
1530
1531 /* Called when old skb is about to be deleted (to be combined with new skb) */
1532 static inline void tcp_highest_sack_combine(struct sock *sk,
1533 struct sk_buff *old,
1534 struct sk_buff *new)
1535 {
1536 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1537 tcp_sk(sk)->highest_sack = new;
1538 }
1539
1540 /* Determines whether this is a thin stream (which may suffer from
1541 * increased latency). Used to trigger latency-reducing mechanisms.
1542 */
1543 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1544 {
1545 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1546 }
1547
1548 /* /proc */
1549 enum tcp_seq_states {
1550 TCP_SEQ_STATE_LISTENING,
1551 TCP_SEQ_STATE_OPENREQ,
1552 TCP_SEQ_STATE_ESTABLISHED,
1553 };
1554
1555 int tcp_seq_open(struct inode *inode, struct file *file);
1556
1557 struct tcp_seq_afinfo {
1558 char *name;
1559 sa_family_t family;
1560 const struct file_operations *seq_fops;
1561 struct seq_operations seq_ops;
1562 };
1563
1564 struct tcp_iter_state {
1565 struct seq_net_private p;
1566 sa_family_t family;
1567 enum tcp_seq_states state;
1568 struct sock *syn_wait_sk;
1569 int bucket, offset, sbucket, num;
1570 kuid_t uid;
1571 loff_t last_pos;
1572 };
1573
1574 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1575 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1576
1577 extern struct request_sock_ops tcp_request_sock_ops;
1578 extern struct request_sock_ops tcp6_request_sock_ops;
1579
1580 void tcp_v4_destroy_sock(struct sock *sk);
1581
1582 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1583 netdev_features_t features);
1584 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1585 int tcp_gro_complete(struct sk_buff *skb);
1586
1587 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1588
1589 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1590 {
1591 return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1592 }
1593
1594 static inline bool tcp_stream_memory_free(const struct sock *sk)
1595 {
1596 const struct tcp_sock *tp = tcp_sk(sk);
1597 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1598
1599 return notsent_bytes < tcp_notsent_lowat(tp);
1600 }
1601
1602 #ifdef CONFIG_PROC_FS
1603 int tcp4_proc_init(void);
1604 void tcp4_proc_exit(void);
1605 #endif
1606
1607 int tcp_rtx_synack(struct sock *sk, struct request_sock *req);
1608 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1609 const struct tcp_request_sock_ops *af_ops,
1610 struct sock *sk, struct sk_buff *skb);
1611
1612 /* TCP af-specific functions */
1613 struct tcp_sock_af_ops {
1614 #ifdef CONFIG_TCP_MD5SIG
1615 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1616 struct sock *addr_sk);
1617 int (*calc_md5_hash) (char *location,
1618 struct tcp_md5sig_key *md5,
1619 const struct sock *sk,
1620 const struct request_sock *req,
1621 const struct sk_buff *skb);
1622 int (*md5_parse) (struct sock *sk,
1623 char __user *optval,
1624 int optlen);
1625 #endif
1626 };
1627
1628 struct tcp_request_sock_ops {
1629 u16 mss_clamp;
1630 #ifdef CONFIG_TCP_MD5SIG
1631 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1632 struct request_sock *req);
1633 int (*calc_md5_hash) (char *location,
1634 struct tcp_md5sig_key *md5,
1635 const struct sock *sk,
1636 const struct request_sock *req,
1637 const struct sk_buff *skb);
1638 #endif
1639 void (*init_req)(struct request_sock *req, struct sock *sk,
1640 struct sk_buff *skb);
1641 #ifdef CONFIG_SYN_COOKIES
1642 __u32 (*cookie_init_seq)(struct sock *sk, const struct sk_buff *skb,
1643 __u16 *mss);
1644 #endif
1645 struct dst_entry *(*route_req)(struct sock *sk, struct flowi *fl,
1646 const struct request_sock *req,
1647 bool *strict);
1648 __u32 (*init_seq)(const struct sk_buff *skb);
1649 int (*send_synack)(struct sock *sk, struct dst_entry *dst,
1650 struct flowi *fl, struct request_sock *req,
1651 u16 queue_mapping, struct tcp_fastopen_cookie *foc);
1652 void (*queue_hash_add)(struct sock *sk, struct request_sock *req,
1653 const unsigned long timeout);
1654 };
1655
1656 #ifdef CONFIG_SYN_COOKIES
1657 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1658 struct sock *sk, struct sk_buff *skb,
1659 __u16 *mss)
1660 {
1661 return ops->cookie_init_seq(sk, skb, mss);
1662 }
1663 #else
1664 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1665 struct sock *sk, struct sk_buff *skb,
1666 __u16 *mss)
1667 {
1668 return 0;
1669 }
1670 #endif
1671
1672 int tcpv4_offload_init(void);
1673
1674 void tcp_v4_init(void);
1675 void tcp_init(void);
1676
1677 /*
1678 * Save and compile IPv4 options, return a pointer to it
1679 */
1680 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1681 {
1682 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1683 struct ip_options_rcu *dopt = NULL;
1684
1685 if (opt->optlen) {
1686 int opt_size = sizeof(*dopt) + opt->optlen;
1687
1688 dopt = kmalloc(opt_size, GFP_ATOMIC);
1689 if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1690 kfree(dopt);
1691 dopt = NULL;
1692 }
1693 }
1694 return dopt;
1695 }
1696
1697 #endif /* _TCP_H */
This page took 0.06568 seconds and 5 git commands to generate.