tcp: ECN blackhole should not force quickack mode
[deliverable/linux.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define TCP_DEBUG 1
22 #define FASTRETRANS_DEBUG 1
23
24 #include <linux/list.h>
25 #include <linux/tcp.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48
49 extern struct inet_hashinfo tcp_hashinfo;
50
51 extern struct percpu_counter tcp_orphan_count;
52 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
53
54 #define MAX_TCP_HEADER (128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56
57 /*
58 * Never offer a window over 32767 without using window scaling. Some
59 * poor stacks do signed 16bit maths!
60 */
61 #define MAX_TCP_WINDOW 32767U
62
63 /* Offer an initial receive window of 10 mss. */
64 #define TCP_DEFAULT_INIT_RCVWND 10
65
66 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
67 #define TCP_MIN_MSS 88U
68
69 /* The least MTU to use for probing */
70 #define TCP_BASE_MSS 512
71
72 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
73 #define TCP_FASTRETRANS_THRESH 3
74
75 /* Maximal reordering. */
76 #define TCP_MAX_REORDERING 127
77
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS 16U
80
81 /* urg_data states */
82 #define TCP_URG_VALID 0x0100
83 #define TCP_URG_NOTYET 0x0200
84 #define TCP_URG_READ 0x0400
85
86 #define TCP_RETR1 3 /*
87 * This is how many retries it does before it
88 * tries to figure out if the gateway is
89 * down. Minimal RFC value is 3; it corresponds
90 * to ~3sec-8min depending on RTO.
91 */
92
93 #define TCP_RETR2 15 /*
94 * This should take at least
95 * 90 minutes to time out.
96 * RFC1122 says that the limit is 100 sec.
97 * 15 is ~13-30min depending on RTO.
98 */
99
100 #define TCP_SYN_RETRIES 5 /* number of times to retry active opening a
101 * connection: ~180sec is RFC minimum */
102
103 #define TCP_SYNACK_RETRIES 5 /* number of times to retry passive opening a
104 * connection: ~180sec is RFC minimum */
105
106 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
107 * state, about 60 seconds */
108 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
109 /* BSD style FIN_WAIT2 deadlock breaker.
110 * It used to be 3min, new value is 60sec,
111 * to combine FIN-WAIT-2 timeout with
112 * TIME-WAIT timer.
113 */
114
115 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
116 #if HZ >= 100
117 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
118 #define TCP_ATO_MIN ((unsigned)(HZ/25))
119 #else
120 #define TCP_DELACK_MIN 4U
121 #define TCP_ATO_MIN 4U
122 #endif
123 #define TCP_RTO_MAX ((unsigned)(120*HZ))
124 #define TCP_RTO_MIN ((unsigned)(HZ/5))
125 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC2988bis initial RTO value */
126 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
127 * used as a fallback RTO for the
128 * initial data transmission if no
129 * valid RTT sample has been acquired,
130 * most likely due to retrans in 3WHS.
131 */
132
133 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
134 * for local resources.
135 */
136
137 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
138 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
139 #define TCP_KEEPALIVE_INTVL (75*HZ)
140
141 #define MAX_TCP_KEEPIDLE 32767
142 #define MAX_TCP_KEEPINTVL 32767
143 #define MAX_TCP_KEEPCNT 127
144 #define MAX_TCP_SYNCNT 127
145
146 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
147
148 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
149 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
150 * after this time. It should be equal
151 * (or greater than) TCP_TIMEWAIT_LEN
152 * to provide reliability equal to one
153 * provided by timewait state.
154 */
155 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
156 * timestamps. It must be less than
157 * minimal timewait lifetime.
158 */
159 /*
160 * TCP option
161 */
162
163 #define TCPOPT_NOP 1 /* Padding */
164 #define TCPOPT_EOL 0 /* End of options */
165 #define TCPOPT_MSS 2 /* Segment size negotiating */
166 #define TCPOPT_WINDOW 3 /* Window scaling */
167 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
168 #define TCPOPT_SACK 5 /* SACK Block */
169 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
170 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
171 #define TCPOPT_COOKIE 253 /* Cookie extension (experimental) */
172
173 /*
174 * TCP option lengths
175 */
176
177 #define TCPOLEN_MSS 4
178 #define TCPOLEN_WINDOW 3
179 #define TCPOLEN_SACK_PERM 2
180 #define TCPOLEN_TIMESTAMP 10
181 #define TCPOLEN_MD5SIG 18
182 #define TCPOLEN_COOKIE_BASE 2 /* Cookie-less header extension */
183 #define TCPOLEN_COOKIE_PAIR 3 /* Cookie pair header extension */
184 #define TCPOLEN_COOKIE_MIN (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
185 #define TCPOLEN_COOKIE_MAX (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
186
187 /* But this is what stacks really send out. */
188 #define TCPOLEN_TSTAMP_ALIGNED 12
189 #define TCPOLEN_WSCALE_ALIGNED 4
190 #define TCPOLEN_SACKPERM_ALIGNED 4
191 #define TCPOLEN_SACK_BASE 2
192 #define TCPOLEN_SACK_BASE_ALIGNED 4
193 #define TCPOLEN_SACK_PERBLOCK 8
194 #define TCPOLEN_MD5SIG_ALIGNED 20
195 #define TCPOLEN_MSS_ALIGNED 4
196
197 /* Flags in tp->nonagle */
198 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
199 #define TCP_NAGLE_CORK 2 /* Socket is corked */
200 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
201
202 /* TCP thin-stream limits */
203 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
204
205 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
206 #define TCP_INIT_CWND 10
207
208 extern struct inet_timewait_death_row tcp_death_row;
209
210 /* sysctl variables for tcp */
211 extern int sysctl_tcp_timestamps;
212 extern int sysctl_tcp_window_scaling;
213 extern int sysctl_tcp_sack;
214 extern int sysctl_tcp_fin_timeout;
215 extern int sysctl_tcp_keepalive_time;
216 extern int sysctl_tcp_keepalive_probes;
217 extern int sysctl_tcp_keepalive_intvl;
218 extern int sysctl_tcp_syn_retries;
219 extern int sysctl_tcp_synack_retries;
220 extern int sysctl_tcp_retries1;
221 extern int sysctl_tcp_retries2;
222 extern int sysctl_tcp_orphan_retries;
223 extern int sysctl_tcp_syncookies;
224 extern int sysctl_tcp_retrans_collapse;
225 extern int sysctl_tcp_stdurg;
226 extern int sysctl_tcp_rfc1337;
227 extern int sysctl_tcp_abort_on_overflow;
228 extern int sysctl_tcp_max_orphans;
229 extern int sysctl_tcp_fack;
230 extern int sysctl_tcp_reordering;
231 extern int sysctl_tcp_ecn;
232 extern int sysctl_tcp_dsack;
233 extern long sysctl_tcp_mem[3];
234 extern int sysctl_tcp_wmem[3];
235 extern int sysctl_tcp_rmem[3];
236 extern int sysctl_tcp_app_win;
237 extern int sysctl_tcp_adv_win_scale;
238 extern int sysctl_tcp_tw_reuse;
239 extern int sysctl_tcp_frto;
240 extern int sysctl_tcp_frto_response;
241 extern int sysctl_tcp_low_latency;
242 extern int sysctl_tcp_dma_copybreak;
243 extern int sysctl_tcp_nometrics_save;
244 extern int sysctl_tcp_moderate_rcvbuf;
245 extern int sysctl_tcp_tso_win_divisor;
246 extern int sysctl_tcp_abc;
247 extern int sysctl_tcp_mtu_probing;
248 extern int sysctl_tcp_base_mss;
249 extern int sysctl_tcp_workaround_signed_windows;
250 extern int sysctl_tcp_slow_start_after_idle;
251 extern int sysctl_tcp_max_ssthresh;
252 extern int sysctl_tcp_cookie_size;
253 extern int sysctl_tcp_thin_linear_timeouts;
254 extern int sysctl_tcp_thin_dupack;
255
256 extern atomic_long_t tcp_memory_allocated;
257 extern struct percpu_counter tcp_sockets_allocated;
258 extern int tcp_memory_pressure;
259
260 /*
261 * The next routines deal with comparing 32 bit unsigned ints
262 * and worry about wraparound (automatic with unsigned arithmetic).
263 */
264
265 static inline int before(__u32 seq1, __u32 seq2)
266 {
267 return (__s32)(seq1-seq2) < 0;
268 }
269 #define after(seq2, seq1) before(seq1, seq2)
270
271 /* is s2<=s1<=s3 ? */
272 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
273 {
274 return seq3 - seq2 >= seq1 - seq2;
275 }
276
277 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
278 {
279 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
280 int orphans = percpu_counter_read_positive(ocp);
281
282 if (orphans << shift > sysctl_tcp_max_orphans) {
283 orphans = percpu_counter_sum_positive(ocp);
284 if (orphans << shift > sysctl_tcp_max_orphans)
285 return true;
286 }
287
288 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
289 atomic_long_read(&tcp_memory_allocated) > sysctl_tcp_mem[2])
290 return true;
291 return false;
292 }
293
294 /* syncookies: remember time of last synqueue overflow */
295 static inline void tcp_synq_overflow(struct sock *sk)
296 {
297 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
298 }
299
300 /* syncookies: no recent synqueue overflow on this listening socket? */
301 static inline int tcp_synq_no_recent_overflow(const struct sock *sk)
302 {
303 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
304 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
305 }
306
307 extern struct proto tcp_prot;
308
309 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
311 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
313 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
314
315 extern void tcp_v4_err(struct sk_buff *skb, u32);
316
317 extern void tcp_shutdown (struct sock *sk, int how);
318
319 extern int tcp_v4_rcv(struct sk_buff *skb);
320
321 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it);
322 extern void *tcp_v4_tw_get_peer(struct sock *sk);
323 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
324 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
325 size_t size);
326 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
327 size_t size, int flags);
328 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
329 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
330 struct tcphdr *th, unsigned len);
331 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
332 struct tcphdr *th, unsigned len);
333 extern void tcp_rcv_space_adjust(struct sock *sk);
334 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
335 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
336 extern void tcp_twsk_destructor(struct sock *sk);
337 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
338 struct pipe_inode_info *pipe, size_t len,
339 unsigned int flags);
340
341 static inline void tcp_dec_quickack_mode(struct sock *sk,
342 const unsigned int pkts)
343 {
344 struct inet_connection_sock *icsk = inet_csk(sk);
345
346 if (icsk->icsk_ack.quick) {
347 if (pkts >= icsk->icsk_ack.quick) {
348 icsk->icsk_ack.quick = 0;
349 /* Leaving quickack mode we deflate ATO. */
350 icsk->icsk_ack.ato = TCP_ATO_MIN;
351 } else
352 icsk->icsk_ack.quick -= pkts;
353 }
354 }
355
356 #define TCP_ECN_OK 1
357 #define TCP_ECN_QUEUE_CWR 2
358 #define TCP_ECN_DEMAND_CWR 4
359 #define TCP_ECN_SEEN 8
360
361 static __inline__ void
362 TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
363 {
364 if (sysctl_tcp_ecn && th->ece && th->cwr)
365 inet_rsk(req)->ecn_ok = 1;
366 }
367
368 enum tcp_tw_status {
369 TCP_TW_SUCCESS = 0,
370 TCP_TW_RST = 1,
371 TCP_TW_ACK = 2,
372 TCP_TW_SYN = 3
373 };
374
375
376 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
377 struct sk_buff *skb,
378 const struct tcphdr *th);
379 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
380 struct request_sock *req,
381 struct request_sock **prev);
382 extern int tcp_child_process(struct sock *parent, struct sock *child,
383 struct sk_buff *skb);
384 extern int tcp_use_frto(struct sock *sk);
385 extern void tcp_enter_frto(struct sock *sk);
386 extern void tcp_enter_loss(struct sock *sk, int how);
387 extern void tcp_clear_retrans(struct tcp_sock *tp);
388 extern void tcp_update_metrics(struct sock *sk);
389 extern void tcp_close(struct sock *sk, long timeout);
390 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
391 struct poll_table_struct *wait);
392 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
393 char __user *optval, int __user *optlen);
394 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
395 char __user *optval, unsigned int optlen);
396 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
397 char __user *optval, int __user *optlen);
398 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
399 char __user *optval, unsigned int optlen);
400 extern void tcp_set_keepalive(struct sock *sk, int val);
401 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
402 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
403 size_t len, int nonblock, int flags, int *addr_len);
404 extern void tcp_parse_options(struct sk_buff *skb,
405 struct tcp_options_received *opt_rx, u8 **hvpp,
406 int estab);
407 extern u8 *tcp_parse_md5sig_option(struct tcphdr *th);
408
409 /*
410 * TCP v4 functions exported for the inet6 API
411 */
412
413 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
414 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
415 extern struct sock * tcp_create_openreq_child(struct sock *sk,
416 struct request_sock *req,
417 struct sk_buff *skb);
418 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
419 struct request_sock *req,
420 struct dst_entry *dst);
421 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
422 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
423 int addr_len);
424 extern int tcp_connect(struct sock *sk);
425 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
426 struct request_sock *req,
427 struct request_values *rvp);
428 extern int tcp_disconnect(struct sock *sk, int flags);
429
430
431 /* From syncookies.c */
432 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
433 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
434 struct ip_options *opt);
435 #ifdef CONFIG_SYN_COOKIES
436 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
437 __u16 *mss);
438 #else
439 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
440 struct sk_buff *skb,
441 __u16 *mss)
442 {
443 return 0;
444 }
445 #endif
446
447 extern __u32 cookie_init_timestamp(struct request_sock *req);
448 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
449
450 /* From net/ipv6/syncookies.c */
451 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
452 #ifdef CONFIG_SYN_COOKIES
453 extern __u32 cookie_v6_init_sequence(struct sock *sk, struct sk_buff *skb,
454 __u16 *mss);
455 #else
456 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
457 struct sk_buff *skb,
458 __u16 *mss)
459 {
460 return 0;
461 }
462 #endif
463 /* tcp_output.c */
464
465 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
466 int nonagle);
467 extern int tcp_may_send_now(struct sock *sk);
468 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
469 extern void tcp_retransmit_timer(struct sock *sk);
470 extern void tcp_xmit_retransmit_queue(struct sock *);
471 extern void tcp_simple_retransmit(struct sock *);
472 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
473 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
474
475 extern void tcp_send_probe0(struct sock *);
476 extern void tcp_send_partial(struct sock *);
477 extern int tcp_write_wakeup(struct sock *);
478 extern void tcp_send_fin(struct sock *sk);
479 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
480 extern int tcp_send_synack(struct sock *);
481 extern int tcp_syn_flood_action(struct sock *sk,
482 const struct sk_buff *skb,
483 const char *proto);
484 extern void tcp_push_one(struct sock *, unsigned int mss_now);
485 extern void tcp_send_ack(struct sock *sk);
486 extern void tcp_send_delayed_ack(struct sock *sk);
487
488 /* tcp_input.c */
489 extern void tcp_cwnd_application_limited(struct sock *sk);
490
491 /* tcp_timer.c */
492 extern void tcp_init_xmit_timers(struct sock *);
493 static inline void tcp_clear_xmit_timers(struct sock *sk)
494 {
495 inet_csk_clear_xmit_timers(sk);
496 }
497
498 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
499 extern unsigned int tcp_current_mss(struct sock *sk);
500
501 /* Bound MSS / TSO packet size with the half of the window */
502 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
503 {
504 int cutoff;
505
506 /* When peer uses tiny windows, there is no use in packetizing
507 * to sub-MSS pieces for the sake of SWS or making sure there
508 * are enough packets in the pipe for fast recovery.
509 *
510 * On the other hand, for extremely large MSS devices, handling
511 * smaller than MSS windows in this way does make sense.
512 */
513 if (tp->max_window >= 512)
514 cutoff = (tp->max_window >> 1);
515 else
516 cutoff = tp->max_window;
517
518 if (cutoff && pktsize > cutoff)
519 return max_t(int, cutoff, 68U - tp->tcp_header_len);
520 else
521 return pktsize;
522 }
523
524 /* tcp.c */
525 extern void tcp_get_info(struct sock *, struct tcp_info *);
526
527 /* Read 'sendfile()'-style from a TCP socket */
528 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
529 unsigned int, size_t);
530 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
531 sk_read_actor_t recv_actor);
532
533 extern void tcp_initialize_rcv_mss(struct sock *sk);
534
535 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
536 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
537 extern void tcp_mtup_init(struct sock *sk);
538 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
539
540 static inline void tcp_bound_rto(const struct sock *sk)
541 {
542 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
543 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
544 }
545
546 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
547 {
548 return (tp->srtt >> 3) + tp->rttvar;
549 }
550
551 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
552 {
553 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
554 ntohl(TCP_FLAG_ACK) |
555 snd_wnd);
556 }
557
558 static inline void tcp_fast_path_on(struct tcp_sock *tp)
559 {
560 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
561 }
562
563 static inline void tcp_fast_path_check(struct sock *sk)
564 {
565 struct tcp_sock *tp = tcp_sk(sk);
566
567 if (skb_queue_empty(&tp->out_of_order_queue) &&
568 tp->rcv_wnd &&
569 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
570 !tp->urg_data)
571 tcp_fast_path_on(tp);
572 }
573
574 /* Compute the actual rto_min value */
575 static inline u32 tcp_rto_min(struct sock *sk)
576 {
577 struct dst_entry *dst = __sk_dst_get(sk);
578 u32 rto_min = TCP_RTO_MIN;
579
580 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
581 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
582 return rto_min;
583 }
584
585 /* Compute the actual receive window we are currently advertising.
586 * Rcv_nxt can be after the window if our peer push more data
587 * than the offered window.
588 */
589 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
590 {
591 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
592
593 if (win < 0)
594 win = 0;
595 return (u32) win;
596 }
597
598 /* Choose a new window, without checks for shrinking, and without
599 * scaling applied to the result. The caller does these things
600 * if necessary. This is a "raw" window selection.
601 */
602 extern u32 __tcp_select_window(struct sock *sk);
603
604 /* TCP timestamps are only 32-bits, this causes a slight
605 * complication on 64-bit systems since we store a snapshot
606 * of jiffies in the buffer control blocks below. We decided
607 * to use only the low 32-bits of jiffies and hide the ugly
608 * casts with the following macro.
609 */
610 #define tcp_time_stamp ((__u32)(jiffies))
611
612 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
613
614 #define TCPHDR_FIN 0x01
615 #define TCPHDR_SYN 0x02
616 #define TCPHDR_RST 0x04
617 #define TCPHDR_PSH 0x08
618 #define TCPHDR_ACK 0x10
619 #define TCPHDR_URG 0x20
620 #define TCPHDR_ECE 0x40
621 #define TCPHDR_CWR 0x80
622
623 /* This is what the send packet queuing engine uses to pass
624 * TCP per-packet control information to the transmission code.
625 * We also store the host-order sequence numbers in here too.
626 * This is 44 bytes if IPV6 is enabled.
627 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
628 */
629 struct tcp_skb_cb {
630 union {
631 struct inet_skb_parm h4;
632 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
633 struct inet6_skb_parm h6;
634 #endif
635 } header; /* For incoming frames */
636 __u32 seq; /* Starting sequence number */
637 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
638 __u32 when; /* used to compute rtt's */
639 __u8 flags; /* TCP header flags. */
640 __u8 sacked; /* State flags for SACK/FACK. */
641 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
642 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
643 #define TCPCB_LOST 0x04 /* SKB is lost */
644 #define TCPCB_TAGBITS 0x07 /* All tag bits */
645
646 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
647 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
648
649 __u32 ack_seq; /* Sequence number ACK'd */
650 };
651
652 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
653
654 /* Due to TSO, an SKB can be composed of multiple actual
655 * packets. To keep these tracked properly, we use this.
656 */
657 static inline int tcp_skb_pcount(const struct sk_buff *skb)
658 {
659 return skb_shinfo(skb)->gso_segs;
660 }
661
662 /* This is valid iff tcp_skb_pcount() > 1. */
663 static inline int tcp_skb_mss(const struct sk_buff *skb)
664 {
665 return skb_shinfo(skb)->gso_size;
666 }
667
668 /* Events passed to congestion control interface */
669 enum tcp_ca_event {
670 CA_EVENT_TX_START, /* first transmit when no packets in flight */
671 CA_EVENT_CWND_RESTART, /* congestion window restart */
672 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
673 CA_EVENT_FRTO, /* fast recovery timeout */
674 CA_EVENT_LOSS, /* loss timeout */
675 CA_EVENT_FAST_ACK, /* in sequence ack */
676 CA_EVENT_SLOW_ACK, /* other ack */
677 };
678
679 /*
680 * Interface for adding new TCP congestion control handlers
681 */
682 #define TCP_CA_NAME_MAX 16
683 #define TCP_CA_MAX 128
684 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
685
686 #define TCP_CONG_NON_RESTRICTED 0x1
687 #define TCP_CONG_RTT_STAMP 0x2
688
689 struct tcp_congestion_ops {
690 struct list_head list;
691 unsigned long flags;
692
693 /* initialize private data (optional) */
694 void (*init)(struct sock *sk);
695 /* cleanup private data (optional) */
696 void (*release)(struct sock *sk);
697
698 /* return slow start threshold (required) */
699 u32 (*ssthresh)(struct sock *sk);
700 /* lower bound for congestion window (optional) */
701 u32 (*min_cwnd)(const struct sock *sk);
702 /* do new cwnd calculation (required) */
703 void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
704 /* call before changing ca_state (optional) */
705 void (*set_state)(struct sock *sk, u8 new_state);
706 /* call when cwnd event occurs (optional) */
707 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
708 /* new value of cwnd after loss (optional) */
709 u32 (*undo_cwnd)(struct sock *sk);
710 /* hook for packet ack accounting (optional) */
711 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
712 /* get info for inet_diag (optional) */
713 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
714
715 char name[TCP_CA_NAME_MAX];
716 struct module *owner;
717 };
718
719 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
720 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
721
722 extern void tcp_init_congestion_control(struct sock *sk);
723 extern void tcp_cleanup_congestion_control(struct sock *sk);
724 extern int tcp_set_default_congestion_control(const char *name);
725 extern void tcp_get_default_congestion_control(char *name);
726 extern void tcp_get_available_congestion_control(char *buf, size_t len);
727 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
728 extern int tcp_set_allowed_congestion_control(char *allowed);
729 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
730 extern void tcp_slow_start(struct tcp_sock *tp);
731 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
732
733 extern struct tcp_congestion_ops tcp_init_congestion_ops;
734 extern u32 tcp_reno_ssthresh(struct sock *sk);
735 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
736 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
737 extern struct tcp_congestion_ops tcp_reno;
738
739 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
740 {
741 struct inet_connection_sock *icsk = inet_csk(sk);
742
743 if (icsk->icsk_ca_ops->set_state)
744 icsk->icsk_ca_ops->set_state(sk, ca_state);
745 icsk->icsk_ca_state = ca_state;
746 }
747
748 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
749 {
750 const struct inet_connection_sock *icsk = inet_csk(sk);
751
752 if (icsk->icsk_ca_ops->cwnd_event)
753 icsk->icsk_ca_ops->cwnd_event(sk, event);
754 }
755
756 /* These functions determine how the current flow behaves in respect of SACK
757 * handling. SACK is negotiated with the peer, and therefore it can vary
758 * between different flows.
759 *
760 * tcp_is_sack - SACK enabled
761 * tcp_is_reno - No SACK
762 * tcp_is_fack - FACK enabled, implies SACK enabled
763 */
764 static inline int tcp_is_sack(const struct tcp_sock *tp)
765 {
766 return tp->rx_opt.sack_ok;
767 }
768
769 static inline int tcp_is_reno(const struct tcp_sock *tp)
770 {
771 return !tcp_is_sack(tp);
772 }
773
774 static inline int tcp_is_fack(const struct tcp_sock *tp)
775 {
776 return tp->rx_opt.sack_ok & 2;
777 }
778
779 static inline void tcp_enable_fack(struct tcp_sock *tp)
780 {
781 tp->rx_opt.sack_ok |= 2;
782 }
783
784 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
785 {
786 return tp->sacked_out + tp->lost_out;
787 }
788
789 /* This determines how many packets are "in the network" to the best
790 * of our knowledge. In many cases it is conservative, but where
791 * detailed information is available from the receiver (via SACK
792 * blocks etc.) we can make more aggressive calculations.
793 *
794 * Use this for decisions involving congestion control, use just
795 * tp->packets_out to determine if the send queue is empty or not.
796 *
797 * Read this equation as:
798 *
799 * "Packets sent once on transmission queue" MINUS
800 * "Packets left network, but not honestly ACKed yet" PLUS
801 * "Packets fast retransmitted"
802 */
803 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
804 {
805 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
806 }
807
808 #define TCP_INFINITE_SSTHRESH 0x7fffffff
809
810 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
811 {
812 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
813 }
814
815 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
816 * The exception is rate halving phase, when cwnd is decreasing towards
817 * ssthresh.
818 */
819 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
820 {
821 const struct tcp_sock *tp = tcp_sk(sk);
822 if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
823 return tp->snd_ssthresh;
824 else
825 return max(tp->snd_ssthresh,
826 ((tp->snd_cwnd >> 1) +
827 (tp->snd_cwnd >> 2)));
828 }
829
830 /* Use define here intentionally to get WARN_ON location shown at the caller */
831 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
832
833 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
834 extern __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst);
835
836 /* Slow start with delack produces 3 packets of burst, so that
837 * it is safe "de facto". This will be the default - same as
838 * the default reordering threshold - but if reordering increases,
839 * we must be able to allow cwnd to burst at least this much in order
840 * to not pull it back when holes are filled.
841 */
842 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
843 {
844 return tp->reordering;
845 }
846
847 /* Returns end sequence number of the receiver's advertised window */
848 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
849 {
850 return tp->snd_una + tp->snd_wnd;
851 }
852 extern int tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
853
854 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
855 const struct sk_buff *skb)
856 {
857 if (skb->len < mss)
858 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
859 }
860
861 static inline void tcp_check_probe_timer(struct sock *sk)
862 {
863 struct tcp_sock *tp = tcp_sk(sk);
864 const struct inet_connection_sock *icsk = inet_csk(sk);
865
866 if (!tp->packets_out && !icsk->icsk_pending)
867 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
868 icsk->icsk_rto, TCP_RTO_MAX);
869 }
870
871 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
872 {
873 tp->snd_wl1 = seq;
874 }
875
876 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
877 {
878 tp->snd_wl1 = seq;
879 }
880
881 /*
882 * Calculate(/check) TCP checksum
883 */
884 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
885 __be32 daddr, __wsum base)
886 {
887 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
888 }
889
890 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
891 {
892 return __skb_checksum_complete(skb);
893 }
894
895 static inline int tcp_checksum_complete(struct sk_buff *skb)
896 {
897 return !skb_csum_unnecessary(skb) &&
898 __tcp_checksum_complete(skb);
899 }
900
901 /* Prequeue for VJ style copy to user, combined with checksumming. */
902
903 static inline void tcp_prequeue_init(struct tcp_sock *tp)
904 {
905 tp->ucopy.task = NULL;
906 tp->ucopy.len = 0;
907 tp->ucopy.memory = 0;
908 skb_queue_head_init(&tp->ucopy.prequeue);
909 #ifdef CONFIG_NET_DMA
910 tp->ucopy.dma_chan = NULL;
911 tp->ucopy.wakeup = 0;
912 tp->ucopy.pinned_list = NULL;
913 tp->ucopy.dma_cookie = 0;
914 #endif
915 }
916
917 /* Packet is added to VJ-style prequeue for processing in process
918 * context, if a reader task is waiting. Apparently, this exciting
919 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
920 * failed somewhere. Latency? Burstiness? Well, at least now we will
921 * see, why it failed. 8)8) --ANK
922 *
923 * NOTE: is this not too big to inline?
924 */
925 static inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
926 {
927 struct tcp_sock *tp = tcp_sk(sk);
928
929 if (sysctl_tcp_low_latency || !tp->ucopy.task)
930 return 0;
931
932 __skb_queue_tail(&tp->ucopy.prequeue, skb);
933 tp->ucopy.memory += skb->truesize;
934 if (tp->ucopy.memory > sk->sk_rcvbuf) {
935 struct sk_buff *skb1;
936
937 BUG_ON(sock_owned_by_user(sk));
938
939 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
940 sk_backlog_rcv(sk, skb1);
941 NET_INC_STATS_BH(sock_net(sk),
942 LINUX_MIB_TCPPREQUEUEDROPPED);
943 }
944
945 tp->ucopy.memory = 0;
946 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
947 wake_up_interruptible_sync_poll(sk_sleep(sk),
948 POLLIN | POLLRDNORM | POLLRDBAND);
949 if (!inet_csk_ack_scheduled(sk))
950 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
951 (3 * tcp_rto_min(sk)) / 4,
952 TCP_RTO_MAX);
953 }
954 return 1;
955 }
956
957
958 #undef STATE_TRACE
959
960 #ifdef STATE_TRACE
961 static const char *statename[]={
962 "Unused","Established","Syn Sent","Syn Recv",
963 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
964 "Close Wait","Last ACK","Listen","Closing"
965 };
966 #endif
967 extern void tcp_set_state(struct sock *sk, int state);
968
969 extern void tcp_done(struct sock *sk);
970
971 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
972 {
973 rx_opt->dsack = 0;
974 rx_opt->num_sacks = 0;
975 }
976
977 /* Determine a window scaling and initial window to offer. */
978 extern void tcp_select_initial_window(int __space, __u32 mss,
979 __u32 *rcv_wnd, __u32 *window_clamp,
980 int wscale_ok, __u8 *rcv_wscale,
981 __u32 init_rcv_wnd);
982
983 static inline int tcp_win_from_space(int space)
984 {
985 return sysctl_tcp_adv_win_scale<=0 ?
986 (space>>(-sysctl_tcp_adv_win_scale)) :
987 space - (space>>sysctl_tcp_adv_win_scale);
988 }
989
990 /* Note: caller must be prepared to deal with negative returns */
991 static inline int tcp_space(const struct sock *sk)
992 {
993 return tcp_win_from_space(sk->sk_rcvbuf -
994 atomic_read(&sk->sk_rmem_alloc));
995 }
996
997 static inline int tcp_full_space(const struct sock *sk)
998 {
999 return tcp_win_from_space(sk->sk_rcvbuf);
1000 }
1001
1002 static inline void tcp_openreq_init(struct request_sock *req,
1003 struct tcp_options_received *rx_opt,
1004 struct sk_buff *skb)
1005 {
1006 struct inet_request_sock *ireq = inet_rsk(req);
1007
1008 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
1009 req->cookie_ts = 0;
1010 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1011 req->mss = rx_opt->mss_clamp;
1012 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1013 ireq->tstamp_ok = rx_opt->tstamp_ok;
1014 ireq->sack_ok = rx_opt->sack_ok;
1015 ireq->snd_wscale = rx_opt->snd_wscale;
1016 ireq->wscale_ok = rx_opt->wscale_ok;
1017 ireq->acked = 0;
1018 ireq->ecn_ok = 0;
1019 ireq->rmt_port = tcp_hdr(skb)->source;
1020 ireq->loc_port = tcp_hdr(skb)->dest;
1021 }
1022
1023 extern void tcp_enter_memory_pressure(struct sock *sk);
1024
1025 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1026 {
1027 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1028 }
1029
1030 static inline int keepalive_time_when(const struct tcp_sock *tp)
1031 {
1032 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1033 }
1034
1035 static inline int keepalive_probes(const struct tcp_sock *tp)
1036 {
1037 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1038 }
1039
1040 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1041 {
1042 const struct inet_connection_sock *icsk = &tp->inet_conn;
1043
1044 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1045 tcp_time_stamp - tp->rcv_tstamp);
1046 }
1047
1048 static inline int tcp_fin_time(const struct sock *sk)
1049 {
1050 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1051 const int rto = inet_csk(sk)->icsk_rto;
1052
1053 if (fin_timeout < (rto << 2) - (rto >> 1))
1054 fin_timeout = (rto << 2) - (rto >> 1);
1055
1056 return fin_timeout;
1057 }
1058
1059 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt,
1060 int paws_win)
1061 {
1062 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1063 return 1;
1064 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1065 return 1;
1066 /*
1067 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1068 * then following tcp messages have valid values. Ignore 0 value,
1069 * or else 'negative' tsval might forbid us to accept their packets.
1070 */
1071 if (!rx_opt->ts_recent)
1072 return 1;
1073 return 0;
1074 }
1075
1076 static inline int tcp_paws_reject(const struct tcp_options_received *rx_opt,
1077 int rst)
1078 {
1079 if (tcp_paws_check(rx_opt, 0))
1080 return 0;
1081
1082 /* RST segments are not recommended to carry timestamp,
1083 and, if they do, it is recommended to ignore PAWS because
1084 "their cleanup function should take precedence over timestamps."
1085 Certainly, it is mistake. It is necessary to understand the reasons
1086 of this constraint to relax it: if peer reboots, clock may go
1087 out-of-sync and half-open connections will not be reset.
1088 Actually, the problem would be not existing if all
1089 the implementations followed draft about maintaining clock
1090 via reboots. Linux-2.2 DOES NOT!
1091
1092 However, we can relax time bounds for RST segments to MSL.
1093 */
1094 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1095 return 0;
1096 return 1;
1097 }
1098
1099 static inline void tcp_mib_init(struct net *net)
1100 {
1101 /* See RFC 2012 */
1102 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1103 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1104 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1105 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1106 }
1107
1108 /* from STCP */
1109 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1110 {
1111 tp->lost_skb_hint = NULL;
1112 tp->scoreboard_skb_hint = NULL;
1113 }
1114
1115 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1116 {
1117 tcp_clear_retrans_hints_partial(tp);
1118 tp->retransmit_skb_hint = NULL;
1119 }
1120
1121 /* MD5 Signature */
1122 struct crypto_hash;
1123
1124 /* - key database */
1125 struct tcp_md5sig_key {
1126 u8 *key;
1127 u8 keylen;
1128 };
1129
1130 struct tcp4_md5sig_key {
1131 struct tcp_md5sig_key base;
1132 __be32 addr;
1133 };
1134
1135 struct tcp6_md5sig_key {
1136 struct tcp_md5sig_key base;
1137 #if 0
1138 u32 scope_id; /* XXX */
1139 #endif
1140 struct in6_addr addr;
1141 };
1142
1143 /* - sock block */
1144 struct tcp_md5sig_info {
1145 struct tcp4_md5sig_key *keys4;
1146 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1147 struct tcp6_md5sig_key *keys6;
1148 u32 entries6;
1149 u32 alloced6;
1150 #endif
1151 u32 entries4;
1152 u32 alloced4;
1153 };
1154
1155 /* - pseudo header */
1156 struct tcp4_pseudohdr {
1157 __be32 saddr;
1158 __be32 daddr;
1159 __u8 pad;
1160 __u8 protocol;
1161 __be16 len;
1162 };
1163
1164 struct tcp6_pseudohdr {
1165 struct in6_addr saddr;
1166 struct in6_addr daddr;
1167 __be32 len;
1168 __be32 protocol; /* including padding */
1169 };
1170
1171 union tcp_md5sum_block {
1172 struct tcp4_pseudohdr ip4;
1173 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1174 struct tcp6_pseudohdr ip6;
1175 #endif
1176 };
1177
1178 /* - pool: digest algorithm, hash description and scratch buffer */
1179 struct tcp_md5sig_pool {
1180 struct hash_desc md5_desc;
1181 union tcp_md5sum_block md5_blk;
1182 };
1183
1184 /* - functions */
1185 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1186 struct sock *sk, struct request_sock *req,
1187 struct sk_buff *skb);
1188 extern struct tcp_md5sig_key * tcp_v4_md5_lookup(struct sock *sk,
1189 struct sock *addr_sk);
1190 extern int tcp_v4_md5_do_add(struct sock *sk, __be32 addr, u8 *newkey,
1191 u8 newkeylen);
1192 extern int tcp_v4_md5_do_del(struct sock *sk, __be32 addr);
1193
1194 #ifdef CONFIG_TCP_MD5SIG
1195 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_keylen ? \
1196 &(struct tcp_md5sig_key) { \
1197 .key = (twsk)->tw_md5_key, \
1198 .keylen = (twsk)->tw_md5_keylen, \
1199 } : NULL)
1200 #else
1201 #define tcp_twsk_md5_key(twsk) NULL
1202 #endif
1203
1204 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1205 extern void tcp_free_md5sig_pool(void);
1206
1207 extern struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1208 extern void tcp_put_md5sig_pool(void);
1209
1210 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, struct tcphdr *);
1211 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, struct sk_buff *,
1212 unsigned header_len);
1213 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1214 struct tcp_md5sig_key *key);
1215
1216 /* write queue abstraction */
1217 static inline void tcp_write_queue_purge(struct sock *sk)
1218 {
1219 struct sk_buff *skb;
1220
1221 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1222 sk_wmem_free_skb(sk, skb);
1223 sk_mem_reclaim(sk);
1224 tcp_clear_all_retrans_hints(tcp_sk(sk));
1225 }
1226
1227 static inline struct sk_buff *tcp_write_queue_head(struct sock *sk)
1228 {
1229 return skb_peek(&sk->sk_write_queue);
1230 }
1231
1232 static inline struct sk_buff *tcp_write_queue_tail(struct sock *sk)
1233 {
1234 return skb_peek_tail(&sk->sk_write_queue);
1235 }
1236
1237 static inline struct sk_buff *tcp_write_queue_next(struct sock *sk, struct sk_buff *skb)
1238 {
1239 return skb_queue_next(&sk->sk_write_queue, skb);
1240 }
1241
1242 static inline struct sk_buff *tcp_write_queue_prev(struct sock *sk, struct sk_buff *skb)
1243 {
1244 return skb_queue_prev(&sk->sk_write_queue, skb);
1245 }
1246
1247 #define tcp_for_write_queue(skb, sk) \
1248 skb_queue_walk(&(sk)->sk_write_queue, skb)
1249
1250 #define tcp_for_write_queue_from(skb, sk) \
1251 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1252
1253 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1254 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1255
1256 static inline struct sk_buff *tcp_send_head(struct sock *sk)
1257 {
1258 return sk->sk_send_head;
1259 }
1260
1261 static inline bool tcp_skb_is_last(const struct sock *sk,
1262 const struct sk_buff *skb)
1263 {
1264 return skb_queue_is_last(&sk->sk_write_queue, skb);
1265 }
1266
1267 static inline void tcp_advance_send_head(struct sock *sk, struct sk_buff *skb)
1268 {
1269 if (tcp_skb_is_last(sk, skb))
1270 sk->sk_send_head = NULL;
1271 else
1272 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1273 }
1274
1275 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1276 {
1277 if (sk->sk_send_head == skb_unlinked)
1278 sk->sk_send_head = NULL;
1279 }
1280
1281 static inline void tcp_init_send_head(struct sock *sk)
1282 {
1283 sk->sk_send_head = NULL;
1284 }
1285
1286 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1287 {
1288 __skb_queue_tail(&sk->sk_write_queue, skb);
1289 }
1290
1291 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1292 {
1293 __tcp_add_write_queue_tail(sk, skb);
1294
1295 /* Queue it, remembering where we must start sending. */
1296 if (sk->sk_send_head == NULL) {
1297 sk->sk_send_head = skb;
1298
1299 if (tcp_sk(sk)->highest_sack == NULL)
1300 tcp_sk(sk)->highest_sack = skb;
1301 }
1302 }
1303
1304 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1305 {
1306 __skb_queue_head(&sk->sk_write_queue, skb);
1307 }
1308
1309 /* Insert buff after skb on the write queue of sk. */
1310 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1311 struct sk_buff *buff,
1312 struct sock *sk)
1313 {
1314 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1315 }
1316
1317 /* Insert new before skb on the write queue of sk. */
1318 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1319 struct sk_buff *skb,
1320 struct sock *sk)
1321 {
1322 __skb_queue_before(&sk->sk_write_queue, skb, new);
1323
1324 if (sk->sk_send_head == skb)
1325 sk->sk_send_head = new;
1326 }
1327
1328 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1329 {
1330 __skb_unlink(skb, &sk->sk_write_queue);
1331 }
1332
1333 static inline int tcp_write_queue_empty(struct sock *sk)
1334 {
1335 return skb_queue_empty(&sk->sk_write_queue);
1336 }
1337
1338 static inline void tcp_push_pending_frames(struct sock *sk)
1339 {
1340 if (tcp_send_head(sk)) {
1341 struct tcp_sock *tp = tcp_sk(sk);
1342
1343 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1344 }
1345 }
1346
1347 /* Start sequence of the highest skb with SACKed bit, valid only if
1348 * sacked > 0 or when the caller has ensured validity by itself.
1349 */
1350 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1351 {
1352 if (!tp->sacked_out)
1353 return tp->snd_una;
1354
1355 if (tp->highest_sack == NULL)
1356 return tp->snd_nxt;
1357
1358 return TCP_SKB_CB(tp->highest_sack)->seq;
1359 }
1360
1361 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1362 {
1363 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1364 tcp_write_queue_next(sk, skb);
1365 }
1366
1367 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1368 {
1369 return tcp_sk(sk)->highest_sack;
1370 }
1371
1372 static inline void tcp_highest_sack_reset(struct sock *sk)
1373 {
1374 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1375 }
1376
1377 /* Called when old skb is about to be deleted (to be combined with new skb) */
1378 static inline void tcp_highest_sack_combine(struct sock *sk,
1379 struct sk_buff *old,
1380 struct sk_buff *new)
1381 {
1382 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1383 tcp_sk(sk)->highest_sack = new;
1384 }
1385
1386 /* Determines whether this is a thin stream (which may suffer from
1387 * increased latency). Used to trigger latency-reducing mechanisms.
1388 */
1389 static inline unsigned int tcp_stream_is_thin(struct tcp_sock *tp)
1390 {
1391 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1392 }
1393
1394 /* /proc */
1395 enum tcp_seq_states {
1396 TCP_SEQ_STATE_LISTENING,
1397 TCP_SEQ_STATE_OPENREQ,
1398 TCP_SEQ_STATE_ESTABLISHED,
1399 TCP_SEQ_STATE_TIME_WAIT,
1400 };
1401
1402 struct tcp_seq_afinfo {
1403 char *name;
1404 sa_family_t family;
1405 struct file_operations seq_fops;
1406 struct seq_operations seq_ops;
1407 };
1408
1409 struct tcp_iter_state {
1410 struct seq_net_private p;
1411 sa_family_t family;
1412 enum tcp_seq_states state;
1413 struct sock *syn_wait_sk;
1414 int bucket, offset, sbucket, num, uid;
1415 loff_t last_pos;
1416 };
1417
1418 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1419 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1420
1421 extern struct request_sock_ops tcp_request_sock_ops;
1422 extern struct request_sock_ops tcp6_request_sock_ops;
1423
1424 extern void tcp_v4_destroy_sock(struct sock *sk);
1425
1426 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1427 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features);
1428 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1429 struct sk_buff *skb);
1430 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1431 struct sk_buff *skb);
1432 extern int tcp_gro_complete(struct sk_buff *skb);
1433 extern int tcp4_gro_complete(struct sk_buff *skb);
1434
1435 #ifdef CONFIG_PROC_FS
1436 extern int tcp4_proc_init(void);
1437 extern void tcp4_proc_exit(void);
1438 #endif
1439
1440 /* TCP af-specific functions */
1441 struct tcp_sock_af_ops {
1442 #ifdef CONFIG_TCP_MD5SIG
1443 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1444 struct sock *addr_sk);
1445 int (*calc_md5_hash) (char *location,
1446 struct tcp_md5sig_key *md5,
1447 struct sock *sk,
1448 struct request_sock *req,
1449 struct sk_buff *skb);
1450 int (*md5_add) (struct sock *sk,
1451 struct sock *addr_sk,
1452 u8 *newkey,
1453 u8 len);
1454 int (*md5_parse) (struct sock *sk,
1455 char __user *optval,
1456 int optlen);
1457 #endif
1458 };
1459
1460 struct tcp_request_sock_ops {
1461 #ifdef CONFIG_TCP_MD5SIG
1462 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1463 struct request_sock *req);
1464 int (*calc_md5_hash) (char *location,
1465 struct tcp_md5sig_key *md5,
1466 struct sock *sk,
1467 struct request_sock *req,
1468 struct sk_buff *skb);
1469 #endif
1470 };
1471
1472 /* Using SHA1 for now, define some constants.
1473 */
1474 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1475 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1476 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1477
1478 extern int tcp_cookie_generator(u32 *bakery);
1479
1480 /**
1481 * struct tcp_cookie_values - each socket needs extra space for the
1482 * cookies, together with (optional) space for any SYN data.
1483 *
1484 * A tcp_sock contains a pointer to the current value, and this is
1485 * cloned to the tcp_timewait_sock.
1486 *
1487 * @cookie_pair: variable data from the option exchange.
1488 *
1489 * @cookie_desired: user specified tcpct_cookie_desired. Zero
1490 * indicates default (sysctl_tcp_cookie_size).
1491 * After cookie sent, remembers size of cookie.
1492 * Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1493 *
1494 * @s_data_desired: user specified tcpct_s_data_desired. When the
1495 * constant payload is specified (@s_data_constant),
1496 * holds its length instead.
1497 * Range 0 to TCP_MSS_DESIRED.
1498 *
1499 * @s_data_payload: constant data that is to be included in the
1500 * payload of SYN or SYNACK segments when the
1501 * cookie option is present.
1502 */
1503 struct tcp_cookie_values {
1504 struct kref kref;
1505 u8 cookie_pair[TCP_COOKIE_PAIR_SIZE];
1506 u8 cookie_pair_size;
1507 u8 cookie_desired;
1508 u16 s_data_desired:11,
1509 s_data_constant:1,
1510 s_data_in:1,
1511 s_data_out:1,
1512 s_data_unused:2;
1513 u8 s_data_payload[0];
1514 };
1515
1516 static inline void tcp_cookie_values_release(struct kref *kref)
1517 {
1518 kfree(container_of(kref, struct tcp_cookie_values, kref));
1519 }
1520
1521 /* The length of constant payload data. Note that s_data_desired is
1522 * overloaded, depending on s_data_constant: either the length of constant
1523 * data (returned here) or the limit on variable data.
1524 */
1525 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1526 {
1527 return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1528 ? tp->cookie_values->s_data_desired
1529 : 0;
1530 }
1531
1532 /**
1533 * struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1534 *
1535 * As tcp_request_sock has already been extended in other places, the
1536 * only remaining method is to pass stack values along as function
1537 * parameters. These parameters are not needed after sending SYNACK.
1538 *
1539 * @cookie_bakery: cryptographic secret and message workspace.
1540 *
1541 * @cookie_plus: bytes in authenticator/cookie option, copied from
1542 * struct tcp_options_received (above).
1543 */
1544 struct tcp_extend_values {
1545 struct request_values rv;
1546 u32 cookie_bakery[COOKIE_WORKSPACE_WORDS];
1547 u8 cookie_plus:6,
1548 cookie_out_never:1,
1549 cookie_in_always:1;
1550 };
1551
1552 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1553 {
1554 return (struct tcp_extend_values *)rvp;
1555 }
1556
1557 extern void tcp_v4_init(void);
1558 extern void tcp_init(void);
1559
1560 #endif /* _TCP_H */
This page took 0.391552 seconds and 6 git commands to generate.