7239b9a4499e857d251158b4616527ea23ddc985
[deliverable/linux.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58
59 #include <linux/atomic.h>
60 #include <linux/mmu_notifier.h>
61 #include <asm/uaccess.h>
62
63 extern struct workqueue_struct *ib_wq;
64 extern struct workqueue_struct *ib_comp_wq;
65
66 union ib_gid {
67 u8 raw[16];
68 struct {
69 __be64 subnet_prefix;
70 __be64 interface_id;
71 } global;
72 };
73
74 extern union ib_gid zgid;
75
76 enum ib_gid_type {
77 /* If link layer is Ethernet, this is RoCE V1 */
78 IB_GID_TYPE_IB = 0,
79 IB_GID_TYPE_ROCE = 0,
80 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
81 IB_GID_TYPE_SIZE
82 };
83
84 #define ROCE_V2_UDP_DPORT 4791
85 struct ib_gid_attr {
86 enum ib_gid_type gid_type;
87 struct net_device *ndev;
88 };
89
90 enum rdma_node_type {
91 /* IB values map to NodeInfo:NodeType. */
92 RDMA_NODE_IB_CA = 1,
93 RDMA_NODE_IB_SWITCH,
94 RDMA_NODE_IB_ROUTER,
95 RDMA_NODE_RNIC,
96 RDMA_NODE_USNIC,
97 RDMA_NODE_USNIC_UDP,
98 };
99
100 enum rdma_transport_type {
101 RDMA_TRANSPORT_IB,
102 RDMA_TRANSPORT_IWARP,
103 RDMA_TRANSPORT_USNIC,
104 RDMA_TRANSPORT_USNIC_UDP
105 };
106
107 enum rdma_protocol_type {
108 RDMA_PROTOCOL_IB,
109 RDMA_PROTOCOL_IBOE,
110 RDMA_PROTOCOL_IWARP,
111 RDMA_PROTOCOL_USNIC_UDP
112 };
113
114 __attribute_const__ enum rdma_transport_type
115 rdma_node_get_transport(enum rdma_node_type node_type);
116
117 enum rdma_network_type {
118 RDMA_NETWORK_IB,
119 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
120 RDMA_NETWORK_IPV4,
121 RDMA_NETWORK_IPV6
122 };
123
124 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
125 {
126 if (network_type == RDMA_NETWORK_IPV4 ||
127 network_type == RDMA_NETWORK_IPV6)
128 return IB_GID_TYPE_ROCE_UDP_ENCAP;
129
130 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
131 return IB_GID_TYPE_IB;
132 }
133
134 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
135 union ib_gid *gid)
136 {
137 if (gid_type == IB_GID_TYPE_IB)
138 return RDMA_NETWORK_IB;
139
140 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
141 return RDMA_NETWORK_IPV4;
142 else
143 return RDMA_NETWORK_IPV6;
144 }
145
146 enum rdma_link_layer {
147 IB_LINK_LAYER_UNSPECIFIED,
148 IB_LINK_LAYER_INFINIBAND,
149 IB_LINK_LAYER_ETHERNET,
150 };
151
152 enum ib_device_cap_flags {
153 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
154 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
155 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
156 IB_DEVICE_RAW_MULTI = (1 << 3),
157 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
158 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
159 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
160 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
161 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
162 IB_DEVICE_INIT_TYPE = (1 << 9),
163 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
164 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
165 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
166 IB_DEVICE_SRQ_RESIZE = (1 << 13),
167 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
168
169 /*
170 * This device supports a per-device lkey or stag that can be
171 * used without performing a memory registration for the local
172 * memory. Note that ULPs should never check this flag, but
173 * instead of use the local_dma_lkey flag in the ib_pd structure,
174 * which will always contain a usable lkey.
175 */
176 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
177 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
178 IB_DEVICE_MEM_WINDOW = (1 << 17),
179 /*
180 * Devices should set IB_DEVICE_UD_IP_SUM if they support
181 * insertion of UDP and TCP checksum on outgoing UD IPoIB
182 * messages and can verify the validity of checksum for
183 * incoming messages. Setting this flag implies that the
184 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
185 */
186 IB_DEVICE_UD_IP_CSUM = (1 << 18),
187 IB_DEVICE_UD_TSO = (1 << 19),
188 IB_DEVICE_XRC = (1 << 20),
189
190 /*
191 * This device supports the IB "base memory management extension",
192 * which includes support for fast registrations (IB_WR_REG_MR,
193 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
194 * also be set by any iWarp device which must support FRs to comply
195 * to the iWarp verbs spec. iWarp devices also support the
196 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
197 * stag.
198 */
199 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
200 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
201 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
202 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
203 IB_DEVICE_RC_IP_CSUM = (1 << 25),
204 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
205 /*
206 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
207 * support execution of WQEs that involve synchronization
208 * of I/O operations with single completion queue managed
209 * by hardware.
210 */
211 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
212 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
213 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
214 IB_DEVICE_ON_DEMAND_PAGING = (1 << 31),
215 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
216 };
217
218 enum ib_signature_prot_cap {
219 IB_PROT_T10DIF_TYPE_1 = 1,
220 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
221 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
222 };
223
224 enum ib_signature_guard_cap {
225 IB_GUARD_T10DIF_CRC = 1,
226 IB_GUARD_T10DIF_CSUM = 1 << 1,
227 };
228
229 enum ib_atomic_cap {
230 IB_ATOMIC_NONE,
231 IB_ATOMIC_HCA,
232 IB_ATOMIC_GLOB
233 };
234
235 enum ib_odp_general_cap_bits {
236 IB_ODP_SUPPORT = 1 << 0,
237 };
238
239 enum ib_odp_transport_cap_bits {
240 IB_ODP_SUPPORT_SEND = 1 << 0,
241 IB_ODP_SUPPORT_RECV = 1 << 1,
242 IB_ODP_SUPPORT_WRITE = 1 << 2,
243 IB_ODP_SUPPORT_READ = 1 << 3,
244 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
245 };
246
247 struct ib_odp_caps {
248 uint64_t general_caps;
249 struct {
250 uint32_t rc_odp_caps;
251 uint32_t uc_odp_caps;
252 uint32_t ud_odp_caps;
253 } per_transport_caps;
254 };
255
256 enum ib_cq_creation_flags {
257 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
258 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
259 };
260
261 struct ib_cq_init_attr {
262 unsigned int cqe;
263 int comp_vector;
264 u32 flags;
265 };
266
267 struct ib_device_attr {
268 u64 fw_ver;
269 __be64 sys_image_guid;
270 u64 max_mr_size;
271 u64 page_size_cap;
272 u32 vendor_id;
273 u32 vendor_part_id;
274 u32 hw_ver;
275 int max_qp;
276 int max_qp_wr;
277 u64 device_cap_flags;
278 int max_sge;
279 int max_sge_rd;
280 int max_cq;
281 int max_cqe;
282 int max_mr;
283 int max_pd;
284 int max_qp_rd_atom;
285 int max_ee_rd_atom;
286 int max_res_rd_atom;
287 int max_qp_init_rd_atom;
288 int max_ee_init_rd_atom;
289 enum ib_atomic_cap atomic_cap;
290 enum ib_atomic_cap masked_atomic_cap;
291 int max_ee;
292 int max_rdd;
293 int max_mw;
294 int max_raw_ipv6_qp;
295 int max_raw_ethy_qp;
296 int max_mcast_grp;
297 int max_mcast_qp_attach;
298 int max_total_mcast_qp_attach;
299 int max_ah;
300 int max_fmr;
301 int max_map_per_fmr;
302 int max_srq;
303 int max_srq_wr;
304 int max_srq_sge;
305 unsigned int max_fast_reg_page_list_len;
306 u16 max_pkeys;
307 u8 local_ca_ack_delay;
308 int sig_prot_cap;
309 int sig_guard_cap;
310 struct ib_odp_caps odp_caps;
311 uint64_t timestamp_mask;
312 uint64_t hca_core_clock; /* in KHZ */
313 };
314
315 enum ib_mtu {
316 IB_MTU_256 = 1,
317 IB_MTU_512 = 2,
318 IB_MTU_1024 = 3,
319 IB_MTU_2048 = 4,
320 IB_MTU_4096 = 5
321 };
322
323 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
324 {
325 switch (mtu) {
326 case IB_MTU_256: return 256;
327 case IB_MTU_512: return 512;
328 case IB_MTU_1024: return 1024;
329 case IB_MTU_2048: return 2048;
330 case IB_MTU_4096: return 4096;
331 default: return -1;
332 }
333 }
334
335 enum ib_port_state {
336 IB_PORT_NOP = 0,
337 IB_PORT_DOWN = 1,
338 IB_PORT_INIT = 2,
339 IB_PORT_ARMED = 3,
340 IB_PORT_ACTIVE = 4,
341 IB_PORT_ACTIVE_DEFER = 5
342 };
343
344 enum ib_port_cap_flags {
345 IB_PORT_SM = 1 << 1,
346 IB_PORT_NOTICE_SUP = 1 << 2,
347 IB_PORT_TRAP_SUP = 1 << 3,
348 IB_PORT_OPT_IPD_SUP = 1 << 4,
349 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
350 IB_PORT_SL_MAP_SUP = 1 << 6,
351 IB_PORT_MKEY_NVRAM = 1 << 7,
352 IB_PORT_PKEY_NVRAM = 1 << 8,
353 IB_PORT_LED_INFO_SUP = 1 << 9,
354 IB_PORT_SM_DISABLED = 1 << 10,
355 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
356 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
357 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
358 IB_PORT_CM_SUP = 1 << 16,
359 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
360 IB_PORT_REINIT_SUP = 1 << 18,
361 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
362 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
363 IB_PORT_DR_NOTICE_SUP = 1 << 21,
364 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
365 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
366 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
367 IB_PORT_CLIENT_REG_SUP = 1 << 25,
368 IB_PORT_IP_BASED_GIDS = 1 << 26,
369 };
370
371 enum ib_port_width {
372 IB_WIDTH_1X = 1,
373 IB_WIDTH_4X = 2,
374 IB_WIDTH_8X = 4,
375 IB_WIDTH_12X = 8
376 };
377
378 static inline int ib_width_enum_to_int(enum ib_port_width width)
379 {
380 switch (width) {
381 case IB_WIDTH_1X: return 1;
382 case IB_WIDTH_4X: return 4;
383 case IB_WIDTH_8X: return 8;
384 case IB_WIDTH_12X: return 12;
385 default: return -1;
386 }
387 }
388
389 enum ib_port_speed {
390 IB_SPEED_SDR = 1,
391 IB_SPEED_DDR = 2,
392 IB_SPEED_QDR = 4,
393 IB_SPEED_FDR10 = 8,
394 IB_SPEED_FDR = 16,
395 IB_SPEED_EDR = 32
396 };
397
398 struct ib_protocol_stats {
399 /* TBD... */
400 };
401
402 struct iw_protocol_stats {
403 u64 ipInReceives;
404 u64 ipInHdrErrors;
405 u64 ipInTooBigErrors;
406 u64 ipInNoRoutes;
407 u64 ipInAddrErrors;
408 u64 ipInUnknownProtos;
409 u64 ipInTruncatedPkts;
410 u64 ipInDiscards;
411 u64 ipInDelivers;
412 u64 ipOutForwDatagrams;
413 u64 ipOutRequests;
414 u64 ipOutDiscards;
415 u64 ipOutNoRoutes;
416 u64 ipReasmTimeout;
417 u64 ipReasmReqds;
418 u64 ipReasmOKs;
419 u64 ipReasmFails;
420 u64 ipFragOKs;
421 u64 ipFragFails;
422 u64 ipFragCreates;
423 u64 ipInMcastPkts;
424 u64 ipOutMcastPkts;
425 u64 ipInBcastPkts;
426 u64 ipOutBcastPkts;
427
428 u64 tcpRtoAlgorithm;
429 u64 tcpRtoMin;
430 u64 tcpRtoMax;
431 u64 tcpMaxConn;
432 u64 tcpActiveOpens;
433 u64 tcpPassiveOpens;
434 u64 tcpAttemptFails;
435 u64 tcpEstabResets;
436 u64 tcpCurrEstab;
437 u64 tcpInSegs;
438 u64 tcpOutSegs;
439 u64 tcpRetransSegs;
440 u64 tcpInErrs;
441 u64 tcpOutRsts;
442 };
443
444 union rdma_protocol_stats {
445 struct ib_protocol_stats ib;
446 struct iw_protocol_stats iw;
447 };
448
449 /* Define bits for the various functionality this port needs to be supported by
450 * the core.
451 */
452 /* Management 0x00000FFF */
453 #define RDMA_CORE_CAP_IB_MAD 0x00000001
454 #define RDMA_CORE_CAP_IB_SMI 0x00000002
455 #define RDMA_CORE_CAP_IB_CM 0x00000004
456 #define RDMA_CORE_CAP_IW_CM 0x00000008
457 #define RDMA_CORE_CAP_IB_SA 0x00000010
458 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
459
460 /* Address format 0x000FF000 */
461 #define RDMA_CORE_CAP_AF_IB 0x00001000
462 #define RDMA_CORE_CAP_ETH_AH 0x00002000
463
464 /* Protocol 0xFFF00000 */
465 #define RDMA_CORE_CAP_PROT_IB 0x00100000
466 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
467 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
468 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
469
470 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
471 | RDMA_CORE_CAP_IB_MAD \
472 | RDMA_CORE_CAP_IB_SMI \
473 | RDMA_CORE_CAP_IB_CM \
474 | RDMA_CORE_CAP_IB_SA \
475 | RDMA_CORE_CAP_AF_IB)
476 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
477 | RDMA_CORE_CAP_IB_MAD \
478 | RDMA_CORE_CAP_IB_CM \
479 | RDMA_CORE_CAP_AF_IB \
480 | RDMA_CORE_CAP_ETH_AH)
481 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
482 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
483 | RDMA_CORE_CAP_IB_MAD \
484 | RDMA_CORE_CAP_IB_CM \
485 | RDMA_CORE_CAP_AF_IB \
486 | RDMA_CORE_CAP_ETH_AH)
487 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
488 | RDMA_CORE_CAP_IW_CM)
489 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
490 | RDMA_CORE_CAP_OPA_MAD)
491
492 struct ib_port_attr {
493 u64 subnet_prefix;
494 enum ib_port_state state;
495 enum ib_mtu max_mtu;
496 enum ib_mtu active_mtu;
497 int gid_tbl_len;
498 u32 port_cap_flags;
499 u32 max_msg_sz;
500 u32 bad_pkey_cntr;
501 u32 qkey_viol_cntr;
502 u16 pkey_tbl_len;
503 u16 lid;
504 u16 sm_lid;
505 u8 lmc;
506 u8 max_vl_num;
507 u8 sm_sl;
508 u8 subnet_timeout;
509 u8 init_type_reply;
510 u8 active_width;
511 u8 active_speed;
512 u8 phys_state;
513 };
514
515 enum ib_device_modify_flags {
516 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
517 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
518 };
519
520 struct ib_device_modify {
521 u64 sys_image_guid;
522 char node_desc[64];
523 };
524
525 enum ib_port_modify_flags {
526 IB_PORT_SHUTDOWN = 1,
527 IB_PORT_INIT_TYPE = (1<<2),
528 IB_PORT_RESET_QKEY_CNTR = (1<<3)
529 };
530
531 struct ib_port_modify {
532 u32 set_port_cap_mask;
533 u32 clr_port_cap_mask;
534 u8 init_type;
535 };
536
537 enum ib_event_type {
538 IB_EVENT_CQ_ERR,
539 IB_EVENT_QP_FATAL,
540 IB_EVENT_QP_REQ_ERR,
541 IB_EVENT_QP_ACCESS_ERR,
542 IB_EVENT_COMM_EST,
543 IB_EVENT_SQ_DRAINED,
544 IB_EVENT_PATH_MIG,
545 IB_EVENT_PATH_MIG_ERR,
546 IB_EVENT_DEVICE_FATAL,
547 IB_EVENT_PORT_ACTIVE,
548 IB_EVENT_PORT_ERR,
549 IB_EVENT_LID_CHANGE,
550 IB_EVENT_PKEY_CHANGE,
551 IB_EVENT_SM_CHANGE,
552 IB_EVENT_SRQ_ERR,
553 IB_EVENT_SRQ_LIMIT_REACHED,
554 IB_EVENT_QP_LAST_WQE_REACHED,
555 IB_EVENT_CLIENT_REREGISTER,
556 IB_EVENT_GID_CHANGE,
557 };
558
559 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
560
561 struct ib_event {
562 struct ib_device *device;
563 union {
564 struct ib_cq *cq;
565 struct ib_qp *qp;
566 struct ib_srq *srq;
567 u8 port_num;
568 } element;
569 enum ib_event_type event;
570 };
571
572 struct ib_event_handler {
573 struct ib_device *device;
574 void (*handler)(struct ib_event_handler *, struct ib_event *);
575 struct list_head list;
576 };
577
578 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
579 do { \
580 (_ptr)->device = _device; \
581 (_ptr)->handler = _handler; \
582 INIT_LIST_HEAD(&(_ptr)->list); \
583 } while (0)
584
585 struct ib_global_route {
586 union ib_gid dgid;
587 u32 flow_label;
588 u8 sgid_index;
589 u8 hop_limit;
590 u8 traffic_class;
591 };
592
593 struct ib_grh {
594 __be32 version_tclass_flow;
595 __be16 paylen;
596 u8 next_hdr;
597 u8 hop_limit;
598 union ib_gid sgid;
599 union ib_gid dgid;
600 };
601
602 union rdma_network_hdr {
603 struct ib_grh ibgrh;
604 struct {
605 /* The IB spec states that if it's IPv4, the header
606 * is located in the last 20 bytes of the header.
607 */
608 u8 reserved[20];
609 struct iphdr roce4grh;
610 };
611 };
612
613 enum {
614 IB_MULTICAST_QPN = 0xffffff
615 };
616
617 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
618
619 enum ib_ah_flags {
620 IB_AH_GRH = 1
621 };
622
623 enum ib_rate {
624 IB_RATE_PORT_CURRENT = 0,
625 IB_RATE_2_5_GBPS = 2,
626 IB_RATE_5_GBPS = 5,
627 IB_RATE_10_GBPS = 3,
628 IB_RATE_20_GBPS = 6,
629 IB_RATE_30_GBPS = 4,
630 IB_RATE_40_GBPS = 7,
631 IB_RATE_60_GBPS = 8,
632 IB_RATE_80_GBPS = 9,
633 IB_RATE_120_GBPS = 10,
634 IB_RATE_14_GBPS = 11,
635 IB_RATE_56_GBPS = 12,
636 IB_RATE_112_GBPS = 13,
637 IB_RATE_168_GBPS = 14,
638 IB_RATE_25_GBPS = 15,
639 IB_RATE_100_GBPS = 16,
640 IB_RATE_200_GBPS = 17,
641 IB_RATE_300_GBPS = 18
642 };
643
644 /**
645 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
646 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
647 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
648 * @rate: rate to convert.
649 */
650 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
651
652 /**
653 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
654 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
655 * @rate: rate to convert.
656 */
657 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
658
659
660 /**
661 * enum ib_mr_type - memory region type
662 * @IB_MR_TYPE_MEM_REG: memory region that is used for
663 * normal registration
664 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
665 * signature operations (data-integrity
666 * capable regions)
667 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
668 * register any arbitrary sg lists (without
669 * the normal mr constraints - see
670 * ib_map_mr_sg)
671 */
672 enum ib_mr_type {
673 IB_MR_TYPE_MEM_REG,
674 IB_MR_TYPE_SIGNATURE,
675 IB_MR_TYPE_SG_GAPS,
676 };
677
678 /**
679 * Signature types
680 * IB_SIG_TYPE_NONE: Unprotected.
681 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
682 */
683 enum ib_signature_type {
684 IB_SIG_TYPE_NONE,
685 IB_SIG_TYPE_T10_DIF,
686 };
687
688 /**
689 * Signature T10-DIF block-guard types
690 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
691 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
692 */
693 enum ib_t10_dif_bg_type {
694 IB_T10DIF_CRC,
695 IB_T10DIF_CSUM
696 };
697
698 /**
699 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
700 * domain.
701 * @bg_type: T10-DIF block guard type (CRC|CSUM)
702 * @pi_interval: protection information interval.
703 * @bg: seed of guard computation.
704 * @app_tag: application tag of guard block
705 * @ref_tag: initial guard block reference tag.
706 * @ref_remap: Indicate wethear the reftag increments each block
707 * @app_escape: Indicate to skip block check if apptag=0xffff
708 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
709 * @apptag_check_mask: check bitmask of application tag.
710 */
711 struct ib_t10_dif_domain {
712 enum ib_t10_dif_bg_type bg_type;
713 u16 pi_interval;
714 u16 bg;
715 u16 app_tag;
716 u32 ref_tag;
717 bool ref_remap;
718 bool app_escape;
719 bool ref_escape;
720 u16 apptag_check_mask;
721 };
722
723 /**
724 * struct ib_sig_domain - Parameters for signature domain
725 * @sig_type: specific signauture type
726 * @sig: union of all signature domain attributes that may
727 * be used to set domain layout.
728 */
729 struct ib_sig_domain {
730 enum ib_signature_type sig_type;
731 union {
732 struct ib_t10_dif_domain dif;
733 } sig;
734 };
735
736 /**
737 * struct ib_sig_attrs - Parameters for signature handover operation
738 * @check_mask: bitmask for signature byte check (8 bytes)
739 * @mem: memory domain layout desciptor.
740 * @wire: wire domain layout desciptor.
741 */
742 struct ib_sig_attrs {
743 u8 check_mask;
744 struct ib_sig_domain mem;
745 struct ib_sig_domain wire;
746 };
747
748 enum ib_sig_err_type {
749 IB_SIG_BAD_GUARD,
750 IB_SIG_BAD_REFTAG,
751 IB_SIG_BAD_APPTAG,
752 };
753
754 /**
755 * struct ib_sig_err - signature error descriptor
756 */
757 struct ib_sig_err {
758 enum ib_sig_err_type err_type;
759 u32 expected;
760 u32 actual;
761 u64 sig_err_offset;
762 u32 key;
763 };
764
765 enum ib_mr_status_check {
766 IB_MR_CHECK_SIG_STATUS = 1,
767 };
768
769 /**
770 * struct ib_mr_status - Memory region status container
771 *
772 * @fail_status: Bitmask of MR checks status. For each
773 * failed check a corresponding status bit is set.
774 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
775 * failure.
776 */
777 struct ib_mr_status {
778 u32 fail_status;
779 struct ib_sig_err sig_err;
780 };
781
782 /**
783 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
784 * enum.
785 * @mult: multiple to convert.
786 */
787 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
788
789 struct ib_ah_attr {
790 struct ib_global_route grh;
791 u16 dlid;
792 u8 sl;
793 u8 src_path_bits;
794 u8 static_rate;
795 u8 ah_flags;
796 u8 port_num;
797 u8 dmac[ETH_ALEN];
798 };
799
800 enum ib_wc_status {
801 IB_WC_SUCCESS,
802 IB_WC_LOC_LEN_ERR,
803 IB_WC_LOC_QP_OP_ERR,
804 IB_WC_LOC_EEC_OP_ERR,
805 IB_WC_LOC_PROT_ERR,
806 IB_WC_WR_FLUSH_ERR,
807 IB_WC_MW_BIND_ERR,
808 IB_WC_BAD_RESP_ERR,
809 IB_WC_LOC_ACCESS_ERR,
810 IB_WC_REM_INV_REQ_ERR,
811 IB_WC_REM_ACCESS_ERR,
812 IB_WC_REM_OP_ERR,
813 IB_WC_RETRY_EXC_ERR,
814 IB_WC_RNR_RETRY_EXC_ERR,
815 IB_WC_LOC_RDD_VIOL_ERR,
816 IB_WC_REM_INV_RD_REQ_ERR,
817 IB_WC_REM_ABORT_ERR,
818 IB_WC_INV_EECN_ERR,
819 IB_WC_INV_EEC_STATE_ERR,
820 IB_WC_FATAL_ERR,
821 IB_WC_RESP_TIMEOUT_ERR,
822 IB_WC_GENERAL_ERR
823 };
824
825 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
826
827 enum ib_wc_opcode {
828 IB_WC_SEND,
829 IB_WC_RDMA_WRITE,
830 IB_WC_RDMA_READ,
831 IB_WC_COMP_SWAP,
832 IB_WC_FETCH_ADD,
833 IB_WC_LSO,
834 IB_WC_LOCAL_INV,
835 IB_WC_REG_MR,
836 IB_WC_MASKED_COMP_SWAP,
837 IB_WC_MASKED_FETCH_ADD,
838 /*
839 * Set value of IB_WC_RECV so consumers can test if a completion is a
840 * receive by testing (opcode & IB_WC_RECV).
841 */
842 IB_WC_RECV = 1 << 7,
843 IB_WC_RECV_RDMA_WITH_IMM
844 };
845
846 enum ib_wc_flags {
847 IB_WC_GRH = 1,
848 IB_WC_WITH_IMM = (1<<1),
849 IB_WC_WITH_INVALIDATE = (1<<2),
850 IB_WC_IP_CSUM_OK = (1<<3),
851 IB_WC_WITH_SMAC = (1<<4),
852 IB_WC_WITH_VLAN = (1<<5),
853 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
854 };
855
856 struct ib_wc {
857 union {
858 u64 wr_id;
859 struct ib_cqe *wr_cqe;
860 };
861 enum ib_wc_status status;
862 enum ib_wc_opcode opcode;
863 u32 vendor_err;
864 u32 byte_len;
865 struct ib_qp *qp;
866 union {
867 __be32 imm_data;
868 u32 invalidate_rkey;
869 } ex;
870 u32 src_qp;
871 int wc_flags;
872 u16 pkey_index;
873 u16 slid;
874 u8 sl;
875 u8 dlid_path_bits;
876 u8 port_num; /* valid only for DR SMPs on switches */
877 u8 smac[ETH_ALEN];
878 u16 vlan_id;
879 u8 network_hdr_type;
880 };
881
882 enum ib_cq_notify_flags {
883 IB_CQ_SOLICITED = 1 << 0,
884 IB_CQ_NEXT_COMP = 1 << 1,
885 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
886 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
887 };
888
889 enum ib_srq_type {
890 IB_SRQT_BASIC,
891 IB_SRQT_XRC
892 };
893
894 enum ib_srq_attr_mask {
895 IB_SRQ_MAX_WR = 1 << 0,
896 IB_SRQ_LIMIT = 1 << 1,
897 };
898
899 struct ib_srq_attr {
900 u32 max_wr;
901 u32 max_sge;
902 u32 srq_limit;
903 };
904
905 struct ib_srq_init_attr {
906 void (*event_handler)(struct ib_event *, void *);
907 void *srq_context;
908 struct ib_srq_attr attr;
909 enum ib_srq_type srq_type;
910
911 union {
912 struct {
913 struct ib_xrcd *xrcd;
914 struct ib_cq *cq;
915 } xrc;
916 } ext;
917 };
918
919 struct ib_qp_cap {
920 u32 max_send_wr;
921 u32 max_recv_wr;
922 u32 max_send_sge;
923 u32 max_recv_sge;
924 u32 max_inline_data;
925 };
926
927 enum ib_sig_type {
928 IB_SIGNAL_ALL_WR,
929 IB_SIGNAL_REQ_WR
930 };
931
932 enum ib_qp_type {
933 /*
934 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
935 * here (and in that order) since the MAD layer uses them as
936 * indices into a 2-entry table.
937 */
938 IB_QPT_SMI,
939 IB_QPT_GSI,
940
941 IB_QPT_RC,
942 IB_QPT_UC,
943 IB_QPT_UD,
944 IB_QPT_RAW_IPV6,
945 IB_QPT_RAW_ETHERTYPE,
946 IB_QPT_RAW_PACKET = 8,
947 IB_QPT_XRC_INI = 9,
948 IB_QPT_XRC_TGT,
949 IB_QPT_MAX,
950 /* Reserve a range for qp types internal to the low level driver.
951 * These qp types will not be visible at the IB core layer, so the
952 * IB_QPT_MAX usages should not be affected in the core layer
953 */
954 IB_QPT_RESERVED1 = 0x1000,
955 IB_QPT_RESERVED2,
956 IB_QPT_RESERVED3,
957 IB_QPT_RESERVED4,
958 IB_QPT_RESERVED5,
959 IB_QPT_RESERVED6,
960 IB_QPT_RESERVED7,
961 IB_QPT_RESERVED8,
962 IB_QPT_RESERVED9,
963 IB_QPT_RESERVED10,
964 };
965
966 enum ib_qp_create_flags {
967 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
968 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
969 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
970 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
971 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
972 IB_QP_CREATE_NETIF_QP = 1 << 5,
973 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
974 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
975 /* reserve bits 26-31 for low level drivers' internal use */
976 IB_QP_CREATE_RESERVED_START = 1 << 26,
977 IB_QP_CREATE_RESERVED_END = 1 << 31,
978 };
979
980 /*
981 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
982 * callback to destroy the passed in QP.
983 */
984
985 struct ib_qp_init_attr {
986 void (*event_handler)(struct ib_event *, void *);
987 void *qp_context;
988 struct ib_cq *send_cq;
989 struct ib_cq *recv_cq;
990 struct ib_srq *srq;
991 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
992 struct ib_qp_cap cap;
993 enum ib_sig_type sq_sig_type;
994 enum ib_qp_type qp_type;
995 enum ib_qp_create_flags create_flags;
996 u8 port_num; /* special QP types only */
997 };
998
999 struct ib_qp_open_attr {
1000 void (*event_handler)(struct ib_event *, void *);
1001 void *qp_context;
1002 u32 qp_num;
1003 enum ib_qp_type qp_type;
1004 };
1005
1006 enum ib_rnr_timeout {
1007 IB_RNR_TIMER_655_36 = 0,
1008 IB_RNR_TIMER_000_01 = 1,
1009 IB_RNR_TIMER_000_02 = 2,
1010 IB_RNR_TIMER_000_03 = 3,
1011 IB_RNR_TIMER_000_04 = 4,
1012 IB_RNR_TIMER_000_06 = 5,
1013 IB_RNR_TIMER_000_08 = 6,
1014 IB_RNR_TIMER_000_12 = 7,
1015 IB_RNR_TIMER_000_16 = 8,
1016 IB_RNR_TIMER_000_24 = 9,
1017 IB_RNR_TIMER_000_32 = 10,
1018 IB_RNR_TIMER_000_48 = 11,
1019 IB_RNR_TIMER_000_64 = 12,
1020 IB_RNR_TIMER_000_96 = 13,
1021 IB_RNR_TIMER_001_28 = 14,
1022 IB_RNR_TIMER_001_92 = 15,
1023 IB_RNR_TIMER_002_56 = 16,
1024 IB_RNR_TIMER_003_84 = 17,
1025 IB_RNR_TIMER_005_12 = 18,
1026 IB_RNR_TIMER_007_68 = 19,
1027 IB_RNR_TIMER_010_24 = 20,
1028 IB_RNR_TIMER_015_36 = 21,
1029 IB_RNR_TIMER_020_48 = 22,
1030 IB_RNR_TIMER_030_72 = 23,
1031 IB_RNR_TIMER_040_96 = 24,
1032 IB_RNR_TIMER_061_44 = 25,
1033 IB_RNR_TIMER_081_92 = 26,
1034 IB_RNR_TIMER_122_88 = 27,
1035 IB_RNR_TIMER_163_84 = 28,
1036 IB_RNR_TIMER_245_76 = 29,
1037 IB_RNR_TIMER_327_68 = 30,
1038 IB_RNR_TIMER_491_52 = 31
1039 };
1040
1041 enum ib_qp_attr_mask {
1042 IB_QP_STATE = 1,
1043 IB_QP_CUR_STATE = (1<<1),
1044 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1045 IB_QP_ACCESS_FLAGS = (1<<3),
1046 IB_QP_PKEY_INDEX = (1<<4),
1047 IB_QP_PORT = (1<<5),
1048 IB_QP_QKEY = (1<<6),
1049 IB_QP_AV = (1<<7),
1050 IB_QP_PATH_MTU = (1<<8),
1051 IB_QP_TIMEOUT = (1<<9),
1052 IB_QP_RETRY_CNT = (1<<10),
1053 IB_QP_RNR_RETRY = (1<<11),
1054 IB_QP_RQ_PSN = (1<<12),
1055 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1056 IB_QP_ALT_PATH = (1<<14),
1057 IB_QP_MIN_RNR_TIMER = (1<<15),
1058 IB_QP_SQ_PSN = (1<<16),
1059 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1060 IB_QP_PATH_MIG_STATE = (1<<18),
1061 IB_QP_CAP = (1<<19),
1062 IB_QP_DEST_QPN = (1<<20),
1063 IB_QP_RESERVED1 = (1<<21),
1064 IB_QP_RESERVED2 = (1<<22),
1065 IB_QP_RESERVED3 = (1<<23),
1066 IB_QP_RESERVED4 = (1<<24),
1067 };
1068
1069 enum ib_qp_state {
1070 IB_QPS_RESET,
1071 IB_QPS_INIT,
1072 IB_QPS_RTR,
1073 IB_QPS_RTS,
1074 IB_QPS_SQD,
1075 IB_QPS_SQE,
1076 IB_QPS_ERR
1077 };
1078
1079 enum ib_mig_state {
1080 IB_MIG_MIGRATED,
1081 IB_MIG_REARM,
1082 IB_MIG_ARMED
1083 };
1084
1085 enum ib_mw_type {
1086 IB_MW_TYPE_1 = 1,
1087 IB_MW_TYPE_2 = 2
1088 };
1089
1090 struct ib_qp_attr {
1091 enum ib_qp_state qp_state;
1092 enum ib_qp_state cur_qp_state;
1093 enum ib_mtu path_mtu;
1094 enum ib_mig_state path_mig_state;
1095 u32 qkey;
1096 u32 rq_psn;
1097 u32 sq_psn;
1098 u32 dest_qp_num;
1099 int qp_access_flags;
1100 struct ib_qp_cap cap;
1101 struct ib_ah_attr ah_attr;
1102 struct ib_ah_attr alt_ah_attr;
1103 u16 pkey_index;
1104 u16 alt_pkey_index;
1105 u8 en_sqd_async_notify;
1106 u8 sq_draining;
1107 u8 max_rd_atomic;
1108 u8 max_dest_rd_atomic;
1109 u8 min_rnr_timer;
1110 u8 port_num;
1111 u8 timeout;
1112 u8 retry_cnt;
1113 u8 rnr_retry;
1114 u8 alt_port_num;
1115 u8 alt_timeout;
1116 };
1117
1118 enum ib_wr_opcode {
1119 IB_WR_RDMA_WRITE,
1120 IB_WR_RDMA_WRITE_WITH_IMM,
1121 IB_WR_SEND,
1122 IB_WR_SEND_WITH_IMM,
1123 IB_WR_RDMA_READ,
1124 IB_WR_ATOMIC_CMP_AND_SWP,
1125 IB_WR_ATOMIC_FETCH_AND_ADD,
1126 IB_WR_LSO,
1127 IB_WR_SEND_WITH_INV,
1128 IB_WR_RDMA_READ_WITH_INV,
1129 IB_WR_LOCAL_INV,
1130 IB_WR_REG_MR,
1131 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1132 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1133 IB_WR_REG_SIG_MR,
1134 /* reserve values for low level drivers' internal use.
1135 * These values will not be used at all in the ib core layer.
1136 */
1137 IB_WR_RESERVED1 = 0xf0,
1138 IB_WR_RESERVED2,
1139 IB_WR_RESERVED3,
1140 IB_WR_RESERVED4,
1141 IB_WR_RESERVED5,
1142 IB_WR_RESERVED6,
1143 IB_WR_RESERVED7,
1144 IB_WR_RESERVED8,
1145 IB_WR_RESERVED9,
1146 IB_WR_RESERVED10,
1147 };
1148
1149 enum ib_send_flags {
1150 IB_SEND_FENCE = 1,
1151 IB_SEND_SIGNALED = (1<<1),
1152 IB_SEND_SOLICITED = (1<<2),
1153 IB_SEND_INLINE = (1<<3),
1154 IB_SEND_IP_CSUM = (1<<4),
1155
1156 /* reserve bits 26-31 for low level drivers' internal use */
1157 IB_SEND_RESERVED_START = (1 << 26),
1158 IB_SEND_RESERVED_END = (1 << 31),
1159 };
1160
1161 struct ib_sge {
1162 u64 addr;
1163 u32 length;
1164 u32 lkey;
1165 };
1166
1167 struct ib_cqe {
1168 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1169 };
1170
1171 struct ib_send_wr {
1172 struct ib_send_wr *next;
1173 union {
1174 u64 wr_id;
1175 struct ib_cqe *wr_cqe;
1176 };
1177 struct ib_sge *sg_list;
1178 int num_sge;
1179 enum ib_wr_opcode opcode;
1180 int send_flags;
1181 union {
1182 __be32 imm_data;
1183 u32 invalidate_rkey;
1184 } ex;
1185 };
1186
1187 struct ib_rdma_wr {
1188 struct ib_send_wr wr;
1189 u64 remote_addr;
1190 u32 rkey;
1191 };
1192
1193 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1194 {
1195 return container_of(wr, struct ib_rdma_wr, wr);
1196 }
1197
1198 struct ib_atomic_wr {
1199 struct ib_send_wr wr;
1200 u64 remote_addr;
1201 u64 compare_add;
1202 u64 swap;
1203 u64 compare_add_mask;
1204 u64 swap_mask;
1205 u32 rkey;
1206 };
1207
1208 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1209 {
1210 return container_of(wr, struct ib_atomic_wr, wr);
1211 }
1212
1213 struct ib_ud_wr {
1214 struct ib_send_wr wr;
1215 struct ib_ah *ah;
1216 void *header;
1217 int hlen;
1218 int mss;
1219 u32 remote_qpn;
1220 u32 remote_qkey;
1221 u16 pkey_index; /* valid for GSI only */
1222 u8 port_num; /* valid for DR SMPs on switch only */
1223 };
1224
1225 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1226 {
1227 return container_of(wr, struct ib_ud_wr, wr);
1228 }
1229
1230 struct ib_reg_wr {
1231 struct ib_send_wr wr;
1232 struct ib_mr *mr;
1233 u32 key;
1234 int access;
1235 };
1236
1237 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1238 {
1239 return container_of(wr, struct ib_reg_wr, wr);
1240 }
1241
1242 struct ib_sig_handover_wr {
1243 struct ib_send_wr wr;
1244 struct ib_sig_attrs *sig_attrs;
1245 struct ib_mr *sig_mr;
1246 int access_flags;
1247 struct ib_sge *prot;
1248 };
1249
1250 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1251 {
1252 return container_of(wr, struct ib_sig_handover_wr, wr);
1253 }
1254
1255 struct ib_recv_wr {
1256 struct ib_recv_wr *next;
1257 union {
1258 u64 wr_id;
1259 struct ib_cqe *wr_cqe;
1260 };
1261 struct ib_sge *sg_list;
1262 int num_sge;
1263 };
1264
1265 enum ib_access_flags {
1266 IB_ACCESS_LOCAL_WRITE = 1,
1267 IB_ACCESS_REMOTE_WRITE = (1<<1),
1268 IB_ACCESS_REMOTE_READ = (1<<2),
1269 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1270 IB_ACCESS_MW_BIND = (1<<4),
1271 IB_ZERO_BASED = (1<<5),
1272 IB_ACCESS_ON_DEMAND = (1<<6),
1273 };
1274
1275 /*
1276 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1277 * are hidden here instead of a uapi header!
1278 */
1279 enum ib_mr_rereg_flags {
1280 IB_MR_REREG_TRANS = 1,
1281 IB_MR_REREG_PD = (1<<1),
1282 IB_MR_REREG_ACCESS = (1<<2),
1283 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1284 };
1285
1286 struct ib_fmr_attr {
1287 int max_pages;
1288 int max_maps;
1289 u8 page_shift;
1290 };
1291
1292 struct ib_umem;
1293
1294 struct ib_ucontext {
1295 struct ib_device *device;
1296 struct list_head pd_list;
1297 struct list_head mr_list;
1298 struct list_head mw_list;
1299 struct list_head cq_list;
1300 struct list_head qp_list;
1301 struct list_head srq_list;
1302 struct list_head ah_list;
1303 struct list_head xrcd_list;
1304 struct list_head rule_list;
1305 int closing;
1306
1307 struct pid *tgid;
1308 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1309 struct rb_root umem_tree;
1310 /*
1311 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1312 * mmu notifiers registration.
1313 */
1314 struct rw_semaphore umem_rwsem;
1315 void (*invalidate_range)(struct ib_umem *umem,
1316 unsigned long start, unsigned long end);
1317
1318 struct mmu_notifier mn;
1319 atomic_t notifier_count;
1320 /* A list of umems that don't have private mmu notifier counters yet. */
1321 struct list_head no_private_counters;
1322 int odp_mrs_count;
1323 #endif
1324 };
1325
1326 struct ib_uobject {
1327 u64 user_handle; /* handle given to us by userspace */
1328 struct ib_ucontext *context; /* associated user context */
1329 void *object; /* containing object */
1330 struct list_head list; /* link to context's list */
1331 int id; /* index into kernel idr */
1332 struct kref ref;
1333 struct rw_semaphore mutex; /* protects .live */
1334 struct rcu_head rcu; /* kfree_rcu() overhead */
1335 int live;
1336 };
1337
1338 struct ib_udata {
1339 const void __user *inbuf;
1340 void __user *outbuf;
1341 size_t inlen;
1342 size_t outlen;
1343 };
1344
1345 struct ib_pd {
1346 u32 local_dma_lkey;
1347 struct ib_device *device;
1348 struct ib_uobject *uobject;
1349 atomic_t usecnt; /* count all resources */
1350 struct ib_mr *local_mr;
1351 };
1352
1353 struct ib_xrcd {
1354 struct ib_device *device;
1355 atomic_t usecnt; /* count all exposed resources */
1356 struct inode *inode;
1357
1358 struct mutex tgt_qp_mutex;
1359 struct list_head tgt_qp_list;
1360 };
1361
1362 struct ib_ah {
1363 struct ib_device *device;
1364 struct ib_pd *pd;
1365 struct ib_uobject *uobject;
1366 };
1367
1368 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1369
1370 enum ib_poll_context {
1371 IB_POLL_DIRECT, /* caller context, no hw completions */
1372 IB_POLL_SOFTIRQ, /* poll from softirq context */
1373 IB_POLL_WORKQUEUE, /* poll from workqueue */
1374 };
1375
1376 struct ib_cq {
1377 struct ib_device *device;
1378 struct ib_uobject *uobject;
1379 ib_comp_handler comp_handler;
1380 void (*event_handler)(struct ib_event *, void *);
1381 void *cq_context;
1382 int cqe;
1383 atomic_t usecnt; /* count number of work queues */
1384 enum ib_poll_context poll_ctx;
1385 struct ib_wc *wc;
1386 union {
1387 struct irq_poll iop;
1388 struct work_struct work;
1389 };
1390 };
1391
1392 struct ib_srq {
1393 struct ib_device *device;
1394 struct ib_pd *pd;
1395 struct ib_uobject *uobject;
1396 void (*event_handler)(struct ib_event *, void *);
1397 void *srq_context;
1398 enum ib_srq_type srq_type;
1399 atomic_t usecnt;
1400
1401 union {
1402 struct {
1403 struct ib_xrcd *xrcd;
1404 struct ib_cq *cq;
1405 u32 srq_num;
1406 } xrc;
1407 } ext;
1408 };
1409
1410 struct ib_qp {
1411 struct ib_device *device;
1412 struct ib_pd *pd;
1413 struct ib_cq *send_cq;
1414 struct ib_cq *recv_cq;
1415 struct ib_srq *srq;
1416 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1417 struct list_head xrcd_list;
1418 /* count times opened, mcast attaches, flow attaches */
1419 atomic_t usecnt;
1420 struct list_head open_list;
1421 struct ib_qp *real_qp;
1422 struct ib_uobject *uobject;
1423 void (*event_handler)(struct ib_event *, void *);
1424 void *qp_context;
1425 u32 qp_num;
1426 enum ib_qp_type qp_type;
1427 };
1428
1429 struct ib_mr {
1430 struct ib_device *device;
1431 struct ib_pd *pd;
1432 struct ib_uobject *uobject;
1433 u32 lkey;
1434 u32 rkey;
1435 u64 iova;
1436 u32 length;
1437 unsigned int page_size;
1438 };
1439
1440 struct ib_mw {
1441 struct ib_device *device;
1442 struct ib_pd *pd;
1443 struct ib_uobject *uobject;
1444 u32 rkey;
1445 enum ib_mw_type type;
1446 };
1447
1448 struct ib_fmr {
1449 struct ib_device *device;
1450 struct ib_pd *pd;
1451 struct list_head list;
1452 u32 lkey;
1453 u32 rkey;
1454 };
1455
1456 /* Supported steering options */
1457 enum ib_flow_attr_type {
1458 /* steering according to rule specifications */
1459 IB_FLOW_ATTR_NORMAL = 0x0,
1460 /* default unicast and multicast rule -
1461 * receive all Eth traffic which isn't steered to any QP
1462 */
1463 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1464 /* default multicast rule -
1465 * receive all Eth multicast traffic which isn't steered to any QP
1466 */
1467 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1468 /* sniffer rule - receive all port traffic */
1469 IB_FLOW_ATTR_SNIFFER = 0x3
1470 };
1471
1472 /* Supported steering header types */
1473 enum ib_flow_spec_type {
1474 /* L2 headers*/
1475 IB_FLOW_SPEC_ETH = 0x20,
1476 IB_FLOW_SPEC_IB = 0x22,
1477 /* L3 header*/
1478 IB_FLOW_SPEC_IPV4 = 0x30,
1479 /* L4 headers*/
1480 IB_FLOW_SPEC_TCP = 0x40,
1481 IB_FLOW_SPEC_UDP = 0x41
1482 };
1483 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1484 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1485
1486 /* Flow steering rule priority is set according to it's domain.
1487 * Lower domain value means higher priority.
1488 */
1489 enum ib_flow_domain {
1490 IB_FLOW_DOMAIN_USER,
1491 IB_FLOW_DOMAIN_ETHTOOL,
1492 IB_FLOW_DOMAIN_RFS,
1493 IB_FLOW_DOMAIN_NIC,
1494 IB_FLOW_DOMAIN_NUM /* Must be last */
1495 };
1496
1497 enum ib_flow_flags {
1498 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1499 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1500 };
1501
1502 struct ib_flow_eth_filter {
1503 u8 dst_mac[6];
1504 u8 src_mac[6];
1505 __be16 ether_type;
1506 __be16 vlan_tag;
1507 };
1508
1509 struct ib_flow_spec_eth {
1510 enum ib_flow_spec_type type;
1511 u16 size;
1512 struct ib_flow_eth_filter val;
1513 struct ib_flow_eth_filter mask;
1514 };
1515
1516 struct ib_flow_ib_filter {
1517 __be16 dlid;
1518 __u8 sl;
1519 };
1520
1521 struct ib_flow_spec_ib {
1522 enum ib_flow_spec_type type;
1523 u16 size;
1524 struct ib_flow_ib_filter val;
1525 struct ib_flow_ib_filter mask;
1526 };
1527
1528 struct ib_flow_ipv4_filter {
1529 __be32 src_ip;
1530 __be32 dst_ip;
1531 };
1532
1533 struct ib_flow_spec_ipv4 {
1534 enum ib_flow_spec_type type;
1535 u16 size;
1536 struct ib_flow_ipv4_filter val;
1537 struct ib_flow_ipv4_filter mask;
1538 };
1539
1540 struct ib_flow_tcp_udp_filter {
1541 __be16 dst_port;
1542 __be16 src_port;
1543 };
1544
1545 struct ib_flow_spec_tcp_udp {
1546 enum ib_flow_spec_type type;
1547 u16 size;
1548 struct ib_flow_tcp_udp_filter val;
1549 struct ib_flow_tcp_udp_filter mask;
1550 };
1551
1552 union ib_flow_spec {
1553 struct {
1554 enum ib_flow_spec_type type;
1555 u16 size;
1556 };
1557 struct ib_flow_spec_eth eth;
1558 struct ib_flow_spec_ib ib;
1559 struct ib_flow_spec_ipv4 ipv4;
1560 struct ib_flow_spec_tcp_udp tcp_udp;
1561 };
1562
1563 struct ib_flow_attr {
1564 enum ib_flow_attr_type type;
1565 u16 size;
1566 u16 priority;
1567 u32 flags;
1568 u8 num_of_specs;
1569 u8 port;
1570 /* Following are the optional layers according to user request
1571 * struct ib_flow_spec_xxx
1572 * struct ib_flow_spec_yyy
1573 */
1574 };
1575
1576 struct ib_flow {
1577 struct ib_qp *qp;
1578 struct ib_uobject *uobject;
1579 };
1580
1581 struct ib_mad_hdr;
1582 struct ib_grh;
1583
1584 enum ib_process_mad_flags {
1585 IB_MAD_IGNORE_MKEY = 1,
1586 IB_MAD_IGNORE_BKEY = 2,
1587 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1588 };
1589
1590 enum ib_mad_result {
1591 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1592 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1593 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1594 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1595 };
1596
1597 #define IB_DEVICE_NAME_MAX 64
1598
1599 struct ib_cache {
1600 rwlock_t lock;
1601 struct ib_event_handler event_handler;
1602 struct ib_pkey_cache **pkey_cache;
1603 struct ib_gid_table **gid_cache;
1604 u8 *lmc_cache;
1605 };
1606
1607 struct ib_dma_mapping_ops {
1608 int (*mapping_error)(struct ib_device *dev,
1609 u64 dma_addr);
1610 u64 (*map_single)(struct ib_device *dev,
1611 void *ptr, size_t size,
1612 enum dma_data_direction direction);
1613 void (*unmap_single)(struct ib_device *dev,
1614 u64 addr, size_t size,
1615 enum dma_data_direction direction);
1616 u64 (*map_page)(struct ib_device *dev,
1617 struct page *page, unsigned long offset,
1618 size_t size,
1619 enum dma_data_direction direction);
1620 void (*unmap_page)(struct ib_device *dev,
1621 u64 addr, size_t size,
1622 enum dma_data_direction direction);
1623 int (*map_sg)(struct ib_device *dev,
1624 struct scatterlist *sg, int nents,
1625 enum dma_data_direction direction);
1626 void (*unmap_sg)(struct ib_device *dev,
1627 struct scatterlist *sg, int nents,
1628 enum dma_data_direction direction);
1629 void (*sync_single_for_cpu)(struct ib_device *dev,
1630 u64 dma_handle,
1631 size_t size,
1632 enum dma_data_direction dir);
1633 void (*sync_single_for_device)(struct ib_device *dev,
1634 u64 dma_handle,
1635 size_t size,
1636 enum dma_data_direction dir);
1637 void *(*alloc_coherent)(struct ib_device *dev,
1638 size_t size,
1639 u64 *dma_handle,
1640 gfp_t flag);
1641 void (*free_coherent)(struct ib_device *dev,
1642 size_t size, void *cpu_addr,
1643 u64 dma_handle);
1644 };
1645
1646 struct iw_cm_verbs;
1647
1648 struct ib_port_immutable {
1649 int pkey_tbl_len;
1650 int gid_tbl_len;
1651 u32 core_cap_flags;
1652 u32 max_mad_size;
1653 };
1654
1655 struct ib_device {
1656 struct device *dma_device;
1657
1658 char name[IB_DEVICE_NAME_MAX];
1659
1660 struct list_head event_handler_list;
1661 spinlock_t event_handler_lock;
1662
1663 spinlock_t client_data_lock;
1664 struct list_head core_list;
1665 /* Access to the client_data_list is protected by the client_data_lock
1666 * spinlock and the lists_rwsem read-write semaphore */
1667 struct list_head client_data_list;
1668
1669 struct ib_cache cache;
1670 /**
1671 * port_immutable is indexed by port number
1672 */
1673 struct ib_port_immutable *port_immutable;
1674
1675 int num_comp_vectors;
1676
1677 struct iw_cm_verbs *iwcm;
1678
1679 int (*get_protocol_stats)(struct ib_device *device,
1680 union rdma_protocol_stats *stats);
1681 int (*query_device)(struct ib_device *device,
1682 struct ib_device_attr *device_attr,
1683 struct ib_udata *udata);
1684 int (*query_port)(struct ib_device *device,
1685 u8 port_num,
1686 struct ib_port_attr *port_attr);
1687 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1688 u8 port_num);
1689 /* When calling get_netdev, the HW vendor's driver should return the
1690 * net device of device @device at port @port_num or NULL if such
1691 * a net device doesn't exist. The vendor driver should call dev_hold
1692 * on this net device. The HW vendor's device driver must guarantee
1693 * that this function returns NULL before the net device reaches
1694 * NETDEV_UNREGISTER_FINAL state.
1695 */
1696 struct net_device *(*get_netdev)(struct ib_device *device,
1697 u8 port_num);
1698 int (*query_gid)(struct ib_device *device,
1699 u8 port_num, int index,
1700 union ib_gid *gid);
1701 /* When calling add_gid, the HW vendor's driver should
1702 * add the gid of device @device at gid index @index of
1703 * port @port_num to be @gid. Meta-info of that gid (for example,
1704 * the network device related to this gid is available
1705 * at @attr. @context allows the HW vendor driver to store extra
1706 * information together with a GID entry. The HW vendor may allocate
1707 * memory to contain this information and store it in @context when a
1708 * new GID entry is written to. Params are consistent until the next
1709 * call of add_gid or delete_gid. The function should return 0 on
1710 * success or error otherwise. The function could be called
1711 * concurrently for different ports. This function is only called
1712 * when roce_gid_table is used.
1713 */
1714 int (*add_gid)(struct ib_device *device,
1715 u8 port_num,
1716 unsigned int index,
1717 const union ib_gid *gid,
1718 const struct ib_gid_attr *attr,
1719 void **context);
1720 /* When calling del_gid, the HW vendor's driver should delete the
1721 * gid of device @device at gid index @index of port @port_num.
1722 * Upon the deletion of a GID entry, the HW vendor must free any
1723 * allocated memory. The caller will clear @context afterwards.
1724 * This function is only called when roce_gid_table is used.
1725 */
1726 int (*del_gid)(struct ib_device *device,
1727 u8 port_num,
1728 unsigned int index,
1729 void **context);
1730 int (*query_pkey)(struct ib_device *device,
1731 u8 port_num, u16 index, u16 *pkey);
1732 int (*modify_device)(struct ib_device *device,
1733 int device_modify_mask,
1734 struct ib_device_modify *device_modify);
1735 int (*modify_port)(struct ib_device *device,
1736 u8 port_num, int port_modify_mask,
1737 struct ib_port_modify *port_modify);
1738 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1739 struct ib_udata *udata);
1740 int (*dealloc_ucontext)(struct ib_ucontext *context);
1741 int (*mmap)(struct ib_ucontext *context,
1742 struct vm_area_struct *vma);
1743 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1744 struct ib_ucontext *context,
1745 struct ib_udata *udata);
1746 int (*dealloc_pd)(struct ib_pd *pd);
1747 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1748 struct ib_ah_attr *ah_attr);
1749 int (*modify_ah)(struct ib_ah *ah,
1750 struct ib_ah_attr *ah_attr);
1751 int (*query_ah)(struct ib_ah *ah,
1752 struct ib_ah_attr *ah_attr);
1753 int (*destroy_ah)(struct ib_ah *ah);
1754 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1755 struct ib_srq_init_attr *srq_init_attr,
1756 struct ib_udata *udata);
1757 int (*modify_srq)(struct ib_srq *srq,
1758 struct ib_srq_attr *srq_attr,
1759 enum ib_srq_attr_mask srq_attr_mask,
1760 struct ib_udata *udata);
1761 int (*query_srq)(struct ib_srq *srq,
1762 struct ib_srq_attr *srq_attr);
1763 int (*destroy_srq)(struct ib_srq *srq);
1764 int (*post_srq_recv)(struct ib_srq *srq,
1765 struct ib_recv_wr *recv_wr,
1766 struct ib_recv_wr **bad_recv_wr);
1767 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1768 struct ib_qp_init_attr *qp_init_attr,
1769 struct ib_udata *udata);
1770 int (*modify_qp)(struct ib_qp *qp,
1771 struct ib_qp_attr *qp_attr,
1772 int qp_attr_mask,
1773 struct ib_udata *udata);
1774 int (*query_qp)(struct ib_qp *qp,
1775 struct ib_qp_attr *qp_attr,
1776 int qp_attr_mask,
1777 struct ib_qp_init_attr *qp_init_attr);
1778 int (*destroy_qp)(struct ib_qp *qp);
1779 int (*post_send)(struct ib_qp *qp,
1780 struct ib_send_wr *send_wr,
1781 struct ib_send_wr **bad_send_wr);
1782 int (*post_recv)(struct ib_qp *qp,
1783 struct ib_recv_wr *recv_wr,
1784 struct ib_recv_wr **bad_recv_wr);
1785 struct ib_cq * (*create_cq)(struct ib_device *device,
1786 const struct ib_cq_init_attr *attr,
1787 struct ib_ucontext *context,
1788 struct ib_udata *udata);
1789 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1790 u16 cq_period);
1791 int (*destroy_cq)(struct ib_cq *cq);
1792 int (*resize_cq)(struct ib_cq *cq, int cqe,
1793 struct ib_udata *udata);
1794 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1795 struct ib_wc *wc);
1796 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1797 int (*req_notify_cq)(struct ib_cq *cq,
1798 enum ib_cq_notify_flags flags);
1799 int (*req_ncomp_notif)(struct ib_cq *cq,
1800 int wc_cnt);
1801 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1802 int mr_access_flags);
1803 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1804 u64 start, u64 length,
1805 u64 virt_addr,
1806 int mr_access_flags,
1807 struct ib_udata *udata);
1808 int (*rereg_user_mr)(struct ib_mr *mr,
1809 int flags,
1810 u64 start, u64 length,
1811 u64 virt_addr,
1812 int mr_access_flags,
1813 struct ib_pd *pd,
1814 struct ib_udata *udata);
1815 int (*dereg_mr)(struct ib_mr *mr);
1816 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1817 enum ib_mr_type mr_type,
1818 u32 max_num_sg);
1819 int (*map_mr_sg)(struct ib_mr *mr,
1820 struct scatterlist *sg,
1821 int sg_nents);
1822 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1823 enum ib_mw_type type,
1824 struct ib_udata *udata);
1825 int (*dealloc_mw)(struct ib_mw *mw);
1826 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1827 int mr_access_flags,
1828 struct ib_fmr_attr *fmr_attr);
1829 int (*map_phys_fmr)(struct ib_fmr *fmr,
1830 u64 *page_list, int list_len,
1831 u64 iova);
1832 int (*unmap_fmr)(struct list_head *fmr_list);
1833 int (*dealloc_fmr)(struct ib_fmr *fmr);
1834 int (*attach_mcast)(struct ib_qp *qp,
1835 union ib_gid *gid,
1836 u16 lid);
1837 int (*detach_mcast)(struct ib_qp *qp,
1838 union ib_gid *gid,
1839 u16 lid);
1840 int (*process_mad)(struct ib_device *device,
1841 int process_mad_flags,
1842 u8 port_num,
1843 const struct ib_wc *in_wc,
1844 const struct ib_grh *in_grh,
1845 const struct ib_mad_hdr *in_mad,
1846 size_t in_mad_size,
1847 struct ib_mad_hdr *out_mad,
1848 size_t *out_mad_size,
1849 u16 *out_mad_pkey_index);
1850 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1851 struct ib_ucontext *ucontext,
1852 struct ib_udata *udata);
1853 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1854 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1855 struct ib_flow_attr
1856 *flow_attr,
1857 int domain);
1858 int (*destroy_flow)(struct ib_flow *flow_id);
1859 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1860 struct ib_mr_status *mr_status);
1861 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1862 void (*drain_rq)(struct ib_qp *qp);
1863 void (*drain_sq)(struct ib_qp *qp);
1864
1865 struct ib_dma_mapping_ops *dma_ops;
1866
1867 struct module *owner;
1868 struct device dev;
1869 struct kobject *ports_parent;
1870 struct list_head port_list;
1871
1872 enum {
1873 IB_DEV_UNINITIALIZED,
1874 IB_DEV_REGISTERED,
1875 IB_DEV_UNREGISTERED
1876 } reg_state;
1877
1878 int uverbs_abi_ver;
1879 u64 uverbs_cmd_mask;
1880 u64 uverbs_ex_cmd_mask;
1881
1882 char node_desc[64];
1883 __be64 node_guid;
1884 u32 local_dma_lkey;
1885 u16 is_switch:1;
1886 u8 node_type;
1887 u8 phys_port_cnt;
1888 struct ib_device_attr attrs;
1889
1890 /**
1891 * The following mandatory functions are used only at device
1892 * registration. Keep functions such as these at the end of this
1893 * structure to avoid cache line misses when accessing struct ib_device
1894 * in fast paths.
1895 */
1896 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1897 };
1898
1899 struct ib_client {
1900 char *name;
1901 void (*add) (struct ib_device *);
1902 void (*remove)(struct ib_device *, void *client_data);
1903
1904 /* Returns the net_dev belonging to this ib_client and matching the
1905 * given parameters.
1906 * @dev: An RDMA device that the net_dev use for communication.
1907 * @port: A physical port number on the RDMA device.
1908 * @pkey: P_Key that the net_dev uses if applicable.
1909 * @gid: A GID that the net_dev uses to communicate.
1910 * @addr: An IP address the net_dev is configured with.
1911 * @client_data: The device's client data set by ib_set_client_data().
1912 *
1913 * An ib_client that implements a net_dev on top of RDMA devices
1914 * (such as IP over IB) should implement this callback, allowing the
1915 * rdma_cm module to find the right net_dev for a given request.
1916 *
1917 * The caller is responsible for calling dev_put on the returned
1918 * netdev. */
1919 struct net_device *(*get_net_dev_by_params)(
1920 struct ib_device *dev,
1921 u8 port,
1922 u16 pkey,
1923 const union ib_gid *gid,
1924 const struct sockaddr *addr,
1925 void *client_data);
1926 struct list_head list;
1927 };
1928
1929 struct ib_device *ib_alloc_device(size_t size);
1930 void ib_dealloc_device(struct ib_device *device);
1931
1932 int ib_register_device(struct ib_device *device,
1933 int (*port_callback)(struct ib_device *,
1934 u8, struct kobject *));
1935 void ib_unregister_device(struct ib_device *device);
1936
1937 int ib_register_client (struct ib_client *client);
1938 void ib_unregister_client(struct ib_client *client);
1939
1940 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1941 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1942 void *data);
1943
1944 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1945 {
1946 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1947 }
1948
1949 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1950 {
1951 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1952 }
1953
1954 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
1955 size_t offset,
1956 size_t len)
1957 {
1958 const void __user *p = udata->inbuf + offset;
1959 bool ret = false;
1960 u8 *buf;
1961
1962 if (len > USHRT_MAX)
1963 return false;
1964
1965 buf = kmalloc(len, GFP_KERNEL);
1966 if (!buf)
1967 return false;
1968
1969 if (copy_from_user(buf, p, len))
1970 goto free;
1971
1972 ret = !memchr_inv(buf, 0, len);
1973
1974 free:
1975 kfree(buf);
1976 return ret;
1977 }
1978
1979 /**
1980 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1981 * contains all required attributes and no attributes not allowed for
1982 * the given QP state transition.
1983 * @cur_state: Current QP state
1984 * @next_state: Next QP state
1985 * @type: QP type
1986 * @mask: Mask of supplied QP attributes
1987 * @ll : link layer of port
1988 *
1989 * This function is a helper function that a low-level driver's
1990 * modify_qp method can use to validate the consumer's input. It
1991 * checks that cur_state and next_state are valid QP states, that a
1992 * transition from cur_state to next_state is allowed by the IB spec,
1993 * and that the attribute mask supplied is allowed for the transition.
1994 */
1995 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1996 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1997 enum rdma_link_layer ll);
1998
1999 int ib_register_event_handler (struct ib_event_handler *event_handler);
2000 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2001 void ib_dispatch_event(struct ib_event *event);
2002
2003 int ib_query_port(struct ib_device *device,
2004 u8 port_num, struct ib_port_attr *port_attr);
2005
2006 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2007 u8 port_num);
2008
2009 /**
2010 * rdma_cap_ib_switch - Check if the device is IB switch
2011 * @device: Device to check
2012 *
2013 * Device driver is responsible for setting is_switch bit on
2014 * in ib_device structure at init time.
2015 *
2016 * Return: true if the device is IB switch.
2017 */
2018 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2019 {
2020 return device->is_switch;
2021 }
2022
2023 /**
2024 * rdma_start_port - Return the first valid port number for the device
2025 * specified
2026 *
2027 * @device: Device to be checked
2028 *
2029 * Return start port number
2030 */
2031 static inline u8 rdma_start_port(const struct ib_device *device)
2032 {
2033 return rdma_cap_ib_switch(device) ? 0 : 1;
2034 }
2035
2036 /**
2037 * rdma_end_port - Return the last valid port number for the device
2038 * specified
2039 *
2040 * @device: Device to be checked
2041 *
2042 * Return last port number
2043 */
2044 static inline u8 rdma_end_port(const struct ib_device *device)
2045 {
2046 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2047 }
2048
2049 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2050 {
2051 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2052 }
2053
2054 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2055 {
2056 return device->port_immutable[port_num].core_cap_flags &
2057 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2058 }
2059
2060 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2061 {
2062 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2063 }
2064
2065 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2066 {
2067 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2068 }
2069
2070 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2071 {
2072 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2073 }
2074
2075 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2076 {
2077 return rdma_protocol_ib(device, port_num) ||
2078 rdma_protocol_roce(device, port_num);
2079 }
2080
2081 /**
2082 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2083 * Management Datagrams.
2084 * @device: Device to check
2085 * @port_num: Port number to check
2086 *
2087 * Management Datagrams (MAD) are a required part of the InfiniBand
2088 * specification and are supported on all InfiniBand devices. A slightly
2089 * extended version are also supported on OPA interfaces.
2090 *
2091 * Return: true if the port supports sending/receiving of MAD packets.
2092 */
2093 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2094 {
2095 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2096 }
2097
2098 /**
2099 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2100 * Management Datagrams.
2101 * @device: Device to check
2102 * @port_num: Port number to check
2103 *
2104 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2105 * datagrams with their own versions. These OPA MADs share many but not all of
2106 * the characteristics of InfiniBand MADs.
2107 *
2108 * OPA MADs differ in the following ways:
2109 *
2110 * 1) MADs are variable size up to 2K
2111 * IBTA defined MADs remain fixed at 256 bytes
2112 * 2) OPA SMPs must carry valid PKeys
2113 * 3) OPA SMP packets are a different format
2114 *
2115 * Return: true if the port supports OPA MAD packet formats.
2116 */
2117 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2118 {
2119 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2120 == RDMA_CORE_CAP_OPA_MAD;
2121 }
2122
2123 /**
2124 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2125 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2126 * @device: Device to check
2127 * @port_num: Port number to check
2128 *
2129 * Each InfiniBand node is required to provide a Subnet Management Agent
2130 * that the subnet manager can access. Prior to the fabric being fully
2131 * configured by the subnet manager, the SMA is accessed via a well known
2132 * interface called the Subnet Management Interface (SMI). This interface
2133 * uses directed route packets to communicate with the SM to get around the
2134 * chicken and egg problem of the SM needing to know what's on the fabric
2135 * in order to configure the fabric, and needing to configure the fabric in
2136 * order to send packets to the devices on the fabric. These directed
2137 * route packets do not need the fabric fully configured in order to reach
2138 * their destination. The SMI is the only method allowed to send
2139 * directed route packets on an InfiniBand fabric.
2140 *
2141 * Return: true if the port provides an SMI.
2142 */
2143 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2144 {
2145 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2146 }
2147
2148 /**
2149 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2150 * Communication Manager.
2151 * @device: Device to check
2152 * @port_num: Port number to check
2153 *
2154 * The InfiniBand Communication Manager is one of many pre-defined General
2155 * Service Agents (GSA) that are accessed via the General Service
2156 * Interface (GSI). It's role is to facilitate establishment of connections
2157 * between nodes as well as other management related tasks for established
2158 * connections.
2159 *
2160 * Return: true if the port supports an IB CM (this does not guarantee that
2161 * a CM is actually running however).
2162 */
2163 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2164 {
2165 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2166 }
2167
2168 /**
2169 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2170 * Communication Manager.
2171 * @device: Device to check
2172 * @port_num: Port number to check
2173 *
2174 * Similar to above, but specific to iWARP connections which have a different
2175 * managment protocol than InfiniBand.
2176 *
2177 * Return: true if the port supports an iWARP CM (this does not guarantee that
2178 * a CM is actually running however).
2179 */
2180 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2181 {
2182 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2183 }
2184
2185 /**
2186 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2187 * Subnet Administration.
2188 * @device: Device to check
2189 * @port_num: Port number to check
2190 *
2191 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2192 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2193 * fabrics, devices should resolve routes to other hosts by contacting the
2194 * SA to query the proper route.
2195 *
2196 * Return: true if the port should act as a client to the fabric Subnet
2197 * Administration interface. This does not imply that the SA service is
2198 * running locally.
2199 */
2200 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2201 {
2202 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2203 }
2204
2205 /**
2206 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2207 * Multicast.
2208 * @device: Device to check
2209 * @port_num: Port number to check
2210 *
2211 * InfiniBand multicast registration is more complex than normal IPv4 or
2212 * IPv6 multicast registration. Each Host Channel Adapter must register
2213 * with the Subnet Manager when it wishes to join a multicast group. It
2214 * should do so only once regardless of how many queue pairs it subscribes
2215 * to this group. And it should leave the group only after all queue pairs
2216 * attached to the group have been detached.
2217 *
2218 * Return: true if the port must undertake the additional adminstrative
2219 * overhead of registering/unregistering with the SM and tracking of the
2220 * total number of queue pairs attached to the multicast group.
2221 */
2222 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2223 {
2224 return rdma_cap_ib_sa(device, port_num);
2225 }
2226
2227 /**
2228 * rdma_cap_af_ib - Check if the port of device has the capability
2229 * Native Infiniband Address.
2230 * @device: Device to check
2231 * @port_num: Port number to check
2232 *
2233 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2234 * GID. RoCE uses a different mechanism, but still generates a GID via
2235 * a prescribed mechanism and port specific data.
2236 *
2237 * Return: true if the port uses a GID address to identify devices on the
2238 * network.
2239 */
2240 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2241 {
2242 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2243 }
2244
2245 /**
2246 * rdma_cap_eth_ah - Check if the port of device has the capability
2247 * Ethernet Address Handle.
2248 * @device: Device to check
2249 * @port_num: Port number to check
2250 *
2251 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2252 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2253 * port. Normally, packet headers are generated by the sending host
2254 * adapter, but when sending connectionless datagrams, we must manually
2255 * inject the proper headers for the fabric we are communicating over.
2256 *
2257 * Return: true if we are running as a RoCE port and must force the
2258 * addition of a Global Route Header built from our Ethernet Address
2259 * Handle into our header list for connectionless packets.
2260 */
2261 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2262 {
2263 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2264 }
2265
2266 /**
2267 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2268 *
2269 * @device: Device
2270 * @port_num: Port number
2271 *
2272 * This MAD size includes the MAD headers and MAD payload. No other headers
2273 * are included.
2274 *
2275 * Return the max MAD size required by the Port. Will return 0 if the port
2276 * does not support MADs
2277 */
2278 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2279 {
2280 return device->port_immutable[port_num].max_mad_size;
2281 }
2282
2283 /**
2284 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2285 * @device: Device to check
2286 * @port_num: Port number to check
2287 *
2288 * RoCE GID table mechanism manages the various GIDs for a device.
2289 *
2290 * NOTE: if allocating the port's GID table has failed, this call will still
2291 * return true, but any RoCE GID table API will fail.
2292 *
2293 * Return: true if the port uses RoCE GID table mechanism in order to manage
2294 * its GIDs.
2295 */
2296 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2297 u8 port_num)
2298 {
2299 return rdma_protocol_roce(device, port_num) &&
2300 device->add_gid && device->del_gid;
2301 }
2302
2303 int ib_query_gid(struct ib_device *device,
2304 u8 port_num, int index, union ib_gid *gid,
2305 struct ib_gid_attr *attr);
2306
2307 int ib_query_pkey(struct ib_device *device,
2308 u8 port_num, u16 index, u16 *pkey);
2309
2310 int ib_modify_device(struct ib_device *device,
2311 int device_modify_mask,
2312 struct ib_device_modify *device_modify);
2313
2314 int ib_modify_port(struct ib_device *device,
2315 u8 port_num, int port_modify_mask,
2316 struct ib_port_modify *port_modify);
2317
2318 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2319 enum ib_gid_type gid_type, struct net_device *ndev,
2320 u8 *port_num, u16 *index);
2321
2322 int ib_find_pkey(struct ib_device *device,
2323 u8 port_num, u16 pkey, u16 *index);
2324
2325 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2326
2327 void ib_dealloc_pd(struct ib_pd *pd);
2328
2329 /**
2330 * ib_create_ah - Creates an address handle for the given address vector.
2331 * @pd: The protection domain associated with the address handle.
2332 * @ah_attr: The attributes of the address vector.
2333 *
2334 * The address handle is used to reference a local or global destination
2335 * in all UD QP post sends.
2336 */
2337 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2338
2339 /**
2340 * ib_init_ah_from_wc - Initializes address handle attributes from a
2341 * work completion.
2342 * @device: Device on which the received message arrived.
2343 * @port_num: Port on which the received message arrived.
2344 * @wc: Work completion associated with the received message.
2345 * @grh: References the received global route header. This parameter is
2346 * ignored unless the work completion indicates that the GRH is valid.
2347 * @ah_attr: Returned attributes that can be used when creating an address
2348 * handle for replying to the message.
2349 */
2350 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2351 const struct ib_wc *wc, const struct ib_grh *grh,
2352 struct ib_ah_attr *ah_attr);
2353
2354 /**
2355 * ib_create_ah_from_wc - Creates an address handle associated with the
2356 * sender of the specified work completion.
2357 * @pd: The protection domain associated with the address handle.
2358 * @wc: Work completion information associated with a received message.
2359 * @grh: References the received global route header. This parameter is
2360 * ignored unless the work completion indicates that the GRH is valid.
2361 * @port_num: The outbound port number to associate with the address.
2362 *
2363 * The address handle is used to reference a local or global destination
2364 * in all UD QP post sends.
2365 */
2366 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2367 const struct ib_grh *grh, u8 port_num);
2368
2369 /**
2370 * ib_modify_ah - Modifies the address vector associated with an address
2371 * handle.
2372 * @ah: The address handle to modify.
2373 * @ah_attr: The new address vector attributes to associate with the
2374 * address handle.
2375 */
2376 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2377
2378 /**
2379 * ib_query_ah - Queries the address vector associated with an address
2380 * handle.
2381 * @ah: The address handle to query.
2382 * @ah_attr: The address vector attributes associated with the address
2383 * handle.
2384 */
2385 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2386
2387 /**
2388 * ib_destroy_ah - Destroys an address handle.
2389 * @ah: The address handle to destroy.
2390 */
2391 int ib_destroy_ah(struct ib_ah *ah);
2392
2393 /**
2394 * ib_create_srq - Creates a SRQ associated with the specified protection
2395 * domain.
2396 * @pd: The protection domain associated with the SRQ.
2397 * @srq_init_attr: A list of initial attributes required to create the
2398 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2399 * the actual capabilities of the created SRQ.
2400 *
2401 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2402 * requested size of the SRQ, and set to the actual values allocated
2403 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2404 * will always be at least as large as the requested values.
2405 */
2406 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2407 struct ib_srq_init_attr *srq_init_attr);
2408
2409 /**
2410 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2411 * @srq: The SRQ to modify.
2412 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2413 * the current values of selected SRQ attributes are returned.
2414 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2415 * are being modified.
2416 *
2417 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2418 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2419 * the number of receives queued drops below the limit.
2420 */
2421 int ib_modify_srq(struct ib_srq *srq,
2422 struct ib_srq_attr *srq_attr,
2423 enum ib_srq_attr_mask srq_attr_mask);
2424
2425 /**
2426 * ib_query_srq - Returns the attribute list and current values for the
2427 * specified SRQ.
2428 * @srq: The SRQ to query.
2429 * @srq_attr: The attributes of the specified SRQ.
2430 */
2431 int ib_query_srq(struct ib_srq *srq,
2432 struct ib_srq_attr *srq_attr);
2433
2434 /**
2435 * ib_destroy_srq - Destroys the specified SRQ.
2436 * @srq: The SRQ to destroy.
2437 */
2438 int ib_destroy_srq(struct ib_srq *srq);
2439
2440 /**
2441 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2442 * @srq: The SRQ to post the work request on.
2443 * @recv_wr: A list of work requests to post on the receive queue.
2444 * @bad_recv_wr: On an immediate failure, this parameter will reference
2445 * the work request that failed to be posted on the QP.
2446 */
2447 static inline int ib_post_srq_recv(struct ib_srq *srq,
2448 struct ib_recv_wr *recv_wr,
2449 struct ib_recv_wr **bad_recv_wr)
2450 {
2451 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2452 }
2453
2454 /**
2455 * ib_create_qp - Creates a QP associated with the specified protection
2456 * domain.
2457 * @pd: The protection domain associated with the QP.
2458 * @qp_init_attr: A list of initial attributes required to create the
2459 * QP. If QP creation succeeds, then the attributes are updated to
2460 * the actual capabilities of the created QP.
2461 */
2462 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2463 struct ib_qp_init_attr *qp_init_attr);
2464
2465 /**
2466 * ib_modify_qp - Modifies the attributes for the specified QP and then
2467 * transitions the QP to the given state.
2468 * @qp: The QP to modify.
2469 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2470 * the current values of selected QP attributes are returned.
2471 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2472 * are being modified.
2473 */
2474 int ib_modify_qp(struct ib_qp *qp,
2475 struct ib_qp_attr *qp_attr,
2476 int qp_attr_mask);
2477
2478 /**
2479 * ib_query_qp - Returns the attribute list and current values for the
2480 * specified QP.
2481 * @qp: The QP to query.
2482 * @qp_attr: The attributes of the specified QP.
2483 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2484 * @qp_init_attr: Additional attributes of the selected QP.
2485 *
2486 * The qp_attr_mask may be used to limit the query to gathering only the
2487 * selected attributes.
2488 */
2489 int ib_query_qp(struct ib_qp *qp,
2490 struct ib_qp_attr *qp_attr,
2491 int qp_attr_mask,
2492 struct ib_qp_init_attr *qp_init_attr);
2493
2494 /**
2495 * ib_destroy_qp - Destroys the specified QP.
2496 * @qp: The QP to destroy.
2497 */
2498 int ib_destroy_qp(struct ib_qp *qp);
2499
2500 /**
2501 * ib_open_qp - Obtain a reference to an existing sharable QP.
2502 * @xrcd - XRC domain
2503 * @qp_open_attr: Attributes identifying the QP to open.
2504 *
2505 * Returns a reference to a sharable QP.
2506 */
2507 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2508 struct ib_qp_open_attr *qp_open_attr);
2509
2510 /**
2511 * ib_close_qp - Release an external reference to a QP.
2512 * @qp: The QP handle to release
2513 *
2514 * The opened QP handle is released by the caller. The underlying
2515 * shared QP is not destroyed until all internal references are released.
2516 */
2517 int ib_close_qp(struct ib_qp *qp);
2518
2519 /**
2520 * ib_post_send - Posts a list of work requests to the send queue of
2521 * the specified QP.
2522 * @qp: The QP to post the work request on.
2523 * @send_wr: A list of work requests to post on the send queue.
2524 * @bad_send_wr: On an immediate failure, this parameter will reference
2525 * the work request that failed to be posted on the QP.
2526 *
2527 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2528 * error is returned, the QP state shall not be affected,
2529 * ib_post_send() will return an immediate error after queueing any
2530 * earlier work requests in the list.
2531 */
2532 static inline int ib_post_send(struct ib_qp *qp,
2533 struct ib_send_wr *send_wr,
2534 struct ib_send_wr **bad_send_wr)
2535 {
2536 return qp->device->post_send(qp, send_wr, bad_send_wr);
2537 }
2538
2539 /**
2540 * ib_post_recv - Posts a list of work requests to the receive queue of
2541 * the specified QP.
2542 * @qp: The QP to post the work request on.
2543 * @recv_wr: A list of work requests to post on the receive queue.
2544 * @bad_recv_wr: On an immediate failure, this parameter will reference
2545 * the work request that failed to be posted on the QP.
2546 */
2547 static inline int ib_post_recv(struct ib_qp *qp,
2548 struct ib_recv_wr *recv_wr,
2549 struct ib_recv_wr **bad_recv_wr)
2550 {
2551 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2552 }
2553
2554 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2555 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2556 void ib_free_cq(struct ib_cq *cq);
2557 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2558
2559 /**
2560 * ib_create_cq - Creates a CQ on the specified device.
2561 * @device: The device on which to create the CQ.
2562 * @comp_handler: A user-specified callback that is invoked when a
2563 * completion event occurs on the CQ.
2564 * @event_handler: A user-specified callback that is invoked when an
2565 * asynchronous event not associated with a completion occurs on the CQ.
2566 * @cq_context: Context associated with the CQ returned to the user via
2567 * the associated completion and event handlers.
2568 * @cq_attr: The attributes the CQ should be created upon.
2569 *
2570 * Users can examine the cq structure to determine the actual CQ size.
2571 */
2572 struct ib_cq *ib_create_cq(struct ib_device *device,
2573 ib_comp_handler comp_handler,
2574 void (*event_handler)(struct ib_event *, void *),
2575 void *cq_context,
2576 const struct ib_cq_init_attr *cq_attr);
2577
2578 /**
2579 * ib_resize_cq - Modifies the capacity of the CQ.
2580 * @cq: The CQ to resize.
2581 * @cqe: The minimum size of the CQ.
2582 *
2583 * Users can examine the cq structure to determine the actual CQ size.
2584 */
2585 int ib_resize_cq(struct ib_cq *cq, int cqe);
2586
2587 /**
2588 * ib_modify_cq - Modifies moderation params of the CQ
2589 * @cq: The CQ to modify.
2590 * @cq_count: number of CQEs that will trigger an event
2591 * @cq_period: max period of time in usec before triggering an event
2592 *
2593 */
2594 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2595
2596 /**
2597 * ib_destroy_cq - Destroys the specified CQ.
2598 * @cq: The CQ to destroy.
2599 */
2600 int ib_destroy_cq(struct ib_cq *cq);
2601
2602 /**
2603 * ib_poll_cq - poll a CQ for completion(s)
2604 * @cq:the CQ being polled
2605 * @num_entries:maximum number of completions to return
2606 * @wc:array of at least @num_entries &struct ib_wc where completions
2607 * will be returned
2608 *
2609 * Poll a CQ for (possibly multiple) completions. If the return value
2610 * is < 0, an error occurred. If the return value is >= 0, it is the
2611 * number of completions returned. If the return value is
2612 * non-negative and < num_entries, then the CQ was emptied.
2613 */
2614 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2615 struct ib_wc *wc)
2616 {
2617 return cq->device->poll_cq(cq, num_entries, wc);
2618 }
2619
2620 /**
2621 * ib_peek_cq - Returns the number of unreaped completions currently
2622 * on the specified CQ.
2623 * @cq: The CQ to peek.
2624 * @wc_cnt: A minimum number of unreaped completions to check for.
2625 *
2626 * If the number of unreaped completions is greater than or equal to wc_cnt,
2627 * this function returns wc_cnt, otherwise, it returns the actual number of
2628 * unreaped completions.
2629 */
2630 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2631
2632 /**
2633 * ib_req_notify_cq - Request completion notification on a CQ.
2634 * @cq: The CQ to generate an event for.
2635 * @flags:
2636 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2637 * to request an event on the next solicited event or next work
2638 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2639 * may also be |ed in to request a hint about missed events, as
2640 * described below.
2641 *
2642 * Return Value:
2643 * < 0 means an error occurred while requesting notification
2644 * == 0 means notification was requested successfully, and if
2645 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2646 * were missed and it is safe to wait for another event. In
2647 * this case is it guaranteed that any work completions added
2648 * to the CQ since the last CQ poll will trigger a completion
2649 * notification event.
2650 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2651 * in. It means that the consumer must poll the CQ again to
2652 * make sure it is empty to avoid missing an event because of a
2653 * race between requesting notification and an entry being
2654 * added to the CQ. This return value means it is possible
2655 * (but not guaranteed) that a work completion has been added
2656 * to the CQ since the last poll without triggering a
2657 * completion notification event.
2658 */
2659 static inline int ib_req_notify_cq(struct ib_cq *cq,
2660 enum ib_cq_notify_flags flags)
2661 {
2662 return cq->device->req_notify_cq(cq, flags);
2663 }
2664
2665 /**
2666 * ib_req_ncomp_notif - Request completion notification when there are
2667 * at least the specified number of unreaped completions on the CQ.
2668 * @cq: The CQ to generate an event for.
2669 * @wc_cnt: The number of unreaped completions that should be on the
2670 * CQ before an event is generated.
2671 */
2672 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2673 {
2674 return cq->device->req_ncomp_notif ?
2675 cq->device->req_ncomp_notif(cq, wc_cnt) :
2676 -ENOSYS;
2677 }
2678
2679 /**
2680 * ib_get_dma_mr - Returns a memory region for system memory that is
2681 * usable for DMA.
2682 * @pd: The protection domain associated with the memory region.
2683 * @mr_access_flags: Specifies the memory access rights.
2684 *
2685 * Note that the ib_dma_*() functions defined below must be used
2686 * to create/destroy addresses used with the Lkey or Rkey returned
2687 * by ib_get_dma_mr().
2688 */
2689 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2690
2691 /**
2692 * ib_dma_mapping_error - check a DMA addr for error
2693 * @dev: The device for which the dma_addr was created
2694 * @dma_addr: The DMA address to check
2695 */
2696 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2697 {
2698 if (dev->dma_ops)
2699 return dev->dma_ops->mapping_error(dev, dma_addr);
2700 return dma_mapping_error(dev->dma_device, dma_addr);
2701 }
2702
2703 /**
2704 * ib_dma_map_single - Map a kernel virtual address to DMA address
2705 * @dev: The device for which the dma_addr is to be created
2706 * @cpu_addr: The kernel virtual address
2707 * @size: The size of the region in bytes
2708 * @direction: The direction of the DMA
2709 */
2710 static inline u64 ib_dma_map_single(struct ib_device *dev,
2711 void *cpu_addr, size_t size,
2712 enum dma_data_direction direction)
2713 {
2714 if (dev->dma_ops)
2715 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2716 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2717 }
2718
2719 /**
2720 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2721 * @dev: The device for which the DMA address was created
2722 * @addr: The DMA address
2723 * @size: The size of the region in bytes
2724 * @direction: The direction of the DMA
2725 */
2726 static inline void ib_dma_unmap_single(struct ib_device *dev,
2727 u64 addr, size_t size,
2728 enum dma_data_direction direction)
2729 {
2730 if (dev->dma_ops)
2731 dev->dma_ops->unmap_single(dev, addr, size, direction);
2732 else
2733 dma_unmap_single(dev->dma_device, addr, size, direction);
2734 }
2735
2736 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2737 void *cpu_addr, size_t size,
2738 enum dma_data_direction direction,
2739 struct dma_attrs *attrs)
2740 {
2741 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2742 direction, attrs);
2743 }
2744
2745 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2746 u64 addr, size_t size,
2747 enum dma_data_direction direction,
2748 struct dma_attrs *attrs)
2749 {
2750 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2751 direction, attrs);
2752 }
2753
2754 /**
2755 * ib_dma_map_page - Map a physical page to DMA address
2756 * @dev: The device for which the dma_addr is to be created
2757 * @page: The page to be mapped
2758 * @offset: The offset within the page
2759 * @size: The size of the region in bytes
2760 * @direction: The direction of the DMA
2761 */
2762 static inline u64 ib_dma_map_page(struct ib_device *dev,
2763 struct page *page,
2764 unsigned long offset,
2765 size_t size,
2766 enum dma_data_direction direction)
2767 {
2768 if (dev->dma_ops)
2769 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2770 return dma_map_page(dev->dma_device, page, offset, size, direction);
2771 }
2772
2773 /**
2774 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2775 * @dev: The device for which the DMA address was created
2776 * @addr: The DMA address
2777 * @size: The size of the region in bytes
2778 * @direction: The direction of the DMA
2779 */
2780 static inline void ib_dma_unmap_page(struct ib_device *dev,
2781 u64 addr, size_t size,
2782 enum dma_data_direction direction)
2783 {
2784 if (dev->dma_ops)
2785 dev->dma_ops->unmap_page(dev, addr, size, direction);
2786 else
2787 dma_unmap_page(dev->dma_device, addr, size, direction);
2788 }
2789
2790 /**
2791 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2792 * @dev: The device for which the DMA addresses are to be created
2793 * @sg: The array of scatter/gather entries
2794 * @nents: The number of scatter/gather entries
2795 * @direction: The direction of the DMA
2796 */
2797 static inline int ib_dma_map_sg(struct ib_device *dev,
2798 struct scatterlist *sg, int nents,
2799 enum dma_data_direction direction)
2800 {
2801 if (dev->dma_ops)
2802 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2803 return dma_map_sg(dev->dma_device, sg, nents, direction);
2804 }
2805
2806 /**
2807 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2808 * @dev: The device for which the DMA addresses were created
2809 * @sg: The array of scatter/gather entries
2810 * @nents: The number of scatter/gather entries
2811 * @direction: The direction of the DMA
2812 */
2813 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2814 struct scatterlist *sg, int nents,
2815 enum dma_data_direction direction)
2816 {
2817 if (dev->dma_ops)
2818 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2819 else
2820 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2821 }
2822
2823 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2824 struct scatterlist *sg, int nents,
2825 enum dma_data_direction direction,
2826 struct dma_attrs *attrs)
2827 {
2828 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2829 }
2830
2831 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2832 struct scatterlist *sg, int nents,
2833 enum dma_data_direction direction,
2834 struct dma_attrs *attrs)
2835 {
2836 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2837 }
2838 /**
2839 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2840 * @dev: The device for which the DMA addresses were created
2841 * @sg: The scatter/gather entry
2842 *
2843 * Note: this function is obsolete. To do: change all occurrences of
2844 * ib_sg_dma_address() into sg_dma_address().
2845 */
2846 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2847 struct scatterlist *sg)
2848 {
2849 return sg_dma_address(sg);
2850 }
2851
2852 /**
2853 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2854 * @dev: The device for which the DMA addresses were created
2855 * @sg: The scatter/gather entry
2856 *
2857 * Note: this function is obsolete. To do: change all occurrences of
2858 * ib_sg_dma_len() into sg_dma_len().
2859 */
2860 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2861 struct scatterlist *sg)
2862 {
2863 return sg_dma_len(sg);
2864 }
2865
2866 /**
2867 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2868 * @dev: The device for which the DMA address was created
2869 * @addr: The DMA address
2870 * @size: The size of the region in bytes
2871 * @dir: The direction of the DMA
2872 */
2873 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2874 u64 addr,
2875 size_t size,
2876 enum dma_data_direction dir)
2877 {
2878 if (dev->dma_ops)
2879 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2880 else
2881 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2882 }
2883
2884 /**
2885 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2886 * @dev: The device for which the DMA address was created
2887 * @addr: The DMA address
2888 * @size: The size of the region in bytes
2889 * @dir: The direction of the DMA
2890 */
2891 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2892 u64 addr,
2893 size_t size,
2894 enum dma_data_direction dir)
2895 {
2896 if (dev->dma_ops)
2897 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2898 else
2899 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2900 }
2901
2902 /**
2903 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2904 * @dev: The device for which the DMA address is requested
2905 * @size: The size of the region to allocate in bytes
2906 * @dma_handle: A pointer for returning the DMA address of the region
2907 * @flag: memory allocator flags
2908 */
2909 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2910 size_t size,
2911 u64 *dma_handle,
2912 gfp_t flag)
2913 {
2914 if (dev->dma_ops)
2915 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2916 else {
2917 dma_addr_t handle;
2918 void *ret;
2919
2920 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2921 *dma_handle = handle;
2922 return ret;
2923 }
2924 }
2925
2926 /**
2927 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2928 * @dev: The device for which the DMA addresses were allocated
2929 * @size: The size of the region
2930 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2931 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2932 */
2933 static inline void ib_dma_free_coherent(struct ib_device *dev,
2934 size_t size, void *cpu_addr,
2935 u64 dma_handle)
2936 {
2937 if (dev->dma_ops)
2938 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2939 else
2940 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2941 }
2942
2943 /**
2944 * ib_dereg_mr - Deregisters a memory region and removes it from the
2945 * HCA translation table.
2946 * @mr: The memory region to deregister.
2947 *
2948 * This function can fail, if the memory region has memory windows bound to it.
2949 */
2950 int ib_dereg_mr(struct ib_mr *mr);
2951
2952 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2953 enum ib_mr_type mr_type,
2954 u32 max_num_sg);
2955
2956 /**
2957 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2958 * R_Key and L_Key.
2959 * @mr - struct ib_mr pointer to be updated.
2960 * @newkey - new key to be used.
2961 */
2962 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2963 {
2964 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2965 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2966 }
2967
2968 /**
2969 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2970 * for calculating a new rkey for type 2 memory windows.
2971 * @rkey - the rkey to increment.
2972 */
2973 static inline u32 ib_inc_rkey(u32 rkey)
2974 {
2975 const u32 mask = 0x000000ff;
2976 return ((rkey + 1) & mask) | (rkey & ~mask);
2977 }
2978
2979 /**
2980 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2981 * @pd: The protection domain associated with the unmapped region.
2982 * @mr_access_flags: Specifies the memory access rights.
2983 * @fmr_attr: Attributes of the unmapped region.
2984 *
2985 * A fast memory region must be mapped before it can be used as part of
2986 * a work request.
2987 */
2988 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2989 int mr_access_flags,
2990 struct ib_fmr_attr *fmr_attr);
2991
2992 /**
2993 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2994 * @fmr: The fast memory region to associate with the pages.
2995 * @page_list: An array of physical pages to map to the fast memory region.
2996 * @list_len: The number of pages in page_list.
2997 * @iova: The I/O virtual address to use with the mapped region.
2998 */
2999 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3000 u64 *page_list, int list_len,
3001 u64 iova)
3002 {
3003 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3004 }
3005
3006 /**
3007 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3008 * @fmr_list: A linked list of fast memory regions to unmap.
3009 */
3010 int ib_unmap_fmr(struct list_head *fmr_list);
3011
3012 /**
3013 * ib_dealloc_fmr - Deallocates a fast memory region.
3014 * @fmr: The fast memory region to deallocate.
3015 */
3016 int ib_dealloc_fmr(struct ib_fmr *fmr);
3017
3018 /**
3019 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3020 * @qp: QP to attach to the multicast group. The QP must be type
3021 * IB_QPT_UD.
3022 * @gid: Multicast group GID.
3023 * @lid: Multicast group LID in host byte order.
3024 *
3025 * In order to send and receive multicast packets, subnet
3026 * administration must have created the multicast group and configured
3027 * the fabric appropriately. The port associated with the specified
3028 * QP must also be a member of the multicast group.
3029 */
3030 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3031
3032 /**
3033 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3034 * @qp: QP to detach from the multicast group.
3035 * @gid: Multicast group GID.
3036 * @lid: Multicast group LID in host byte order.
3037 */
3038 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3039
3040 /**
3041 * ib_alloc_xrcd - Allocates an XRC domain.
3042 * @device: The device on which to allocate the XRC domain.
3043 */
3044 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3045
3046 /**
3047 * ib_dealloc_xrcd - Deallocates an XRC domain.
3048 * @xrcd: The XRC domain to deallocate.
3049 */
3050 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3051
3052 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3053 struct ib_flow_attr *flow_attr, int domain);
3054 int ib_destroy_flow(struct ib_flow *flow_id);
3055
3056 static inline int ib_check_mr_access(int flags)
3057 {
3058 /*
3059 * Local write permission is required if remote write or
3060 * remote atomic permission is also requested.
3061 */
3062 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3063 !(flags & IB_ACCESS_LOCAL_WRITE))
3064 return -EINVAL;
3065
3066 return 0;
3067 }
3068
3069 /**
3070 * ib_check_mr_status: lightweight check of MR status.
3071 * This routine may provide status checks on a selected
3072 * ib_mr. first use is for signature status check.
3073 *
3074 * @mr: A memory region.
3075 * @check_mask: Bitmask of which checks to perform from
3076 * ib_mr_status_check enumeration.
3077 * @mr_status: The container of relevant status checks.
3078 * failed checks will be indicated in the status bitmask
3079 * and the relevant info shall be in the error item.
3080 */
3081 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3082 struct ib_mr_status *mr_status);
3083
3084 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3085 u16 pkey, const union ib_gid *gid,
3086 const struct sockaddr *addr);
3087
3088 int ib_map_mr_sg(struct ib_mr *mr,
3089 struct scatterlist *sg,
3090 int sg_nents,
3091 unsigned int page_size);
3092
3093 static inline int
3094 ib_map_mr_sg_zbva(struct ib_mr *mr,
3095 struct scatterlist *sg,
3096 int sg_nents,
3097 unsigned int page_size)
3098 {
3099 int n;
3100
3101 n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3102 mr->iova = 0;
3103
3104 return n;
3105 }
3106
3107 int ib_sg_to_pages(struct ib_mr *mr,
3108 struct scatterlist *sgl,
3109 int sg_nents,
3110 int (*set_page)(struct ib_mr *, u64));
3111
3112 void ib_drain_rq(struct ib_qp *qp);
3113 void ib_drain_sq(struct ib_qp *qp);
3114 void ib_drain_qp(struct ib_qp *qp);
3115 #endif /* IB_VERBS_H */
This page took 0.318318 seconds and 5 git commands to generate.