ip_tunnel_core: iptunnel_handle_offloads returns int and doesn't free skb
[deliverable/linux.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48
49 extern struct inet_hashinfo tcp_hashinfo;
50
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53
54 #define MAX_TCP_HEADER (128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56
57 /*
58 * Never offer a window over 32767 without using window scaling. Some
59 * poor stacks do signed 16bit maths!
60 */
61 #define MAX_TCP_WINDOW 32767U
62
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS 88U
65
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS 1024
68
69 /* probing interval, default to 10 minutes as per RFC4821 */
70 #define TCP_PROBE_INTERVAL 600
71
72 /* Specify interval when tcp mtu probing will stop */
73 #define TCP_PROBE_THRESHOLD 8
74
75 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
76 #define TCP_FASTRETRANS_THRESH 3
77
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS 16U
80
81 /* urg_data states */
82 #define TCP_URG_VALID 0x0100
83 #define TCP_URG_NOTYET 0x0200
84 #define TCP_URG_READ 0x0400
85
86 #define TCP_RETR1 3 /*
87 * This is how many retries it does before it
88 * tries to figure out if the gateway is
89 * down. Minimal RFC value is 3; it corresponds
90 * to ~3sec-8min depending on RTO.
91 */
92
93 #define TCP_RETR2 15 /*
94 * This should take at least
95 * 90 minutes to time out.
96 * RFC1122 says that the limit is 100 sec.
97 * 15 is ~13-30min depending on RTO.
98 */
99
100 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
101 * when active opening a connection.
102 * RFC1122 says the minimum retry MUST
103 * be at least 180secs. Nevertheless
104 * this value is corresponding to
105 * 63secs of retransmission with the
106 * current initial RTO.
107 */
108
109 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
110 * when passive opening a connection.
111 * This is corresponding to 31secs of
112 * retransmission with the current
113 * initial RTO.
114 */
115
116 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
117 * state, about 60 seconds */
118 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
119 /* BSD style FIN_WAIT2 deadlock breaker.
120 * It used to be 3min, new value is 60sec,
121 * to combine FIN-WAIT-2 timeout with
122 * TIME-WAIT timer.
123 */
124
125 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
126 #if HZ >= 100
127 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
128 #define TCP_ATO_MIN ((unsigned)(HZ/25))
129 #else
130 #define TCP_DELACK_MIN 4U
131 #define TCP_ATO_MIN 4U
132 #endif
133 #define TCP_RTO_MAX ((unsigned)(120*HZ))
134 #define TCP_RTO_MIN ((unsigned)(HZ/5))
135 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
136 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
137 * used as a fallback RTO for the
138 * initial data transmission if no
139 * valid RTT sample has been acquired,
140 * most likely due to retrans in 3WHS.
141 */
142
143 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
144 * for local resources.
145 */
146
147 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
148 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
149 #define TCP_KEEPALIVE_INTVL (75*HZ)
150
151 #define MAX_TCP_KEEPIDLE 32767
152 #define MAX_TCP_KEEPINTVL 32767
153 #define MAX_TCP_KEEPCNT 127
154 #define MAX_TCP_SYNCNT 127
155
156 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
157
158 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
159 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
160 * after this time. It should be equal
161 * (or greater than) TCP_TIMEWAIT_LEN
162 * to provide reliability equal to one
163 * provided by timewait state.
164 */
165 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
166 * timestamps. It must be less than
167 * minimal timewait lifetime.
168 */
169 /*
170 * TCP option
171 */
172
173 #define TCPOPT_NOP 1 /* Padding */
174 #define TCPOPT_EOL 0 /* End of options */
175 #define TCPOPT_MSS 2 /* Segment size negotiating */
176 #define TCPOPT_WINDOW 3 /* Window scaling */
177 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
178 #define TCPOPT_SACK 5 /* SACK Block */
179 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
180 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
181 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
182 #define TCPOPT_EXP 254 /* Experimental */
183 /* Magic number to be after the option value for sharing TCP
184 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
185 */
186 #define TCPOPT_FASTOPEN_MAGIC 0xF989
187
188 /*
189 * TCP option lengths
190 */
191
192 #define TCPOLEN_MSS 4
193 #define TCPOLEN_WINDOW 3
194 #define TCPOLEN_SACK_PERM 2
195 #define TCPOLEN_TIMESTAMP 10
196 #define TCPOLEN_MD5SIG 18
197 #define TCPOLEN_FASTOPEN_BASE 2
198 #define TCPOLEN_EXP_FASTOPEN_BASE 4
199
200 /* But this is what stacks really send out. */
201 #define TCPOLEN_TSTAMP_ALIGNED 12
202 #define TCPOLEN_WSCALE_ALIGNED 4
203 #define TCPOLEN_SACKPERM_ALIGNED 4
204 #define TCPOLEN_SACK_BASE 2
205 #define TCPOLEN_SACK_BASE_ALIGNED 4
206 #define TCPOLEN_SACK_PERBLOCK 8
207 #define TCPOLEN_MD5SIG_ALIGNED 20
208 #define TCPOLEN_MSS_ALIGNED 4
209
210 /* Flags in tp->nonagle */
211 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
212 #define TCP_NAGLE_CORK 2 /* Socket is corked */
213 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
214
215 /* TCP thin-stream limits */
216 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
217
218 /* TCP initial congestion window as per rfc6928 */
219 #define TCP_INIT_CWND 10
220
221 /* Bit Flags for sysctl_tcp_fastopen */
222 #define TFO_CLIENT_ENABLE 1
223 #define TFO_SERVER_ENABLE 2
224 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
225
226 /* Accept SYN data w/o any cookie option */
227 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
228
229 /* Force enable TFO on all listeners, i.e., not requiring the
230 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
231 */
232 #define TFO_SERVER_WO_SOCKOPT1 0x400
233 #define TFO_SERVER_WO_SOCKOPT2 0x800
234
235 extern struct inet_timewait_death_row tcp_death_row;
236
237 /* sysctl variables for tcp */
238 extern int sysctl_tcp_timestamps;
239 extern int sysctl_tcp_window_scaling;
240 extern int sysctl_tcp_sack;
241 extern int sysctl_tcp_fastopen;
242 extern int sysctl_tcp_retrans_collapse;
243 extern int sysctl_tcp_stdurg;
244 extern int sysctl_tcp_rfc1337;
245 extern int sysctl_tcp_abort_on_overflow;
246 extern int sysctl_tcp_max_orphans;
247 extern int sysctl_tcp_fack;
248 extern int sysctl_tcp_reordering;
249 extern int sysctl_tcp_max_reordering;
250 extern int sysctl_tcp_dsack;
251 extern long sysctl_tcp_mem[3];
252 extern int sysctl_tcp_wmem[3];
253 extern int sysctl_tcp_rmem[3];
254 extern int sysctl_tcp_app_win;
255 extern int sysctl_tcp_adv_win_scale;
256 extern int sysctl_tcp_tw_reuse;
257 extern int sysctl_tcp_frto;
258 extern int sysctl_tcp_low_latency;
259 extern int sysctl_tcp_nometrics_save;
260 extern int sysctl_tcp_moderate_rcvbuf;
261 extern int sysctl_tcp_tso_win_divisor;
262 extern int sysctl_tcp_workaround_signed_windows;
263 extern int sysctl_tcp_slow_start_after_idle;
264 extern int sysctl_tcp_thin_linear_timeouts;
265 extern int sysctl_tcp_thin_dupack;
266 extern int sysctl_tcp_early_retrans;
267 extern int sysctl_tcp_limit_output_bytes;
268 extern int sysctl_tcp_challenge_ack_limit;
269 extern int sysctl_tcp_min_tso_segs;
270 extern int sysctl_tcp_min_rtt_wlen;
271 extern int sysctl_tcp_autocorking;
272 extern int sysctl_tcp_invalid_ratelimit;
273 extern int sysctl_tcp_pacing_ss_ratio;
274 extern int sysctl_tcp_pacing_ca_ratio;
275
276 extern atomic_long_t tcp_memory_allocated;
277 extern struct percpu_counter tcp_sockets_allocated;
278 extern int tcp_memory_pressure;
279
280 /* optimized version of sk_under_memory_pressure() for TCP sockets */
281 static inline bool tcp_under_memory_pressure(const struct sock *sk)
282 {
283 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
284 mem_cgroup_under_socket_pressure(sk->sk_memcg))
285 return true;
286
287 return tcp_memory_pressure;
288 }
289 /*
290 * The next routines deal with comparing 32 bit unsigned ints
291 * and worry about wraparound (automatic with unsigned arithmetic).
292 */
293
294 static inline bool before(__u32 seq1, __u32 seq2)
295 {
296 return (__s32)(seq1-seq2) < 0;
297 }
298 #define after(seq2, seq1) before(seq1, seq2)
299
300 /* is s2<=s1<=s3 ? */
301 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
302 {
303 return seq3 - seq2 >= seq1 - seq2;
304 }
305
306 static inline bool tcp_out_of_memory(struct sock *sk)
307 {
308 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
309 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
310 return true;
311 return false;
312 }
313
314 void sk_forced_mem_schedule(struct sock *sk, int size);
315
316 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
317 {
318 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
319 int orphans = percpu_counter_read_positive(ocp);
320
321 if (orphans << shift > sysctl_tcp_max_orphans) {
322 orphans = percpu_counter_sum_positive(ocp);
323 if (orphans << shift > sysctl_tcp_max_orphans)
324 return true;
325 }
326 return false;
327 }
328
329 bool tcp_check_oom(struct sock *sk, int shift);
330
331
332 extern struct proto tcp_prot;
333
334 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
335 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
336 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
337 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
338 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
339
340 void tcp_tasklet_init(void);
341
342 void tcp_v4_err(struct sk_buff *skb, u32);
343
344 void tcp_shutdown(struct sock *sk, int how);
345
346 void tcp_v4_early_demux(struct sk_buff *skb);
347 int tcp_v4_rcv(struct sk_buff *skb);
348
349 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
350 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
351 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
352 int flags);
353 void tcp_release_cb(struct sock *sk);
354 void tcp_wfree(struct sk_buff *skb);
355 void tcp_write_timer_handler(struct sock *sk);
356 void tcp_delack_timer_handler(struct sock *sk);
357 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
358 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
359 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
360 const struct tcphdr *th, unsigned int len);
361 void tcp_rcv_space_adjust(struct sock *sk);
362 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
363 void tcp_twsk_destructor(struct sock *sk);
364 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
365 struct pipe_inode_info *pipe, size_t len,
366 unsigned int flags);
367
368 static inline void tcp_dec_quickack_mode(struct sock *sk,
369 const unsigned int pkts)
370 {
371 struct inet_connection_sock *icsk = inet_csk(sk);
372
373 if (icsk->icsk_ack.quick) {
374 if (pkts >= icsk->icsk_ack.quick) {
375 icsk->icsk_ack.quick = 0;
376 /* Leaving quickack mode we deflate ATO. */
377 icsk->icsk_ack.ato = TCP_ATO_MIN;
378 } else
379 icsk->icsk_ack.quick -= pkts;
380 }
381 }
382
383 #define TCP_ECN_OK 1
384 #define TCP_ECN_QUEUE_CWR 2
385 #define TCP_ECN_DEMAND_CWR 4
386 #define TCP_ECN_SEEN 8
387
388 enum tcp_tw_status {
389 TCP_TW_SUCCESS = 0,
390 TCP_TW_RST = 1,
391 TCP_TW_ACK = 2,
392 TCP_TW_SYN = 3
393 };
394
395
396 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
397 struct sk_buff *skb,
398 const struct tcphdr *th);
399 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
400 struct request_sock *req, bool fastopen);
401 int tcp_child_process(struct sock *parent, struct sock *child,
402 struct sk_buff *skb);
403 void tcp_enter_loss(struct sock *sk);
404 void tcp_clear_retrans(struct tcp_sock *tp);
405 void tcp_update_metrics(struct sock *sk);
406 void tcp_init_metrics(struct sock *sk);
407 void tcp_metrics_init(void);
408 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
409 bool paws_check, bool timestamps);
410 bool tcp_remember_stamp(struct sock *sk);
411 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
412 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
413 void tcp_disable_fack(struct tcp_sock *tp);
414 void tcp_close(struct sock *sk, long timeout);
415 void tcp_init_sock(struct sock *sk);
416 unsigned int tcp_poll(struct file *file, struct socket *sock,
417 struct poll_table_struct *wait);
418 int tcp_getsockopt(struct sock *sk, int level, int optname,
419 char __user *optval, int __user *optlen);
420 int tcp_setsockopt(struct sock *sk, int level, int optname,
421 char __user *optval, unsigned int optlen);
422 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
423 char __user *optval, int __user *optlen);
424 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
425 char __user *optval, unsigned int optlen);
426 void tcp_set_keepalive(struct sock *sk, int val);
427 void tcp_syn_ack_timeout(const struct request_sock *req);
428 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
429 int flags, int *addr_len);
430 void tcp_parse_options(const struct sk_buff *skb,
431 struct tcp_options_received *opt_rx,
432 int estab, struct tcp_fastopen_cookie *foc);
433 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
434
435 /*
436 * TCP v4 functions exported for the inet6 API
437 */
438
439 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
440 void tcp_v4_mtu_reduced(struct sock *sk);
441 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
442 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
443 struct sock *tcp_create_openreq_child(const struct sock *sk,
444 struct request_sock *req,
445 struct sk_buff *skb);
446 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
447 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
448 struct request_sock *req,
449 struct dst_entry *dst,
450 struct request_sock *req_unhash,
451 bool *own_req);
452 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
453 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
454 int tcp_connect(struct sock *sk);
455 enum tcp_synack_type {
456 TCP_SYNACK_NORMAL,
457 TCP_SYNACK_FASTOPEN,
458 TCP_SYNACK_COOKIE,
459 };
460 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
461 struct request_sock *req,
462 struct tcp_fastopen_cookie *foc,
463 enum tcp_synack_type synack_type);
464 int tcp_disconnect(struct sock *sk, int flags);
465
466 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
467 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
468 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
469
470 /* From syncookies.c */
471 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
472 struct request_sock *req,
473 struct dst_entry *dst);
474 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
475 u32 cookie);
476 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
477 #ifdef CONFIG_SYN_COOKIES
478
479 /* Syncookies use a monotonic timer which increments every 60 seconds.
480 * This counter is used both as a hash input and partially encoded into
481 * the cookie value. A cookie is only validated further if the delta
482 * between the current counter value and the encoded one is less than this,
483 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
484 * the counter advances immediately after a cookie is generated).
485 */
486 #define MAX_SYNCOOKIE_AGE 2
487 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
488 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
489
490 /* syncookies: remember time of last synqueue overflow
491 * But do not dirty this field too often (once per second is enough)
492 * It is racy as we do not hold a lock, but race is very minor.
493 */
494 static inline void tcp_synq_overflow(const struct sock *sk)
495 {
496 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
497 unsigned long now = jiffies;
498
499 if (time_after(now, last_overflow + HZ))
500 tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
501 }
502
503 /* syncookies: no recent synqueue overflow on this listening socket? */
504 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
505 {
506 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
507
508 return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
509 }
510
511 static inline u32 tcp_cookie_time(void)
512 {
513 u64 val = get_jiffies_64();
514
515 do_div(val, TCP_SYNCOOKIE_PERIOD);
516 return val;
517 }
518
519 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
520 u16 *mssp);
521 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
522 __u32 cookie_init_timestamp(struct request_sock *req);
523 bool cookie_timestamp_decode(struct tcp_options_received *opt);
524 bool cookie_ecn_ok(const struct tcp_options_received *opt,
525 const struct net *net, const struct dst_entry *dst);
526
527 /* From net/ipv6/syncookies.c */
528 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
529 u32 cookie);
530 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
531
532 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
533 const struct tcphdr *th, u16 *mssp);
534 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
535 #endif
536 /* tcp_output.c */
537
538 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
539 int nonagle);
540 bool tcp_may_send_now(struct sock *sk);
541 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
542 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
543 void tcp_retransmit_timer(struct sock *sk);
544 void tcp_xmit_retransmit_queue(struct sock *);
545 void tcp_simple_retransmit(struct sock *);
546 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
547 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
548
549 void tcp_send_probe0(struct sock *);
550 void tcp_send_partial(struct sock *);
551 int tcp_write_wakeup(struct sock *, int mib);
552 void tcp_send_fin(struct sock *sk);
553 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
554 int tcp_send_synack(struct sock *);
555 void tcp_push_one(struct sock *, unsigned int mss_now);
556 void tcp_send_ack(struct sock *sk);
557 void tcp_send_delayed_ack(struct sock *sk);
558 void tcp_send_loss_probe(struct sock *sk);
559 bool tcp_schedule_loss_probe(struct sock *sk);
560
561 /* tcp_input.c */
562 void tcp_resume_early_retransmit(struct sock *sk);
563 void tcp_rearm_rto(struct sock *sk);
564 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
565 void tcp_reset(struct sock *sk);
566 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
567 void tcp_fin(struct sock *sk);
568
569 /* tcp_timer.c */
570 void tcp_init_xmit_timers(struct sock *);
571 static inline void tcp_clear_xmit_timers(struct sock *sk)
572 {
573 inet_csk_clear_xmit_timers(sk);
574 }
575
576 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
577 unsigned int tcp_current_mss(struct sock *sk);
578
579 /* Bound MSS / TSO packet size with the half of the window */
580 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
581 {
582 int cutoff;
583
584 /* When peer uses tiny windows, there is no use in packetizing
585 * to sub-MSS pieces for the sake of SWS or making sure there
586 * are enough packets in the pipe for fast recovery.
587 *
588 * On the other hand, for extremely large MSS devices, handling
589 * smaller than MSS windows in this way does make sense.
590 */
591 if (tp->max_window >= 512)
592 cutoff = (tp->max_window >> 1);
593 else
594 cutoff = tp->max_window;
595
596 if (cutoff && pktsize > cutoff)
597 return max_t(int, cutoff, 68U - tp->tcp_header_len);
598 else
599 return pktsize;
600 }
601
602 /* tcp.c */
603 void tcp_get_info(struct sock *, struct tcp_info *);
604
605 /* Read 'sendfile()'-style from a TCP socket */
606 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
607 unsigned int, size_t);
608 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
609 sk_read_actor_t recv_actor);
610
611 void tcp_initialize_rcv_mss(struct sock *sk);
612
613 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
614 int tcp_mss_to_mtu(struct sock *sk, int mss);
615 void tcp_mtup_init(struct sock *sk);
616 void tcp_init_buffer_space(struct sock *sk);
617
618 static inline void tcp_bound_rto(const struct sock *sk)
619 {
620 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
621 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
622 }
623
624 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
625 {
626 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
627 }
628
629 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
630 {
631 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
632 ntohl(TCP_FLAG_ACK) |
633 snd_wnd);
634 }
635
636 static inline void tcp_fast_path_on(struct tcp_sock *tp)
637 {
638 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
639 }
640
641 static inline void tcp_fast_path_check(struct sock *sk)
642 {
643 struct tcp_sock *tp = tcp_sk(sk);
644
645 if (skb_queue_empty(&tp->out_of_order_queue) &&
646 tp->rcv_wnd &&
647 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
648 !tp->urg_data)
649 tcp_fast_path_on(tp);
650 }
651
652 /* Compute the actual rto_min value */
653 static inline u32 tcp_rto_min(struct sock *sk)
654 {
655 const struct dst_entry *dst = __sk_dst_get(sk);
656 u32 rto_min = TCP_RTO_MIN;
657
658 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
659 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
660 return rto_min;
661 }
662
663 static inline u32 tcp_rto_min_us(struct sock *sk)
664 {
665 return jiffies_to_usecs(tcp_rto_min(sk));
666 }
667
668 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
669 {
670 return dst_metric_locked(dst, RTAX_CC_ALGO);
671 }
672
673 /* Minimum RTT in usec. ~0 means not available. */
674 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
675 {
676 return tp->rtt_min[0].rtt;
677 }
678
679 /* Compute the actual receive window we are currently advertising.
680 * Rcv_nxt can be after the window if our peer push more data
681 * than the offered window.
682 */
683 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
684 {
685 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
686
687 if (win < 0)
688 win = 0;
689 return (u32) win;
690 }
691
692 /* Choose a new window, without checks for shrinking, and without
693 * scaling applied to the result. The caller does these things
694 * if necessary. This is a "raw" window selection.
695 */
696 u32 __tcp_select_window(struct sock *sk);
697
698 void tcp_send_window_probe(struct sock *sk);
699
700 /* TCP timestamps are only 32-bits, this causes a slight
701 * complication on 64-bit systems since we store a snapshot
702 * of jiffies in the buffer control blocks below. We decided
703 * to use only the low 32-bits of jiffies and hide the ugly
704 * casts with the following macro.
705 */
706 #define tcp_time_stamp ((__u32)(jiffies))
707
708 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
709 {
710 return skb->skb_mstamp.stamp_jiffies;
711 }
712
713
714 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
715
716 #define TCPHDR_FIN 0x01
717 #define TCPHDR_SYN 0x02
718 #define TCPHDR_RST 0x04
719 #define TCPHDR_PSH 0x08
720 #define TCPHDR_ACK 0x10
721 #define TCPHDR_URG 0x20
722 #define TCPHDR_ECE 0x40
723 #define TCPHDR_CWR 0x80
724
725 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
726
727 /* This is what the send packet queuing engine uses to pass
728 * TCP per-packet control information to the transmission code.
729 * We also store the host-order sequence numbers in here too.
730 * This is 44 bytes if IPV6 is enabled.
731 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
732 */
733 struct tcp_skb_cb {
734 __u32 seq; /* Starting sequence number */
735 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
736 union {
737 /* Note : tcp_tw_isn is used in input path only
738 * (isn chosen by tcp_timewait_state_process())
739 *
740 * tcp_gso_segs/size are used in write queue only,
741 * cf tcp_skb_pcount()/tcp_skb_mss()
742 */
743 __u32 tcp_tw_isn;
744 struct {
745 u16 tcp_gso_segs;
746 u16 tcp_gso_size;
747 };
748 };
749 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
750
751 __u8 sacked; /* State flags for SACK/FACK. */
752 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
753 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
754 #define TCPCB_LOST 0x04 /* SKB is lost */
755 #define TCPCB_TAGBITS 0x07 /* All tag bits */
756 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp) */
757 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
758 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
759 TCPCB_REPAIRED)
760
761 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
762 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
763 unused:7;
764 __u32 ack_seq; /* Sequence number ACK'd */
765 union {
766 struct inet_skb_parm h4;
767 #if IS_ENABLED(CONFIG_IPV6)
768 struct inet6_skb_parm h6;
769 #endif
770 } header; /* For incoming frames */
771 };
772
773 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
774
775
776 #if IS_ENABLED(CONFIG_IPV6)
777 /* This is the variant of inet6_iif() that must be used by TCP,
778 * as TCP moves IP6CB into a different location in skb->cb[]
779 */
780 static inline int tcp_v6_iif(const struct sk_buff *skb)
781 {
782 return TCP_SKB_CB(skb)->header.h6.iif;
783 }
784 #endif
785
786 /* Due to TSO, an SKB can be composed of multiple actual
787 * packets. To keep these tracked properly, we use this.
788 */
789 static inline int tcp_skb_pcount(const struct sk_buff *skb)
790 {
791 return TCP_SKB_CB(skb)->tcp_gso_segs;
792 }
793
794 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
795 {
796 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
797 }
798
799 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
800 {
801 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
802 }
803
804 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
805 static inline int tcp_skb_mss(const struct sk_buff *skb)
806 {
807 return TCP_SKB_CB(skb)->tcp_gso_size;
808 }
809
810 /* Events passed to congestion control interface */
811 enum tcp_ca_event {
812 CA_EVENT_TX_START, /* first transmit when no packets in flight */
813 CA_EVENT_CWND_RESTART, /* congestion window restart */
814 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
815 CA_EVENT_LOSS, /* loss timeout */
816 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
817 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
818 CA_EVENT_DELAYED_ACK, /* Delayed ack is sent */
819 CA_EVENT_NON_DELAYED_ACK,
820 };
821
822 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
823 enum tcp_ca_ack_event_flags {
824 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
825 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
826 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
827 };
828
829 /*
830 * Interface for adding new TCP congestion control handlers
831 */
832 #define TCP_CA_NAME_MAX 16
833 #define TCP_CA_MAX 128
834 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
835
836 #define TCP_CA_UNSPEC 0
837
838 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
839 #define TCP_CONG_NON_RESTRICTED 0x1
840 /* Requires ECN/ECT set on all packets */
841 #define TCP_CONG_NEEDS_ECN 0x2
842
843 union tcp_cc_info;
844
845 struct tcp_congestion_ops {
846 struct list_head list;
847 u32 key;
848 u32 flags;
849
850 /* initialize private data (optional) */
851 void (*init)(struct sock *sk);
852 /* cleanup private data (optional) */
853 void (*release)(struct sock *sk);
854
855 /* return slow start threshold (required) */
856 u32 (*ssthresh)(struct sock *sk);
857 /* do new cwnd calculation (required) */
858 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
859 /* call before changing ca_state (optional) */
860 void (*set_state)(struct sock *sk, u8 new_state);
861 /* call when cwnd event occurs (optional) */
862 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
863 /* call when ack arrives (optional) */
864 void (*in_ack_event)(struct sock *sk, u32 flags);
865 /* new value of cwnd after loss (optional) */
866 u32 (*undo_cwnd)(struct sock *sk);
867 /* hook for packet ack accounting (optional) */
868 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
869 /* get info for inet_diag (optional) */
870 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
871 union tcp_cc_info *info);
872
873 char name[TCP_CA_NAME_MAX];
874 struct module *owner;
875 };
876
877 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
878 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
879
880 void tcp_assign_congestion_control(struct sock *sk);
881 void tcp_init_congestion_control(struct sock *sk);
882 void tcp_cleanup_congestion_control(struct sock *sk);
883 int tcp_set_default_congestion_control(const char *name);
884 void tcp_get_default_congestion_control(char *name);
885 void tcp_get_available_congestion_control(char *buf, size_t len);
886 void tcp_get_allowed_congestion_control(char *buf, size_t len);
887 int tcp_set_allowed_congestion_control(char *allowed);
888 int tcp_set_congestion_control(struct sock *sk, const char *name);
889 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
890 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
891
892 u32 tcp_reno_ssthresh(struct sock *sk);
893 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
894 extern struct tcp_congestion_ops tcp_reno;
895
896 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
897 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
898 #ifdef CONFIG_INET
899 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
900 #else
901 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
902 {
903 return NULL;
904 }
905 #endif
906
907 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
908 {
909 const struct inet_connection_sock *icsk = inet_csk(sk);
910
911 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
912 }
913
914 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
915 {
916 struct inet_connection_sock *icsk = inet_csk(sk);
917
918 if (icsk->icsk_ca_ops->set_state)
919 icsk->icsk_ca_ops->set_state(sk, ca_state);
920 icsk->icsk_ca_state = ca_state;
921 }
922
923 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
924 {
925 const struct inet_connection_sock *icsk = inet_csk(sk);
926
927 if (icsk->icsk_ca_ops->cwnd_event)
928 icsk->icsk_ca_ops->cwnd_event(sk, event);
929 }
930
931 /* These functions determine how the current flow behaves in respect of SACK
932 * handling. SACK is negotiated with the peer, and therefore it can vary
933 * between different flows.
934 *
935 * tcp_is_sack - SACK enabled
936 * tcp_is_reno - No SACK
937 * tcp_is_fack - FACK enabled, implies SACK enabled
938 */
939 static inline int tcp_is_sack(const struct tcp_sock *tp)
940 {
941 return tp->rx_opt.sack_ok;
942 }
943
944 static inline bool tcp_is_reno(const struct tcp_sock *tp)
945 {
946 return !tcp_is_sack(tp);
947 }
948
949 static inline bool tcp_is_fack(const struct tcp_sock *tp)
950 {
951 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
952 }
953
954 static inline void tcp_enable_fack(struct tcp_sock *tp)
955 {
956 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
957 }
958
959 /* TCP early-retransmit (ER) is similar to but more conservative than
960 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
961 */
962 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
963 {
964 struct net *net = sock_net((struct sock *)tp);
965
966 tp->do_early_retrans = sysctl_tcp_early_retrans &&
967 sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
968 net->ipv4.sysctl_tcp_reordering == 3;
969 }
970
971 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
972 {
973 tp->do_early_retrans = 0;
974 }
975
976 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
977 {
978 return tp->sacked_out + tp->lost_out;
979 }
980
981 /* This determines how many packets are "in the network" to the best
982 * of our knowledge. In many cases it is conservative, but where
983 * detailed information is available from the receiver (via SACK
984 * blocks etc.) we can make more aggressive calculations.
985 *
986 * Use this for decisions involving congestion control, use just
987 * tp->packets_out to determine if the send queue is empty or not.
988 *
989 * Read this equation as:
990 *
991 * "Packets sent once on transmission queue" MINUS
992 * "Packets left network, but not honestly ACKed yet" PLUS
993 * "Packets fast retransmitted"
994 */
995 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
996 {
997 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
998 }
999
1000 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1001
1002 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1003 {
1004 return tp->snd_cwnd < tp->snd_ssthresh;
1005 }
1006
1007 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1008 {
1009 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1010 }
1011
1012 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1013 {
1014 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1015 (1 << inet_csk(sk)->icsk_ca_state);
1016 }
1017
1018 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1019 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1020 * ssthresh.
1021 */
1022 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1023 {
1024 const struct tcp_sock *tp = tcp_sk(sk);
1025
1026 if (tcp_in_cwnd_reduction(sk))
1027 return tp->snd_ssthresh;
1028 else
1029 return max(tp->snd_ssthresh,
1030 ((tp->snd_cwnd >> 1) +
1031 (tp->snd_cwnd >> 2)));
1032 }
1033
1034 /* Use define here intentionally to get WARN_ON location shown at the caller */
1035 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1036
1037 void tcp_enter_cwr(struct sock *sk);
1038 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1039
1040 /* The maximum number of MSS of available cwnd for which TSO defers
1041 * sending if not using sysctl_tcp_tso_win_divisor.
1042 */
1043 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1044 {
1045 return 3;
1046 }
1047
1048 /* Returns end sequence number of the receiver's advertised window */
1049 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1050 {
1051 return tp->snd_una + tp->snd_wnd;
1052 }
1053
1054 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1055 * flexible approach. The RFC suggests cwnd should not be raised unless
1056 * it was fully used previously. And that's exactly what we do in
1057 * congestion avoidance mode. But in slow start we allow cwnd to grow
1058 * as long as the application has used half the cwnd.
1059 * Example :
1060 * cwnd is 10 (IW10), but application sends 9 frames.
1061 * We allow cwnd to reach 18 when all frames are ACKed.
1062 * This check is safe because it's as aggressive as slow start which already
1063 * risks 100% overshoot. The advantage is that we discourage application to
1064 * either send more filler packets or data to artificially blow up the cwnd
1065 * usage, and allow application-limited process to probe bw more aggressively.
1066 */
1067 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1068 {
1069 const struct tcp_sock *tp = tcp_sk(sk);
1070
1071 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1072 if (tcp_in_slow_start(tp))
1073 return tp->snd_cwnd < 2 * tp->max_packets_out;
1074
1075 return tp->is_cwnd_limited;
1076 }
1077
1078 /* Something is really bad, we could not queue an additional packet,
1079 * because qdisc is full or receiver sent a 0 window.
1080 * We do not want to add fuel to the fire, or abort too early,
1081 * so make sure the timer we arm now is at least 200ms in the future,
1082 * regardless of current icsk_rto value (as it could be ~2ms)
1083 */
1084 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1085 {
1086 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1087 }
1088
1089 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1090 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1091 unsigned long max_when)
1092 {
1093 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1094
1095 return (unsigned long)min_t(u64, when, max_when);
1096 }
1097
1098 static inline void tcp_check_probe_timer(struct sock *sk)
1099 {
1100 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1101 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1102 tcp_probe0_base(sk), TCP_RTO_MAX);
1103 }
1104
1105 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1106 {
1107 tp->snd_wl1 = seq;
1108 }
1109
1110 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1111 {
1112 tp->snd_wl1 = seq;
1113 }
1114
1115 /*
1116 * Calculate(/check) TCP checksum
1117 */
1118 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1119 __be32 daddr, __wsum base)
1120 {
1121 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1122 }
1123
1124 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1125 {
1126 return __skb_checksum_complete(skb);
1127 }
1128
1129 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1130 {
1131 return !skb_csum_unnecessary(skb) &&
1132 __tcp_checksum_complete(skb);
1133 }
1134
1135 /* Prequeue for VJ style copy to user, combined with checksumming. */
1136
1137 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1138 {
1139 tp->ucopy.task = NULL;
1140 tp->ucopy.len = 0;
1141 tp->ucopy.memory = 0;
1142 skb_queue_head_init(&tp->ucopy.prequeue);
1143 }
1144
1145 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1146
1147 #undef STATE_TRACE
1148
1149 #ifdef STATE_TRACE
1150 static const char *statename[]={
1151 "Unused","Established","Syn Sent","Syn Recv",
1152 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1153 "Close Wait","Last ACK","Listen","Closing"
1154 };
1155 #endif
1156 void tcp_set_state(struct sock *sk, int state);
1157
1158 void tcp_done(struct sock *sk);
1159
1160 int tcp_abort(struct sock *sk, int err);
1161
1162 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1163 {
1164 rx_opt->dsack = 0;
1165 rx_opt->num_sacks = 0;
1166 }
1167
1168 u32 tcp_default_init_rwnd(u32 mss);
1169 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1170
1171 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1172 {
1173 struct tcp_sock *tp = tcp_sk(sk);
1174 s32 delta;
1175
1176 if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
1177 return;
1178 delta = tcp_time_stamp - tp->lsndtime;
1179 if (delta > inet_csk(sk)->icsk_rto)
1180 tcp_cwnd_restart(sk, delta);
1181 }
1182
1183 /* Determine a window scaling and initial window to offer. */
1184 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1185 __u32 *window_clamp, int wscale_ok,
1186 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1187
1188 static inline int tcp_win_from_space(int space)
1189 {
1190 return sysctl_tcp_adv_win_scale<=0 ?
1191 (space>>(-sysctl_tcp_adv_win_scale)) :
1192 space - (space>>sysctl_tcp_adv_win_scale);
1193 }
1194
1195 /* Note: caller must be prepared to deal with negative returns */
1196 static inline int tcp_space(const struct sock *sk)
1197 {
1198 return tcp_win_from_space(sk->sk_rcvbuf -
1199 atomic_read(&sk->sk_rmem_alloc));
1200 }
1201
1202 static inline int tcp_full_space(const struct sock *sk)
1203 {
1204 return tcp_win_from_space(sk->sk_rcvbuf);
1205 }
1206
1207 extern void tcp_openreq_init_rwin(struct request_sock *req,
1208 const struct sock *sk_listener,
1209 const struct dst_entry *dst);
1210
1211 void tcp_enter_memory_pressure(struct sock *sk);
1212
1213 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1214 {
1215 struct net *net = sock_net((struct sock *)tp);
1216
1217 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1218 }
1219
1220 static inline int keepalive_time_when(const struct tcp_sock *tp)
1221 {
1222 struct net *net = sock_net((struct sock *)tp);
1223
1224 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1225 }
1226
1227 static inline int keepalive_probes(const struct tcp_sock *tp)
1228 {
1229 struct net *net = sock_net((struct sock *)tp);
1230
1231 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1232 }
1233
1234 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1235 {
1236 const struct inet_connection_sock *icsk = &tp->inet_conn;
1237
1238 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1239 tcp_time_stamp - tp->rcv_tstamp);
1240 }
1241
1242 static inline int tcp_fin_time(const struct sock *sk)
1243 {
1244 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1245 const int rto = inet_csk(sk)->icsk_rto;
1246
1247 if (fin_timeout < (rto << 2) - (rto >> 1))
1248 fin_timeout = (rto << 2) - (rto >> 1);
1249
1250 return fin_timeout;
1251 }
1252
1253 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1254 int paws_win)
1255 {
1256 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1257 return true;
1258 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1259 return true;
1260 /*
1261 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1262 * then following tcp messages have valid values. Ignore 0 value,
1263 * or else 'negative' tsval might forbid us to accept their packets.
1264 */
1265 if (!rx_opt->ts_recent)
1266 return true;
1267 return false;
1268 }
1269
1270 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1271 int rst)
1272 {
1273 if (tcp_paws_check(rx_opt, 0))
1274 return false;
1275
1276 /* RST segments are not recommended to carry timestamp,
1277 and, if they do, it is recommended to ignore PAWS because
1278 "their cleanup function should take precedence over timestamps."
1279 Certainly, it is mistake. It is necessary to understand the reasons
1280 of this constraint to relax it: if peer reboots, clock may go
1281 out-of-sync and half-open connections will not be reset.
1282 Actually, the problem would be not existing if all
1283 the implementations followed draft about maintaining clock
1284 via reboots. Linux-2.2 DOES NOT!
1285
1286 However, we can relax time bounds for RST segments to MSL.
1287 */
1288 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1289 return false;
1290 return true;
1291 }
1292
1293 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1294 int mib_idx, u32 *last_oow_ack_time);
1295
1296 static inline void tcp_mib_init(struct net *net)
1297 {
1298 /* See RFC 2012 */
1299 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1300 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1301 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1302 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1303 }
1304
1305 /* from STCP */
1306 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1307 {
1308 tp->lost_skb_hint = NULL;
1309 }
1310
1311 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1312 {
1313 tcp_clear_retrans_hints_partial(tp);
1314 tp->retransmit_skb_hint = NULL;
1315 }
1316
1317 union tcp_md5_addr {
1318 struct in_addr a4;
1319 #if IS_ENABLED(CONFIG_IPV6)
1320 struct in6_addr a6;
1321 #endif
1322 };
1323
1324 /* - key database */
1325 struct tcp_md5sig_key {
1326 struct hlist_node node;
1327 u8 keylen;
1328 u8 family; /* AF_INET or AF_INET6 */
1329 union tcp_md5_addr addr;
1330 u8 key[TCP_MD5SIG_MAXKEYLEN];
1331 struct rcu_head rcu;
1332 };
1333
1334 /* - sock block */
1335 struct tcp_md5sig_info {
1336 struct hlist_head head;
1337 struct rcu_head rcu;
1338 };
1339
1340 /* - pseudo header */
1341 struct tcp4_pseudohdr {
1342 __be32 saddr;
1343 __be32 daddr;
1344 __u8 pad;
1345 __u8 protocol;
1346 __be16 len;
1347 };
1348
1349 struct tcp6_pseudohdr {
1350 struct in6_addr saddr;
1351 struct in6_addr daddr;
1352 __be32 len;
1353 __be32 protocol; /* including padding */
1354 };
1355
1356 union tcp_md5sum_block {
1357 struct tcp4_pseudohdr ip4;
1358 #if IS_ENABLED(CONFIG_IPV6)
1359 struct tcp6_pseudohdr ip6;
1360 #endif
1361 };
1362
1363 /* - pool: digest algorithm, hash description and scratch buffer */
1364 struct tcp_md5sig_pool {
1365 struct ahash_request *md5_req;
1366 union tcp_md5sum_block md5_blk;
1367 };
1368
1369 /* - functions */
1370 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1371 const struct sock *sk, const struct sk_buff *skb);
1372 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1373 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1374 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1375 int family);
1376 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1377 const struct sock *addr_sk);
1378
1379 #ifdef CONFIG_TCP_MD5SIG
1380 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1381 const union tcp_md5_addr *addr,
1382 int family);
1383 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1384 #else
1385 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1386 const union tcp_md5_addr *addr,
1387 int family)
1388 {
1389 return NULL;
1390 }
1391 #define tcp_twsk_md5_key(twsk) NULL
1392 #endif
1393
1394 bool tcp_alloc_md5sig_pool(void);
1395
1396 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1397 static inline void tcp_put_md5sig_pool(void)
1398 {
1399 local_bh_enable();
1400 }
1401
1402 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1403 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1404 unsigned int header_len);
1405 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1406 const struct tcp_md5sig_key *key);
1407
1408 /* From tcp_fastopen.c */
1409 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1410 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1411 unsigned long *last_syn_loss);
1412 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1413 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1414 u16 try_exp);
1415 struct tcp_fastopen_request {
1416 /* Fast Open cookie. Size 0 means a cookie request */
1417 struct tcp_fastopen_cookie cookie;
1418 struct msghdr *data; /* data in MSG_FASTOPEN */
1419 size_t size;
1420 int copied; /* queued in tcp_connect() */
1421 };
1422 void tcp_free_fastopen_req(struct tcp_sock *tp);
1423
1424 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1425 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1426 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1427 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1428 struct request_sock *req,
1429 struct tcp_fastopen_cookie *foc,
1430 struct dst_entry *dst);
1431 void tcp_fastopen_init_key_once(bool publish);
1432 #define TCP_FASTOPEN_KEY_LENGTH 16
1433
1434 /* Fastopen key context */
1435 struct tcp_fastopen_context {
1436 struct crypto_cipher *tfm;
1437 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1438 struct rcu_head rcu;
1439 };
1440
1441 /* write queue abstraction */
1442 static inline void tcp_write_queue_purge(struct sock *sk)
1443 {
1444 struct sk_buff *skb;
1445
1446 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1447 sk_wmem_free_skb(sk, skb);
1448 sk_mem_reclaim(sk);
1449 tcp_clear_all_retrans_hints(tcp_sk(sk));
1450 }
1451
1452 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1453 {
1454 return skb_peek(&sk->sk_write_queue);
1455 }
1456
1457 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1458 {
1459 return skb_peek_tail(&sk->sk_write_queue);
1460 }
1461
1462 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1463 const struct sk_buff *skb)
1464 {
1465 return skb_queue_next(&sk->sk_write_queue, skb);
1466 }
1467
1468 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1469 const struct sk_buff *skb)
1470 {
1471 return skb_queue_prev(&sk->sk_write_queue, skb);
1472 }
1473
1474 #define tcp_for_write_queue(skb, sk) \
1475 skb_queue_walk(&(sk)->sk_write_queue, skb)
1476
1477 #define tcp_for_write_queue_from(skb, sk) \
1478 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1479
1480 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1481 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1482
1483 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1484 {
1485 return sk->sk_send_head;
1486 }
1487
1488 static inline bool tcp_skb_is_last(const struct sock *sk,
1489 const struct sk_buff *skb)
1490 {
1491 return skb_queue_is_last(&sk->sk_write_queue, skb);
1492 }
1493
1494 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1495 {
1496 if (tcp_skb_is_last(sk, skb))
1497 sk->sk_send_head = NULL;
1498 else
1499 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1500 }
1501
1502 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1503 {
1504 if (sk->sk_send_head == skb_unlinked)
1505 sk->sk_send_head = NULL;
1506 }
1507
1508 static inline void tcp_init_send_head(struct sock *sk)
1509 {
1510 sk->sk_send_head = NULL;
1511 }
1512
1513 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1514 {
1515 __skb_queue_tail(&sk->sk_write_queue, skb);
1516 }
1517
1518 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1519 {
1520 __tcp_add_write_queue_tail(sk, skb);
1521
1522 /* Queue it, remembering where we must start sending. */
1523 if (sk->sk_send_head == NULL) {
1524 sk->sk_send_head = skb;
1525
1526 if (tcp_sk(sk)->highest_sack == NULL)
1527 tcp_sk(sk)->highest_sack = skb;
1528 }
1529 }
1530
1531 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1532 {
1533 __skb_queue_head(&sk->sk_write_queue, skb);
1534 }
1535
1536 /* Insert buff after skb on the write queue of sk. */
1537 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1538 struct sk_buff *buff,
1539 struct sock *sk)
1540 {
1541 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1542 }
1543
1544 /* Insert new before skb on the write queue of sk. */
1545 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1546 struct sk_buff *skb,
1547 struct sock *sk)
1548 {
1549 __skb_queue_before(&sk->sk_write_queue, skb, new);
1550
1551 if (sk->sk_send_head == skb)
1552 sk->sk_send_head = new;
1553 }
1554
1555 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1556 {
1557 __skb_unlink(skb, &sk->sk_write_queue);
1558 }
1559
1560 static inline bool tcp_write_queue_empty(struct sock *sk)
1561 {
1562 return skb_queue_empty(&sk->sk_write_queue);
1563 }
1564
1565 static inline void tcp_push_pending_frames(struct sock *sk)
1566 {
1567 if (tcp_send_head(sk)) {
1568 struct tcp_sock *tp = tcp_sk(sk);
1569
1570 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1571 }
1572 }
1573
1574 /* Start sequence of the skb just after the highest skb with SACKed
1575 * bit, valid only if sacked_out > 0 or when the caller has ensured
1576 * validity by itself.
1577 */
1578 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1579 {
1580 if (!tp->sacked_out)
1581 return tp->snd_una;
1582
1583 if (tp->highest_sack == NULL)
1584 return tp->snd_nxt;
1585
1586 return TCP_SKB_CB(tp->highest_sack)->seq;
1587 }
1588
1589 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1590 {
1591 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1592 tcp_write_queue_next(sk, skb);
1593 }
1594
1595 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1596 {
1597 return tcp_sk(sk)->highest_sack;
1598 }
1599
1600 static inline void tcp_highest_sack_reset(struct sock *sk)
1601 {
1602 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1603 }
1604
1605 /* Called when old skb is about to be deleted (to be combined with new skb) */
1606 static inline void tcp_highest_sack_combine(struct sock *sk,
1607 struct sk_buff *old,
1608 struct sk_buff *new)
1609 {
1610 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1611 tcp_sk(sk)->highest_sack = new;
1612 }
1613
1614 /* This helper checks if socket has IP_TRANSPARENT set */
1615 static inline bool inet_sk_transparent(const struct sock *sk)
1616 {
1617 switch (sk->sk_state) {
1618 case TCP_TIME_WAIT:
1619 return inet_twsk(sk)->tw_transparent;
1620 case TCP_NEW_SYN_RECV:
1621 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1622 }
1623 return inet_sk(sk)->transparent;
1624 }
1625
1626 /* Determines whether this is a thin stream (which may suffer from
1627 * increased latency). Used to trigger latency-reducing mechanisms.
1628 */
1629 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1630 {
1631 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1632 }
1633
1634 /* /proc */
1635 enum tcp_seq_states {
1636 TCP_SEQ_STATE_LISTENING,
1637 TCP_SEQ_STATE_ESTABLISHED,
1638 };
1639
1640 int tcp_seq_open(struct inode *inode, struct file *file);
1641
1642 struct tcp_seq_afinfo {
1643 char *name;
1644 sa_family_t family;
1645 const struct file_operations *seq_fops;
1646 struct seq_operations seq_ops;
1647 };
1648
1649 struct tcp_iter_state {
1650 struct seq_net_private p;
1651 sa_family_t family;
1652 enum tcp_seq_states state;
1653 struct sock *syn_wait_sk;
1654 int bucket, offset, sbucket, num;
1655 loff_t last_pos;
1656 };
1657
1658 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1659 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1660
1661 extern struct request_sock_ops tcp_request_sock_ops;
1662 extern struct request_sock_ops tcp6_request_sock_ops;
1663
1664 void tcp_v4_destroy_sock(struct sock *sk);
1665
1666 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1667 netdev_features_t features);
1668 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1669 int tcp_gro_complete(struct sk_buff *skb);
1670
1671 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1672
1673 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1674 {
1675 struct net *net = sock_net((struct sock *)tp);
1676 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1677 }
1678
1679 static inline bool tcp_stream_memory_free(const struct sock *sk)
1680 {
1681 const struct tcp_sock *tp = tcp_sk(sk);
1682 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1683
1684 return notsent_bytes < tcp_notsent_lowat(tp);
1685 }
1686
1687 #ifdef CONFIG_PROC_FS
1688 int tcp4_proc_init(void);
1689 void tcp4_proc_exit(void);
1690 #endif
1691
1692 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1693 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1694 const struct tcp_request_sock_ops *af_ops,
1695 struct sock *sk, struct sk_buff *skb);
1696
1697 /* TCP af-specific functions */
1698 struct tcp_sock_af_ops {
1699 #ifdef CONFIG_TCP_MD5SIG
1700 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1701 const struct sock *addr_sk);
1702 int (*calc_md5_hash)(char *location,
1703 const struct tcp_md5sig_key *md5,
1704 const struct sock *sk,
1705 const struct sk_buff *skb);
1706 int (*md5_parse)(struct sock *sk,
1707 char __user *optval,
1708 int optlen);
1709 #endif
1710 };
1711
1712 struct tcp_request_sock_ops {
1713 u16 mss_clamp;
1714 #ifdef CONFIG_TCP_MD5SIG
1715 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1716 const struct sock *addr_sk);
1717 int (*calc_md5_hash) (char *location,
1718 const struct tcp_md5sig_key *md5,
1719 const struct sock *sk,
1720 const struct sk_buff *skb);
1721 #endif
1722 void (*init_req)(struct request_sock *req,
1723 const struct sock *sk_listener,
1724 struct sk_buff *skb);
1725 #ifdef CONFIG_SYN_COOKIES
1726 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1727 __u16 *mss);
1728 #endif
1729 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1730 const struct request_sock *req,
1731 bool *strict);
1732 __u32 (*init_seq)(const struct sk_buff *skb);
1733 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1734 struct flowi *fl, struct request_sock *req,
1735 struct tcp_fastopen_cookie *foc,
1736 enum tcp_synack_type synack_type);
1737 };
1738
1739 #ifdef CONFIG_SYN_COOKIES
1740 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1741 const struct sock *sk, struct sk_buff *skb,
1742 __u16 *mss)
1743 {
1744 tcp_synq_overflow(sk);
1745 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1746 return ops->cookie_init_seq(skb, mss);
1747 }
1748 #else
1749 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1750 const struct sock *sk, struct sk_buff *skb,
1751 __u16 *mss)
1752 {
1753 return 0;
1754 }
1755 #endif
1756
1757 int tcpv4_offload_init(void);
1758
1759 void tcp_v4_init(void);
1760 void tcp_init(void);
1761
1762 /* tcp_recovery.c */
1763
1764 /* Flags to enable various loss recovery features. See below */
1765 extern int sysctl_tcp_recovery;
1766
1767 /* Use TCP RACK to detect (some) tail and retransmit losses */
1768 #define TCP_RACK_LOST_RETRANS 0x1
1769
1770 extern int tcp_rack_mark_lost(struct sock *sk);
1771
1772 extern void tcp_rack_advance(struct tcp_sock *tp,
1773 const struct skb_mstamp *xmit_time, u8 sacked);
1774
1775 /*
1776 * Save and compile IPv4 options, return a pointer to it
1777 */
1778 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1779 {
1780 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1781 struct ip_options_rcu *dopt = NULL;
1782
1783 if (opt->optlen) {
1784 int opt_size = sizeof(*dopt) + opt->optlen;
1785
1786 dopt = kmalloc(opt_size, GFP_ATOMIC);
1787 if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1788 kfree(dopt);
1789 dopt = NULL;
1790 }
1791 }
1792 return dopt;
1793 }
1794
1795 /* locally generated TCP pure ACKs have skb->truesize == 2
1796 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1797 * This is much faster than dissecting the packet to find out.
1798 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1799 */
1800 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1801 {
1802 return skb->truesize == 2;
1803 }
1804
1805 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1806 {
1807 skb->truesize = 2;
1808 }
1809
1810 static inline int tcp_inq(struct sock *sk)
1811 {
1812 struct tcp_sock *tp = tcp_sk(sk);
1813 int answ;
1814
1815 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1816 answ = 0;
1817 } else if (sock_flag(sk, SOCK_URGINLINE) ||
1818 !tp->urg_data ||
1819 before(tp->urg_seq, tp->copied_seq) ||
1820 !before(tp->urg_seq, tp->rcv_nxt)) {
1821
1822 answ = tp->rcv_nxt - tp->copied_seq;
1823
1824 /* Subtract 1, if FIN was received */
1825 if (answ && sock_flag(sk, SOCK_DONE))
1826 answ--;
1827 } else {
1828 answ = tp->urg_seq - tp->copied_seq;
1829 }
1830
1831 return answ;
1832 }
1833
1834 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1835 {
1836 u16 segs_in;
1837
1838 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1839 tp->segs_in += segs_in;
1840 if (skb->len > tcp_hdrlen(skb))
1841 tp->data_segs_in += segs_in;
1842 }
1843
1844 /*
1845 * TCP listen path runs lockless.
1846 * We forced "struct sock" to be const qualified to make sure
1847 * we don't modify one of its field by mistake.
1848 * Here, we increment sk_drops which is an atomic_t, so we can safely
1849 * make sock writable again.
1850 */
1851 static inline void tcp_listendrop(const struct sock *sk)
1852 {
1853 atomic_inc(&((struct sock *)sk)->sk_drops);
1854 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1855 }
1856
1857 #endif /* _TCP_H */
This page took 0.298868 seconds and 5 git commands to generate.