tcp: syncookies: reduce cookie lifetime to 128 seconds
[deliverable/linux.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS 88U
66
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS 512
69
70 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
71 #define TCP_FASTRETRANS_THRESH 3
72
73 /* Maximal reordering. */
74 #define TCP_MAX_REORDERING 127
75
76 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
77 #define TCP_MAX_QUICKACKS 16U
78
79 /* urg_data states */
80 #define TCP_URG_VALID 0x0100
81 #define TCP_URG_NOTYET 0x0200
82 #define TCP_URG_READ 0x0400
83
84 #define TCP_RETR1 3 /*
85 * This is how many retries it does before it
86 * tries to figure out if the gateway is
87 * down. Minimal RFC value is 3; it corresponds
88 * to ~3sec-8min depending on RTO.
89 */
90
91 #define TCP_RETR2 15 /*
92 * This should take at least
93 * 90 minutes to time out.
94 * RFC1122 says that the limit is 100 sec.
95 * 15 is ~13-30min depending on RTO.
96 */
97
98 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
99 * when active opening a connection.
100 * RFC1122 says the minimum retry MUST
101 * be at least 180secs. Nevertheless
102 * this value is corresponding to
103 * 63secs of retransmission with the
104 * current initial RTO.
105 */
106
107 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
108 * when passive opening a connection.
109 * This is corresponding to 31secs of
110 * retransmission with the current
111 * initial RTO.
112 */
113
114 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
115 * state, about 60 seconds */
116 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
117 /* BSD style FIN_WAIT2 deadlock breaker.
118 * It used to be 3min, new value is 60sec,
119 * to combine FIN-WAIT-2 timeout with
120 * TIME-WAIT timer.
121 */
122
123 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
124 #if HZ >= 100
125 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
126 #define TCP_ATO_MIN ((unsigned)(HZ/25))
127 #else
128 #define TCP_DELACK_MIN 4U
129 #define TCP_ATO_MIN 4U
130 #endif
131 #define TCP_RTO_MAX ((unsigned)(120*HZ))
132 #define TCP_RTO_MIN ((unsigned)(HZ/5))
133 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
134 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
135 * used as a fallback RTO for the
136 * initial data transmission if no
137 * valid RTT sample has been acquired,
138 * most likely due to retrans in 3WHS.
139 */
140
141 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
142 * for local resources.
143 */
144
145 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
146 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
147 #define TCP_KEEPALIVE_INTVL (75*HZ)
148
149 #define MAX_TCP_KEEPIDLE 32767
150 #define MAX_TCP_KEEPINTVL 32767
151 #define MAX_TCP_KEEPCNT 127
152 #define MAX_TCP_SYNCNT 127
153
154 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
155
156 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
157 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
158 * after this time. It should be equal
159 * (or greater than) TCP_TIMEWAIT_LEN
160 * to provide reliability equal to one
161 * provided by timewait state.
162 */
163 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
164 * timestamps. It must be less than
165 * minimal timewait lifetime.
166 */
167 /*
168 * TCP option
169 */
170
171 #define TCPOPT_NOP 1 /* Padding */
172 #define TCPOPT_EOL 0 /* End of options */
173 #define TCPOPT_MSS 2 /* Segment size negotiating */
174 #define TCPOPT_WINDOW 3 /* Window scaling */
175 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
176 #define TCPOPT_SACK 5 /* SACK Block */
177 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
178 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
179 #define TCPOPT_EXP 254 /* Experimental */
180 /* Magic number to be after the option value for sharing TCP
181 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
182 */
183 #define TCPOPT_FASTOPEN_MAGIC 0xF989
184
185 /*
186 * TCP option lengths
187 */
188
189 #define TCPOLEN_MSS 4
190 #define TCPOLEN_WINDOW 3
191 #define TCPOLEN_SACK_PERM 2
192 #define TCPOLEN_TIMESTAMP 10
193 #define TCPOLEN_MD5SIG 18
194 #define TCPOLEN_EXP_FASTOPEN_BASE 4
195
196 /* But this is what stacks really send out. */
197 #define TCPOLEN_TSTAMP_ALIGNED 12
198 #define TCPOLEN_WSCALE_ALIGNED 4
199 #define TCPOLEN_SACKPERM_ALIGNED 4
200 #define TCPOLEN_SACK_BASE 2
201 #define TCPOLEN_SACK_BASE_ALIGNED 4
202 #define TCPOLEN_SACK_PERBLOCK 8
203 #define TCPOLEN_MD5SIG_ALIGNED 20
204 #define TCPOLEN_MSS_ALIGNED 4
205
206 /* Flags in tp->nonagle */
207 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
208 #define TCP_NAGLE_CORK 2 /* Socket is corked */
209 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
210
211 /* TCP thin-stream limits */
212 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
213
214 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
215 #define TCP_INIT_CWND 10
216
217 /* Bit Flags for sysctl_tcp_fastopen */
218 #define TFO_CLIENT_ENABLE 1
219 #define TFO_SERVER_ENABLE 2
220 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
221
222 /* Process SYN data but skip cookie validation */
223 #define TFO_SERVER_COOKIE_NOT_CHKED 0x100
224 /* Accept SYN data w/o any cookie option */
225 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
226
227 /* Force enable TFO on all listeners, i.e., not requiring the
228 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
229 */
230 #define TFO_SERVER_WO_SOCKOPT1 0x400
231 #define TFO_SERVER_WO_SOCKOPT2 0x800
232 /* Always create TFO child sockets on a TFO listener even when
233 * cookie/data not present. (For testing purpose!)
234 */
235 #define TFO_SERVER_ALWAYS 0x1000
236
237 extern struct inet_timewait_death_row tcp_death_row;
238
239 /* sysctl variables for tcp */
240 extern int sysctl_tcp_timestamps;
241 extern int sysctl_tcp_window_scaling;
242 extern int sysctl_tcp_sack;
243 extern int sysctl_tcp_fin_timeout;
244 extern int sysctl_tcp_keepalive_time;
245 extern int sysctl_tcp_keepalive_probes;
246 extern int sysctl_tcp_keepalive_intvl;
247 extern int sysctl_tcp_syn_retries;
248 extern int sysctl_tcp_synack_retries;
249 extern int sysctl_tcp_retries1;
250 extern int sysctl_tcp_retries2;
251 extern int sysctl_tcp_orphan_retries;
252 extern int sysctl_tcp_syncookies;
253 extern int sysctl_tcp_fastopen;
254 extern int sysctl_tcp_retrans_collapse;
255 extern int sysctl_tcp_stdurg;
256 extern int sysctl_tcp_rfc1337;
257 extern int sysctl_tcp_abort_on_overflow;
258 extern int sysctl_tcp_max_orphans;
259 extern int sysctl_tcp_fack;
260 extern int sysctl_tcp_reordering;
261 extern int sysctl_tcp_dsack;
262 extern int sysctl_tcp_wmem[3];
263 extern int sysctl_tcp_rmem[3];
264 extern int sysctl_tcp_app_win;
265 extern int sysctl_tcp_adv_win_scale;
266 extern int sysctl_tcp_tw_reuse;
267 extern int sysctl_tcp_frto;
268 extern int sysctl_tcp_low_latency;
269 extern int sysctl_tcp_dma_copybreak;
270 extern int sysctl_tcp_nometrics_save;
271 extern int sysctl_tcp_moderate_rcvbuf;
272 extern int sysctl_tcp_tso_win_divisor;
273 extern int sysctl_tcp_mtu_probing;
274 extern int sysctl_tcp_base_mss;
275 extern int sysctl_tcp_workaround_signed_windows;
276 extern int sysctl_tcp_slow_start_after_idle;
277 extern int sysctl_tcp_max_ssthresh;
278 extern int sysctl_tcp_thin_linear_timeouts;
279 extern int sysctl_tcp_thin_dupack;
280 extern int sysctl_tcp_early_retrans;
281 extern int sysctl_tcp_limit_output_bytes;
282 extern int sysctl_tcp_challenge_ack_limit;
283 extern unsigned int sysctl_tcp_notsent_lowat;
284 extern int sysctl_tcp_min_tso_segs;
285
286 extern atomic_long_t tcp_memory_allocated;
287 extern struct percpu_counter tcp_sockets_allocated;
288 extern int tcp_memory_pressure;
289
290 /*
291 * The next routines deal with comparing 32 bit unsigned ints
292 * and worry about wraparound (automatic with unsigned arithmetic).
293 */
294
295 static inline bool before(__u32 seq1, __u32 seq2)
296 {
297 return (__s32)(seq1-seq2) < 0;
298 }
299 #define after(seq2, seq1) before(seq1, seq2)
300
301 /* is s2<=s1<=s3 ? */
302 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
303 {
304 return seq3 - seq2 >= seq1 - seq2;
305 }
306
307 static inline bool tcp_out_of_memory(struct sock *sk)
308 {
309 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
310 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
311 return true;
312 return false;
313 }
314
315 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
316 {
317 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
318 int orphans = percpu_counter_read_positive(ocp);
319
320 if (orphans << shift > sysctl_tcp_max_orphans) {
321 orphans = percpu_counter_sum_positive(ocp);
322 if (orphans << shift > sysctl_tcp_max_orphans)
323 return true;
324 }
325 return false;
326 }
327
328 bool tcp_check_oom(struct sock *sk, int shift);
329
330 /* syncookies: remember time of last synqueue overflow */
331 static inline void tcp_synq_overflow(struct sock *sk)
332 {
333 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
334 }
335
336 /* syncookies: no recent synqueue overflow on this listening socket? */
337 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
338 {
339 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
340 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
341 }
342
343 extern struct proto tcp_prot;
344
345 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
346 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
347 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
348 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
349 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
350
351 void tcp_init_mem(struct net *net);
352
353 void tcp_tasklet_init(void);
354
355 void tcp_v4_err(struct sk_buff *skb, u32);
356
357 void tcp_shutdown(struct sock *sk, int how);
358
359 void tcp_v4_early_demux(struct sk_buff *skb);
360 int tcp_v4_rcv(struct sk_buff *skb);
361
362 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
363 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
364 size_t size);
365 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
366 int flags);
367 void tcp_release_cb(struct sock *sk);
368 void tcp_wfree(struct sk_buff *skb);
369 void tcp_write_timer_handler(struct sock *sk);
370 void tcp_delack_timer_handler(struct sock *sk);
371 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
372 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
373 const struct tcphdr *th, unsigned int len);
374 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
375 const struct tcphdr *th, unsigned int len);
376 void tcp_rcv_space_adjust(struct sock *sk);
377 void tcp_cleanup_rbuf(struct sock *sk, int copied);
378 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
379 void tcp_twsk_destructor(struct sock *sk);
380 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
381 struct pipe_inode_info *pipe, size_t len,
382 unsigned int flags);
383
384 static inline void tcp_dec_quickack_mode(struct sock *sk,
385 const unsigned int pkts)
386 {
387 struct inet_connection_sock *icsk = inet_csk(sk);
388
389 if (icsk->icsk_ack.quick) {
390 if (pkts >= icsk->icsk_ack.quick) {
391 icsk->icsk_ack.quick = 0;
392 /* Leaving quickack mode we deflate ATO. */
393 icsk->icsk_ack.ato = TCP_ATO_MIN;
394 } else
395 icsk->icsk_ack.quick -= pkts;
396 }
397 }
398
399 #define TCP_ECN_OK 1
400 #define TCP_ECN_QUEUE_CWR 2
401 #define TCP_ECN_DEMAND_CWR 4
402 #define TCP_ECN_SEEN 8
403
404 enum tcp_tw_status {
405 TCP_TW_SUCCESS = 0,
406 TCP_TW_RST = 1,
407 TCP_TW_ACK = 2,
408 TCP_TW_SYN = 3
409 };
410
411
412 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
413 struct sk_buff *skb,
414 const struct tcphdr *th);
415 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
416 struct request_sock *req, struct request_sock **prev,
417 bool fastopen);
418 int tcp_child_process(struct sock *parent, struct sock *child,
419 struct sk_buff *skb);
420 void tcp_enter_loss(struct sock *sk, int how);
421 void tcp_clear_retrans(struct tcp_sock *tp);
422 void tcp_update_metrics(struct sock *sk);
423 void tcp_init_metrics(struct sock *sk);
424 void tcp_metrics_init(void);
425 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
426 bool paws_check);
427 bool tcp_remember_stamp(struct sock *sk);
428 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
429 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
430 void tcp_disable_fack(struct tcp_sock *tp);
431 void tcp_close(struct sock *sk, long timeout);
432 void tcp_init_sock(struct sock *sk);
433 unsigned int tcp_poll(struct file *file, struct socket *sock,
434 struct poll_table_struct *wait);
435 int tcp_getsockopt(struct sock *sk, int level, int optname,
436 char __user *optval, int __user *optlen);
437 int tcp_setsockopt(struct sock *sk, int level, int optname,
438 char __user *optval, unsigned int optlen);
439 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
440 char __user *optval, int __user *optlen);
441 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
442 char __user *optval, unsigned int optlen);
443 void tcp_set_keepalive(struct sock *sk, int val);
444 void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
445 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
446 size_t len, int nonblock, int flags, int *addr_len);
447 void tcp_parse_options(const struct sk_buff *skb,
448 struct tcp_options_received *opt_rx,
449 int estab, struct tcp_fastopen_cookie *foc);
450 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
451
452 /*
453 * TCP v4 functions exported for the inet6 API
454 */
455
456 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
457 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
458 struct sock *tcp_create_openreq_child(struct sock *sk,
459 struct request_sock *req,
460 struct sk_buff *skb);
461 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
462 struct request_sock *req,
463 struct dst_entry *dst);
464 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
465 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
466 int tcp_connect(struct sock *sk);
467 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
468 struct request_sock *req,
469 struct tcp_fastopen_cookie *foc);
470 int tcp_disconnect(struct sock *sk, int flags);
471
472 void tcp_connect_init(struct sock *sk);
473 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
474 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
475 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
476
477 /* From syncookies.c */
478 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
479 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
480 u32 cookie);
481 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
482 struct ip_options *opt);
483 #ifdef CONFIG_SYN_COOKIES
484 #include <linux/ktime.h>
485
486 /* Syncookies use a monotonic timer which increments every 64 seconds.
487 * This counter is used both as a hash input and partially encoded into
488 * the cookie value. A cookie is only validated further if the delta
489 * between the current counter value and the encoded one is less than this,
490 * i.e. a sent cookie is valid only at most for 128 seconds (or less if
491 * the counter advances immediately after a cookie is generated).
492 */
493 #define MAX_SYNCOOKIE_AGE 2
494
495 static inline u32 tcp_cookie_time(void)
496 {
497 struct timespec now;
498 getnstimeofday(&now);
499 return now.tv_sec >> 6; /* 64 seconds granularity */
500 }
501
502 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
503 u16 *mssp);
504 __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb, __u16 *mss);
505 #else
506 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
507 struct sk_buff *skb,
508 __u16 *mss)
509 {
510 return 0;
511 }
512 #endif
513
514 __u32 cookie_init_timestamp(struct request_sock *req);
515 bool cookie_check_timestamp(struct tcp_options_received *opt, struct net *net,
516 bool *ecn_ok);
517
518 /* From net/ipv6/syncookies.c */
519 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
520 u32 cookie);
521 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
522 #ifdef CONFIG_SYN_COOKIES
523 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
524 const struct tcphdr *th, u16 *mssp);
525 __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
526 __u16 *mss);
527 #else
528 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
529 struct sk_buff *skb,
530 __u16 *mss)
531 {
532 return 0;
533 }
534 #endif
535 /* tcp_output.c */
536
537 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
538 int nonagle);
539 bool tcp_may_send_now(struct sock *sk);
540 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
541 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
542 void tcp_retransmit_timer(struct sock *sk);
543 void tcp_xmit_retransmit_queue(struct sock *);
544 void tcp_simple_retransmit(struct sock *);
545 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
546 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
547
548 void tcp_send_probe0(struct sock *);
549 void tcp_send_partial(struct sock *);
550 int tcp_write_wakeup(struct sock *);
551 void tcp_send_fin(struct sock *sk);
552 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
553 int tcp_send_synack(struct sock *);
554 bool tcp_syn_flood_action(struct sock *sk, const struct sk_buff *skb,
555 const char *proto);
556 void tcp_push_one(struct sock *, unsigned int mss_now);
557 void tcp_send_ack(struct sock *sk);
558 void tcp_send_delayed_ack(struct sock *sk);
559 void tcp_send_loss_probe(struct sock *sk);
560 bool tcp_schedule_loss_probe(struct sock *sk);
561
562 /* tcp_input.c */
563 void tcp_cwnd_application_limited(struct sock *sk);
564 void tcp_resume_early_retransmit(struct sock *sk);
565 void tcp_rearm_rto(struct sock *sk);
566 void tcp_reset(struct sock *sk);
567
568 /* tcp_timer.c */
569 void tcp_init_xmit_timers(struct sock *);
570 static inline void tcp_clear_xmit_timers(struct sock *sk)
571 {
572 inet_csk_clear_xmit_timers(sk);
573 }
574
575 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
576 unsigned int tcp_current_mss(struct sock *sk);
577
578 /* Bound MSS / TSO packet size with the half of the window */
579 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
580 {
581 int cutoff;
582
583 /* When peer uses tiny windows, there is no use in packetizing
584 * to sub-MSS pieces for the sake of SWS or making sure there
585 * are enough packets in the pipe for fast recovery.
586 *
587 * On the other hand, for extremely large MSS devices, handling
588 * smaller than MSS windows in this way does make sense.
589 */
590 if (tp->max_window >= 512)
591 cutoff = (tp->max_window >> 1);
592 else
593 cutoff = tp->max_window;
594
595 if (cutoff && pktsize > cutoff)
596 return max_t(int, cutoff, 68U - tp->tcp_header_len);
597 else
598 return pktsize;
599 }
600
601 /* tcp.c */
602 void tcp_get_info(const struct sock *, struct tcp_info *);
603
604 /* Read 'sendfile()'-style from a TCP socket */
605 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
606 unsigned int, size_t);
607 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
608 sk_read_actor_t recv_actor);
609
610 void tcp_initialize_rcv_mss(struct sock *sk);
611
612 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
613 int tcp_mss_to_mtu(struct sock *sk, int mss);
614 void tcp_mtup_init(struct sock *sk);
615 void tcp_init_buffer_space(struct sock *sk);
616
617 static inline void tcp_bound_rto(const struct sock *sk)
618 {
619 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
620 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
621 }
622
623 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
624 {
625 return (tp->srtt >> 3) + tp->rttvar;
626 }
627
628 void tcp_set_rto(struct sock *sk);
629
630 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
631 {
632 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
633 ntohl(TCP_FLAG_ACK) |
634 snd_wnd);
635 }
636
637 static inline void tcp_fast_path_on(struct tcp_sock *tp)
638 {
639 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
640 }
641
642 static inline void tcp_fast_path_check(struct sock *sk)
643 {
644 struct tcp_sock *tp = tcp_sk(sk);
645
646 if (skb_queue_empty(&tp->out_of_order_queue) &&
647 tp->rcv_wnd &&
648 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
649 !tp->urg_data)
650 tcp_fast_path_on(tp);
651 }
652
653 /* Compute the actual rto_min value */
654 static inline u32 tcp_rto_min(struct sock *sk)
655 {
656 const struct dst_entry *dst = __sk_dst_get(sk);
657 u32 rto_min = TCP_RTO_MIN;
658
659 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
660 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
661 return rto_min;
662 }
663
664 /* Compute the actual receive window we are currently advertising.
665 * Rcv_nxt can be after the window if our peer push more data
666 * than the offered window.
667 */
668 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
669 {
670 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
671
672 if (win < 0)
673 win = 0;
674 return (u32) win;
675 }
676
677 /* Choose a new window, without checks for shrinking, and without
678 * scaling applied to the result. The caller does these things
679 * if necessary. This is a "raw" window selection.
680 */
681 u32 __tcp_select_window(struct sock *sk);
682
683 void tcp_send_window_probe(struct sock *sk);
684
685 /* TCP timestamps are only 32-bits, this causes a slight
686 * complication on 64-bit systems since we store a snapshot
687 * of jiffies in the buffer control blocks below. We decided
688 * to use only the low 32-bits of jiffies and hide the ugly
689 * casts with the following macro.
690 */
691 #define tcp_time_stamp ((__u32)(jiffies))
692
693 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
694
695 #define TCPHDR_FIN 0x01
696 #define TCPHDR_SYN 0x02
697 #define TCPHDR_RST 0x04
698 #define TCPHDR_PSH 0x08
699 #define TCPHDR_ACK 0x10
700 #define TCPHDR_URG 0x20
701 #define TCPHDR_ECE 0x40
702 #define TCPHDR_CWR 0x80
703
704 /* This is what the send packet queuing engine uses to pass
705 * TCP per-packet control information to the transmission code.
706 * We also store the host-order sequence numbers in here too.
707 * This is 44 bytes if IPV6 is enabled.
708 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
709 */
710 struct tcp_skb_cb {
711 union {
712 struct inet_skb_parm h4;
713 #if IS_ENABLED(CONFIG_IPV6)
714 struct inet6_skb_parm h6;
715 #endif
716 } header; /* For incoming frames */
717 __u32 seq; /* Starting sequence number */
718 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
719 __u32 when; /* used to compute rtt's */
720 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
721
722 __u8 sacked; /* State flags for SACK/FACK. */
723 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
724 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
725 #define TCPCB_LOST 0x04 /* SKB is lost */
726 #define TCPCB_TAGBITS 0x07 /* All tag bits */
727 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
728 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
729
730 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
731 /* 1 byte hole */
732 __u32 ack_seq; /* Sequence number ACK'd */
733 };
734
735 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
736
737 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
738 *
739 * If we receive a SYN packet with these bits set, it means a network is
740 * playing bad games with TOS bits. In order to avoid possible false congestion
741 * notifications, we disable TCP ECN negociation.
742 */
743 static inline void
744 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb,
745 struct net *net)
746 {
747 const struct tcphdr *th = tcp_hdr(skb);
748
749 if (net->ipv4.sysctl_tcp_ecn && th->ece && th->cwr &&
750 INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
751 inet_rsk(req)->ecn_ok = 1;
752 }
753
754 /* Due to TSO, an SKB can be composed of multiple actual
755 * packets. To keep these tracked properly, we use this.
756 */
757 static inline int tcp_skb_pcount(const struct sk_buff *skb)
758 {
759 return skb_shinfo(skb)->gso_segs;
760 }
761
762 /* This is valid iff tcp_skb_pcount() > 1. */
763 static inline int tcp_skb_mss(const struct sk_buff *skb)
764 {
765 return skb_shinfo(skb)->gso_size;
766 }
767
768 /* Events passed to congestion control interface */
769 enum tcp_ca_event {
770 CA_EVENT_TX_START, /* first transmit when no packets in flight */
771 CA_EVENT_CWND_RESTART, /* congestion window restart */
772 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
773 CA_EVENT_LOSS, /* loss timeout */
774 CA_EVENT_FAST_ACK, /* in sequence ack */
775 CA_EVENT_SLOW_ACK, /* other ack */
776 };
777
778 /*
779 * Interface for adding new TCP congestion control handlers
780 */
781 #define TCP_CA_NAME_MAX 16
782 #define TCP_CA_MAX 128
783 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
784
785 #define TCP_CONG_NON_RESTRICTED 0x1
786 #define TCP_CONG_RTT_STAMP 0x2
787
788 struct tcp_congestion_ops {
789 struct list_head list;
790 unsigned long flags;
791
792 /* initialize private data (optional) */
793 void (*init)(struct sock *sk);
794 /* cleanup private data (optional) */
795 void (*release)(struct sock *sk);
796
797 /* return slow start threshold (required) */
798 u32 (*ssthresh)(struct sock *sk);
799 /* lower bound for congestion window (optional) */
800 u32 (*min_cwnd)(const struct sock *sk);
801 /* do new cwnd calculation (required) */
802 void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
803 /* call before changing ca_state (optional) */
804 void (*set_state)(struct sock *sk, u8 new_state);
805 /* call when cwnd event occurs (optional) */
806 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
807 /* new value of cwnd after loss (optional) */
808 u32 (*undo_cwnd)(struct sock *sk);
809 /* hook for packet ack accounting (optional) */
810 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
811 /* get info for inet_diag (optional) */
812 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
813
814 char name[TCP_CA_NAME_MAX];
815 struct module *owner;
816 };
817
818 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
819 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
820
821 void tcp_init_congestion_control(struct sock *sk);
822 void tcp_cleanup_congestion_control(struct sock *sk);
823 int tcp_set_default_congestion_control(const char *name);
824 void tcp_get_default_congestion_control(char *name);
825 void tcp_get_available_congestion_control(char *buf, size_t len);
826 void tcp_get_allowed_congestion_control(char *buf, size_t len);
827 int tcp_set_allowed_congestion_control(char *allowed);
828 int tcp_set_congestion_control(struct sock *sk, const char *name);
829 void tcp_slow_start(struct tcp_sock *tp);
830 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
831
832 extern struct tcp_congestion_ops tcp_init_congestion_ops;
833 u32 tcp_reno_ssthresh(struct sock *sk);
834 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
835 u32 tcp_reno_min_cwnd(const struct sock *sk);
836 extern struct tcp_congestion_ops tcp_reno;
837
838 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
839 {
840 struct inet_connection_sock *icsk = inet_csk(sk);
841
842 if (icsk->icsk_ca_ops->set_state)
843 icsk->icsk_ca_ops->set_state(sk, ca_state);
844 icsk->icsk_ca_state = ca_state;
845 }
846
847 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
848 {
849 const struct inet_connection_sock *icsk = inet_csk(sk);
850
851 if (icsk->icsk_ca_ops->cwnd_event)
852 icsk->icsk_ca_ops->cwnd_event(sk, event);
853 }
854
855 /* These functions determine how the current flow behaves in respect of SACK
856 * handling. SACK is negotiated with the peer, and therefore it can vary
857 * between different flows.
858 *
859 * tcp_is_sack - SACK enabled
860 * tcp_is_reno - No SACK
861 * tcp_is_fack - FACK enabled, implies SACK enabled
862 */
863 static inline int tcp_is_sack(const struct tcp_sock *tp)
864 {
865 return tp->rx_opt.sack_ok;
866 }
867
868 static inline bool tcp_is_reno(const struct tcp_sock *tp)
869 {
870 return !tcp_is_sack(tp);
871 }
872
873 static inline bool tcp_is_fack(const struct tcp_sock *tp)
874 {
875 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
876 }
877
878 static inline void tcp_enable_fack(struct tcp_sock *tp)
879 {
880 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
881 }
882
883 /* TCP early-retransmit (ER) is similar to but more conservative than
884 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
885 */
886 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
887 {
888 tp->do_early_retrans = sysctl_tcp_early_retrans &&
889 sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
890 sysctl_tcp_reordering == 3;
891 }
892
893 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
894 {
895 tp->do_early_retrans = 0;
896 }
897
898 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
899 {
900 return tp->sacked_out + tp->lost_out;
901 }
902
903 /* This determines how many packets are "in the network" to the best
904 * of our knowledge. In many cases it is conservative, but where
905 * detailed information is available from the receiver (via SACK
906 * blocks etc.) we can make more aggressive calculations.
907 *
908 * Use this for decisions involving congestion control, use just
909 * tp->packets_out to determine if the send queue is empty or not.
910 *
911 * Read this equation as:
912 *
913 * "Packets sent once on transmission queue" MINUS
914 * "Packets left network, but not honestly ACKed yet" PLUS
915 * "Packets fast retransmitted"
916 */
917 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
918 {
919 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
920 }
921
922 #define TCP_INFINITE_SSTHRESH 0x7fffffff
923
924 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
925 {
926 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
927 }
928
929 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
930 {
931 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
932 (1 << inet_csk(sk)->icsk_ca_state);
933 }
934
935 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
936 * The exception is cwnd reduction phase, when cwnd is decreasing towards
937 * ssthresh.
938 */
939 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
940 {
941 const struct tcp_sock *tp = tcp_sk(sk);
942
943 if (tcp_in_cwnd_reduction(sk))
944 return tp->snd_ssthresh;
945 else
946 return max(tp->snd_ssthresh,
947 ((tp->snd_cwnd >> 1) +
948 (tp->snd_cwnd >> 2)));
949 }
950
951 /* Use define here intentionally to get WARN_ON location shown at the caller */
952 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
953
954 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
955 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
956
957 /* The maximum number of MSS of available cwnd for which TSO defers
958 * sending if not using sysctl_tcp_tso_win_divisor.
959 */
960 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
961 {
962 return 3;
963 }
964
965 /* Slow start with delack produces 3 packets of burst, so that
966 * it is safe "de facto". This will be the default - same as
967 * the default reordering threshold - but if reordering increases,
968 * we must be able to allow cwnd to burst at least this much in order
969 * to not pull it back when holes are filled.
970 */
971 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
972 {
973 return tp->reordering;
974 }
975
976 /* Returns end sequence number of the receiver's advertised window */
977 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
978 {
979 return tp->snd_una + tp->snd_wnd;
980 }
981 bool tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
982
983 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
984 const struct sk_buff *skb)
985 {
986 if (skb->len < mss)
987 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
988 }
989
990 static inline void tcp_check_probe_timer(struct sock *sk)
991 {
992 const struct tcp_sock *tp = tcp_sk(sk);
993 const struct inet_connection_sock *icsk = inet_csk(sk);
994
995 if (!tp->packets_out && !icsk->icsk_pending)
996 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
997 icsk->icsk_rto, TCP_RTO_MAX);
998 }
999
1000 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1001 {
1002 tp->snd_wl1 = seq;
1003 }
1004
1005 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1006 {
1007 tp->snd_wl1 = seq;
1008 }
1009
1010 /*
1011 * Calculate(/check) TCP checksum
1012 */
1013 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1014 __be32 daddr, __wsum base)
1015 {
1016 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1017 }
1018
1019 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1020 {
1021 return __skb_checksum_complete(skb);
1022 }
1023
1024 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1025 {
1026 return !skb_csum_unnecessary(skb) &&
1027 __tcp_checksum_complete(skb);
1028 }
1029
1030 /* Prequeue for VJ style copy to user, combined with checksumming. */
1031
1032 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1033 {
1034 tp->ucopy.task = NULL;
1035 tp->ucopy.len = 0;
1036 tp->ucopy.memory = 0;
1037 skb_queue_head_init(&tp->ucopy.prequeue);
1038 #ifdef CONFIG_NET_DMA
1039 tp->ucopy.dma_chan = NULL;
1040 tp->ucopy.wakeup = 0;
1041 tp->ucopy.pinned_list = NULL;
1042 tp->ucopy.dma_cookie = 0;
1043 #endif
1044 }
1045
1046 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1047
1048 #undef STATE_TRACE
1049
1050 #ifdef STATE_TRACE
1051 static const char *statename[]={
1052 "Unused","Established","Syn Sent","Syn Recv",
1053 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1054 "Close Wait","Last ACK","Listen","Closing"
1055 };
1056 #endif
1057 void tcp_set_state(struct sock *sk, int state);
1058
1059 void tcp_done(struct sock *sk);
1060
1061 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1062 {
1063 rx_opt->dsack = 0;
1064 rx_opt->num_sacks = 0;
1065 }
1066
1067 u32 tcp_default_init_rwnd(u32 mss);
1068
1069 /* Determine a window scaling and initial window to offer. */
1070 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1071 __u32 *window_clamp, int wscale_ok,
1072 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1073
1074 static inline int tcp_win_from_space(int space)
1075 {
1076 return sysctl_tcp_adv_win_scale<=0 ?
1077 (space>>(-sysctl_tcp_adv_win_scale)) :
1078 space - (space>>sysctl_tcp_adv_win_scale);
1079 }
1080
1081 /* Note: caller must be prepared to deal with negative returns */
1082 static inline int tcp_space(const struct sock *sk)
1083 {
1084 return tcp_win_from_space(sk->sk_rcvbuf -
1085 atomic_read(&sk->sk_rmem_alloc));
1086 }
1087
1088 static inline int tcp_full_space(const struct sock *sk)
1089 {
1090 return tcp_win_from_space(sk->sk_rcvbuf);
1091 }
1092
1093 static inline void tcp_openreq_init(struct request_sock *req,
1094 struct tcp_options_received *rx_opt,
1095 struct sk_buff *skb)
1096 {
1097 struct inet_request_sock *ireq = inet_rsk(req);
1098
1099 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
1100 req->cookie_ts = 0;
1101 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1102 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
1103 tcp_rsk(req)->snt_synack = 0;
1104 req->mss = rx_opt->mss_clamp;
1105 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1106 ireq->tstamp_ok = rx_opt->tstamp_ok;
1107 ireq->sack_ok = rx_opt->sack_ok;
1108 ireq->snd_wscale = rx_opt->snd_wscale;
1109 ireq->wscale_ok = rx_opt->wscale_ok;
1110 ireq->acked = 0;
1111 ireq->ecn_ok = 0;
1112 ireq->rmt_port = tcp_hdr(skb)->source;
1113 ireq->loc_port = tcp_hdr(skb)->dest;
1114 }
1115
1116 void tcp_enter_memory_pressure(struct sock *sk);
1117
1118 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1119 {
1120 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1121 }
1122
1123 static inline int keepalive_time_when(const struct tcp_sock *tp)
1124 {
1125 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1126 }
1127
1128 static inline int keepalive_probes(const struct tcp_sock *tp)
1129 {
1130 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1131 }
1132
1133 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1134 {
1135 const struct inet_connection_sock *icsk = &tp->inet_conn;
1136
1137 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1138 tcp_time_stamp - tp->rcv_tstamp);
1139 }
1140
1141 static inline int tcp_fin_time(const struct sock *sk)
1142 {
1143 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1144 const int rto = inet_csk(sk)->icsk_rto;
1145
1146 if (fin_timeout < (rto << 2) - (rto >> 1))
1147 fin_timeout = (rto << 2) - (rto >> 1);
1148
1149 return fin_timeout;
1150 }
1151
1152 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1153 int paws_win)
1154 {
1155 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1156 return true;
1157 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1158 return true;
1159 /*
1160 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1161 * then following tcp messages have valid values. Ignore 0 value,
1162 * or else 'negative' tsval might forbid us to accept their packets.
1163 */
1164 if (!rx_opt->ts_recent)
1165 return true;
1166 return false;
1167 }
1168
1169 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1170 int rst)
1171 {
1172 if (tcp_paws_check(rx_opt, 0))
1173 return false;
1174
1175 /* RST segments are not recommended to carry timestamp,
1176 and, if they do, it is recommended to ignore PAWS because
1177 "their cleanup function should take precedence over timestamps."
1178 Certainly, it is mistake. It is necessary to understand the reasons
1179 of this constraint to relax it: if peer reboots, clock may go
1180 out-of-sync and half-open connections will not be reset.
1181 Actually, the problem would be not existing if all
1182 the implementations followed draft about maintaining clock
1183 via reboots. Linux-2.2 DOES NOT!
1184
1185 However, we can relax time bounds for RST segments to MSL.
1186 */
1187 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1188 return false;
1189 return true;
1190 }
1191
1192 static inline void tcp_mib_init(struct net *net)
1193 {
1194 /* See RFC 2012 */
1195 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1196 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1197 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1198 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1199 }
1200
1201 /* from STCP */
1202 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1203 {
1204 tp->lost_skb_hint = NULL;
1205 }
1206
1207 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1208 {
1209 tcp_clear_retrans_hints_partial(tp);
1210 tp->retransmit_skb_hint = NULL;
1211 }
1212
1213 /* MD5 Signature */
1214 struct crypto_hash;
1215
1216 union tcp_md5_addr {
1217 struct in_addr a4;
1218 #if IS_ENABLED(CONFIG_IPV6)
1219 struct in6_addr a6;
1220 #endif
1221 };
1222
1223 /* - key database */
1224 struct tcp_md5sig_key {
1225 struct hlist_node node;
1226 u8 keylen;
1227 u8 family; /* AF_INET or AF_INET6 */
1228 union tcp_md5_addr addr;
1229 u8 key[TCP_MD5SIG_MAXKEYLEN];
1230 struct rcu_head rcu;
1231 };
1232
1233 /* - sock block */
1234 struct tcp_md5sig_info {
1235 struct hlist_head head;
1236 struct rcu_head rcu;
1237 };
1238
1239 /* - pseudo header */
1240 struct tcp4_pseudohdr {
1241 __be32 saddr;
1242 __be32 daddr;
1243 __u8 pad;
1244 __u8 protocol;
1245 __be16 len;
1246 };
1247
1248 struct tcp6_pseudohdr {
1249 struct in6_addr saddr;
1250 struct in6_addr daddr;
1251 __be32 len;
1252 __be32 protocol; /* including padding */
1253 };
1254
1255 union tcp_md5sum_block {
1256 struct tcp4_pseudohdr ip4;
1257 #if IS_ENABLED(CONFIG_IPV6)
1258 struct tcp6_pseudohdr ip6;
1259 #endif
1260 };
1261
1262 /* - pool: digest algorithm, hash description and scratch buffer */
1263 struct tcp_md5sig_pool {
1264 struct hash_desc md5_desc;
1265 union tcp_md5sum_block md5_blk;
1266 };
1267
1268 /* - functions */
1269 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1270 const struct sock *sk, const struct request_sock *req,
1271 const struct sk_buff *skb);
1272 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1273 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1274 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1275 int family);
1276 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1277 struct sock *addr_sk);
1278
1279 #ifdef CONFIG_TCP_MD5SIG
1280 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1281 const union tcp_md5_addr *addr,
1282 int family);
1283 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1284 #else
1285 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1286 const union tcp_md5_addr *addr,
1287 int family)
1288 {
1289 return NULL;
1290 }
1291 #define tcp_twsk_md5_key(twsk) NULL
1292 #endif
1293
1294 bool tcp_alloc_md5sig_pool(void);
1295
1296 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1297 static inline void tcp_put_md5sig_pool(void)
1298 {
1299 local_bh_enable();
1300 }
1301
1302 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1303 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1304 unsigned int header_len);
1305 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1306 const struct tcp_md5sig_key *key);
1307
1308 /* From tcp_fastopen.c */
1309 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1310 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1311 unsigned long *last_syn_loss);
1312 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1313 struct tcp_fastopen_cookie *cookie, bool syn_lost);
1314 struct tcp_fastopen_request {
1315 /* Fast Open cookie. Size 0 means a cookie request */
1316 struct tcp_fastopen_cookie cookie;
1317 struct msghdr *data; /* data in MSG_FASTOPEN */
1318 u16 copied; /* queued in tcp_connect() */
1319 };
1320 void tcp_free_fastopen_req(struct tcp_sock *tp);
1321
1322 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1323 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1324 void tcp_fastopen_cookie_gen(__be32 src, __be32 dst,
1325 struct tcp_fastopen_cookie *foc);
1326
1327 #define TCP_FASTOPEN_KEY_LENGTH 16
1328
1329 /* Fastopen key context */
1330 struct tcp_fastopen_context {
1331 struct crypto_cipher *tfm;
1332 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1333 struct rcu_head rcu;
1334 };
1335
1336 /* write queue abstraction */
1337 static inline void tcp_write_queue_purge(struct sock *sk)
1338 {
1339 struct sk_buff *skb;
1340
1341 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1342 sk_wmem_free_skb(sk, skb);
1343 sk_mem_reclaim(sk);
1344 tcp_clear_all_retrans_hints(tcp_sk(sk));
1345 }
1346
1347 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1348 {
1349 return skb_peek(&sk->sk_write_queue);
1350 }
1351
1352 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1353 {
1354 return skb_peek_tail(&sk->sk_write_queue);
1355 }
1356
1357 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1358 const struct sk_buff *skb)
1359 {
1360 return skb_queue_next(&sk->sk_write_queue, skb);
1361 }
1362
1363 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1364 const struct sk_buff *skb)
1365 {
1366 return skb_queue_prev(&sk->sk_write_queue, skb);
1367 }
1368
1369 #define tcp_for_write_queue(skb, sk) \
1370 skb_queue_walk(&(sk)->sk_write_queue, skb)
1371
1372 #define tcp_for_write_queue_from(skb, sk) \
1373 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1374
1375 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1376 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1377
1378 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1379 {
1380 return sk->sk_send_head;
1381 }
1382
1383 static inline bool tcp_skb_is_last(const struct sock *sk,
1384 const struct sk_buff *skb)
1385 {
1386 return skb_queue_is_last(&sk->sk_write_queue, skb);
1387 }
1388
1389 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1390 {
1391 if (tcp_skb_is_last(sk, skb))
1392 sk->sk_send_head = NULL;
1393 else
1394 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1395 }
1396
1397 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1398 {
1399 if (sk->sk_send_head == skb_unlinked)
1400 sk->sk_send_head = NULL;
1401 }
1402
1403 static inline void tcp_init_send_head(struct sock *sk)
1404 {
1405 sk->sk_send_head = NULL;
1406 }
1407
1408 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1409 {
1410 __skb_queue_tail(&sk->sk_write_queue, skb);
1411 }
1412
1413 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1414 {
1415 __tcp_add_write_queue_tail(sk, skb);
1416
1417 /* Queue it, remembering where we must start sending. */
1418 if (sk->sk_send_head == NULL) {
1419 sk->sk_send_head = skb;
1420
1421 if (tcp_sk(sk)->highest_sack == NULL)
1422 tcp_sk(sk)->highest_sack = skb;
1423 }
1424 }
1425
1426 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1427 {
1428 __skb_queue_head(&sk->sk_write_queue, skb);
1429 }
1430
1431 /* Insert buff after skb on the write queue of sk. */
1432 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1433 struct sk_buff *buff,
1434 struct sock *sk)
1435 {
1436 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1437 }
1438
1439 /* Insert new before skb on the write queue of sk. */
1440 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1441 struct sk_buff *skb,
1442 struct sock *sk)
1443 {
1444 __skb_queue_before(&sk->sk_write_queue, skb, new);
1445
1446 if (sk->sk_send_head == skb)
1447 sk->sk_send_head = new;
1448 }
1449
1450 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1451 {
1452 __skb_unlink(skb, &sk->sk_write_queue);
1453 }
1454
1455 static inline bool tcp_write_queue_empty(struct sock *sk)
1456 {
1457 return skb_queue_empty(&sk->sk_write_queue);
1458 }
1459
1460 static inline void tcp_push_pending_frames(struct sock *sk)
1461 {
1462 if (tcp_send_head(sk)) {
1463 struct tcp_sock *tp = tcp_sk(sk);
1464
1465 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1466 }
1467 }
1468
1469 /* Start sequence of the skb just after the highest skb with SACKed
1470 * bit, valid only if sacked_out > 0 or when the caller has ensured
1471 * validity by itself.
1472 */
1473 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1474 {
1475 if (!tp->sacked_out)
1476 return tp->snd_una;
1477
1478 if (tp->highest_sack == NULL)
1479 return tp->snd_nxt;
1480
1481 return TCP_SKB_CB(tp->highest_sack)->seq;
1482 }
1483
1484 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1485 {
1486 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1487 tcp_write_queue_next(sk, skb);
1488 }
1489
1490 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1491 {
1492 return tcp_sk(sk)->highest_sack;
1493 }
1494
1495 static inline void tcp_highest_sack_reset(struct sock *sk)
1496 {
1497 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1498 }
1499
1500 /* Called when old skb is about to be deleted (to be combined with new skb) */
1501 static inline void tcp_highest_sack_combine(struct sock *sk,
1502 struct sk_buff *old,
1503 struct sk_buff *new)
1504 {
1505 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1506 tcp_sk(sk)->highest_sack = new;
1507 }
1508
1509 /* Determines whether this is a thin stream (which may suffer from
1510 * increased latency). Used to trigger latency-reducing mechanisms.
1511 */
1512 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1513 {
1514 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1515 }
1516
1517 /* /proc */
1518 enum tcp_seq_states {
1519 TCP_SEQ_STATE_LISTENING,
1520 TCP_SEQ_STATE_OPENREQ,
1521 TCP_SEQ_STATE_ESTABLISHED,
1522 TCP_SEQ_STATE_TIME_WAIT,
1523 };
1524
1525 int tcp_seq_open(struct inode *inode, struct file *file);
1526
1527 struct tcp_seq_afinfo {
1528 char *name;
1529 sa_family_t family;
1530 const struct file_operations *seq_fops;
1531 struct seq_operations seq_ops;
1532 };
1533
1534 struct tcp_iter_state {
1535 struct seq_net_private p;
1536 sa_family_t family;
1537 enum tcp_seq_states state;
1538 struct sock *syn_wait_sk;
1539 int bucket, offset, sbucket, num;
1540 kuid_t uid;
1541 loff_t last_pos;
1542 };
1543
1544 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1545 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1546
1547 extern struct request_sock_ops tcp_request_sock_ops;
1548 extern struct request_sock_ops tcp6_request_sock_ops;
1549
1550 void tcp_v4_destroy_sock(struct sock *sk);
1551
1552 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1553 netdev_features_t features);
1554 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1555 int tcp_gro_complete(struct sk_buff *skb);
1556
1557 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1558
1559 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1560 {
1561 return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1562 }
1563
1564 static inline bool tcp_stream_memory_free(const struct sock *sk)
1565 {
1566 const struct tcp_sock *tp = tcp_sk(sk);
1567 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1568
1569 return notsent_bytes < tcp_notsent_lowat(tp);
1570 }
1571
1572 #ifdef CONFIG_PROC_FS
1573 int tcp4_proc_init(void);
1574 void tcp4_proc_exit(void);
1575 #endif
1576
1577 /* TCP af-specific functions */
1578 struct tcp_sock_af_ops {
1579 #ifdef CONFIG_TCP_MD5SIG
1580 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1581 struct sock *addr_sk);
1582 int (*calc_md5_hash) (char *location,
1583 struct tcp_md5sig_key *md5,
1584 const struct sock *sk,
1585 const struct request_sock *req,
1586 const struct sk_buff *skb);
1587 int (*md5_parse) (struct sock *sk,
1588 char __user *optval,
1589 int optlen);
1590 #endif
1591 };
1592
1593 struct tcp_request_sock_ops {
1594 #ifdef CONFIG_TCP_MD5SIG
1595 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1596 struct request_sock *req);
1597 int (*calc_md5_hash) (char *location,
1598 struct tcp_md5sig_key *md5,
1599 const struct sock *sk,
1600 const struct request_sock *req,
1601 const struct sk_buff *skb);
1602 #endif
1603 };
1604
1605 int tcpv4_offload_init(void);
1606
1607 void tcp_v4_init(void);
1608 void tcp_init(void);
1609
1610 #endif /* _TCP_H */
This page took 0.110611 seconds and 5 git commands to generate.