Remove ppc860, ppc750cl, ppc7450 insns from common ppc.
[deliverable/binutils-gdb.git] / include / opcode / ppc.h
1 /* ppc.h -- Header file for PowerPC opcode table
2 Copyright (C) 1994-2015 Free Software Foundation, Inc.
3 Written by Ian Lance Taylor, Cygnus Support
4
5 This file is part of GDB, GAS, and the GNU binutils.
6
7 GDB, GAS, and the GNU binutils are free software; you can redistribute
8 them and/or modify them under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either version 3,
10 or (at your option) any later version.
11
12 GDB, GAS, and the GNU binutils are distributed in the hope that they
13 will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
15 the GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this file; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #ifndef PPC_H
23 #define PPC_H
24
25 #include "bfd_stdint.h"
26
27 typedef uint64_t ppc_cpu_t;
28
29 /* The opcode table is an array of struct powerpc_opcode. */
30
31 struct powerpc_opcode
32 {
33 /* The opcode name. */
34 const char *name;
35
36 /* The opcode itself. Those bits which will be filled in with
37 operands are zeroes. */
38 unsigned long opcode;
39
40 /* The opcode mask. This is used by the disassembler. This is a
41 mask containing ones indicating those bits which must match the
42 opcode field, and zeroes indicating those bits which need not
43 match (and are presumably filled in by operands). */
44 unsigned long mask;
45
46 /* One bit flags for the opcode. These are used to indicate which
47 specific processors support the instructions. The defined values
48 are listed below. */
49 ppc_cpu_t flags;
50
51 /* One bit flags for the opcode. These are used to indicate which
52 specific processors no longer support the instructions. The defined
53 values are listed below. */
54 ppc_cpu_t deprecated;
55
56 /* An array of operand codes. Each code is an index into the
57 operand table. They appear in the order which the operands must
58 appear in assembly code, and are terminated by a zero. */
59 unsigned char operands[8];
60 };
61
62 /* The table itself is sorted by major opcode number, and is otherwise
63 in the order in which the disassembler should consider
64 instructions. */
65 extern const struct powerpc_opcode powerpc_opcodes[];
66 extern const int powerpc_num_opcodes;
67 extern const struct powerpc_opcode vle_opcodes[];
68 extern const int vle_num_opcodes;
69
70 /* Values defined for the flags field of a struct powerpc_opcode. */
71
72 /* Opcode is defined for the PowerPC architecture. */
73 #define PPC_OPCODE_PPC 1
74
75 /* Opcode is defined for the POWER (RS/6000) architecture. */
76 #define PPC_OPCODE_POWER 2
77
78 /* Opcode is defined for the POWER2 (Rios 2) architecture. */
79 #define PPC_OPCODE_POWER2 4
80
81 /* Opcode is supported by the Motorola PowerPC 601 processor. The 601
82 is assumed to support all PowerPC (PPC_OPCODE_PPC) instructions,
83 but it also supports many additional POWER instructions. */
84 #define PPC_OPCODE_601 8
85
86 /* Opcode is supported in both the Power and PowerPC architectures
87 (ie, compiler's -mcpu=common or assembler's -mcom). More than just
88 the intersection of PPC_OPCODE_PPC with the union of PPC_OPCODE_POWER
89 and PPC_OPCODE_POWER2 because many instructions changed mnemonics
90 between POWER and POWERPC. */
91 #define PPC_OPCODE_COMMON 0x10
92
93 /* Opcode is supported for any Power or PowerPC platform (this is
94 for the assembler's -many option, and it eliminates duplicates). */
95 #define PPC_OPCODE_ANY 0x20
96
97 /* Opcode is only defined on 64 bit architectures. */
98 #define PPC_OPCODE_64 0x40
99
100 /* Opcode is supported as part of the 64-bit bridge. */
101 #define PPC_OPCODE_64_BRIDGE 0x80
102
103 /* Opcode is supported by Altivec Vector Unit */
104 #define PPC_OPCODE_ALTIVEC 0x100
105
106 /* Opcode is supported by PowerPC 403 processor. */
107 #define PPC_OPCODE_403 0x200
108
109 /* Opcode is supported by PowerPC BookE processor. */
110 #define PPC_OPCODE_BOOKE 0x400
111
112 /* Opcode is supported by PowerPC 440 processor. */
113 #define PPC_OPCODE_440 0x800
114
115 /* Opcode is only supported by Power4 architecture. */
116 #define PPC_OPCODE_POWER4 0x1000
117
118 /* Opcode is only supported by Power7 architecture. */
119 #define PPC_OPCODE_POWER7 0x2000
120
121 /* Opcode is only supported by e500x2 Core. */
122 #define PPC_OPCODE_SPE 0x4000
123
124 /* Opcode is supported by e500x2 Integer select APU. */
125 #define PPC_OPCODE_ISEL 0x8000
126
127 /* Opcode is an e500 SPE floating point instruction. */
128 #define PPC_OPCODE_EFS 0x10000
129
130 /* Opcode is supported by branch locking APU. */
131 #define PPC_OPCODE_BRLOCK 0x20000
132
133 /* Opcode is supported by performance monitor APU. */
134 #define PPC_OPCODE_PMR 0x40000
135
136 /* Opcode is supported by cache locking APU. */
137 #define PPC_OPCODE_CACHELCK 0x80000
138
139 /* Opcode is supported by machine check APU. */
140 #define PPC_OPCODE_RFMCI 0x100000
141
142 /* Opcode is only supported by Power5 architecture. */
143 #define PPC_OPCODE_POWER5 0x200000
144
145 /* Opcode is supported by PowerPC e300 family. */
146 #define PPC_OPCODE_E300 0x400000
147
148 /* Opcode is only supported by Power6 architecture. */
149 #define PPC_OPCODE_POWER6 0x800000
150
151 /* Opcode is only supported by PowerPC Cell family. */
152 #define PPC_OPCODE_CELL 0x1000000
153
154 /* Opcode is supported by CPUs with paired singles support. */
155 #define PPC_OPCODE_PPCPS 0x2000000
156
157 /* Opcode is supported by Power E500MC */
158 #define PPC_OPCODE_E500MC 0x4000000
159
160 /* Opcode is supported by PowerPC 405 processor. */
161 #define PPC_OPCODE_405 0x8000000
162
163 /* Opcode is supported by Vector-Scalar (VSX) Unit */
164 #define PPC_OPCODE_VSX 0x10000000
165
166 /* Opcode is supported by A2. */
167 #define PPC_OPCODE_A2 0x20000000
168
169 /* Opcode is supported by PowerPC 476 processor. */
170 #define PPC_OPCODE_476 0x40000000
171
172 /* Opcode is supported by AppliedMicro Titan core */
173 #define PPC_OPCODE_TITAN 0x80000000
174
175 /* Opcode which is supported by the e500 family */
176 #define PPC_OPCODE_E500 0x100000000ull
177
178 /* Opcode is supported by Extended Altivec Vector Unit */
179 #define PPC_OPCODE_ALTIVEC2 0x200000000ull
180
181 /* Opcode is supported by Power E6500 */
182 #define PPC_OPCODE_E6500 0x400000000ull
183
184 /* Opcode is supported by Thread management APU */
185 #define PPC_OPCODE_TMR 0x800000000ull
186
187 /* Opcode which is supported by the VLE extension. */
188 #define PPC_OPCODE_VLE 0x1000000000ull
189
190 /* Opcode is only supported by Power8 architecture. */
191 #define PPC_OPCODE_POWER8 0x2000000000ull
192
193 /* Opcode which is supported by the Hardware Transactional Memory extension. */
194 /* Currently, this is the same as the POWER8 mask. If another cpu comes out
195 that isn't a superset of POWER8, we can define this to its own mask. */
196 #define PPC_OPCODE_HTM PPC_OPCODE_POWER8
197
198 /* Opcode is supported by ppc750cl. */
199 #define PPC_OPCODE_750 0x4000000000ull
200
201 /* Opcode is supported by ppc7450. */
202 #define PPC_OPCODE_7450 0x8000000000ull
203
204 /* Opcode is supported by ppc821/850/860. */
205 #define PPC_OPCODE_860 0x10000000000ull
206
207 /* A macro to extract the major opcode from an instruction. */
208 #define PPC_OP(i) (((i) >> 26) & 0x3f)
209
210 /* A macro to determine if the instruction is a 2-byte VLE insn. */
211 #define PPC_OP_SE_VLE(m) ((m) <= 0xffff)
212
213 /* A macro to extract the major opcode from a VLE instruction. */
214 #define VLE_OP(i,m) (((i) >> ((m) <= 0xffff ? 10 : 26)) & 0x3f)
215
216 /* A macro to convert a VLE opcode to a VLE opcode segment. */
217 #define VLE_OP_TO_SEG(i) ((i) >> 1)
218 \f
219 /* The operands table is an array of struct powerpc_operand. */
220
221 struct powerpc_operand
222 {
223 /* A bitmask of bits in the operand. */
224 unsigned int bitm;
225
226 /* The shift operation to be applied to the operand. No shift
227 is made if this is zero. For positive values, the operand
228 is shifted left by SHIFT. For negative values, the operand
229 is shifted right by -SHIFT. Use PPC_OPSHIFT_INV to indicate
230 that BITM and SHIFT cannot be used to determine where the
231 operand goes in the insn. */
232 int shift;
233
234 /* Insertion function. This is used by the assembler. To insert an
235 operand value into an instruction, check this field.
236
237 If it is NULL, execute
238 if (o->shift >= 0)
239 i |= (op & o->bitm) << o->shift;
240 else
241 i |= (op & o->bitm) >> -o->shift;
242 (i is the instruction which we are filling in, o is a pointer to
243 this structure, and op is the operand value).
244
245 If this field is not NULL, then simply call it with the
246 instruction and the operand value. It will return the new value
247 of the instruction. If the ERRMSG argument is not NULL, then if
248 the operand value is illegal, *ERRMSG will be set to a warning
249 string (the operand will be inserted in any case). If the
250 operand value is legal, *ERRMSG will be unchanged (most operands
251 can accept any value). */
252 unsigned long (*insert)
253 (unsigned long instruction, long op, ppc_cpu_t dialect, const char **errmsg);
254
255 /* Extraction function. This is used by the disassembler. To
256 extract this operand type from an instruction, check this field.
257
258 If it is NULL, compute
259 if (o->shift >= 0)
260 op = (i >> o->shift) & o->bitm;
261 else
262 op = (i << -o->shift) & o->bitm;
263 if ((o->flags & PPC_OPERAND_SIGNED) != 0)
264 sign_extend (op);
265 (i is the instruction, o is a pointer to this structure, and op
266 is the result).
267
268 If this field is not NULL, then simply call it with the
269 instruction value. It will return the value of the operand. If
270 the INVALID argument is not NULL, *INVALID will be set to
271 non-zero if this operand type can not actually be extracted from
272 this operand (i.e., the instruction does not match). If the
273 operand is valid, *INVALID will not be changed. */
274 long (*extract) (unsigned long instruction, ppc_cpu_t dialect, int *invalid);
275
276 /* One bit syntax flags. */
277 unsigned long flags;
278 };
279
280 /* Elements in the table are retrieved by indexing with values from
281 the operands field of the powerpc_opcodes table. */
282
283 extern const struct powerpc_operand powerpc_operands[];
284 extern const unsigned int num_powerpc_operands;
285
286 /* Use with the shift field of a struct powerpc_operand to indicate
287 that BITM and SHIFT cannot be used to determine where the operand
288 goes in the insn. */
289 #define PPC_OPSHIFT_INV (-1 << 31)
290
291 /* Values defined for the flags field of a struct powerpc_operand. */
292
293 /* This operand takes signed values. */
294 #define PPC_OPERAND_SIGNED (0x1)
295
296 /* This operand takes signed values, but also accepts a full positive
297 range of values when running in 32 bit mode. That is, if bits is
298 16, it takes any value from -0x8000 to 0xffff. In 64 bit mode,
299 this flag is ignored. */
300 #define PPC_OPERAND_SIGNOPT (0x2)
301
302 /* This operand does not actually exist in the assembler input. This
303 is used to support extended mnemonics such as mr, for which two
304 operands fields are identical. The assembler should call the
305 insert function with any op value. The disassembler should call
306 the extract function, ignore the return value, and check the value
307 placed in the valid argument. */
308 #define PPC_OPERAND_FAKE (0x4)
309
310 /* The next operand should be wrapped in parentheses rather than
311 separated from this one by a comma. This is used for the load and
312 store instructions which want their operands to look like
313 reg,displacement(reg)
314 */
315 #define PPC_OPERAND_PARENS (0x8)
316
317 /* This operand may use the symbolic names for the CR fields, which
318 are
319 lt 0 gt 1 eq 2 so 3 un 3
320 cr0 0 cr1 1 cr2 2 cr3 3
321 cr4 4 cr5 5 cr6 6 cr7 7
322 These may be combined arithmetically, as in cr2*4+gt. These are
323 only supported on the PowerPC, not the POWER. */
324 #define PPC_OPERAND_CR_BIT (0x10)
325
326 /* This operand names a register. The disassembler uses this to print
327 register names with a leading 'r'. */
328 #define PPC_OPERAND_GPR (0x20)
329
330 /* Like PPC_OPERAND_GPR, but don't print a leading 'r' for r0. */
331 #define PPC_OPERAND_GPR_0 (0x40)
332
333 /* This operand names a floating point register. The disassembler
334 prints these with a leading 'f'. */
335 #define PPC_OPERAND_FPR (0x80)
336
337 /* This operand is a relative branch displacement. The disassembler
338 prints these symbolically if possible. */
339 #define PPC_OPERAND_RELATIVE (0x100)
340
341 /* This operand is an absolute branch address. The disassembler
342 prints these symbolically if possible. */
343 #define PPC_OPERAND_ABSOLUTE (0x200)
344
345 /* This operand is optional, and is zero if omitted. This is used for
346 example, in the optional BF field in the comparison instructions. The
347 assembler must count the number of operands remaining on the line,
348 and the number of operands remaining for the opcode, and decide
349 whether this operand is present or not. The disassembler should
350 print this operand out only if it is not zero. */
351 #define PPC_OPERAND_OPTIONAL (0x400)
352
353 /* This flag is only used with PPC_OPERAND_OPTIONAL. If this operand
354 is omitted, then for the next operand use this operand value plus
355 1, ignoring the next operand field for the opcode. This wretched
356 hack is needed because the Power rotate instructions can take
357 either 4 or 5 operands. The disassembler should print this operand
358 out regardless of the PPC_OPERAND_OPTIONAL field. */
359 #define PPC_OPERAND_NEXT (0x800)
360
361 /* This operand should be regarded as a negative number for the
362 purposes of overflow checking (i.e., the normal most negative
363 number is disallowed and one more than the normal most positive
364 number is allowed). This flag will only be set for a signed
365 operand. */
366 #define PPC_OPERAND_NEGATIVE (0x1000)
367
368 /* This operand names a vector unit register. The disassembler
369 prints these with a leading 'v'. */
370 #define PPC_OPERAND_VR (0x2000)
371
372 /* This operand is for the DS field in a DS form instruction. */
373 #define PPC_OPERAND_DS (0x4000)
374
375 /* This operand is for the DQ field in a DQ form instruction. */
376 #define PPC_OPERAND_DQ (0x8000)
377
378 /* Valid range of operand is 0..n rather than 0..n-1. */
379 #define PPC_OPERAND_PLUS1 (0x10000)
380
381 /* Xilinx APU and FSL related operands */
382 #define PPC_OPERAND_FSL (0x20000)
383 #define PPC_OPERAND_FCR (0x40000)
384 #define PPC_OPERAND_UDI (0x80000)
385
386 /* This operand names a vector-scalar unit register. The disassembler
387 prints these with a leading 'vs'. */
388 #define PPC_OPERAND_VSR (0x100000)
389
390 /* This is a CR FIELD that does not use symbolic names. */
391 #define PPC_OPERAND_CR_REG (0x200000)
392
393 /* This flag is only used with PPC_OPERAND_OPTIONAL. If this operand
394 is omitted, then the value it should use for the operand is stored
395 in the SHIFT field of the immediatly following operand field. */
396 #define PPC_OPERAND_OPTIONAL_VALUE (0x400000)
397 \f
398 /* The POWER and PowerPC assemblers use a few macros. We keep them
399 with the operands table for simplicity. The macro table is an
400 array of struct powerpc_macro. */
401
402 struct powerpc_macro
403 {
404 /* The macro name. */
405 const char *name;
406
407 /* The number of operands the macro takes. */
408 unsigned int operands;
409
410 /* One bit flags for the opcode. These are used to indicate which
411 specific processors support the instructions. The values are the
412 same as those for the struct powerpc_opcode flags field. */
413 ppc_cpu_t flags;
414
415 /* A format string to turn the macro into a normal instruction.
416 Each %N in the string is replaced with operand number N (zero
417 based). */
418 const char *format;
419 };
420
421 extern const struct powerpc_macro powerpc_macros[];
422 extern const int powerpc_num_macros;
423
424 extern ppc_cpu_t ppc_parse_cpu (ppc_cpu_t, ppc_cpu_t *, const char *);
425
426 static inline long
427 ppc_optional_operand_value (const struct powerpc_operand *operand)
428 {
429 if ((operand->flags & PPC_OPERAND_OPTIONAL_VALUE) != 0)
430 return (operand+1)->shift;
431 return 0;
432 }
433
434 #endif /* PPC_H */
This page took 0.038695 seconds and 4 git commands to generate.