IB/mad: Add support for additional MAD info to/from drivers
[deliverable/linux.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <uapi/linux/if_ether.h>
52
53 #include <linux/atomic.h>
54 #include <linux/mmu_notifier.h>
55 #include <asm/uaccess.h>
56
57 extern struct workqueue_struct *ib_wq;
58
59 union ib_gid {
60 u8 raw[16];
61 struct {
62 __be64 subnet_prefix;
63 __be64 interface_id;
64 } global;
65 };
66
67 enum rdma_node_type {
68 /* IB values map to NodeInfo:NodeType. */
69 RDMA_NODE_IB_CA = 1,
70 RDMA_NODE_IB_SWITCH,
71 RDMA_NODE_IB_ROUTER,
72 RDMA_NODE_RNIC,
73 RDMA_NODE_USNIC,
74 RDMA_NODE_USNIC_UDP,
75 };
76
77 enum rdma_transport_type {
78 RDMA_TRANSPORT_IB,
79 RDMA_TRANSPORT_IWARP,
80 RDMA_TRANSPORT_USNIC,
81 RDMA_TRANSPORT_USNIC_UDP
82 };
83
84 enum rdma_protocol_type {
85 RDMA_PROTOCOL_IB,
86 RDMA_PROTOCOL_IBOE,
87 RDMA_PROTOCOL_IWARP,
88 RDMA_PROTOCOL_USNIC_UDP
89 };
90
91 __attribute_const__ enum rdma_transport_type
92 rdma_node_get_transport(enum rdma_node_type node_type);
93
94 enum rdma_link_layer {
95 IB_LINK_LAYER_UNSPECIFIED,
96 IB_LINK_LAYER_INFINIBAND,
97 IB_LINK_LAYER_ETHERNET,
98 };
99
100 enum ib_device_cap_flags {
101 IB_DEVICE_RESIZE_MAX_WR = 1,
102 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
103 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
104 IB_DEVICE_RAW_MULTI = (1<<3),
105 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
106 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
107 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
108 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
109 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
110 IB_DEVICE_INIT_TYPE = (1<<9),
111 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
112 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
113 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
114 IB_DEVICE_SRQ_RESIZE = (1<<13),
115 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
116 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
117 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
118 IB_DEVICE_MEM_WINDOW = (1<<17),
119 /*
120 * Devices should set IB_DEVICE_UD_IP_SUM if they support
121 * insertion of UDP and TCP checksum on outgoing UD IPoIB
122 * messages and can verify the validity of checksum for
123 * incoming messages. Setting this flag implies that the
124 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
125 */
126 IB_DEVICE_UD_IP_CSUM = (1<<18),
127 IB_DEVICE_UD_TSO = (1<<19),
128 IB_DEVICE_XRC = (1<<20),
129 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
130 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
131 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
132 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
133 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
134 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
135 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
136 };
137
138 enum ib_signature_prot_cap {
139 IB_PROT_T10DIF_TYPE_1 = 1,
140 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
141 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
142 };
143
144 enum ib_signature_guard_cap {
145 IB_GUARD_T10DIF_CRC = 1,
146 IB_GUARD_T10DIF_CSUM = 1 << 1,
147 };
148
149 enum ib_atomic_cap {
150 IB_ATOMIC_NONE,
151 IB_ATOMIC_HCA,
152 IB_ATOMIC_GLOB
153 };
154
155 enum ib_odp_general_cap_bits {
156 IB_ODP_SUPPORT = 1 << 0,
157 };
158
159 enum ib_odp_transport_cap_bits {
160 IB_ODP_SUPPORT_SEND = 1 << 0,
161 IB_ODP_SUPPORT_RECV = 1 << 1,
162 IB_ODP_SUPPORT_WRITE = 1 << 2,
163 IB_ODP_SUPPORT_READ = 1 << 3,
164 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
165 };
166
167 struct ib_odp_caps {
168 uint64_t general_caps;
169 struct {
170 uint32_t rc_odp_caps;
171 uint32_t uc_odp_caps;
172 uint32_t ud_odp_caps;
173 } per_transport_caps;
174 };
175
176 enum ib_cq_creation_flags {
177 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
178 };
179
180 struct ib_cq_init_attr {
181 unsigned int cqe;
182 int comp_vector;
183 u32 flags;
184 };
185
186 struct ib_device_attr {
187 u64 fw_ver;
188 __be64 sys_image_guid;
189 u64 max_mr_size;
190 u64 page_size_cap;
191 u32 vendor_id;
192 u32 vendor_part_id;
193 u32 hw_ver;
194 int max_qp;
195 int max_qp_wr;
196 int device_cap_flags;
197 int max_sge;
198 int max_sge_rd;
199 int max_cq;
200 int max_cqe;
201 int max_mr;
202 int max_pd;
203 int max_qp_rd_atom;
204 int max_ee_rd_atom;
205 int max_res_rd_atom;
206 int max_qp_init_rd_atom;
207 int max_ee_init_rd_atom;
208 enum ib_atomic_cap atomic_cap;
209 enum ib_atomic_cap masked_atomic_cap;
210 int max_ee;
211 int max_rdd;
212 int max_mw;
213 int max_raw_ipv6_qp;
214 int max_raw_ethy_qp;
215 int max_mcast_grp;
216 int max_mcast_qp_attach;
217 int max_total_mcast_qp_attach;
218 int max_ah;
219 int max_fmr;
220 int max_map_per_fmr;
221 int max_srq;
222 int max_srq_wr;
223 int max_srq_sge;
224 unsigned int max_fast_reg_page_list_len;
225 u16 max_pkeys;
226 u8 local_ca_ack_delay;
227 int sig_prot_cap;
228 int sig_guard_cap;
229 struct ib_odp_caps odp_caps;
230 uint64_t timestamp_mask;
231 uint64_t hca_core_clock; /* in KHZ */
232 };
233
234 enum ib_mtu {
235 IB_MTU_256 = 1,
236 IB_MTU_512 = 2,
237 IB_MTU_1024 = 3,
238 IB_MTU_2048 = 4,
239 IB_MTU_4096 = 5
240 };
241
242 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
243 {
244 switch (mtu) {
245 case IB_MTU_256: return 256;
246 case IB_MTU_512: return 512;
247 case IB_MTU_1024: return 1024;
248 case IB_MTU_2048: return 2048;
249 case IB_MTU_4096: return 4096;
250 default: return -1;
251 }
252 }
253
254 enum ib_port_state {
255 IB_PORT_NOP = 0,
256 IB_PORT_DOWN = 1,
257 IB_PORT_INIT = 2,
258 IB_PORT_ARMED = 3,
259 IB_PORT_ACTIVE = 4,
260 IB_PORT_ACTIVE_DEFER = 5
261 };
262
263 enum ib_port_cap_flags {
264 IB_PORT_SM = 1 << 1,
265 IB_PORT_NOTICE_SUP = 1 << 2,
266 IB_PORT_TRAP_SUP = 1 << 3,
267 IB_PORT_OPT_IPD_SUP = 1 << 4,
268 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
269 IB_PORT_SL_MAP_SUP = 1 << 6,
270 IB_PORT_MKEY_NVRAM = 1 << 7,
271 IB_PORT_PKEY_NVRAM = 1 << 8,
272 IB_PORT_LED_INFO_SUP = 1 << 9,
273 IB_PORT_SM_DISABLED = 1 << 10,
274 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
275 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
276 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
277 IB_PORT_CM_SUP = 1 << 16,
278 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
279 IB_PORT_REINIT_SUP = 1 << 18,
280 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
281 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
282 IB_PORT_DR_NOTICE_SUP = 1 << 21,
283 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
284 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
285 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
286 IB_PORT_CLIENT_REG_SUP = 1 << 25,
287 IB_PORT_IP_BASED_GIDS = 1 << 26
288 };
289
290 enum ib_port_width {
291 IB_WIDTH_1X = 1,
292 IB_WIDTH_4X = 2,
293 IB_WIDTH_8X = 4,
294 IB_WIDTH_12X = 8
295 };
296
297 static inline int ib_width_enum_to_int(enum ib_port_width width)
298 {
299 switch (width) {
300 case IB_WIDTH_1X: return 1;
301 case IB_WIDTH_4X: return 4;
302 case IB_WIDTH_8X: return 8;
303 case IB_WIDTH_12X: return 12;
304 default: return -1;
305 }
306 }
307
308 enum ib_port_speed {
309 IB_SPEED_SDR = 1,
310 IB_SPEED_DDR = 2,
311 IB_SPEED_QDR = 4,
312 IB_SPEED_FDR10 = 8,
313 IB_SPEED_FDR = 16,
314 IB_SPEED_EDR = 32
315 };
316
317 struct ib_protocol_stats {
318 /* TBD... */
319 };
320
321 struct iw_protocol_stats {
322 u64 ipInReceives;
323 u64 ipInHdrErrors;
324 u64 ipInTooBigErrors;
325 u64 ipInNoRoutes;
326 u64 ipInAddrErrors;
327 u64 ipInUnknownProtos;
328 u64 ipInTruncatedPkts;
329 u64 ipInDiscards;
330 u64 ipInDelivers;
331 u64 ipOutForwDatagrams;
332 u64 ipOutRequests;
333 u64 ipOutDiscards;
334 u64 ipOutNoRoutes;
335 u64 ipReasmTimeout;
336 u64 ipReasmReqds;
337 u64 ipReasmOKs;
338 u64 ipReasmFails;
339 u64 ipFragOKs;
340 u64 ipFragFails;
341 u64 ipFragCreates;
342 u64 ipInMcastPkts;
343 u64 ipOutMcastPkts;
344 u64 ipInBcastPkts;
345 u64 ipOutBcastPkts;
346
347 u64 tcpRtoAlgorithm;
348 u64 tcpRtoMin;
349 u64 tcpRtoMax;
350 u64 tcpMaxConn;
351 u64 tcpActiveOpens;
352 u64 tcpPassiveOpens;
353 u64 tcpAttemptFails;
354 u64 tcpEstabResets;
355 u64 tcpCurrEstab;
356 u64 tcpInSegs;
357 u64 tcpOutSegs;
358 u64 tcpRetransSegs;
359 u64 tcpInErrs;
360 u64 tcpOutRsts;
361 };
362
363 union rdma_protocol_stats {
364 struct ib_protocol_stats ib;
365 struct iw_protocol_stats iw;
366 };
367
368 /* Define bits for the various functionality this port needs to be supported by
369 * the core.
370 */
371 /* Management 0x00000FFF */
372 #define RDMA_CORE_CAP_IB_MAD 0x00000001
373 #define RDMA_CORE_CAP_IB_SMI 0x00000002
374 #define RDMA_CORE_CAP_IB_CM 0x00000004
375 #define RDMA_CORE_CAP_IW_CM 0x00000008
376 #define RDMA_CORE_CAP_IB_SA 0x00000010
377
378 /* Address format 0x000FF000 */
379 #define RDMA_CORE_CAP_AF_IB 0x00001000
380 #define RDMA_CORE_CAP_ETH_AH 0x00002000
381
382 /* Protocol 0xFFF00000 */
383 #define RDMA_CORE_CAP_PROT_IB 0x00100000
384 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
385 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
386
387 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
388 | RDMA_CORE_CAP_IB_MAD \
389 | RDMA_CORE_CAP_IB_SMI \
390 | RDMA_CORE_CAP_IB_CM \
391 | RDMA_CORE_CAP_IB_SA \
392 | RDMA_CORE_CAP_AF_IB)
393 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
394 | RDMA_CORE_CAP_IB_MAD \
395 | RDMA_CORE_CAP_IB_CM \
396 | RDMA_CORE_CAP_AF_IB \
397 | RDMA_CORE_CAP_ETH_AH)
398 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
399 | RDMA_CORE_CAP_IW_CM)
400
401 struct ib_port_attr {
402 enum ib_port_state state;
403 enum ib_mtu max_mtu;
404 enum ib_mtu active_mtu;
405 int gid_tbl_len;
406 u32 port_cap_flags;
407 u32 max_msg_sz;
408 u32 bad_pkey_cntr;
409 u32 qkey_viol_cntr;
410 u16 pkey_tbl_len;
411 u16 lid;
412 u16 sm_lid;
413 u8 lmc;
414 u8 max_vl_num;
415 u8 sm_sl;
416 u8 subnet_timeout;
417 u8 init_type_reply;
418 u8 active_width;
419 u8 active_speed;
420 u8 phys_state;
421 };
422
423 enum ib_device_modify_flags {
424 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
425 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
426 };
427
428 struct ib_device_modify {
429 u64 sys_image_guid;
430 char node_desc[64];
431 };
432
433 enum ib_port_modify_flags {
434 IB_PORT_SHUTDOWN = 1,
435 IB_PORT_INIT_TYPE = (1<<2),
436 IB_PORT_RESET_QKEY_CNTR = (1<<3)
437 };
438
439 struct ib_port_modify {
440 u32 set_port_cap_mask;
441 u32 clr_port_cap_mask;
442 u8 init_type;
443 };
444
445 enum ib_event_type {
446 IB_EVENT_CQ_ERR,
447 IB_EVENT_QP_FATAL,
448 IB_EVENT_QP_REQ_ERR,
449 IB_EVENT_QP_ACCESS_ERR,
450 IB_EVENT_COMM_EST,
451 IB_EVENT_SQ_DRAINED,
452 IB_EVENT_PATH_MIG,
453 IB_EVENT_PATH_MIG_ERR,
454 IB_EVENT_DEVICE_FATAL,
455 IB_EVENT_PORT_ACTIVE,
456 IB_EVENT_PORT_ERR,
457 IB_EVENT_LID_CHANGE,
458 IB_EVENT_PKEY_CHANGE,
459 IB_EVENT_SM_CHANGE,
460 IB_EVENT_SRQ_ERR,
461 IB_EVENT_SRQ_LIMIT_REACHED,
462 IB_EVENT_QP_LAST_WQE_REACHED,
463 IB_EVENT_CLIENT_REREGISTER,
464 IB_EVENT_GID_CHANGE,
465 };
466
467 __attribute_const__ const char *ib_event_msg(enum ib_event_type event);
468
469 struct ib_event {
470 struct ib_device *device;
471 union {
472 struct ib_cq *cq;
473 struct ib_qp *qp;
474 struct ib_srq *srq;
475 u8 port_num;
476 } element;
477 enum ib_event_type event;
478 };
479
480 struct ib_event_handler {
481 struct ib_device *device;
482 void (*handler)(struct ib_event_handler *, struct ib_event *);
483 struct list_head list;
484 };
485
486 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
487 do { \
488 (_ptr)->device = _device; \
489 (_ptr)->handler = _handler; \
490 INIT_LIST_HEAD(&(_ptr)->list); \
491 } while (0)
492
493 struct ib_global_route {
494 union ib_gid dgid;
495 u32 flow_label;
496 u8 sgid_index;
497 u8 hop_limit;
498 u8 traffic_class;
499 };
500
501 struct ib_grh {
502 __be32 version_tclass_flow;
503 __be16 paylen;
504 u8 next_hdr;
505 u8 hop_limit;
506 union ib_gid sgid;
507 union ib_gid dgid;
508 };
509
510 enum {
511 IB_MULTICAST_QPN = 0xffffff
512 };
513
514 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
515
516 enum ib_ah_flags {
517 IB_AH_GRH = 1
518 };
519
520 enum ib_rate {
521 IB_RATE_PORT_CURRENT = 0,
522 IB_RATE_2_5_GBPS = 2,
523 IB_RATE_5_GBPS = 5,
524 IB_RATE_10_GBPS = 3,
525 IB_RATE_20_GBPS = 6,
526 IB_RATE_30_GBPS = 4,
527 IB_RATE_40_GBPS = 7,
528 IB_RATE_60_GBPS = 8,
529 IB_RATE_80_GBPS = 9,
530 IB_RATE_120_GBPS = 10,
531 IB_RATE_14_GBPS = 11,
532 IB_RATE_56_GBPS = 12,
533 IB_RATE_112_GBPS = 13,
534 IB_RATE_168_GBPS = 14,
535 IB_RATE_25_GBPS = 15,
536 IB_RATE_100_GBPS = 16,
537 IB_RATE_200_GBPS = 17,
538 IB_RATE_300_GBPS = 18
539 };
540
541 /**
542 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
543 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
544 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
545 * @rate: rate to convert.
546 */
547 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
548
549 /**
550 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
551 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
552 * @rate: rate to convert.
553 */
554 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
555
556 enum ib_mr_create_flags {
557 IB_MR_SIGNATURE_EN = 1,
558 };
559
560 /**
561 * ib_mr_init_attr - Memory region init attributes passed to routine
562 * ib_create_mr.
563 * @max_reg_descriptors: max number of registration descriptors that
564 * may be used with registration work requests.
565 * @flags: MR creation flags bit mask.
566 */
567 struct ib_mr_init_attr {
568 int max_reg_descriptors;
569 u32 flags;
570 };
571
572 /**
573 * Signature types
574 * IB_SIG_TYPE_NONE: Unprotected.
575 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
576 */
577 enum ib_signature_type {
578 IB_SIG_TYPE_NONE,
579 IB_SIG_TYPE_T10_DIF,
580 };
581
582 /**
583 * Signature T10-DIF block-guard types
584 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
585 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
586 */
587 enum ib_t10_dif_bg_type {
588 IB_T10DIF_CRC,
589 IB_T10DIF_CSUM
590 };
591
592 /**
593 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
594 * domain.
595 * @bg_type: T10-DIF block guard type (CRC|CSUM)
596 * @pi_interval: protection information interval.
597 * @bg: seed of guard computation.
598 * @app_tag: application tag of guard block
599 * @ref_tag: initial guard block reference tag.
600 * @ref_remap: Indicate wethear the reftag increments each block
601 * @app_escape: Indicate to skip block check if apptag=0xffff
602 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
603 * @apptag_check_mask: check bitmask of application tag.
604 */
605 struct ib_t10_dif_domain {
606 enum ib_t10_dif_bg_type bg_type;
607 u16 pi_interval;
608 u16 bg;
609 u16 app_tag;
610 u32 ref_tag;
611 bool ref_remap;
612 bool app_escape;
613 bool ref_escape;
614 u16 apptag_check_mask;
615 };
616
617 /**
618 * struct ib_sig_domain - Parameters for signature domain
619 * @sig_type: specific signauture type
620 * @sig: union of all signature domain attributes that may
621 * be used to set domain layout.
622 */
623 struct ib_sig_domain {
624 enum ib_signature_type sig_type;
625 union {
626 struct ib_t10_dif_domain dif;
627 } sig;
628 };
629
630 /**
631 * struct ib_sig_attrs - Parameters for signature handover operation
632 * @check_mask: bitmask for signature byte check (8 bytes)
633 * @mem: memory domain layout desciptor.
634 * @wire: wire domain layout desciptor.
635 */
636 struct ib_sig_attrs {
637 u8 check_mask;
638 struct ib_sig_domain mem;
639 struct ib_sig_domain wire;
640 };
641
642 enum ib_sig_err_type {
643 IB_SIG_BAD_GUARD,
644 IB_SIG_BAD_REFTAG,
645 IB_SIG_BAD_APPTAG,
646 };
647
648 /**
649 * struct ib_sig_err - signature error descriptor
650 */
651 struct ib_sig_err {
652 enum ib_sig_err_type err_type;
653 u32 expected;
654 u32 actual;
655 u64 sig_err_offset;
656 u32 key;
657 };
658
659 enum ib_mr_status_check {
660 IB_MR_CHECK_SIG_STATUS = 1,
661 };
662
663 /**
664 * struct ib_mr_status - Memory region status container
665 *
666 * @fail_status: Bitmask of MR checks status. For each
667 * failed check a corresponding status bit is set.
668 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
669 * failure.
670 */
671 struct ib_mr_status {
672 u32 fail_status;
673 struct ib_sig_err sig_err;
674 };
675
676 /**
677 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
678 * enum.
679 * @mult: multiple to convert.
680 */
681 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
682
683 struct ib_ah_attr {
684 struct ib_global_route grh;
685 u16 dlid;
686 u8 sl;
687 u8 src_path_bits;
688 u8 static_rate;
689 u8 ah_flags;
690 u8 port_num;
691 u8 dmac[ETH_ALEN];
692 u16 vlan_id;
693 };
694
695 enum ib_wc_status {
696 IB_WC_SUCCESS,
697 IB_WC_LOC_LEN_ERR,
698 IB_WC_LOC_QP_OP_ERR,
699 IB_WC_LOC_EEC_OP_ERR,
700 IB_WC_LOC_PROT_ERR,
701 IB_WC_WR_FLUSH_ERR,
702 IB_WC_MW_BIND_ERR,
703 IB_WC_BAD_RESP_ERR,
704 IB_WC_LOC_ACCESS_ERR,
705 IB_WC_REM_INV_REQ_ERR,
706 IB_WC_REM_ACCESS_ERR,
707 IB_WC_REM_OP_ERR,
708 IB_WC_RETRY_EXC_ERR,
709 IB_WC_RNR_RETRY_EXC_ERR,
710 IB_WC_LOC_RDD_VIOL_ERR,
711 IB_WC_REM_INV_RD_REQ_ERR,
712 IB_WC_REM_ABORT_ERR,
713 IB_WC_INV_EECN_ERR,
714 IB_WC_INV_EEC_STATE_ERR,
715 IB_WC_FATAL_ERR,
716 IB_WC_RESP_TIMEOUT_ERR,
717 IB_WC_GENERAL_ERR
718 };
719
720 __attribute_const__ const char *ib_wc_status_msg(enum ib_wc_status status);
721
722 enum ib_wc_opcode {
723 IB_WC_SEND,
724 IB_WC_RDMA_WRITE,
725 IB_WC_RDMA_READ,
726 IB_WC_COMP_SWAP,
727 IB_WC_FETCH_ADD,
728 IB_WC_BIND_MW,
729 IB_WC_LSO,
730 IB_WC_LOCAL_INV,
731 IB_WC_FAST_REG_MR,
732 IB_WC_MASKED_COMP_SWAP,
733 IB_WC_MASKED_FETCH_ADD,
734 /*
735 * Set value of IB_WC_RECV so consumers can test if a completion is a
736 * receive by testing (opcode & IB_WC_RECV).
737 */
738 IB_WC_RECV = 1 << 7,
739 IB_WC_RECV_RDMA_WITH_IMM
740 };
741
742 enum ib_wc_flags {
743 IB_WC_GRH = 1,
744 IB_WC_WITH_IMM = (1<<1),
745 IB_WC_WITH_INVALIDATE = (1<<2),
746 IB_WC_IP_CSUM_OK = (1<<3),
747 IB_WC_WITH_SMAC = (1<<4),
748 IB_WC_WITH_VLAN = (1<<5),
749 };
750
751 struct ib_wc {
752 u64 wr_id;
753 enum ib_wc_status status;
754 enum ib_wc_opcode opcode;
755 u32 vendor_err;
756 u32 byte_len;
757 struct ib_qp *qp;
758 union {
759 __be32 imm_data;
760 u32 invalidate_rkey;
761 } ex;
762 u32 src_qp;
763 int wc_flags;
764 u16 pkey_index;
765 u16 slid;
766 u8 sl;
767 u8 dlid_path_bits;
768 u8 port_num; /* valid only for DR SMPs on switches */
769 u8 smac[ETH_ALEN];
770 u16 vlan_id;
771 };
772
773 enum ib_cq_notify_flags {
774 IB_CQ_SOLICITED = 1 << 0,
775 IB_CQ_NEXT_COMP = 1 << 1,
776 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
777 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
778 };
779
780 enum ib_srq_type {
781 IB_SRQT_BASIC,
782 IB_SRQT_XRC
783 };
784
785 enum ib_srq_attr_mask {
786 IB_SRQ_MAX_WR = 1 << 0,
787 IB_SRQ_LIMIT = 1 << 1,
788 };
789
790 struct ib_srq_attr {
791 u32 max_wr;
792 u32 max_sge;
793 u32 srq_limit;
794 };
795
796 struct ib_srq_init_attr {
797 void (*event_handler)(struct ib_event *, void *);
798 void *srq_context;
799 struct ib_srq_attr attr;
800 enum ib_srq_type srq_type;
801
802 union {
803 struct {
804 struct ib_xrcd *xrcd;
805 struct ib_cq *cq;
806 } xrc;
807 } ext;
808 };
809
810 struct ib_qp_cap {
811 u32 max_send_wr;
812 u32 max_recv_wr;
813 u32 max_send_sge;
814 u32 max_recv_sge;
815 u32 max_inline_data;
816 };
817
818 enum ib_sig_type {
819 IB_SIGNAL_ALL_WR,
820 IB_SIGNAL_REQ_WR
821 };
822
823 enum ib_qp_type {
824 /*
825 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
826 * here (and in that order) since the MAD layer uses them as
827 * indices into a 2-entry table.
828 */
829 IB_QPT_SMI,
830 IB_QPT_GSI,
831
832 IB_QPT_RC,
833 IB_QPT_UC,
834 IB_QPT_UD,
835 IB_QPT_RAW_IPV6,
836 IB_QPT_RAW_ETHERTYPE,
837 IB_QPT_RAW_PACKET = 8,
838 IB_QPT_XRC_INI = 9,
839 IB_QPT_XRC_TGT,
840 IB_QPT_MAX,
841 /* Reserve a range for qp types internal to the low level driver.
842 * These qp types will not be visible at the IB core layer, so the
843 * IB_QPT_MAX usages should not be affected in the core layer
844 */
845 IB_QPT_RESERVED1 = 0x1000,
846 IB_QPT_RESERVED2,
847 IB_QPT_RESERVED3,
848 IB_QPT_RESERVED4,
849 IB_QPT_RESERVED5,
850 IB_QPT_RESERVED6,
851 IB_QPT_RESERVED7,
852 IB_QPT_RESERVED8,
853 IB_QPT_RESERVED9,
854 IB_QPT_RESERVED10,
855 };
856
857 enum ib_qp_create_flags {
858 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
859 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
860 IB_QP_CREATE_NETIF_QP = 1 << 5,
861 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
862 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
863 /* reserve bits 26-31 for low level drivers' internal use */
864 IB_QP_CREATE_RESERVED_START = 1 << 26,
865 IB_QP_CREATE_RESERVED_END = 1 << 31,
866 };
867
868
869 /*
870 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
871 * callback to destroy the passed in QP.
872 */
873
874 struct ib_qp_init_attr {
875 void (*event_handler)(struct ib_event *, void *);
876 void *qp_context;
877 struct ib_cq *send_cq;
878 struct ib_cq *recv_cq;
879 struct ib_srq *srq;
880 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
881 struct ib_qp_cap cap;
882 enum ib_sig_type sq_sig_type;
883 enum ib_qp_type qp_type;
884 enum ib_qp_create_flags create_flags;
885 u8 port_num; /* special QP types only */
886 };
887
888 struct ib_qp_open_attr {
889 void (*event_handler)(struct ib_event *, void *);
890 void *qp_context;
891 u32 qp_num;
892 enum ib_qp_type qp_type;
893 };
894
895 enum ib_rnr_timeout {
896 IB_RNR_TIMER_655_36 = 0,
897 IB_RNR_TIMER_000_01 = 1,
898 IB_RNR_TIMER_000_02 = 2,
899 IB_RNR_TIMER_000_03 = 3,
900 IB_RNR_TIMER_000_04 = 4,
901 IB_RNR_TIMER_000_06 = 5,
902 IB_RNR_TIMER_000_08 = 6,
903 IB_RNR_TIMER_000_12 = 7,
904 IB_RNR_TIMER_000_16 = 8,
905 IB_RNR_TIMER_000_24 = 9,
906 IB_RNR_TIMER_000_32 = 10,
907 IB_RNR_TIMER_000_48 = 11,
908 IB_RNR_TIMER_000_64 = 12,
909 IB_RNR_TIMER_000_96 = 13,
910 IB_RNR_TIMER_001_28 = 14,
911 IB_RNR_TIMER_001_92 = 15,
912 IB_RNR_TIMER_002_56 = 16,
913 IB_RNR_TIMER_003_84 = 17,
914 IB_RNR_TIMER_005_12 = 18,
915 IB_RNR_TIMER_007_68 = 19,
916 IB_RNR_TIMER_010_24 = 20,
917 IB_RNR_TIMER_015_36 = 21,
918 IB_RNR_TIMER_020_48 = 22,
919 IB_RNR_TIMER_030_72 = 23,
920 IB_RNR_TIMER_040_96 = 24,
921 IB_RNR_TIMER_061_44 = 25,
922 IB_RNR_TIMER_081_92 = 26,
923 IB_RNR_TIMER_122_88 = 27,
924 IB_RNR_TIMER_163_84 = 28,
925 IB_RNR_TIMER_245_76 = 29,
926 IB_RNR_TIMER_327_68 = 30,
927 IB_RNR_TIMER_491_52 = 31
928 };
929
930 enum ib_qp_attr_mask {
931 IB_QP_STATE = 1,
932 IB_QP_CUR_STATE = (1<<1),
933 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
934 IB_QP_ACCESS_FLAGS = (1<<3),
935 IB_QP_PKEY_INDEX = (1<<4),
936 IB_QP_PORT = (1<<5),
937 IB_QP_QKEY = (1<<6),
938 IB_QP_AV = (1<<7),
939 IB_QP_PATH_MTU = (1<<8),
940 IB_QP_TIMEOUT = (1<<9),
941 IB_QP_RETRY_CNT = (1<<10),
942 IB_QP_RNR_RETRY = (1<<11),
943 IB_QP_RQ_PSN = (1<<12),
944 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
945 IB_QP_ALT_PATH = (1<<14),
946 IB_QP_MIN_RNR_TIMER = (1<<15),
947 IB_QP_SQ_PSN = (1<<16),
948 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
949 IB_QP_PATH_MIG_STATE = (1<<18),
950 IB_QP_CAP = (1<<19),
951 IB_QP_DEST_QPN = (1<<20),
952 IB_QP_SMAC = (1<<21),
953 IB_QP_ALT_SMAC = (1<<22),
954 IB_QP_VID = (1<<23),
955 IB_QP_ALT_VID = (1<<24),
956 };
957
958 enum ib_qp_state {
959 IB_QPS_RESET,
960 IB_QPS_INIT,
961 IB_QPS_RTR,
962 IB_QPS_RTS,
963 IB_QPS_SQD,
964 IB_QPS_SQE,
965 IB_QPS_ERR
966 };
967
968 enum ib_mig_state {
969 IB_MIG_MIGRATED,
970 IB_MIG_REARM,
971 IB_MIG_ARMED
972 };
973
974 enum ib_mw_type {
975 IB_MW_TYPE_1 = 1,
976 IB_MW_TYPE_2 = 2
977 };
978
979 struct ib_qp_attr {
980 enum ib_qp_state qp_state;
981 enum ib_qp_state cur_qp_state;
982 enum ib_mtu path_mtu;
983 enum ib_mig_state path_mig_state;
984 u32 qkey;
985 u32 rq_psn;
986 u32 sq_psn;
987 u32 dest_qp_num;
988 int qp_access_flags;
989 struct ib_qp_cap cap;
990 struct ib_ah_attr ah_attr;
991 struct ib_ah_attr alt_ah_attr;
992 u16 pkey_index;
993 u16 alt_pkey_index;
994 u8 en_sqd_async_notify;
995 u8 sq_draining;
996 u8 max_rd_atomic;
997 u8 max_dest_rd_atomic;
998 u8 min_rnr_timer;
999 u8 port_num;
1000 u8 timeout;
1001 u8 retry_cnt;
1002 u8 rnr_retry;
1003 u8 alt_port_num;
1004 u8 alt_timeout;
1005 u8 smac[ETH_ALEN];
1006 u8 alt_smac[ETH_ALEN];
1007 u16 vlan_id;
1008 u16 alt_vlan_id;
1009 };
1010
1011 enum ib_wr_opcode {
1012 IB_WR_RDMA_WRITE,
1013 IB_WR_RDMA_WRITE_WITH_IMM,
1014 IB_WR_SEND,
1015 IB_WR_SEND_WITH_IMM,
1016 IB_WR_RDMA_READ,
1017 IB_WR_ATOMIC_CMP_AND_SWP,
1018 IB_WR_ATOMIC_FETCH_AND_ADD,
1019 IB_WR_LSO,
1020 IB_WR_SEND_WITH_INV,
1021 IB_WR_RDMA_READ_WITH_INV,
1022 IB_WR_LOCAL_INV,
1023 IB_WR_FAST_REG_MR,
1024 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1025 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1026 IB_WR_BIND_MW,
1027 IB_WR_REG_SIG_MR,
1028 /* reserve values for low level drivers' internal use.
1029 * These values will not be used at all in the ib core layer.
1030 */
1031 IB_WR_RESERVED1 = 0xf0,
1032 IB_WR_RESERVED2,
1033 IB_WR_RESERVED3,
1034 IB_WR_RESERVED4,
1035 IB_WR_RESERVED5,
1036 IB_WR_RESERVED6,
1037 IB_WR_RESERVED7,
1038 IB_WR_RESERVED8,
1039 IB_WR_RESERVED9,
1040 IB_WR_RESERVED10,
1041 };
1042
1043 enum ib_send_flags {
1044 IB_SEND_FENCE = 1,
1045 IB_SEND_SIGNALED = (1<<1),
1046 IB_SEND_SOLICITED = (1<<2),
1047 IB_SEND_INLINE = (1<<3),
1048 IB_SEND_IP_CSUM = (1<<4),
1049
1050 /* reserve bits 26-31 for low level drivers' internal use */
1051 IB_SEND_RESERVED_START = (1 << 26),
1052 IB_SEND_RESERVED_END = (1 << 31),
1053 };
1054
1055 struct ib_sge {
1056 u64 addr;
1057 u32 length;
1058 u32 lkey;
1059 };
1060
1061 struct ib_fast_reg_page_list {
1062 struct ib_device *device;
1063 u64 *page_list;
1064 unsigned int max_page_list_len;
1065 };
1066
1067 /**
1068 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1069 * @mr: A memory region to bind the memory window to.
1070 * @addr: The address where the memory window should begin.
1071 * @length: The length of the memory window, in bytes.
1072 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1073 *
1074 * This struct contains the shared parameters for type 1 and type 2
1075 * memory window bind operations.
1076 */
1077 struct ib_mw_bind_info {
1078 struct ib_mr *mr;
1079 u64 addr;
1080 u64 length;
1081 int mw_access_flags;
1082 };
1083
1084 struct ib_send_wr {
1085 struct ib_send_wr *next;
1086 u64 wr_id;
1087 struct ib_sge *sg_list;
1088 int num_sge;
1089 enum ib_wr_opcode opcode;
1090 int send_flags;
1091 union {
1092 __be32 imm_data;
1093 u32 invalidate_rkey;
1094 } ex;
1095 union {
1096 struct {
1097 u64 remote_addr;
1098 u32 rkey;
1099 } rdma;
1100 struct {
1101 u64 remote_addr;
1102 u64 compare_add;
1103 u64 swap;
1104 u64 compare_add_mask;
1105 u64 swap_mask;
1106 u32 rkey;
1107 } atomic;
1108 struct {
1109 struct ib_ah *ah;
1110 void *header;
1111 int hlen;
1112 int mss;
1113 u32 remote_qpn;
1114 u32 remote_qkey;
1115 u16 pkey_index; /* valid for GSI only */
1116 u8 port_num; /* valid for DR SMPs on switch only */
1117 } ud;
1118 struct {
1119 u64 iova_start;
1120 struct ib_fast_reg_page_list *page_list;
1121 unsigned int page_shift;
1122 unsigned int page_list_len;
1123 u32 length;
1124 int access_flags;
1125 u32 rkey;
1126 } fast_reg;
1127 struct {
1128 struct ib_mw *mw;
1129 /* The new rkey for the memory window. */
1130 u32 rkey;
1131 struct ib_mw_bind_info bind_info;
1132 } bind_mw;
1133 struct {
1134 struct ib_sig_attrs *sig_attrs;
1135 struct ib_mr *sig_mr;
1136 int access_flags;
1137 struct ib_sge *prot;
1138 } sig_handover;
1139 } wr;
1140 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1141 };
1142
1143 struct ib_recv_wr {
1144 struct ib_recv_wr *next;
1145 u64 wr_id;
1146 struct ib_sge *sg_list;
1147 int num_sge;
1148 };
1149
1150 enum ib_access_flags {
1151 IB_ACCESS_LOCAL_WRITE = 1,
1152 IB_ACCESS_REMOTE_WRITE = (1<<1),
1153 IB_ACCESS_REMOTE_READ = (1<<2),
1154 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1155 IB_ACCESS_MW_BIND = (1<<4),
1156 IB_ZERO_BASED = (1<<5),
1157 IB_ACCESS_ON_DEMAND = (1<<6),
1158 };
1159
1160 struct ib_phys_buf {
1161 u64 addr;
1162 u64 size;
1163 };
1164
1165 struct ib_mr_attr {
1166 struct ib_pd *pd;
1167 u64 device_virt_addr;
1168 u64 size;
1169 int mr_access_flags;
1170 u32 lkey;
1171 u32 rkey;
1172 };
1173
1174 enum ib_mr_rereg_flags {
1175 IB_MR_REREG_TRANS = 1,
1176 IB_MR_REREG_PD = (1<<1),
1177 IB_MR_REREG_ACCESS = (1<<2),
1178 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1179 };
1180
1181 /**
1182 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1183 * @wr_id: Work request id.
1184 * @send_flags: Flags from ib_send_flags enum.
1185 * @bind_info: More parameters of the bind operation.
1186 */
1187 struct ib_mw_bind {
1188 u64 wr_id;
1189 int send_flags;
1190 struct ib_mw_bind_info bind_info;
1191 };
1192
1193 struct ib_fmr_attr {
1194 int max_pages;
1195 int max_maps;
1196 u8 page_shift;
1197 };
1198
1199 struct ib_umem;
1200
1201 struct ib_ucontext {
1202 struct ib_device *device;
1203 struct list_head pd_list;
1204 struct list_head mr_list;
1205 struct list_head mw_list;
1206 struct list_head cq_list;
1207 struct list_head qp_list;
1208 struct list_head srq_list;
1209 struct list_head ah_list;
1210 struct list_head xrcd_list;
1211 struct list_head rule_list;
1212 int closing;
1213
1214 struct pid *tgid;
1215 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1216 struct rb_root umem_tree;
1217 /*
1218 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1219 * mmu notifiers registration.
1220 */
1221 struct rw_semaphore umem_rwsem;
1222 void (*invalidate_range)(struct ib_umem *umem,
1223 unsigned long start, unsigned long end);
1224
1225 struct mmu_notifier mn;
1226 atomic_t notifier_count;
1227 /* A list of umems that don't have private mmu notifier counters yet. */
1228 struct list_head no_private_counters;
1229 int odp_mrs_count;
1230 #endif
1231 };
1232
1233 struct ib_uobject {
1234 u64 user_handle; /* handle given to us by userspace */
1235 struct ib_ucontext *context; /* associated user context */
1236 void *object; /* containing object */
1237 struct list_head list; /* link to context's list */
1238 int id; /* index into kernel idr */
1239 struct kref ref;
1240 struct rw_semaphore mutex; /* protects .live */
1241 int live;
1242 };
1243
1244 struct ib_udata {
1245 const void __user *inbuf;
1246 void __user *outbuf;
1247 size_t inlen;
1248 size_t outlen;
1249 };
1250
1251 struct ib_pd {
1252 struct ib_device *device;
1253 struct ib_uobject *uobject;
1254 atomic_t usecnt; /* count all resources */
1255 };
1256
1257 struct ib_xrcd {
1258 struct ib_device *device;
1259 atomic_t usecnt; /* count all exposed resources */
1260 struct inode *inode;
1261
1262 struct mutex tgt_qp_mutex;
1263 struct list_head tgt_qp_list;
1264 };
1265
1266 struct ib_ah {
1267 struct ib_device *device;
1268 struct ib_pd *pd;
1269 struct ib_uobject *uobject;
1270 };
1271
1272 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1273
1274 struct ib_cq {
1275 struct ib_device *device;
1276 struct ib_uobject *uobject;
1277 ib_comp_handler comp_handler;
1278 void (*event_handler)(struct ib_event *, void *);
1279 void *cq_context;
1280 int cqe;
1281 atomic_t usecnt; /* count number of work queues */
1282 };
1283
1284 struct ib_srq {
1285 struct ib_device *device;
1286 struct ib_pd *pd;
1287 struct ib_uobject *uobject;
1288 void (*event_handler)(struct ib_event *, void *);
1289 void *srq_context;
1290 enum ib_srq_type srq_type;
1291 atomic_t usecnt;
1292
1293 union {
1294 struct {
1295 struct ib_xrcd *xrcd;
1296 struct ib_cq *cq;
1297 u32 srq_num;
1298 } xrc;
1299 } ext;
1300 };
1301
1302 struct ib_qp {
1303 struct ib_device *device;
1304 struct ib_pd *pd;
1305 struct ib_cq *send_cq;
1306 struct ib_cq *recv_cq;
1307 struct ib_srq *srq;
1308 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1309 struct list_head xrcd_list;
1310 /* count times opened, mcast attaches, flow attaches */
1311 atomic_t usecnt;
1312 struct list_head open_list;
1313 struct ib_qp *real_qp;
1314 struct ib_uobject *uobject;
1315 void (*event_handler)(struct ib_event *, void *);
1316 void *qp_context;
1317 u32 qp_num;
1318 enum ib_qp_type qp_type;
1319 };
1320
1321 struct ib_mr {
1322 struct ib_device *device;
1323 struct ib_pd *pd;
1324 struct ib_uobject *uobject;
1325 u32 lkey;
1326 u32 rkey;
1327 atomic_t usecnt; /* count number of MWs */
1328 };
1329
1330 struct ib_mw {
1331 struct ib_device *device;
1332 struct ib_pd *pd;
1333 struct ib_uobject *uobject;
1334 u32 rkey;
1335 enum ib_mw_type type;
1336 };
1337
1338 struct ib_fmr {
1339 struct ib_device *device;
1340 struct ib_pd *pd;
1341 struct list_head list;
1342 u32 lkey;
1343 u32 rkey;
1344 };
1345
1346 /* Supported steering options */
1347 enum ib_flow_attr_type {
1348 /* steering according to rule specifications */
1349 IB_FLOW_ATTR_NORMAL = 0x0,
1350 /* default unicast and multicast rule -
1351 * receive all Eth traffic which isn't steered to any QP
1352 */
1353 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1354 /* default multicast rule -
1355 * receive all Eth multicast traffic which isn't steered to any QP
1356 */
1357 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1358 /* sniffer rule - receive all port traffic */
1359 IB_FLOW_ATTR_SNIFFER = 0x3
1360 };
1361
1362 /* Supported steering header types */
1363 enum ib_flow_spec_type {
1364 /* L2 headers*/
1365 IB_FLOW_SPEC_ETH = 0x20,
1366 IB_FLOW_SPEC_IB = 0x22,
1367 /* L3 header*/
1368 IB_FLOW_SPEC_IPV4 = 0x30,
1369 /* L4 headers*/
1370 IB_FLOW_SPEC_TCP = 0x40,
1371 IB_FLOW_SPEC_UDP = 0x41
1372 };
1373 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1374 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1375
1376 /* Flow steering rule priority is set according to it's domain.
1377 * Lower domain value means higher priority.
1378 */
1379 enum ib_flow_domain {
1380 IB_FLOW_DOMAIN_USER,
1381 IB_FLOW_DOMAIN_ETHTOOL,
1382 IB_FLOW_DOMAIN_RFS,
1383 IB_FLOW_DOMAIN_NIC,
1384 IB_FLOW_DOMAIN_NUM /* Must be last */
1385 };
1386
1387 struct ib_flow_eth_filter {
1388 u8 dst_mac[6];
1389 u8 src_mac[6];
1390 __be16 ether_type;
1391 __be16 vlan_tag;
1392 };
1393
1394 struct ib_flow_spec_eth {
1395 enum ib_flow_spec_type type;
1396 u16 size;
1397 struct ib_flow_eth_filter val;
1398 struct ib_flow_eth_filter mask;
1399 };
1400
1401 struct ib_flow_ib_filter {
1402 __be16 dlid;
1403 __u8 sl;
1404 };
1405
1406 struct ib_flow_spec_ib {
1407 enum ib_flow_spec_type type;
1408 u16 size;
1409 struct ib_flow_ib_filter val;
1410 struct ib_flow_ib_filter mask;
1411 };
1412
1413 struct ib_flow_ipv4_filter {
1414 __be32 src_ip;
1415 __be32 dst_ip;
1416 };
1417
1418 struct ib_flow_spec_ipv4 {
1419 enum ib_flow_spec_type type;
1420 u16 size;
1421 struct ib_flow_ipv4_filter val;
1422 struct ib_flow_ipv4_filter mask;
1423 };
1424
1425 struct ib_flow_tcp_udp_filter {
1426 __be16 dst_port;
1427 __be16 src_port;
1428 };
1429
1430 struct ib_flow_spec_tcp_udp {
1431 enum ib_flow_spec_type type;
1432 u16 size;
1433 struct ib_flow_tcp_udp_filter val;
1434 struct ib_flow_tcp_udp_filter mask;
1435 };
1436
1437 union ib_flow_spec {
1438 struct {
1439 enum ib_flow_spec_type type;
1440 u16 size;
1441 };
1442 struct ib_flow_spec_eth eth;
1443 struct ib_flow_spec_ib ib;
1444 struct ib_flow_spec_ipv4 ipv4;
1445 struct ib_flow_spec_tcp_udp tcp_udp;
1446 };
1447
1448 struct ib_flow_attr {
1449 enum ib_flow_attr_type type;
1450 u16 size;
1451 u16 priority;
1452 u32 flags;
1453 u8 num_of_specs;
1454 u8 port;
1455 /* Following are the optional layers according to user request
1456 * struct ib_flow_spec_xxx
1457 * struct ib_flow_spec_yyy
1458 */
1459 };
1460
1461 struct ib_flow {
1462 struct ib_qp *qp;
1463 struct ib_uobject *uobject;
1464 };
1465
1466 struct ib_mad_hdr;
1467 struct ib_grh;
1468
1469 enum ib_process_mad_flags {
1470 IB_MAD_IGNORE_MKEY = 1,
1471 IB_MAD_IGNORE_BKEY = 2,
1472 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1473 };
1474
1475 enum ib_mad_result {
1476 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1477 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1478 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1479 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1480 };
1481
1482 #define IB_DEVICE_NAME_MAX 64
1483
1484 struct ib_cache {
1485 rwlock_t lock;
1486 struct ib_event_handler event_handler;
1487 struct ib_pkey_cache **pkey_cache;
1488 struct ib_gid_cache **gid_cache;
1489 u8 *lmc_cache;
1490 };
1491
1492 struct ib_dma_mapping_ops {
1493 int (*mapping_error)(struct ib_device *dev,
1494 u64 dma_addr);
1495 u64 (*map_single)(struct ib_device *dev,
1496 void *ptr, size_t size,
1497 enum dma_data_direction direction);
1498 void (*unmap_single)(struct ib_device *dev,
1499 u64 addr, size_t size,
1500 enum dma_data_direction direction);
1501 u64 (*map_page)(struct ib_device *dev,
1502 struct page *page, unsigned long offset,
1503 size_t size,
1504 enum dma_data_direction direction);
1505 void (*unmap_page)(struct ib_device *dev,
1506 u64 addr, size_t size,
1507 enum dma_data_direction direction);
1508 int (*map_sg)(struct ib_device *dev,
1509 struct scatterlist *sg, int nents,
1510 enum dma_data_direction direction);
1511 void (*unmap_sg)(struct ib_device *dev,
1512 struct scatterlist *sg, int nents,
1513 enum dma_data_direction direction);
1514 void (*sync_single_for_cpu)(struct ib_device *dev,
1515 u64 dma_handle,
1516 size_t size,
1517 enum dma_data_direction dir);
1518 void (*sync_single_for_device)(struct ib_device *dev,
1519 u64 dma_handle,
1520 size_t size,
1521 enum dma_data_direction dir);
1522 void *(*alloc_coherent)(struct ib_device *dev,
1523 size_t size,
1524 u64 *dma_handle,
1525 gfp_t flag);
1526 void (*free_coherent)(struct ib_device *dev,
1527 size_t size, void *cpu_addr,
1528 u64 dma_handle);
1529 };
1530
1531 struct iw_cm_verbs;
1532
1533 struct ib_port_immutable {
1534 int pkey_tbl_len;
1535 int gid_tbl_len;
1536 u32 core_cap_flags;
1537 u32 max_mad_size;
1538 };
1539
1540 struct ib_device {
1541 struct device *dma_device;
1542
1543 char name[IB_DEVICE_NAME_MAX];
1544
1545 struct list_head event_handler_list;
1546 spinlock_t event_handler_lock;
1547
1548 spinlock_t client_data_lock;
1549 struct list_head core_list;
1550 struct list_head client_data_list;
1551
1552 struct ib_cache cache;
1553 /**
1554 * port_immutable is indexed by port number
1555 */
1556 struct ib_port_immutable *port_immutable;
1557
1558 int num_comp_vectors;
1559
1560 struct iw_cm_verbs *iwcm;
1561
1562 int (*get_protocol_stats)(struct ib_device *device,
1563 union rdma_protocol_stats *stats);
1564 int (*query_device)(struct ib_device *device,
1565 struct ib_device_attr *device_attr,
1566 struct ib_udata *udata);
1567 int (*query_port)(struct ib_device *device,
1568 u8 port_num,
1569 struct ib_port_attr *port_attr);
1570 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1571 u8 port_num);
1572 int (*query_gid)(struct ib_device *device,
1573 u8 port_num, int index,
1574 union ib_gid *gid);
1575 int (*query_pkey)(struct ib_device *device,
1576 u8 port_num, u16 index, u16 *pkey);
1577 int (*modify_device)(struct ib_device *device,
1578 int device_modify_mask,
1579 struct ib_device_modify *device_modify);
1580 int (*modify_port)(struct ib_device *device,
1581 u8 port_num, int port_modify_mask,
1582 struct ib_port_modify *port_modify);
1583 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1584 struct ib_udata *udata);
1585 int (*dealloc_ucontext)(struct ib_ucontext *context);
1586 int (*mmap)(struct ib_ucontext *context,
1587 struct vm_area_struct *vma);
1588 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1589 struct ib_ucontext *context,
1590 struct ib_udata *udata);
1591 int (*dealloc_pd)(struct ib_pd *pd);
1592 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1593 struct ib_ah_attr *ah_attr);
1594 int (*modify_ah)(struct ib_ah *ah,
1595 struct ib_ah_attr *ah_attr);
1596 int (*query_ah)(struct ib_ah *ah,
1597 struct ib_ah_attr *ah_attr);
1598 int (*destroy_ah)(struct ib_ah *ah);
1599 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1600 struct ib_srq_init_attr *srq_init_attr,
1601 struct ib_udata *udata);
1602 int (*modify_srq)(struct ib_srq *srq,
1603 struct ib_srq_attr *srq_attr,
1604 enum ib_srq_attr_mask srq_attr_mask,
1605 struct ib_udata *udata);
1606 int (*query_srq)(struct ib_srq *srq,
1607 struct ib_srq_attr *srq_attr);
1608 int (*destroy_srq)(struct ib_srq *srq);
1609 int (*post_srq_recv)(struct ib_srq *srq,
1610 struct ib_recv_wr *recv_wr,
1611 struct ib_recv_wr **bad_recv_wr);
1612 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1613 struct ib_qp_init_attr *qp_init_attr,
1614 struct ib_udata *udata);
1615 int (*modify_qp)(struct ib_qp *qp,
1616 struct ib_qp_attr *qp_attr,
1617 int qp_attr_mask,
1618 struct ib_udata *udata);
1619 int (*query_qp)(struct ib_qp *qp,
1620 struct ib_qp_attr *qp_attr,
1621 int qp_attr_mask,
1622 struct ib_qp_init_attr *qp_init_attr);
1623 int (*destroy_qp)(struct ib_qp *qp);
1624 int (*post_send)(struct ib_qp *qp,
1625 struct ib_send_wr *send_wr,
1626 struct ib_send_wr **bad_send_wr);
1627 int (*post_recv)(struct ib_qp *qp,
1628 struct ib_recv_wr *recv_wr,
1629 struct ib_recv_wr **bad_recv_wr);
1630 struct ib_cq * (*create_cq)(struct ib_device *device,
1631 const struct ib_cq_init_attr *attr,
1632 struct ib_ucontext *context,
1633 struct ib_udata *udata);
1634 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1635 u16 cq_period);
1636 int (*destroy_cq)(struct ib_cq *cq);
1637 int (*resize_cq)(struct ib_cq *cq, int cqe,
1638 struct ib_udata *udata);
1639 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1640 struct ib_wc *wc);
1641 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1642 int (*req_notify_cq)(struct ib_cq *cq,
1643 enum ib_cq_notify_flags flags);
1644 int (*req_ncomp_notif)(struct ib_cq *cq,
1645 int wc_cnt);
1646 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1647 int mr_access_flags);
1648 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1649 struct ib_phys_buf *phys_buf_array,
1650 int num_phys_buf,
1651 int mr_access_flags,
1652 u64 *iova_start);
1653 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1654 u64 start, u64 length,
1655 u64 virt_addr,
1656 int mr_access_flags,
1657 struct ib_udata *udata);
1658 int (*rereg_user_mr)(struct ib_mr *mr,
1659 int flags,
1660 u64 start, u64 length,
1661 u64 virt_addr,
1662 int mr_access_flags,
1663 struct ib_pd *pd,
1664 struct ib_udata *udata);
1665 int (*query_mr)(struct ib_mr *mr,
1666 struct ib_mr_attr *mr_attr);
1667 int (*dereg_mr)(struct ib_mr *mr);
1668 int (*destroy_mr)(struct ib_mr *mr);
1669 struct ib_mr * (*create_mr)(struct ib_pd *pd,
1670 struct ib_mr_init_attr *mr_init_attr);
1671 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1672 int max_page_list_len);
1673 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1674 int page_list_len);
1675 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1676 int (*rereg_phys_mr)(struct ib_mr *mr,
1677 int mr_rereg_mask,
1678 struct ib_pd *pd,
1679 struct ib_phys_buf *phys_buf_array,
1680 int num_phys_buf,
1681 int mr_access_flags,
1682 u64 *iova_start);
1683 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1684 enum ib_mw_type type);
1685 int (*bind_mw)(struct ib_qp *qp,
1686 struct ib_mw *mw,
1687 struct ib_mw_bind *mw_bind);
1688 int (*dealloc_mw)(struct ib_mw *mw);
1689 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1690 int mr_access_flags,
1691 struct ib_fmr_attr *fmr_attr);
1692 int (*map_phys_fmr)(struct ib_fmr *fmr,
1693 u64 *page_list, int list_len,
1694 u64 iova);
1695 int (*unmap_fmr)(struct list_head *fmr_list);
1696 int (*dealloc_fmr)(struct ib_fmr *fmr);
1697 int (*attach_mcast)(struct ib_qp *qp,
1698 union ib_gid *gid,
1699 u16 lid);
1700 int (*detach_mcast)(struct ib_qp *qp,
1701 union ib_gid *gid,
1702 u16 lid);
1703 int (*process_mad)(struct ib_device *device,
1704 int process_mad_flags,
1705 u8 port_num,
1706 const struct ib_wc *in_wc,
1707 const struct ib_grh *in_grh,
1708 const struct ib_mad_hdr *in_mad,
1709 size_t in_mad_size,
1710 struct ib_mad_hdr *out_mad,
1711 size_t *out_mad_size,
1712 u16 *out_mad_pkey_index);
1713 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1714 struct ib_ucontext *ucontext,
1715 struct ib_udata *udata);
1716 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1717 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1718 struct ib_flow_attr
1719 *flow_attr,
1720 int domain);
1721 int (*destroy_flow)(struct ib_flow *flow_id);
1722 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1723 struct ib_mr_status *mr_status);
1724
1725 struct ib_dma_mapping_ops *dma_ops;
1726
1727 struct module *owner;
1728 struct device dev;
1729 struct kobject *ports_parent;
1730 struct list_head port_list;
1731
1732 enum {
1733 IB_DEV_UNINITIALIZED,
1734 IB_DEV_REGISTERED,
1735 IB_DEV_UNREGISTERED
1736 } reg_state;
1737
1738 int uverbs_abi_ver;
1739 u64 uverbs_cmd_mask;
1740 u64 uverbs_ex_cmd_mask;
1741
1742 char node_desc[64];
1743 __be64 node_guid;
1744 u32 local_dma_lkey;
1745 u8 node_type;
1746 u8 phys_port_cnt;
1747
1748 /**
1749 * The following mandatory functions are used only at device
1750 * registration. Keep functions such as these at the end of this
1751 * structure to avoid cache line misses when accessing struct ib_device
1752 * in fast paths.
1753 */
1754 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1755 };
1756
1757 struct ib_client {
1758 char *name;
1759 void (*add) (struct ib_device *);
1760 void (*remove)(struct ib_device *);
1761
1762 struct list_head list;
1763 };
1764
1765 struct ib_device *ib_alloc_device(size_t size);
1766 void ib_dealloc_device(struct ib_device *device);
1767
1768 int ib_register_device(struct ib_device *device,
1769 int (*port_callback)(struct ib_device *,
1770 u8, struct kobject *));
1771 void ib_unregister_device(struct ib_device *device);
1772
1773 int ib_register_client (struct ib_client *client);
1774 void ib_unregister_client(struct ib_client *client);
1775
1776 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1777 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1778 void *data);
1779
1780 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1781 {
1782 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1783 }
1784
1785 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1786 {
1787 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1788 }
1789
1790 /**
1791 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1792 * contains all required attributes and no attributes not allowed for
1793 * the given QP state transition.
1794 * @cur_state: Current QP state
1795 * @next_state: Next QP state
1796 * @type: QP type
1797 * @mask: Mask of supplied QP attributes
1798 * @ll : link layer of port
1799 *
1800 * This function is a helper function that a low-level driver's
1801 * modify_qp method can use to validate the consumer's input. It
1802 * checks that cur_state and next_state are valid QP states, that a
1803 * transition from cur_state to next_state is allowed by the IB spec,
1804 * and that the attribute mask supplied is allowed for the transition.
1805 */
1806 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1807 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1808 enum rdma_link_layer ll);
1809
1810 int ib_register_event_handler (struct ib_event_handler *event_handler);
1811 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1812 void ib_dispatch_event(struct ib_event *event);
1813
1814 int ib_query_device(struct ib_device *device,
1815 struct ib_device_attr *device_attr);
1816
1817 int ib_query_port(struct ib_device *device,
1818 u8 port_num, struct ib_port_attr *port_attr);
1819
1820 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1821 u8 port_num);
1822
1823 /**
1824 * rdma_start_port - Return the first valid port number for the device
1825 * specified
1826 *
1827 * @device: Device to be checked
1828 *
1829 * Return start port number
1830 */
1831 static inline u8 rdma_start_port(const struct ib_device *device)
1832 {
1833 return (device->node_type == RDMA_NODE_IB_SWITCH) ? 0 : 1;
1834 }
1835
1836 /**
1837 * rdma_end_port - Return the last valid port number for the device
1838 * specified
1839 *
1840 * @device: Device to be checked
1841 *
1842 * Return last port number
1843 */
1844 static inline u8 rdma_end_port(const struct ib_device *device)
1845 {
1846 return (device->node_type == RDMA_NODE_IB_SWITCH) ?
1847 0 : device->phys_port_cnt;
1848 }
1849
1850 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
1851 {
1852 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
1853 }
1854
1855 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
1856 {
1857 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
1858 }
1859
1860 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
1861 {
1862 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
1863 }
1864
1865 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
1866 {
1867 return device->port_immutable[port_num].core_cap_flags &
1868 (RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE);
1869 }
1870
1871 /**
1872 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
1873 * Management Datagrams.
1874 * @device: Device to check
1875 * @port_num: Port number to check
1876 *
1877 * Management Datagrams (MAD) are a required part of the InfiniBand
1878 * specification and are supported on all InfiniBand devices. A slightly
1879 * extended version are also supported on OPA interfaces.
1880 *
1881 * Return: true if the port supports sending/receiving of MAD packets.
1882 */
1883 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
1884 {
1885 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
1886 }
1887
1888 /**
1889 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
1890 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
1891 * @device: Device to check
1892 * @port_num: Port number to check
1893 *
1894 * Each InfiniBand node is required to provide a Subnet Management Agent
1895 * that the subnet manager can access. Prior to the fabric being fully
1896 * configured by the subnet manager, the SMA is accessed via a well known
1897 * interface called the Subnet Management Interface (SMI). This interface
1898 * uses directed route packets to communicate with the SM to get around the
1899 * chicken and egg problem of the SM needing to know what's on the fabric
1900 * in order to configure the fabric, and needing to configure the fabric in
1901 * order to send packets to the devices on the fabric. These directed
1902 * route packets do not need the fabric fully configured in order to reach
1903 * their destination. The SMI is the only method allowed to send
1904 * directed route packets on an InfiniBand fabric.
1905 *
1906 * Return: true if the port provides an SMI.
1907 */
1908 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
1909 {
1910 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
1911 }
1912
1913 /**
1914 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
1915 * Communication Manager.
1916 * @device: Device to check
1917 * @port_num: Port number to check
1918 *
1919 * The InfiniBand Communication Manager is one of many pre-defined General
1920 * Service Agents (GSA) that are accessed via the General Service
1921 * Interface (GSI). It's role is to facilitate establishment of connections
1922 * between nodes as well as other management related tasks for established
1923 * connections.
1924 *
1925 * Return: true if the port supports an IB CM (this does not guarantee that
1926 * a CM is actually running however).
1927 */
1928 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
1929 {
1930 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
1931 }
1932
1933 /**
1934 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
1935 * Communication Manager.
1936 * @device: Device to check
1937 * @port_num: Port number to check
1938 *
1939 * Similar to above, but specific to iWARP connections which have a different
1940 * managment protocol than InfiniBand.
1941 *
1942 * Return: true if the port supports an iWARP CM (this does not guarantee that
1943 * a CM is actually running however).
1944 */
1945 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
1946 {
1947 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
1948 }
1949
1950 /**
1951 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
1952 * Subnet Administration.
1953 * @device: Device to check
1954 * @port_num: Port number to check
1955 *
1956 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
1957 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
1958 * fabrics, devices should resolve routes to other hosts by contacting the
1959 * SA to query the proper route.
1960 *
1961 * Return: true if the port should act as a client to the fabric Subnet
1962 * Administration interface. This does not imply that the SA service is
1963 * running locally.
1964 */
1965 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
1966 {
1967 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
1968 }
1969
1970 /**
1971 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
1972 * Multicast.
1973 * @device: Device to check
1974 * @port_num: Port number to check
1975 *
1976 * InfiniBand multicast registration is more complex than normal IPv4 or
1977 * IPv6 multicast registration. Each Host Channel Adapter must register
1978 * with the Subnet Manager when it wishes to join a multicast group. It
1979 * should do so only once regardless of how many queue pairs it subscribes
1980 * to this group. And it should leave the group only after all queue pairs
1981 * attached to the group have been detached.
1982 *
1983 * Return: true if the port must undertake the additional adminstrative
1984 * overhead of registering/unregistering with the SM and tracking of the
1985 * total number of queue pairs attached to the multicast group.
1986 */
1987 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
1988 {
1989 return rdma_cap_ib_sa(device, port_num);
1990 }
1991
1992 /**
1993 * rdma_cap_af_ib - Check if the port of device has the capability
1994 * Native Infiniband Address.
1995 * @device: Device to check
1996 * @port_num: Port number to check
1997 *
1998 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
1999 * GID. RoCE uses a different mechanism, but still generates a GID via
2000 * a prescribed mechanism and port specific data.
2001 *
2002 * Return: true if the port uses a GID address to identify devices on the
2003 * network.
2004 */
2005 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2006 {
2007 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2008 }
2009
2010 /**
2011 * rdma_cap_eth_ah - Check if the port of device has the capability
2012 * Ethernet Address Handle.
2013 * @device: Device to check
2014 * @port_num: Port number to check
2015 *
2016 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2017 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2018 * port. Normally, packet headers are generated by the sending host
2019 * adapter, but when sending connectionless datagrams, we must manually
2020 * inject the proper headers for the fabric we are communicating over.
2021 *
2022 * Return: true if we are running as a RoCE port and must force the
2023 * addition of a Global Route Header built from our Ethernet Address
2024 * Handle into our header list for connectionless packets.
2025 */
2026 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2027 {
2028 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2029 }
2030
2031 /**
2032 * rdma_cap_read_multi_sge - Check if the port of device has the capability
2033 * RDMA Read Multiple Scatter-Gather Entries.
2034 * @device: Device to check
2035 * @port_num: Port number to check
2036 *
2037 * iWARP has a restriction that RDMA READ requests may only have a single
2038 * Scatter/Gather Entry (SGE) in the work request.
2039 *
2040 * NOTE: although the linux kernel currently assumes all devices are either
2041 * single SGE RDMA READ devices or identical SGE maximums for RDMA READs and
2042 * WRITEs, according to Tom Talpey, this is not accurate. There are some
2043 * devices out there that support more than a single SGE on RDMA READ
2044 * requests, but do not support the same number of SGEs as they do on
2045 * RDMA WRITE requests. The linux kernel would need rearchitecting to
2046 * support these imbalanced READ/WRITE SGEs allowed devices. So, for now,
2047 * suffice with either the device supports the same READ/WRITE SGEs, or
2048 * it only gets one READ sge.
2049 *
2050 * Return: true for any device that allows more than one SGE in RDMA READ
2051 * requests.
2052 */
2053 static inline bool rdma_cap_read_multi_sge(struct ib_device *device,
2054 u8 port_num)
2055 {
2056 return !(device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP);
2057 }
2058
2059 /**
2060 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2061 *
2062 * @device: Device
2063 * @port_num: Port number
2064 *
2065 * This MAD size includes the MAD headers and MAD payload. No other headers
2066 * are included.
2067 *
2068 * Return the max MAD size required by the Port. Will return 0 if the port
2069 * does not support MADs
2070 */
2071 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2072 {
2073 return device->port_immutable[port_num].max_mad_size;
2074 }
2075
2076 int ib_query_gid(struct ib_device *device,
2077 u8 port_num, int index, union ib_gid *gid);
2078
2079 int ib_query_pkey(struct ib_device *device,
2080 u8 port_num, u16 index, u16 *pkey);
2081
2082 int ib_modify_device(struct ib_device *device,
2083 int device_modify_mask,
2084 struct ib_device_modify *device_modify);
2085
2086 int ib_modify_port(struct ib_device *device,
2087 u8 port_num, int port_modify_mask,
2088 struct ib_port_modify *port_modify);
2089
2090 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2091 u8 *port_num, u16 *index);
2092
2093 int ib_find_pkey(struct ib_device *device,
2094 u8 port_num, u16 pkey, u16 *index);
2095
2096 /**
2097 * ib_alloc_pd - Allocates an unused protection domain.
2098 * @device: The device on which to allocate the protection domain.
2099 *
2100 * A protection domain object provides an association between QPs, shared
2101 * receive queues, address handles, memory regions, and memory windows.
2102 */
2103 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2104
2105 /**
2106 * ib_dealloc_pd - Deallocates a protection domain.
2107 * @pd: The protection domain to deallocate.
2108 */
2109 int ib_dealloc_pd(struct ib_pd *pd);
2110
2111 /**
2112 * ib_create_ah - Creates an address handle for the given address vector.
2113 * @pd: The protection domain associated with the address handle.
2114 * @ah_attr: The attributes of the address vector.
2115 *
2116 * The address handle is used to reference a local or global destination
2117 * in all UD QP post sends.
2118 */
2119 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2120
2121 /**
2122 * ib_init_ah_from_wc - Initializes address handle attributes from a
2123 * work completion.
2124 * @device: Device on which the received message arrived.
2125 * @port_num: Port on which the received message arrived.
2126 * @wc: Work completion associated with the received message.
2127 * @grh: References the received global route header. This parameter is
2128 * ignored unless the work completion indicates that the GRH is valid.
2129 * @ah_attr: Returned attributes that can be used when creating an address
2130 * handle for replying to the message.
2131 */
2132 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2133 const struct ib_wc *wc, const struct ib_grh *grh,
2134 struct ib_ah_attr *ah_attr);
2135
2136 /**
2137 * ib_create_ah_from_wc - Creates an address handle associated with the
2138 * sender of the specified work completion.
2139 * @pd: The protection domain associated with the address handle.
2140 * @wc: Work completion information associated with a received message.
2141 * @grh: References the received global route header. This parameter is
2142 * ignored unless the work completion indicates that the GRH is valid.
2143 * @port_num: The outbound port number to associate with the address.
2144 *
2145 * The address handle is used to reference a local or global destination
2146 * in all UD QP post sends.
2147 */
2148 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2149 const struct ib_grh *grh, u8 port_num);
2150
2151 /**
2152 * ib_modify_ah - Modifies the address vector associated with an address
2153 * handle.
2154 * @ah: The address handle to modify.
2155 * @ah_attr: The new address vector attributes to associate with the
2156 * address handle.
2157 */
2158 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2159
2160 /**
2161 * ib_query_ah - Queries the address vector associated with an address
2162 * handle.
2163 * @ah: The address handle to query.
2164 * @ah_attr: The address vector attributes associated with the address
2165 * handle.
2166 */
2167 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2168
2169 /**
2170 * ib_destroy_ah - Destroys an address handle.
2171 * @ah: The address handle to destroy.
2172 */
2173 int ib_destroy_ah(struct ib_ah *ah);
2174
2175 /**
2176 * ib_create_srq - Creates a SRQ associated with the specified protection
2177 * domain.
2178 * @pd: The protection domain associated with the SRQ.
2179 * @srq_init_attr: A list of initial attributes required to create the
2180 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2181 * the actual capabilities of the created SRQ.
2182 *
2183 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2184 * requested size of the SRQ, and set to the actual values allocated
2185 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2186 * will always be at least as large as the requested values.
2187 */
2188 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2189 struct ib_srq_init_attr *srq_init_attr);
2190
2191 /**
2192 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2193 * @srq: The SRQ to modify.
2194 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2195 * the current values of selected SRQ attributes are returned.
2196 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2197 * are being modified.
2198 *
2199 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2200 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2201 * the number of receives queued drops below the limit.
2202 */
2203 int ib_modify_srq(struct ib_srq *srq,
2204 struct ib_srq_attr *srq_attr,
2205 enum ib_srq_attr_mask srq_attr_mask);
2206
2207 /**
2208 * ib_query_srq - Returns the attribute list and current values for the
2209 * specified SRQ.
2210 * @srq: The SRQ to query.
2211 * @srq_attr: The attributes of the specified SRQ.
2212 */
2213 int ib_query_srq(struct ib_srq *srq,
2214 struct ib_srq_attr *srq_attr);
2215
2216 /**
2217 * ib_destroy_srq - Destroys the specified SRQ.
2218 * @srq: The SRQ to destroy.
2219 */
2220 int ib_destroy_srq(struct ib_srq *srq);
2221
2222 /**
2223 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2224 * @srq: The SRQ to post the work request on.
2225 * @recv_wr: A list of work requests to post on the receive queue.
2226 * @bad_recv_wr: On an immediate failure, this parameter will reference
2227 * the work request that failed to be posted on the QP.
2228 */
2229 static inline int ib_post_srq_recv(struct ib_srq *srq,
2230 struct ib_recv_wr *recv_wr,
2231 struct ib_recv_wr **bad_recv_wr)
2232 {
2233 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2234 }
2235
2236 /**
2237 * ib_create_qp - Creates a QP associated with the specified protection
2238 * domain.
2239 * @pd: The protection domain associated with the QP.
2240 * @qp_init_attr: A list of initial attributes required to create the
2241 * QP. If QP creation succeeds, then the attributes are updated to
2242 * the actual capabilities of the created QP.
2243 */
2244 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2245 struct ib_qp_init_attr *qp_init_attr);
2246
2247 /**
2248 * ib_modify_qp - Modifies the attributes for the specified QP and then
2249 * transitions the QP to the given state.
2250 * @qp: The QP to modify.
2251 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2252 * the current values of selected QP attributes are returned.
2253 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2254 * are being modified.
2255 */
2256 int ib_modify_qp(struct ib_qp *qp,
2257 struct ib_qp_attr *qp_attr,
2258 int qp_attr_mask);
2259
2260 /**
2261 * ib_query_qp - Returns the attribute list and current values for the
2262 * specified QP.
2263 * @qp: The QP to query.
2264 * @qp_attr: The attributes of the specified QP.
2265 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2266 * @qp_init_attr: Additional attributes of the selected QP.
2267 *
2268 * The qp_attr_mask may be used to limit the query to gathering only the
2269 * selected attributes.
2270 */
2271 int ib_query_qp(struct ib_qp *qp,
2272 struct ib_qp_attr *qp_attr,
2273 int qp_attr_mask,
2274 struct ib_qp_init_attr *qp_init_attr);
2275
2276 /**
2277 * ib_destroy_qp - Destroys the specified QP.
2278 * @qp: The QP to destroy.
2279 */
2280 int ib_destroy_qp(struct ib_qp *qp);
2281
2282 /**
2283 * ib_open_qp - Obtain a reference to an existing sharable QP.
2284 * @xrcd - XRC domain
2285 * @qp_open_attr: Attributes identifying the QP to open.
2286 *
2287 * Returns a reference to a sharable QP.
2288 */
2289 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2290 struct ib_qp_open_attr *qp_open_attr);
2291
2292 /**
2293 * ib_close_qp - Release an external reference to a QP.
2294 * @qp: The QP handle to release
2295 *
2296 * The opened QP handle is released by the caller. The underlying
2297 * shared QP is not destroyed until all internal references are released.
2298 */
2299 int ib_close_qp(struct ib_qp *qp);
2300
2301 /**
2302 * ib_post_send - Posts a list of work requests to the send queue of
2303 * the specified QP.
2304 * @qp: The QP to post the work request on.
2305 * @send_wr: A list of work requests to post on the send queue.
2306 * @bad_send_wr: On an immediate failure, this parameter will reference
2307 * the work request that failed to be posted on the QP.
2308 *
2309 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2310 * error is returned, the QP state shall not be affected,
2311 * ib_post_send() will return an immediate error after queueing any
2312 * earlier work requests in the list.
2313 */
2314 static inline int ib_post_send(struct ib_qp *qp,
2315 struct ib_send_wr *send_wr,
2316 struct ib_send_wr **bad_send_wr)
2317 {
2318 return qp->device->post_send(qp, send_wr, bad_send_wr);
2319 }
2320
2321 /**
2322 * ib_post_recv - Posts a list of work requests to the receive queue of
2323 * the specified QP.
2324 * @qp: The QP to post the work request on.
2325 * @recv_wr: A list of work requests to post on the receive queue.
2326 * @bad_recv_wr: On an immediate failure, this parameter will reference
2327 * the work request that failed to be posted on the QP.
2328 */
2329 static inline int ib_post_recv(struct ib_qp *qp,
2330 struct ib_recv_wr *recv_wr,
2331 struct ib_recv_wr **bad_recv_wr)
2332 {
2333 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2334 }
2335
2336 /**
2337 * ib_create_cq - Creates a CQ on the specified device.
2338 * @device: The device on which to create the CQ.
2339 * @comp_handler: A user-specified callback that is invoked when a
2340 * completion event occurs on the CQ.
2341 * @event_handler: A user-specified callback that is invoked when an
2342 * asynchronous event not associated with a completion occurs on the CQ.
2343 * @cq_context: Context associated with the CQ returned to the user via
2344 * the associated completion and event handlers.
2345 * @cq_attr: The attributes the CQ should be created upon.
2346 *
2347 * Users can examine the cq structure to determine the actual CQ size.
2348 */
2349 struct ib_cq *ib_create_cq(struct ib_device *device,
2350 ib_comp_handler comp_handler,
2351 void (*event_handler)(struct ib_event *, void *),
2352 void *cq_context,
2353 const struct ib_cq_init_attr *cq_attr);
2354
2355 /**
2356 * ib_resize_cq - Modifies the capacity of the CQ.
2357 * @cq: The CQ to resize.
2358 * @cqe: The minimum size of the CQ.
2359 *
2360 * Users can examine the cq structure to determine the actual CQ size.
2361 */
2362 int ib_resize_cq(struct ib_cq *cq, int cqe);
2363
2364 /**
2365 * ib_modify_cq - Modifies moderation params of the CQ
2366 * @cq: The CQ to modify.
2367 * @cq_count: number of CQEs that will trigger an event
2368 * @cq_period: max period of time in usec before triggering an event
2369 *
2370 */
2371 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2372
2373 /**
2374 * ib_destroy_cq - Destroys the specified CQ.
2375 * @cq: The CQ to destroy.
2376 */
2377 int ib_destroy_cq(struct ib_cq *cq);
2378
2379 /**
2380 * ib_poll_cq - poll a CQ for completion(s)
2381 * @cq:the CQ being polled
2382 * @num_entries:maximum number of completions to return
2383 * @wc:array of at least @num_entries &struct ib_wc where completions
2384 * will be returned
2385 *
2386 * Poll a CQ for (possibly multiple) completions. If the return value
2387 * is < 0, an error occurred. If the return value is >= 0, it is the
2388 * number of completions returned. If the return value is
2389 * non-negative and < num_entries, then the CQ was emptied.
2390 */
2391 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2392 struct ib_wc *wc)
2393 {
2394 return cq->device->poll_cq(cq, num_entries, wc);
2395 }
2396
2397 /**
2398 * ib_peek_cq - Returns the number of unreaped completions currently
2399 * on the specified CQ.
2400 * @cq: The CQ to peek.
2401 * @wc_cnt: A minimum number of unreaped completions to check for.
2402 *
2403 * If the number of unreaped completions is greater than or equal to wc_cnt,
2404 * this function returns wc_cnt, otherwise, it returns the actual number of
2405 * unreaped completions.
2406 */
2407 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2408
2409 /**
2410 * ib_req_notify_cq - Request completion notification on a CQ.
2411 * @cq: The CQ to generate an event for.
2412 * @flags:
2413 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2414 * to request an event on the next solicited event or next work
2415 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2416 * may also be |ed in to request a hint about missed events, as
2417 * described below.
2418 *
2419 * Return Value:
2420 * < 0 means an error occurred while requesting notification
2421 * == 0 means notification was requested successfully, and if
2422 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2423 * were missed and it is safe to wait for another event. In
2424 * this case is it guaranteed that any work completions added
2425 * to the CQ since the last CQ poll will trigger a completion
2426 * notification event.
2427 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2428 * in. It means that the consumer must poll the CQ again to
2429 * make sure it is empty to avoid missing an event because of a
2430 * race between requesting notification and an entry being
2431 * added to the CQ. This return value means it is possible
2432 * (but not guaranteed) that a work completion has been added
2433 * to the CQ since the last poll without triggering a
2434 * completion notification event.
2435 */
2436 static inline int ib_req_notify_cq(struct ib_cq *cq,
2437 enum ib_cq_notify_flags flags)
2438 {
2439 return cq->device->req_notify_cq(cq, flags);
2440 }
2441
2442 /**
2443 * ib_req_ncomp_notif - Request completion notification when there are
2444 * at least the specified number of unreaped completions on the CQ.
2445 * @cq: The CQ to generate an event for.
2446 * @wc_cnt: The number of unreaped completions that should be on the
2447 * CQ before an event is generated.
2448 */
2449 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2450 {
2451 return cq->device->req_ncomp_notif ?
2452 cq->device->req_ncomp_notif(cq, wc_cnt) :
2453 -ENOSYS;
2454 }
2455
2456 /**
2457 * ib_get_dma_mr - Returns a memory region for system memory that is
2458 * usable for DMA.
2459 * @pd: The protection domain associated with the memory region.
2460 * @mr_access_flags: Specifies the memory access rights.
2461 *
2462 * Note that the ib_dma_*() functions defined below must be used
2463 * to create/destroy addresses used with the Lkey or Rkey returned
2464 * by ib_get_dma_mr().
2465 */
2466 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2467
2468 /**
2469 * ib_dma_mapping_error - check a DMA addr for error
2470 * @dev: The device for which the dma_addr was created
2471 * @dma_addr: The DMA address to check
2472 */
2473 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2474 {
2475 if (dev->dma_ops)
2476 return dev->dma_ops->mapping_error(dev, dma_addr);
2477 return dma_mapping_error(dev->dma_device, dma_addr);
2478 }
2479
2480 /**
2481 * ib_dma_map_single - Map a kernel virtual address to DMA address
2482 * @dev: The device for which the dma_addr is to be created
2483 * @cpu_addr: The kernel virtual address
2484 * @size: The size of the region in bytes
2485 * @direction: The direction of the DMA
2486 */
2487 static inline u64 ib_dma_map_single(struct ib_device *dev,
2488 void *cpu_addr, size_t size,
2489 enum dma_data_direction direction)
2490 {
2491 if (dev->dma_ops)
2492 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2493 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2494 }
2495
2496 /**
2497 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2498 * @dev: The device for which the DMA address was created
2499 * @addr: The DMA address
2500 * @size: The size of the region in bytes
2501 * @direction: The direction of the DMA
2502 */
2503 static inline void ib_dma_unmap_single(struct ib_device *dev,
2504 u64 addr, size_t size,
2505 enum dma_data_direction direction)
2506 {
2507 if (dev->dma_ops)
2508 dev->dma_ops->unmap_single(dev, addr, size, direction);
2509 else
2510 dma_unmap_single(dev->dma_device, addr, size, direction);
2511 }
2512
2513 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2514 void *cpu_addr, size_t size,
2515 enum dma_data_direction direction,
2516 struct dma_attrs *attrs)
2517 {
2518 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2519 direction, attrs);
2520 }
2521
2522 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2523 u64 addr, size_t size,
2524 enum dma_data_direction direction,
2525 struct dma_attrs *attrs)
2526 {
2527 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2528 direction, attrs);
2529 }
2530
2531 /**
2532 * ib_dma_map_page - Map a physical page to DMA address
2533 * @dev: The device for which the dma_addr is to be created
2534 * @page: The page to be mapped
2535 * @offset: The offset within the page
2536 * @size: The size of the region in bytes
2537 * @direction: The direction of the DMA
2538 */
2539 static inline u64 ib_dma_map_page(struct ib_device *dev,
2540 struct page *page,
2541 unsigned long offset,
2542 size_t size,
2543 enum dma_data_direction direction)
2544 {
2545 if (dev->dma_ops)
2546 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2547 return dma_map_page(dev->dma_device, page, offset, size, direction);
2548 }
2549
2550 /**
2551 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2552 * @dev: The device for which the DMA address was created
2553 * @addr: The DMA address
2554 * @size: The size of the region in bytes
2555 * @direction: The direction of the DMA
2556 */
2557 static inline void ib_dma_unmap_page(struct ib_device *dev,
2558 u64 addr, size_t size,
2559 enum dma_data_direction direction)
2560 {
2561 if (dev->dma_ops)
2562 dev->dma_ops->unmap_page(dev, addr, size, direction);
2563 else
2564 dma_unmap_page(dev->dma_device, addr, size, direction);
2565 }
2566
2567 /**
2568 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2569 * @dev: The device for which the DMA addresses are to be created
2570 * @sg: The array of scatter/gather entries
2571 * @nents: The number of scatter/gather entries
2572 * @direction: The direction of the DMA
2573 */
2574 static inline int ib_dma_map_sg(struct ib_device *dev,
2575 struct scatterlist *sg, int nents,
2576 enum dma_data_direction direction)
2577 {
2578 if (dev->dma_ops)
2579 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2580 return dma_map_sg(dev->dma_device, sg, nents, direction);
2581 }
2582
2583 /**
2584 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2585 * @dev: The device for which the DMA addresses were created
2586 * @sg: The array of scatter/gather entries
2587 * @nents: The number of scatter/gather entries
2588 * @direction: The direction of the DMA
2589 */
2590 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2591 struct scatterlist *sg, int nents,
2592 enum dma_data_direction direction)
2593 {
2594 if (dev->dma_ops)
2595 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2596 else
2597 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2598 }
2599
2600 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2601 struct scatterlist *sg, int nents,
2602 enum dma_data_direction direction,
2603 struct dma_attrs *attrs)
2604 {
2605 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2606 }
2607
2608 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2609 struct scatterlist *sg, int nents,
2610 enum dma_data_direction direction,
2611 struct dma_attrs *attrs)
2612 {
2613 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2614 }
2615 /**
2616 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2617 * @dev: The device for which the DMA addresses were created
2618 * @sg: The scatter/gather entry
2619 *
2620 * Note: this function is obsolete. To do: change all occurrences of
2621 * ib_sg_dma_address() into sg_dma_address().
2622 */
2623 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2624 struct scatterlist *sg)
2625 {
2626 return sg_dma_address(sg);
2627 }
2628
2629 /**
2630 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2631 * @dev: The device for which the DMA addresses were created
2632 * @sg: The scatter/gather entry
2633 *
2634 * Note: this function is obsolete. To do: change all occurrences of
2635 * ib_sg_dma_len() into sg_dma_len().
2636 */
2637 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2638 struct scatterlist *sg)
2639 {
2640 return sg_dma_len(sg);
2641 }
2642
2643 /**
2644 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2645 * @dev: The device for which the DMA address was created
2646 * @addr: The DMA address
2647 * @size: The size of the region in bytes
2648 * @dir: The direction of the DMA
2649 */
2650 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2651 u64 addr,
2652 size_t size,
2653 enum dma_data_direction dir)
2654 {
2655 if (dev->dma_ops)
2656 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2657 else
2658 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2659 }
2660
2661 /**
2662 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2663 * @dev: The device for which the DMA address was created
2664 * @addr: The DMA address
2665 * @size: The size of the region in bytes
2666 * @dir: The direction of the DMA
2667 */
2668 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2669 u64 addr,
2670 size_t size,
2671 enum dma_data_direction dir)
2672 {
2673 if (dev->dma_ops)
2674 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2675 else
2676 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2677 }
2678
2679 /**
2680 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2681 * @dev: The device for which the DMA address is requested
2682 * @size: The size of the region to allocate in bytes
2683 * @dma_handle: A pointer for returning the DMA address of the region
2684 * @flag: memory allocator flags
2685 */
2686 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2687 size_t size,
2688 u64 *dma_handle,
2689 gfp_t flag)
2690 {
2691 if (dev->dma_ops)
2692 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2693 else {
2694 dma_addr_t handle;
2695 void *ret;
2696
2697 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2698 *dma_handle = handle;
2699 return ret;
2700 }
2701 }
2702
2703 /**
2704 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2705 * @dev: The device for which the DMA addresses were allocated
2706 * @size: The size of the region
2707 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2708 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2709 */
2710 static inline void ib_dma_free_coherent(struct ib_device *dev,
2711 size_t size, void *cpu_addr,
2712 u64 dma_handle)
2713 {
2714 if (dev->dma_ops)
2715 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2716 else
2717 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2718 }
2719
2720 /**
2721 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2722 * by an HCA.
2723 * @pd: The protection domain associated assigned to the registered region.
2724 * @phys_buf_array: Specifies a list of physical buffers to use in the
2725 * memory region.
2726 * @num_phys_buf: Specifies the size of the phys_buf_array.
2727 * @mr_access_flags: Specifies the memory access rights.
2728 * @iova_start: The offset of the region's starting I/O virtual address.
2729 */
2730 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2731 struct ib_phys_buf *phys_buf_array,
2732 int num_phys_buf,
2733 int mr_access_flags,
2734 u64 *iova_start);
2735
2736 /**
2737 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2738 * Conceptually, this call performs the functions deregister memory region
2739 * followed by register physical memory region. Where possible,
2740 * resources are reused instead of deallocated and reallocated.
2741 * @mr: The memory region to modify.
2742 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2743 * properties of the memory region are being modified.
2744 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2745 * the new protection domain to associated with the memory region,
2746 * otherwise, this parameter is ignored.
2747 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2748 * field specifies a list of physical buffers to use in the new
2749 * translation, otherwise, this parameter is ignored.
2750 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2751 * field specifies the size of the phys_buf_array, otherwise, this
2752 * parameter is ignored.
2753 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2754 * field specifies the new memory access rights, otherwise, this
2755 * parameter is ignored.
2756 * @iova_start: The offset of the region's starting I/O virtual address.
2757 */
2758 int ib_rereg_phys_mr(struct ib_mr *mr,
2759 int mr_rereg_mask,
2760 struct ib_pd *pd,
2761 struct ib_phys_buf *phys_buf_array,
2762 int num_phys_buf,
2763 int mr_access_flags,
2764 u64 *iova_start);
2765
2766 /**
2767 * ib_query_mr - Retrieves information about a specific memory region.
2768 * @mr: The memory region to retrieve information about.
2769 * @mr_attr: The attributes of the specified memory region.
2770 */
2771 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2772
2773 /**
2774 * ib_dereg_mr - Deregisters a memory region and removes it from the
2775 * HCA translation table.
2776 * @mr: The memory region to deregister.
2777 *
2778 * This function can fail, if the memory region has memory windows bound to it.
2779 */
2780 int ib_dereg_mr(struct ib_mr *mr);
2781
2782
2783 /**
2784 * ib_create_mr - Allocates a memory region that may be used for
2785 * signature handover operations.
2786 * @pd: The protection domain associated with the region.
2787 * @mr_init_attr: memory region init attributes.
2788 */
2789 struct ib_mr *ib_create_mr(struct ib_pd *pd,
2790 struct ib_mr_init_attr *mr_init_attr);
2791
2792 /**
2793 * ib_destroy_mr - Destroys a memory region that was created using
2794 * ib_create_mr and removes it from HW translation tables.
2795 * @mr: The memory region to destroy.
2796 *
2797 * This function can fail, if the memory region has memory windows bound to it.
2798 */
2799 int ib_destroy_mr(struct ib_mr *mr);
2800
2801 /**
2802 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2803 * IB_WR_FAST_REG_MR send work request.
2804 * @pd: The protection domain associated with the region.
2805 * @max_page_list_len: requested max physical buffer list length to be
2806 * used with fast register work requests for this MR.
2807 */
2808 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2809
2810 /**
2811 * ib_alloc_fast_reg_page_list - Allocates a page list array
2812 * @device - ib device pointer.
2813 * @page_list_len - size of the page list array to be allocated.
2814 *
2815 * This allocates and returns a struct ib_fast_reg_page_list * and a
2816 * page_list array that is at least page_list_len in size. The actual
2817 * size is returned in max_page_list_len. The caller is responsible
2818 * for initializing the contents of the page_list array before posting
2819 * a send work request with the IB_WC_FAST_REG_MR opcode.
2820 *
2821 * The page_list array entries must be translated using one of the
2822 * ib_dma_*() functions just like the addresses passed to
2823 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2824 * ib_fast_reg_page_list must not be modified by the caller until the
2825 * IB_WC_FAST_REG_MR work request completes.
2826 */
2827 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2828 struct ib_device *device, int page_list_len);
2829
2830 /**
2831 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2832 * page list array.
2833 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2834 */
2835 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2836
2837 /**
2838 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2839 * R_Key and L_Key.
2840 * @mr - struct ib_mr pointer to be updated.
2841 * @newkey - new key to be used.
2842 */
2843 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2844 {
2845 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2846 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2847 }
2848
2849 /**
2850 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2851 * for calculating a new rkey for type 2 memory windows.
2852 * @rkey - the rkey to increment.
2853 */
2854 static inline u32 ib_inc_rkey(u32 rkey)
2855 {
2856 const u32 mask = 0x000000ff;
2857 return ((rkey + 1) & mask) | (rkey & ~mask);
2858 }
2859
2860 /**
2861 * ib_alloc_mw - Allocates a memory window.
2862 * @pd: The protection domain associated with the memory window.
2863 * @type: The type of the memory window (1 or 2).
2864 */
2865 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2866
2867 /**
2868 * ib_bind_mw - Posts a work request to the send queue of the specified
2869 * QP, which binds the memory window to the given address range and
2870 * remote access attributes.
2871 * @qp: QP to post the bind work request on.
2872 * @mw: The memory window to bind.
2873 * @mw_bind: Specifies information about the memory window, including
2874 * its address range, remote access rights, and associated memory region.
2875 *
2876 * If there is no immediate error, the function will update the rkey member
2877 * of the mw parameter to its new value. The bind operation can still fail
2878 * asynchronously.
2879 */
2880 static inline int ib_bind_mw(struct ib_qp *qp,
2881 struct ib_mw *mw,
2882 struct ib_mw_bind *mw_bind)
2883 {
2884 /* XXX reference counting in corresponding MR? */
2885 return mw->device->bind_mw ?
2886 mw->device->bind_mw(qp, mw, mw_bind) :
2887 -ENOSYS;
2888 }
2889
2890 /**
2891 * ib_dealloc_mw - Deallocates a memory window.
2892 * @mw: The memory window to deallocate.
2893 */
2894 int ib_dealloc_mw(struct ib_mw *mw);
2895
2896 /**
2897 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2898 * @pd: The protection domain associated with the unmapped region.
2899 * @mr_access_flags: Specifies the memory access rights.
2900 * @fmr_attr: Attributes of the unmapped region.
2901 *
2902 * A fast memory region must be mapped before it can be used as part of
2903 * a work request.
2904 */
2905 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2906 int mr_access_flags,
2907 struct ib_fmr_attr *fmr_attr);
2908
2909 /**
2910 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2911 * @fmr: The fast memory region to associate with the pages.
2912 * @page_list: An array of physical pages to map to the fast memory region.
2913 * @list_len: The number of pages in page_list.
2914 * @iova: The I/O virtual address to use with the mapped region.
2915 */
2916 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2917 u64 *page_list, int list_len,
2918 u64 iova)
2919 {
2920 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2921 }
2922
2923 /**
2924 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2925 * @fmr_list: A linked list of fast memory regions to unmap.
2926 */
2927 int ib_unmap_fmr(struct list_head *fmr_list);
2928
2929 /**
2930 * ib_dealloc_fmr - Deallocates a fast memory region.
2931 * @fmr: The fast memory region to deallocate.
2932 */
2933 int ib_dealloc_fmr(struct ib_fmr *fmr);
2934
2935 /**
2936 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2937 * @qp: QP to attach to the multicast group. The QP must be type
2938 * IB_QPT_UD.
2939 * @gid: Multicast group GID.
2940 * @lid: Multicast group LID in host byte order.
2941 *
2942 * In order to send and receive multicast packets, subnet
2943 * administration must have created the multicast group and configured
2944 * the fabric appropriately. The port associated with the specified
2945 * QP must also be a member of the multicast group.
2946 */
2947 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2948
2949 /**
2950 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2951 * @qp: QP to detach from the multicast group.
2952 * @gid: Multicast group GID.
2953 * @lid: Multicast group LID in host byte order.
2954 */
2955 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2956
2957 /**
2958 * ib_alloc_xrcd - Allocates an XRC domain.
2959 * @device: The device on which to allocate the XRC domain.
2960 */
2961 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2962
2963 /**
2964 * ib_dealloc_xrcd - Deallocates an XRC domain.
2965 * @xrcd: The XRC domain to deallocate.
2966 */
2967 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2968
2969 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2970 struct ib_flow_attr *flow_attr, int domain);
2971 int ib_destroy_flow(struct ib_flow *flow_id);
2972
2973 static inline int ib_check_mr_access(int flags)
2974 {
2975 /*
2976 * Local write permission is required if remote write or
2977 * remote atomic permission is also requested.
2978 */
2979 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2980 !(flags & IB_ACCESS_LOCAL_WRITE))
2981 return -EINVAL;
2982
2983 return 0;
2984 }
2985
2986 /**
2987 * ib_check_mr_status: lightweight check of MR status.
2988 * This routine may provide status checks on a selected
2989 * ib_mr. first use is for signature status check.
2990 *
2991 * @mr: A memory region.
2992 * @check_mask: Bitmask of which checks to perform from
2993 * ib_mr_status_check enumeration.
2994 * @mr_status: The container of relevant status checks.
2995 * failed checks will be indicated in the status bitmask
2996 * and the relevant info shall be in the error item.
2997 */
2998 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2999 struct ib_mr_status *mr_status);
3000
3001 #endif /* IB_VERBS_H */
This page took 0.09191 seconds and 5 git commands to generate.