Merge branch 'pci/resource' into next
[deliverable/linux.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <uapi/linux/if_ether.h>
52
53 #include <linux/atomic.h>
54 #include <asm/uaccess.h>
55
56 extern struct workqueue_struct *ib_wq;
57
58 union ib_gid {
59 u8 raw[16];
60 struct {
61 __be64 subnet_prefix;
62 __be64 interface_id;
63 } global;
64 };
65
66 enum rdma_node_type {
67 /* IB values map to NodeInfo:NodeType. */
68 RDMA_NODE_IB_CA = 1,
69 RDMA_NODE_IB_SWITCH,
70 RDMA_NODE_IB_ROUTER,
71 RDMA_NODE_RNIC,
72 RDMA_NODE_USNIC,
73 RDMA_NODE_USNIC_UDP,
74 };
75
76 enum rdma_transport_type {
77 RDMA_TRANSPORT_IB,
78 RDMA_TRANSPORT_IWARP,
79 RDMA_TRANSPORT_USNIC,
80 RDMA_TRANSPORT_USNIC_UDP
81 };
82
83 enum rdma_transport_type
84 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
85
86 enum rdma_link_layer {
87 IB_LINK_LAYER_UNSPECIFIED,
88 IB_LINK_LAYER_INFINIBAND,
89 IB_LINK_LAYER_ETHERNET,
90 };
91
92 enum ib_device_cap_flags {
93 IB_DEVICE_RESIZE_MAX_WR = 1,
94 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
95 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
96 IB_DEVICE_RAW_MULTI = (1<<3),
97 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
98 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
99 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
100 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
101 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
102 IB_DEVICE_INIT_TYPE = (1<<9),
103 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
104 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
105 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
106 IB_DEVICE_SRQ_RESIZE = (1<<13),
107 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
108 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
109 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
110 IB_DEVICE_MEM_WINDOW = (1<<17),
111 /*
112 * Devices should set IB_DEVICE_UD_IP_SUM if they support
113 * insertion of UDP and TCP checksum on outgoing UD IPoIB
114 * messages and can verify the validity of checksum for
115 * incoming messages. Setting this flag implies that the
116 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
117 */
118 IB_DEVICE_UD_IP_CSUM = (1<<18),
119 IB_DEVICE_UD_TSO = (1<<19),
120 IB_DEVICE_XRC = (1<<20),
121 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
122 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
123 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
124 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
125 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29)
126 };
127
128 enum ib_atomic_cap {
129 IB_ATOMIC_NONE,
130 IB_ATOMIC_HCA,
131 IB_ATOMIC_GLOB
132 };
133
134 struct ib_device_attr {
135 u64 fw_ver;
136 __be64 sys_image_guid;
137 u64 max_mr_size;
138 u64 page_size_cap;
139 u32 vendor_id;
140 u32 vendor_part_id;
141 u32 hw_ver;
142 int max_qp;
143 int max_qp_wr;
144 int device_cap_flags;
145 int max_sge;
146 int max_sge_rd;
147 int max_cq;
148 int max_cqe;
149 int max_mr;
150 int max_pd;
151 int max_qp_rd_atom;
152 int max_ee_rd_atom;
153 int max_res_rd_atom;
154 int max_qp_init_rd_atom;
155 int max_ee_init_rd_atom;
156 enum ib_atomic_cap atomic_cap;
157 enum ib_atomic_cap masked_atomic_cap;
158 int max_ee;
159 int max_rdd;
160 int max_mw;
161 int max_raw_ipv6_qp;
162 int max_raw_ethy_qp;
163 int max_mcast_grp;
164 int max_mcast_qp_attach;
165 int max_total_mcast_qp_attach;
166 int max_ah;
167 int max_fmr;
168 int max_map_per_fmr;
169 int max_srq;
170 int max_srq_wr;
171 int max_srq_sge;
172 unsigned int max_fast_reg_page_list_len;
173 u16 max_pkeys;
174 u8 local_ca_ack_delay;
175 };
176
177 enum ib_mtu {
178 IB_MTU_256 = 1,
179 IB_MTU_512 = 2,
180 IB_MTU_1024 = 3,
181 IB_MTU_2048 = 4,
182 IB_MTU_4096 = 5
183 };
184
185 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
186 {
187 switch (mtu) {
188 case IB_MTU_256: return 256;
189 case IB_MTU_512: return 512;
190 case IB_MTU_1024: return 1024;
191 case IB_MTU_2048: return 2048;
192 case IB_MTU_4096: return 4096;
193 default: return -1;
194 }
195 }
196
197 enum ib_port_state {
198 IB_PORT_NOP = 0,
199 IB_PORT_DOWN = 1,
200 IB_PORT_INIT = 2,
201 IB_PORT_ARMED = 3,
202 IB_PORT_ACTIVE = 4,
203 IB_PORT_ACTIVE_DEFER = 5
204 };
205
206 enum ib_port_cap_flags {
207 IB_PORT_SM = 1 << 1,
208 IB_PORT_NOTICE_SUP = 1 << 2,
209 IB_PORT_TRAP_SUP = 1 << 3,
210 IB_PORT_OPT_IPD_SUP = 1 << 4,
211 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
212 IB_PORT_SL_MAP_SUP = 1 << 6,
213 IB_PORT_MKEY_NVRAM = 1 << 7,
214 IB_PORT_PKEY_NVRAM = 1 << 8,
215 IB_PORT_LED_INFO_SUP = 1 << 9,
216 IB_PORT_SM_DISABLED = 1 << 10,
217 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
218 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
219 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
220 IB_PORT_CM_SUP = 1 << 16,
221 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
222 IB_PORT_REINIT_SUP = 1 << 18,
223 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
224 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
225 IB_PORT_DR_NOTICE_SUP = 1 << 21,
226 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
227 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
228 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
229 IB_PORT_CLIENT_REG_SUP = 1 << 25
230 };
231
232 enum ib_port_width {
233 IB_WIDTH_1X = 1,
234 IB_WIDTH_4X = 2,
235 IB_WIDTH_8X = 4,
236 IB_WIDTH_12X = 8
237 };
238
239 static inline int ib_width_enum_to_int(enum ib_port_width width)
240 {
241 switch (width) {
242 case IB_WIDTH_1X: return 1;
243 case IB_WIDTH_4X: return 4;
244 case IB_WIDTH_8X: return 8;
245 case IB_WIDTH_12X: return 12;
246 default: return -1;
247 }
248 }
249
250 enum ib_port_speed {
251 IB_SPEED_SDR = 1,
252 IB_SPEED_DDR = 2,
253 IB_SPEED_QDR = 4,
254 IB_SPEED_FDR10 = 8,
255 IB_SPEED_FDR = 16,
256 IB_SPEED_EDR = 32
257 };
258
259 struct ib_protocol_stats {
260 /* TBD... */
261 };
262
263 struct iw_protocol_stats {
264 u64 ipInReceives;
265 u64 ipInHdrErrors;
266 u64 ipInTooBigErrors;
267 u64 ipInNoRoutes;
268 u64 ipInAddrErrors;
269 u64 ipInUnknownProtos;
270 u64 ipInTruncatedPkts;
271 u64 ipInDiscards;
272 u64 ipInDelivers;
273 u64 ipOutForwDatagrams;
274 u64 ipOutRequests;
275 u64 ipOutDiscards;
276 u64 ipOutNoRoutes;
277 u64 ipReasmTimeout;
278 u64 ipReasmReqds;
279 u64 ipReasmOKs;
280 u64 ipReasmFails;
281 u64 ipFragOKs;
282 u64 ipFragFails;
283 u64 ipFragCreates;
284 u64 ipInMcastPkts;
285 u64 ipOutMcastPkts;
286 u64 ipInBcastPkts;
287 u64 ipOutBcastPkts;
288
289 u64 tcpRtoAlgorithm;
290 u64 tcpRtoMin;
291 u64 tcpRtoMax;
292 u64 tcpMaxConn;
293 u64 tcpActiveOpens;
294 u64 tcpPassiveOpens;
295 u64 tcpAttemptFails;
296 u64 tcpEstabResets;
297 u64 tcpCurrEstab;
298 u64 tcpInSegs;
299 u64 tcpOutSegs;
300 u64 tcpRetransSegs;
301 u64 tcpInErrs;
302 u64 tcpOutRsts;
303 };
304
305 union rdma_protocol_stats {
306 struct ib_protocol_stats ib;
307 struct iw_protocol_stats iw;
308 };
309
310 struct ib_port_attr {
311 enum ib_port_state state;
312 enum ib_mtu max_mtu;
313 enum ib_mtu active_mtu;
314 int gid_tbl_len;
315 u32 port_cap_flags;
316 u32 max_msg_sz;
317 u32 bad_pkey_cntr;
318 u32 qkey_viol_cntr;
319 u16 pkey_tbl_len;
320 u16 lid;
321 u16 sm_lid;
322 u8 lmc;
323 u8 max_vl_num;
324 u8 sm_sl;
325 u8 subnet_timeout;
326 u8 init_type_reply;
327 u8 active_width;
328 u8 active_speed;
329 u8 phys_state;
330 };
331
332 enum ib_device_modify_flags {
333 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
334 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
335 };
336
337 struct ib_device_modify {
338 u64 sys_image_guid;
339 char node_desc[64];
340 };
341
342 enum ib_port_modify_flags {
343 IB_PORT_SHUTDOWN = 1,
344 IB_PORT_INIT_TYPE = (1<<2),
345 IB_PORT_RESET_QKEY_CNTR = (1<<3)
346 };
347
348 struct ib_port_modify {
349 u32 set_port_cap_mask;
350 u32 clr_port_cap_mask;
351 u8 init_type;
352 };
353
354 enum ib_event_type {
355 IB_EVENT_CQ_ERR,
356 IB_EVENT_QP_FATAL,
357 IB_EVENT_QP_REQ_ERR,
358 IB_EVENT_QP_ACCESS_ERR,
359 IB_EVENT_COMM_EST,
360 IB_EVENT_SQ_DRAINED,
361 IB_EVENT_PATH_MIG,
362 IB_EVENT_PATH_MIG_ERR,
363 IB_EVENT_DEVICE_FATAL,
364 IB_EVENT_PORT_ACTIVE,
365 IB_EVENT_PORT_ERR,
366 IB_EVENT_LID_CHANGE,
367 IB_EVENT_PKEY_CHANGE,
368 IB_EVENT_SM_CHANGE,
369 IB_EVENT_SRQ_ERR,
370 IB_EVENT_SRQ_LIMIT_REACHED,
371 IB_EVENT_QP_LAST_WQE_REACHED,
372 IB_EVENT_CLIENT_REREGISTER,
373 IB_EVENT_GID_CHANGE,
374 };
375
376 struct ib_event {
377 struct ib_device *device;
378 union {
379 struct ib_cq *cq;
380 struct ib_qp *qp;
381 struct ib_srq *srq;
382 u8 port_num;
383 } element;
384 enum ib_event_type event;
385 };
386
387 struct ib_event_handler {
388 struct ib_device *device;
389 void (*handler)(struct ib_event_handler *, struct ib_event *);
390 struct list_head list;
391 };
392
393 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
394 do { \
395 (_ptr)->device = _device; \
396 (_ptr)->handler = _handler; \
397 INIT_LIST_HEAD(&(_ptr)->list); \
398 } while (0)
399
400 struct ib_global_route {
401 union ib_gid dgid;
402 u32 flow_label;
403 u8 sgid_index;
404 u8 hop_limit;
405 u8 traffic_class;
406 };
407
408 struct ib_grh {
409 __be32 version_tclass_flow;
410 __be16 paylen;
411 u8 next_hdr;
412 u8 hop_limit;
413 union ib_gid sgid;
414 union ib_gid dgid;
415 };
416
417 enum {
418 IB_MULTICAST_QPN = 0xffffff
419 };
420
421 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
422
423 enum ib_ah_flags {
424 IB_AH_GRH = 1
425 };
426
427 enum ib_rate {
428 IB_RATE_PORT_CURRENT = 0,
429 IB_RATE_2_5_GBPS = 2,
430 IB_RATE_5_GBPS = 5,
431 IB_RATE_10_GBPS = 3,
432 IB_RATE_20_GBPS = 6,
433 IB_RATE_30_GBPS = 4,
434 IB_RATE_40_GBPS = 7,
435 IB_RATE_60_GBPS = 8,
436 IB_RATE_80_GBPS = 9,
437 IB_RATE_120_GBPS = 10,
438 IB_RATE_14_GBPS = 11,
439 IB_RATE_56_GBPS = 12,
440 IB_RATE_112_GBPS = 13,
441 IB_RATE_168_GBPS = 14,
442 IB_RATE_25_GBPS = 15,
443 IB_RATE_100_GBPS = 16,
444 IB_RATE_200_GBPS = 17,
445 IB_RATE_300_GBPS = 18
446 };
447
448 /**
449 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
450 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
451 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
452 * @rate: rate to convert.
453 */
454 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
455
456 /**
457 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
458 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
459 * @rate: rate to convert.
460 */
461 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
462
463 /**
464 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
465 * enum.
466 * @mult: multiple to convert.
467 */
468 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
469
470 struct ib_ah_attr {
471 struct ib_global_route grh;
472 u16 dlid;
473 u8 sl;
474 u8 src_path_bits;
475 u8 static_rate;
476 u8 ah_flags;
477 u8 port_num;
478 u8 dmac[ETH_ALEN];
479 u16 vlan_id;
480 };
481
482 enum ib_wc_status {
483 IB_WC_SUCCESS,
484 IB_WC_LOC_LEN_ERR,
485 IB_WC_LOC_QP_OP_ERR,
486 IB_WC_LOC_EEC_OP_ERR,
487 IB_WC_LOC_PROT_ERR,
488 IB_WC_WR_FLUSH_ERR,
489 IB_WC_MW_BIND_ERR,
490 IB_WC_BAD_RESP_ERR,
491 IB_WC_LOC_ACCESS_ERR,
492 IB_WC_REM_INV_REQ_ERR,
493 IB_WC_REM_ACCESS_ERR,
494 IB_WC_REM_OP_ERR,
495 IB_WC_RETRY_EXC_ERR,
496 IB_WC_RNR_RETRY_EXC_ERR,
497 IB_WC_LOC_RDD_VIOL_ERR,
498 IB_WC_REM_INV_RD_REQ_ERR,
499 IB_WC_REM_ABORT_ERR,
500 IB_WC_INV_EECN_ERR,
501 IB_WC_INV_EEC_STATE_ERR,
502 IB_WC_FATAL_ERR,
503 IB_WC_RESP_TIMEOUT_ERR,
504 IB_WC_GENERAL_ERR
505 };
506
507 enum ib_wc_opcode {
508 IB_WC_SEND,
509 IB_WC_RDMA_WRITE,
510 IB_WC_RDMA_READ,
511 IB_WC_COMP_SWAP,
512 IB_WC_FETCH_ADD,
513 IB_WC_BIND_MW,
514 IB_WC_LSO,
515 IB_WC_LOCAL_INV,
516 IB_WC_FAST_REG_MR,
517 IB_WC_MASKED_COMP_SWAP,
518 IB_WC_MASKED_FETCH_ADD,
519 /*
520 * Set value of IB_WC_RECV so consumers can test if a completion is a
521 * receive by testing (opcode & IB_WC_RECV).
522 */
523 IB_WC_RECV = 1 << 7,
524 IB_WC_RECV_RDMA_WITH_IMM
525 };
526
527 enum ib_wc_flags {
528 IB_WC_GRH = 1,
529 IB_WC_WITH_IMM = (1<<1),
530 IB_WC_WITH_INVALIDATE = (1<<2),
531 IB_WC_IP_CSUM_OK = (1<<3),
532 IB_WC_WITH_SMAC = (1<<4),
533 IB_WC_WITH_VLAN = (1<<5),
534 };
535
536 struct ib_wc {
537 u64 wr_id;
538 enum ib_wc_status status;
539 enum ib_wc_opcode opcode;
540 u32 vendor_err;
541 u32 byte_len;
542 struct ib_qp *qp;
543 union {
544 __be32 imm_data;
545 u32 invalidate_rkey;
546 } ex;
547 u32 src_qp;
548 int wc_flags;
549 u16 pkey_index;
550 u16 slid;
551 u8 sl;
552 u8 dlid_path_bits;
553 u8 port_num; /* valid only for DR SMPs on switches */
554 u8 smac[ETH_ALEN];
555 u16 vlan_id;
556 };
557
558 enum ib_cq_notify_flags {
559 IB_CQ_SOLICITED = 1 << 0,
560 IB_CQ_NEXT_COMP = 1 << 1,
561 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
562 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
563 };
564
565 enum ib_srq_type {
566 IB_SRQT_BASIC,
567 IB_SRQT_XRC
568 };
569
570 enum ib_srq_attr_mask {
571 IB_SRQ_MAX_WR = 1 << 0,
572 IB_SRQ_LIMIT = 1 << 1,
573 };
574
575 struct ib_srq_attr {
576 u32 max_wr;
577 u32 max_sge;
578 u32 srq_limit;
579 };
580
581 struct ib_srq_init_attr {
582 void (*event_handler)(struct ib_event *, void *);
583 void *srq_context;
584 struct ib_srq_attr attr;
585 enum ib_srq_type srq_type;
586
587 union {
588 struct {
589 struct ib_xrcd *xrcd;
590 struct ib_cq *cq;
591 } xrc;
592 } ext;
593 };
594
595 struct ib_qp_cap {
596 u32 max_send_wr;
597 u32 max_recv_wr;
598 u32 max_send_sge;
599 u32 max_recv_sge;
600 u32 max_inline_data;
601 };
602
603 enum ib_sig_type {
604 IB_SIGNAL_ALL_WR,
605 IB_SIGNAL_REQ_WR
606 };
607
608 enum ib_qp_type {
609 /*
610 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
611 * here (and in that order) since the MAD layer uses them as
612 * indices into a 2-entry table.
613 */
614 IB_QPT_SMI,
615 IB_QPT_GSI,
616
617 IB_QPT_RC,
618 IB_QPT_UC,
619 IB_QPT_UD,
620 IB_QPT_RAW_IPV6,
621 IB_QPT_RAW_ETHERTYPE,
622 IB_QPT_RAW_PACKET = 8,
623 IB_QPT_XRC_INI = 9,
624 IB_QPT_XRC_TGT,
625 IB_QPT_MAX,
626 /* Reserve a range for qp types internal to the low level driver.
627 * These qp types will not be visible at the IB core layer, so the
628 * IB_QPT_MAX usages should not be affected in the core layer
629 */
630 IB_QPT_RESERVED1 = 0x1000,
631 IB_QPT_RESERVED2,
632 IB_QPT_RESERVED3,
633 IB_QPT_RESERVED4,
634 IB_QPT_RESERVED5,
635 IB_QPT_RESERVED6,
636 IB_QPT_RESERVED7,
637 IB_QPT_RESERVED8,
638 IB_QPT_RESERVED9,
639 IB_QPT_RESERVED10,
640 };
641
642 enum ib_qp_create_flags {
643 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
644 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
645 IB_QP_CREATE_NETIF_QP = 1 << 5,
646 /* reserve bits 26-31 for low level drivers' internal use */
647 IB_QP_CREATE_RESERVED_START = 1 << 26,
648 IB_QP_CREATE_RESERVED_END = 1 << 31,
649 };
650
651
652 /*
653 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
654 * callback to destroy the passed in QP.
655 */
656
657 struct ib_qp_init_attr {
658 void (*event_handler)(struct ib_event *, void *);
659 void *qp_context;
660 struct ib_cq *send_cq;
661 struct ib_cq *recv_cq;
662 struct ib_srq *srq;
663 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
664 struct ib_qp_cap cap;
665 enum ib_sig_type sq_sig_type;
666 enum ib_qp_type qp_type;
667 enum ib_qp_create_flags create_flags;
668 u8 port_num; /* special QP types only */
669 };
670
671 struct ib_qp_open_attr {
672 void (*event_handler)(struct ib_event *, void *);
673 void *qp_context;
674 u32 qp_num;
675 enum ib_qp_type qp_type;
676 };
677
678 enum ib_rnr_timeout {
679 IB_RNR_TIMER_655_36 = 0,
680 IB_RNR_TIMER_000_01 = 1,
681 IB_RNR_TIMER_000_02 = 2,
682 IB_RNR_TIMER_000_03 = 3,
683 IB_RNR_TIMER_000_04 = 4,
684 IB_RNR_TIMER_000_06 = 5,
685 IB_RNR_TIMER_000_08 = 6,
686 IB_RNR_TIMER_000_12 = 7,
687 IB_RNR_TIMER_000_16 = 8,
688 IB_RNR_TIMER_000_24 = 9,
689 IB_RNR_TIMER_000_32 = 10,
690 IB_RNR_TIMER_000_48 = 11,
691 IB_RNR_TIMER_000_64 = 12,
692 IB_RNR_TIMER_000_96 = 13,
693 IB_RNR_TIMER_001_28 = 14,
694 IB_RNR_TIMER_001_92 = 15,
695 IB_RNR_TIMER_002_56 = 16,
696 IB_RNR_TIMER_003_84 = 17,
697 IB_RNR_TIMER_005_12 = 18,
698 IB_RNR_TIMER_007_68 = 19,
699 IB_RNR_TIMER_010_24 = 20,
700 IB_RNR_TIMER_015_36 = 21,
701 IB_RNR_TIMER_020_48 = 22,
702 IB_RNR_TIMER_030_72 = 23,
703 IB_RNR_TIMER_040_96 = 24,
704 IB_RNR_TIMER_061_44 = 25,
705 IB_RNR_TIMER_081_92 = 26,
706 IB_RNR_TIMER_122_88 = 27,
707 IB_RNR_TIMER_163_84 = 28,
708 IB_RNR_TIMER_245_76 = 29,
709 IB_RNR_TIMER_327_68 = 30,
710 IB_RNR_TIMER_491_52 = 31
711 };
712
713 enum ib_qp_attr_mask {
714 IB_QP_STATE = 1,
715 IB_QP_CUR_STATE = (1<<1),
716 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
717 IB_QP_ACCESS_FLAGS = (1<<3),
718 IB_QP_PKEY_INDEX = (1<<4),
719 IB_QP_PORT = (1<<5),
720 IB_QP_QKEY = (1<<6),
721 IB_QP_AV = (1<<7),
722 IB_QP_PATH_MTU = (1<<8),
723 IB_QP_TIMEOUT = (1<<9),
724 IB_QP_RETRY_CNT = (1<<10),
725 IB_QP_RNR_RETRY = (1<<11),
726 IB_QP_RQ_PSN = (1<<12),
727 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
728 IB_QP_ALT_PATH = (1<<14),
729 IB_QP_MIN_RNR_TIMER = (1<<15),
730 IB_QP_SQ_PSN = (1<<16),
731 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
732 IB_QP_PATH_MIG_STATE = (1<<18),
733 IB_QP_CAP = (1<<19),
734 IB_QP_DEST_QPN = (1<<20),
735 IB_QP_SMAC = (1<<21),
736 IB_QP_ALT_SMAC = (1<<22),
737 IB_QP_VID = (1<<23),
738 IB_QP_ALT_VID = (1<<24),
739 };
740
741 enum ib_qp_state {
742 IB_QPS_RESET,
743 IB_QPS_INIT,
744 IB_QPS_RTR,
745 IB_QPS_RTS,
746 IB_QPS_SQD,
747 IB_QPS_SQE,
748 IB_QPS_ERR
749 };
750
751 enum ib_mig_state {
752 IB_MIG_MIGRATED,
753 IB_MIG_REARM,
754 IB_MIG_ARMED
755 };
756
757 enum ib_mw_type {
758 IB_MW_TYPE_1 = 1,
759 IB_MW_TYPE_2 = 2
760 };
761
762 struct ib_qp_attr {
763 enum ib_qp_state qp_state;
764 enum ib_qp_state cur_qp_state;
765 enum ib_mtu path_mtu;
766 enum ib_mig_state path_mig_state;
767 u32 qkey;
768 u32 rq_psn;
769 u32 sq_psn;
770 u32 dest_qp_num;
771 int qp_access_flags;
772 struct ib_qp_cap cap;
773 struct ib_ah_attr ah_attr;
774 struct ib_ah_attr alt_ah_attr;
775 u16 pkey_index;
776 u16 alt_pkey_index;
777 u8 en_sqd_async_notify;
778 u8 sq_draining;
779 u8 max_rd_atomic;
780 u8 max_dest_rd_atomic;
781 u8 min_rnr_timer;
782 u8 port_num;
783 u8 timeout;
784 u8 retry_cnt;
785 u8 rnr_retry;
786 u8 alt_port_num;
787 u8 alt_timeout;
788 u8 smac[ETH_ALEN];
789 u8 alt_smac[ETH_ALEN];
790 u16 vlan_id;
791 u16 alt_vlan_id;
792 };
793
794 enum ib_wr_opcode {
795 IB_WR_RDMA_WRITE,
796 IB_WR_RDMA_WRITE_WITH_IMM,
797 IB_WR_SEND,
798 IB_WR_SEND_WITH_IMM,
799 IB_WR_RDMA_READ,
800 IB_WR_ATOMIC_CMP_AND_SWP,
801 IB_WR_ATOMIC_FETCH_AND_ADD,
802 IB_WR_LSO,
803 IB_WR_SEND_WITH_INV,
804 IB_WR_RDMA_READ_WITH_INV,
805 IB_WR_LOCAL_INV,
806 IB_WR_FAST_REG_MR,
807 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
808 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
809 IB_WR_BIND_MW,
810 /* reserve values for low level drivers' internal use.
811 * These values will not be used at all in the ib core layer.
812 */
813 IB_WR_RESERVED1 = 0xf0,
814 IB_WR_RESERVED2,
815 IB_WR_RESERVED3,
816 IB_WR_RESERVED4,
817 IB_WR_RESERVED5,
818 IB_WR_RESERVED6,
819 IB_WR_RESERVED7,
820 IB_WR_RESERVED8,
821 IB_WR_RESERVED9,
822 IB_WR_RESERVED10,
823 };
824
825 enum ib_send_flags {
826 IB_SEND_FENCE = 1,
827 IB_SEND_SIGNALED = (1<<1),
828 IB_SEND_SOLICITED = (1<<2),
829 IB_SEND_INLINE = (1<<3),
830 IB_SEND_IP_CSUM = (1<<4),
831
832 /* reserve bits 26-31 for low level drivers' internal use */
833 IB_SEND_RESERVED_START = (1 << 26),
834 IB_SEND_RESERVED_END = (1 << 31),
835 };
836
837 struct ib_sge {
838 u64 addr;
839 u32 length;
840 u32 lkey;
841 };
842
843 struct ib_fast_reg_page_list {
844 struct ib_device *device;
845 u64 *page_list;
846 unsigned int max_page_list_len;
847 };
848
849 /**
850 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
851 * @mr: A memory region to bind the memory window to.
852 * @addr: The address where the memory window should begin.
853 * @length: The length of the memory window, in bytes.
854 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
855 *
856 * This struct contains the shared parameters for type 1 and type 2
857 * memory window bind operations.
858 */
859 struct ib_mw_bind_info {
860 struct ib_mr *mr;
861 u64 addr;
862 u64 length;
863 int mw_access_flags;
864 };
865
866 struct ib_send_wr {
867 struct ib_send_wr *next;
868 u64 wr_id;
869 struct ib_sge *sg_list;
870 int num_sge;
871 enum ib_wr_opcode opcode;
872 int send_flags;
873 union {
874 __be32 imm_data;
875 u32 invalidate_rkey;
876 } ex;
877 union {
878 struct {
879 u64 remote_addr;
880 u32 rkey;
881 } rdma;
882 struct {
883 u64 remote_addr;
884 u64 compare_add;
885 u64 swap;
886 u64 compare_add_mask;
887 u64 swap_mask;
888 u32 rkey;
889 } atomic;
890 struct {
891 struct ib_ah *ah;
892 void *header;
893 int hlen;
894 int mss;
895 u32 remote_qpn;
896 u32 remote_qkey;
897 u16 pkey_index; /* valid for GSI only */
898 u8 port_num; /* valid for DR SMPs on switch only */
899 } ud;
900 struct {
901 u64 iova_start;
902 struct ib_fast_reg_page_list *page_list;
903 unsigned int page_shift;
904 unsigned int page_list_len;
905 u32 length;
906 int access_flags;
907 u32 rkey;
908 } fast_reg;
909 struct {
910 struct ib_mw *mw;
911 /* The new rkey for the memory window. */
912 u32 rkey;
913 struct ib_mw_bind_info bind_info;
914 } bind_mw;
915 } wr;
916 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
917 };
918
919 struct ib_recv_wr {
920 struct ib_recv_wr *next;
921 u64 wr_id;
922 struct ib_sge *sg_list;
923 int num_sge;
924 };
925
926 enum ib_access_flags {
927 IB_ACCESS_LOCAL_WRITE = 1,
928 IB_ACCESS_REMOTE_WRITE = (1<<1),
929 IB_ACCESS_REMOTE_READ = (1<<2),
930 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
931 IB_ACCESS_MW_BIND = (1<<4),
932 IB_ZERO_BASED = (1<<5)
933 };
934
935 struct ib_phys_buf {
936 u64 addr;
937 u64 size;
938 };
939
940 struct ib_mr_attr {
941 struct ib_pd *pd;
942 u64 device_virt_addr;
943 u64 size;
944 int mr_access_flags;
945 u32 lkey;
946 u32 rkey;
947 };
948
949 enum ib_mr_rereg_flags {
950 IB_MR_REREG_TRANS = 1,
951 IB_MR_REREG_PD = (1<<1),
952 IB_MR_REREG_ACCESS = (1<<2)
953 };
954
955 /**
956 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
957 * @wr_id: Work request id.
958 * @send_flags: Flags from ib_send_flags enum.
959 * @bind_info: More parameters of the bind operation.
960 */
961 struct ib_mw_bind {
962 u64 wr_id;
963 int send_flags;
964 struct ib_mw_bind_info bind_info;
965 };
966
967 struct ib_fmr_attr {
968 int max_pages;
969 int max_maps;
970 u8 page_shift;
971 };
972
973 struct ib_ucontext {
974 struct ib_device *device;
975 struct list_head pd_list;
976 struct list_head mr_list;
977 struct list_head mw_list;
978 struct list_head cq_list;
979 struct list_head qp_list;
980 struct list_head srq_list;
981 struct list_head ah_list;
982 struct list_head xrcd_list;
983 struct list_head rule_list;
984 int closing;
985 };
986
987 struct ib_uobject {
988 u64 user_handle; /* handle given to us by userspace */
989 struct ib_ucontext *context; /* associated user context */
990 void *object; /* containing object */
991 struct list_head list; /* link to context's list */
992 int id; /* index into kernel idr */
993 struct kref ref;
994 struct rw_semaphore mutex; /* protects .live */
995 int live;
996 };
997
998 struct ib_udata {
999 const void __user *inbuf;
1000 void __user *outbuf;
1001 size_t inlen;
1002 size_t outlen;
1003 };
1004
1005 struct ib_pd {
1006 struct ib_device *device;
1007 struct ib_uobject *uobject;
1008 atomic_t usecnt; /* count all resources */
1009 };
1010
1011 struct ib_xrcd {
1012 struct ib_device *device;
1013 atomic_t usecnt; /* count all exposed resources */
1014 struct inode *inode;
1015
1016 struct mutex tgt_qp_mutex;
1017 struct list_head tgt_qp_list;
1018 };
1019
1020 struct ib_ah {
1021 struct ib_device *device;
1022 struct ib_pd *pd;
1023 struct ib_uobject *uobject;
1024 };
1025
1026 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1027
1028 struct ib_cq {
1029 struct ib_device *device;
1030 struct ib_uobject *uobject;
1031 ib_comp_handler comp_handler;
1032 void (*event_handler)(struct ib_event *, void *);
1033 void *cq_context;
1034 int cqe;
1035 atomic_t usecnt; /* count number of work queues */
1036 };
1037
1038 struct ib_srq {
1039 struct ib_device *device;
1040 struct ib_pd *pd;
1041 struct ib_uobject *uobject;
1042 void (*event_handler)(struct ib_event *, void *);
1043 void *srq_context;
1044 enum ib_srq_type srq_type;
1045 atomic_t usecnt;
1046
1047 union {
1048 struct {
1049 struct ib_xrcd *xrcd;
1050 struct ib_cq *cq;
1051 u32 srq_num;
1052 } xrc;
1053 } ext;
1054 };
1055
1056 struct ib_qp {
1057 struct ib_device *device;
1058 struct ib_pd *pd;
1059 struct ib_cq *send_cq;
1060 struct ib_cq *recv_cq;
1061 struct ib_srq *srq;
1062 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1063 struct list_head xrcd_list;
1064 /* count times opened, mcast attaches, flow attaches */
1065 atomic_t usecnt;
1066 struct list_head open_list;
1067 struct ib_qp *real_qp;
1068 struct ib_uobject *uobject;
1069 void (*event_handler)(struct ib_event *, void *);
1070 void *qp_context;
1071 u32 qp_num;
1072 enum ib_qp_type qp_type;
1073 };
1074
1075 struct ib_mr {
1076 struct ib_device *device;
1077 struct ib_pd *pd;
1078 struct ib_uobject *uobject;
1079 u32 lkey;
1080 u32 rkey;
1081 atomic_t usecnt; /* count number of MWs */
1082 };
1083
1084 struct ib_mw {
1085 struct ib_device *device;
1086 struct ib_pd *pd;
1087 struct ib_uobject *uobject;
1088 u32 rkey;
1089 enum ib_mw_type type;
1090 };
1091
1092 struct ib_fmr {
1093 struct ib_device *device;
1094 struct ib_pd *pd;
1095 struct list_head list;
1096 u32 lkey;
1097 u32 rkey;
1098 };
1099
1100 /* Supported steering options */
1101 enum ib_flow_attr_type {
1102 /* steering according to rule specifications */
1103 IB_FLOW_ATTR_NORMAL = 0x0,
1104 /* default unicast and multicast rule -
1105 * receive all Eth traffic which isn't steered to any QP
1106 */
1107 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1108 /* default multicast rule -
1109 * receive all Eth multicast traffic which isn't steered to any QP
1110 */
1111 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1112 /* sniffer rule - receive all port traffic */
1113 IB_FLOW_ATTR_SNIFFER = 0x3
1114 };
1115
1116 /* Supported steering header types */
1117 enum ib_flow_spec_type {
1118 /* L2 headers*/
1119 IB_FLOW_SPEC_ETH = 0x20,
1120 IB_FLOW_SPEC_IB = 0x22,
1121 /* L3 header*/
1122 IB_FLOW_SPEC_IPV4 = 0x30,
1123 /* L4 headers*/
1124 IB_FLOW_SPEC_TCP = 0x40,
1125 IB_FLOW_SPEC_UDP = 0x41
1126 };
1127 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1128 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1129
1130 /* Flow steering rule priority is set according to it's domain.
1131 * Lower domain value means higher priority.
1132 */
1133 enum ib_flow_domain {
1134 IB_FLOW_DOMAIN_USER,
1135 IB_FLOW_DOMAIN_ETHTOOL,
1136 IB_FLOW_DOMAIN_RFS,
1137 IB_FLOW_DOMAIN_NIC,
1138 IB_FLOW_DOMAIN_NUM /* Must be last */
1139 };
1140
1141 struct ib_flow_eth_filter {
1142 u8 dst_mac[6];
1143 u8 src_mac[6];
1144 __be16 ether_type;
1145 __be16 vlan_tag;
1146 };
1147
1148 struct ib_flow_spec_eth {
1149 enum ib_flow_spec_type type;
1150 u16 size;
1151 struct ib_flow_eth_filter val;
1152 struct ib_flow_eth_filter mask;
1153 };
1154
1155 struct ib_flow_ib_filter {
1156 __be16 dlid;
1157 __u8 sl;
1158 };
1159
1160 struct ib_flow_spec_ib {
1161 enum ib_flow_spec_type type;
1162 u16 size;
1163 struct ib_flow_ib_filter val;
1164 struct ib_flow_ib_filter mask;
1165 };
1166
1167 struct ib_flow_ipv4_filter {
1168 __be32 src_ip;
1169 __be32 dst_ip;
1170 };
1171
1172 struct ib_flow_spec_ipv4 {
1173 enum ib_flow_spec_type type;
1174 u16 size;
1175 struct ib_flow_ipv4_filter val;
1176 struct ib_flow_ipv4_filter mask;
1177 };
1178
1179 struct ib_flow_tcp_udp_filter {
1180 __be16 dst_port;
1181 __be16 src_port;
1182 };
1183
1184 struct ib_flow_spec_tcp_udp {
1185 enum ib_flow_spec_type type;
1186 u16 size;
1187 struct ib_flow_tcp_udp_filter val;
1188 struct ib_flow_tcp_udp_filter mask;
1189 };
1190
1191 union ib_flow_spec {
1192 struct {
1193 enum ib_flow_spec_type type;
1194 u16 size;
1195 };
1196 struct ib_flow_spec_eth eth;
1197 struct ib_flow_spec_ib ib;
1198 struct ib_flow_spec_ipv4 ipv4;
1199 struct ib_flow_spec_tcp_udp tcp_udp;
1200 };
1201
1202 struct ib_flow_attr {
1203 enum ib_flow_attr_type type;
1204 u16 size;
1205 u16 priority;
1206 u32 flags;
1207 u8 num_of_specs;
1208 u8 port;
1209 /* Following are the optional layers according to user request
1210 * struct ib_flow_spec_xxx
1211 * struct ib_flow_spec_yyy
1212 */
1213 };
1214
1215 struct ib_flow {
1216 struct ib_qp *qp;
1217 struct ib_uobject *uobject;
1218 };
1219
1220 struct ib_mad;
1221 struct ib_grh;
1222
1223 enum ib_process_mad_flags {
1224 IB_MAD_IGNORE_MKEY = 1,
1225 IB_MAD_IGNORE_BKEY = 2,
1226 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1227 };
1228
1229 enum ib_mad_result {
1230 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1231 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1232 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1233 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1234 };
1235
1236 #define IB_DEVICE_NAME_MAX 64
1237
1238 struct ib_cache {
1239 rwlock_t lock;
1240 struct ib_event_handler event_handler;
1241 struct ib_pkey_cache **pkey_cache;
1242 struct ib_gid_cache **gid_cache;
1243 u8 *lmc_cache;
1244 };
1245
1246 struct ib_dma_mapping_ops {
1247 int (*mapping_error)(struct ib_device *dev,
1248 u64 dma_addr);
1249 u64 (*map_single)(struct ib_device *dev,
1250 void *ptr, size_t size,
1251 enum dma_data_direction direction);
1252 void (*unmap_single)(struct ib_device *dev,
1253 u64 addr, size_t size,
1254 enum dma_data_direction direction);
1255 u64 (*map_page)(struct ib_device *dev,
1256 struct page *page, unsigned long offset,
1257 size_t size,
1258 enum dma_data_direction direction);
1259 void (*unmap_page)(struct ib_device *dev,
1260 u64 addr, size_t size,
1261 enum dma_data_direction direction);
1262 int (*map_sg)(struct ib_device *dev,
1263 struct scatterlist *sg, int nents,
1264 enum dma_data_direction direction);
1265 void (*unmap_sg)(struct ib_device *dev,
1266 struct scatterlist *sg, int nents,
1267 enum dma_data_direction direction);
1268 u64 (*dma_address)(struct ib_device *dev,
1269 struct scatterlist *sg);
1270 unsigned int (*dma_len)(struct ib_device *dev,
1271 struct scatterlist *sg);
1272 void (*sync_single_for_cpu)(struct ib_device *dev,
1273 u64 dma_handle,
1274 size_t size,
1275 enum dma_data_direction dir);
1276 void (*sync_single_for_device)(struct ib_device *dev,
1277 u64 dma_handle,
1278 size_t size,
1279 enum dma_data_direction dir);
1280 void *(*alloc_coherent)(struct ib_device *dev,
1281 size_t size,
1282 u64 *dma_handle,
1283 gfp_t flag);
1284 void (*free_coherent)(struct ib_device *dev,
1285 size_t size, void *cpu_addr,
1286 u64 dma_handle);
1287 };
1288
1289 struct iw_cm_verbs;
1290
1291 struct ib_device {
1292 struct device *dma_device;
1293
1294 char name[IB_DEVICE_NAME_MAX];
1295
1296 struct list_head event_handler_list;
1297 spinlock_t event_handler_lock;
1298
1299 spinlock_t client_data_lock;
1300 struct list_head core_list;
1301 struct list_head client_data_list;
1302
1303 struct ib_cache cache;
1304 int *pkey_tbl_len;
1305 int *gid_tbl_len;
1306
1307 int num_comp_vectors;
1308
1309 struct iw_cm_verbs *iwcm;
1310
1311 int (*get_protocol_stats)(struct ib_device *device,
1312 union rdma_protocol_stats *stats);
1313 int (*query_device)(struct ib_device *device,
1314 struct ib_device_attr *device_attr);
1315 int (*query_port)(struct ib_device *device,
1316 u8 port_num,
1317 struct ib_port_attr *port_attr);
1318 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1319 u8 port_num);
1320 int (*query_gid)(struct ib_device *device,
1321 u8 port_num, int index,
1322 union ib_gid *gid);
1323 int (*query_pkey)(struct ib_device *device,
1324 u8 port_num, u16 index, u16 *pkey);
1325 int (*modify_device)(struct ib_device *device,
1326 int device_modify_mask,
1327 struct ib_device_modify *device_modify);
1328 int (*modify_port)(struct ib_device *device,
1329 u8 port_num, int port_modify_mask,
1330 struct ib_port_modify *port_modify);
1331 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1332 struct ib_udata *udata);
1333 int (*dealloc_ucontext)(struct ib_ucontext *context);
1334 int (*mmap)(struct ib_ucontext *context,
1335 struct vm_area_struct *vma);
1336 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1337 struct ib_ucontext *context,
1338 struct ib_udata *udata);
1339 int (*dealloc_pd)(struct ib_pd *pd);
1340 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1341 struct ib_ah_attr *ah_attr);
1342 int (*modify_ah)(struct ib_ah *ah,
1343 struct ib_ah_attr *ah_attr);
1344 int (*query_ah)(struct ib_ah *ah,
1345 struct ib_ah_attr *ah_attr);
1346 int (*destroy_ah)(struct ib_ah *ah);
1347 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1348 struct ib_srq_init_attr *srq_init_attr,
1349 struct ib_udata *udata);
1350 int (*modify_srq)(struct ib_srq *srq,
1351 struct ib_srq_attr *srq_attr,
1352 enum ib_srq_attr_mask srq_attr_mask,
1353 struct ib_udata *udata);
1354 int (*query_srq)(struct ib_srq *srq,
1355 struct ib_srq_attr *srq_attr);
1356 int (*destroy_srq)(struct ib_srq *srq);
1357 int (*post_srq_recv)(struct ib_srq *srq,
1358 struct ib_recv_wr *recv_wr,
1359 struct ib_recv_wr **bad_recv_wr);
1360 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1361 struct ib_qp_init_attr *qp_init_attr,
1362 struct ib_udata *udata);
1363 int (*modify_qp)(struct ib_qp *qp,
1364 struct ib_qp_attr *qp_attr,
1365 int qp_attr_mask,
1366 struct ib_udata *udata);
1367 int (*query_qp)(struct ib_qp *qp,
1368 struct ib_qp_attr *qp_attr,
1369 int qp_attr_mask,
1370 struct ib_qp_init_attr *qp_init_attr);
1371 int (*destroy_qp)(struct ib_qp *qp);
1372 int (*post_send)(struct ib_qp *qp,
1373 struct ib_send_wr *send_wr,
1374 struct ib_send_wr **bad_send_wr);
1375 int (*post_recv)(struct ib_qp *qp,
1376 struct ib_recv_wr *recv_wr,
1377 struct ib_recv_wr **bad_recv_wr);
1378 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1379 int comp_vector,
1380 struct ib_ucontext *context,
1381 struct ib_udata *udata);
1382 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1383 u16 cq_period);
1384 int (*destroy_cq)(struct ib_cq *cq);
1385 int (*resize_cq)(struct ib_cq *cq, int cqe,
1386 struct ib_udata *udata);
1387 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1388 struct ib_wc *wc);
1389 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1390 int (*req_notify_cq)(struct ib_cq *cq,
1391 enum ib_cq_notify_flags flags);
1392 int (*req_ncomp_notif)(struct ib_cq *cq,
1393 int wc_cnt);
1394 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1395 int mr_access_flags);
1396 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1397 struct ib_phys_buf *phys_buf_array,
1398 int num_phys_buf,
1399 int mr_access_flags,
1400 u64 *iova_start);
1401 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1402 u64 start, u64 length,
1403 u64 virt_addr,
1404 int mr_access_flags,
1405 struct ib_udata *udata);
1406 int (*query_mr)(struct ib_mr *mr,
1407 struct ib_mr_attr *mr_attr);
1408 int (*dereg_mr)(struct ib_mr *mr);
1409 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1410 int max_page_list_len);
1411 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1412 int page_list_len);
1413 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1414 int (*rereg_phys_mr)(struct ib_mr *mr,
1415 int mr_rereg_mask,
1416 struct ib_pd *pd,
1417 struct ib_phys_buf *phys_buf_array,
1418 int num_phys_buf,
1419 int mr_access_flags,
1420 u64 *iova_start);
1421 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1422 enum ib_mw_type type);
1423 int (*bind_mw)(struct ib_qp *qp,
1424 struct ib_mw *mw,
1425 struct ib_mw_bind *mw_bind);
1426 int (*dealloc_mw)(struct ib_mw *mw);
1427 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1428 int mr_access_flags,
1429 struct ib_fmr_attr *fmr_attr);
1430 int (*map_phys_fmr)(struct ib_fmr *fmr,
1431 u64 *page_list, int list_len,
1432 u64 iova);
1433 int (*unmap_fmr)(struct list_head *fmr_list);
1434 int (*dealloc_fmr)(struct ib_fmr *fmr);
1435 int (*attach_mcast)(struct ib_qp *qp,
1436 union ib_gid *gid,
1437 u16 lid);
1438 int (*detach_mcast)(struct ib_qp *qp,
1439 union ib_gid *gid,
1440 u16 lid);
1441 int (*process_mad)(struct ib_device *device,
1442 int process_mad_flags,
1443 u8 port_num,
1444 struct ib_wc *in_wc,
1445 struct ib_grh *in_grh,
1446 struct ib_mad *in_mad,
1447 struct ib_mad *out_mad);
1448 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1449 struct ib_ucontext *ucontext,
1450 struct ib_udata *udata);
1451 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1452 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1453 struct ib_flow_attr
1454 *flow_attr,
1455 int domain);
1456 int (*destroy_flow)(struct ib_flow *flow_id);
1457
1458 struct ib_dma_mapping_ops *dma_ops;
1459
1460 struct module *owner;
1461 struct device dev;
1462 struct kobject *ports_parent;
1463 struct list_head port_list;
1464
1465 enum {
1466 IB_DEV_UNINITIALIZED,
1467 IB_DEV_REGISTERED,
1468 IB_DEV_UNREGISTERED
1469 } reg_state;
1470
1471 int uverbs_abi_ver;
1472 u64 uverbs_cmd_mask;
1473 u64 uverbs_ex_cmd_mask;
1474
1475 char node_desc[64];
1476 __be64 node_guid;
1477 u32 local_dma_lkey;
1478 u8 node_type;
1479 u8 phys_port_cnt;
1480 };
1481
1482 struct ib_client {
1483 char *name;
1484 void (*add) (struct ib_device *);
1485 void (*remove)(struct ib_device *);
1486
1487 struct list_head list;
1488 };
1489
1490 struct ib_device *ib_alloc_device(size_t size);
1491 void ib_dealloc_device(struct ib_device *device);
1492
1493 int ib_register_device(struct ib_device *device,
1494 int (*port_callback)(struct ib_device *,
1495 u8, struct kobject *));
1496 void ib_unregister_device(struct ib_device *device);
1497
1498 int ib_register_client (struct ib_client *client);
1499 void ib_unregister_client(struct ib_client *client);
1500
1501 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1502 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1503 void *data);
1504
1505 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1506 {
1507 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1508 }
1509
1510 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1511 {
1512 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1513 }
1514
1515 /**
1516 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1517 * contains all required attributes and no attributes not allowed for
1518 * the given QP state transition.
1519 * @cur_state: Current QP state
1520 * @next_state: Next QP state
1521 * @type: QP type
1522 * @mask: Mask of supplied QP attributes
1523 * @ll : link layer of port
1524 *
1525 * This function is a helper function that a low-level driver's
1526 * modify_qp method can use to validate the consumer's input. It
1527 * checks that cur_state and next_state are valid QP states, that a
1528 * transition from cur_state to next_state is allowed by the IB spec,
1529 * and that the attribute mask supplied is allowed for the transition.
1530 */
1531 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1532 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1533 enum rdma_link_layer ll);
1534
1535 int ib_register_event_handler (struct ib_event_handler *event_handler);
1536 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1537 void ib_dispatch_event(struct ib_event *event);
1538
1539 int ib_query_device(struct ib_device *device,
1540 struct ib_device_attr *device_attr);
1541
1542 int ib_query_port(struct ib_device *device,
1543 u8 port_num, struct ib_port_attr *port_attr);
1544
1545 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1546 u8 port_num);
1547
1548 int ib_query_gid(struct ib_device *device,
1549 u8 port_num, int index, union ib_gid *gid);
1550
1551 int ib_query_pkey(struct ib_device *device,
1552 u8 port_num, u16 index, u16 *pkey);
1553
1554 int ib_modify_device(struct ib_device *device,
1555 int device_modify_mask,
1556 struct ib_device_modify *device_modify);
1557
1558 int ib_modify_port(struct ib_device *device,
1559 u8 port_num, int port_modify_mask,
1560 struct ib_port_modify *port_modify);
1561
1562 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1563 u8 *port_num, u16 *index);
1564
1565 int ib_find_pkey(struct ib_device *device,
1566 u8 port_num, u16 pkey, u16 *index);
1567
1568 /**
1569 * ib_alloc_pd - Allocates an unused protection domain.
1570 * @device: The device on which to allocate the protection domain.
1571 *
1572 * A protection domain object provides an association between QPs, shared
1573 * receive queues, address handles, memory regions, and memory windows.
1574 */
1575 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1576
1577 /**
1578 * ib_dealloc_pd - Deallocates a protection domain.
1579 * @pd: The protection domain to deallocate.
1580 */
1581 int ib_dealloc_pd(struct ib_pd *pd);
1582
1583 /**
1584 * ib_create_ah - Creates an address handle for the given address vector.
1585 * @pd: The protection domain associated with the address handle.
1586 * @ah_attr: The attributes of the address vector.
1587 *
1588 * The address handle is used to reference a local or global destination
1589 * in all UD QP post sends.
1590 */
1591 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1592
1593 /**
1594 * ib_init_ah_from_wc - Initializes address handle attributes from a
1595 * work completion.
1596 * @device: Device on which the received message arrived.
1597 * @port_num: Port on which the received message arrived.
1598 * @wc: Work completion associated with the received message.
1599 * @grh: References the received global route header. This parameter is
1600 * ignored unless the work completion indicates that the GRH is valid.
1601 * @ah_attr: Returned attributes that can be used when creating an address
1602 * handle for replying to the message.
1603 */
1604 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1605 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1606
1607 /**
1608 * ib_create_ah_from_wc - Creates an address handle associated with the
1609 * sender of the specified work completion.
1610 * @pd: The protection domain associated with the address handle.
1611 * @wc: Work completion information associated with a received message.
1612 * @grh: References the received global route header. This parameter is
1613 * ignored unless the work completion indicates that the GRH is valid.
1614 * @port_num: The outbound port number to associate with the address.
1615 *
1616 * The address handle is used to reference a local or global destination
1617 * in all UD QP post sends.
1618 */
1619 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1620 struct ib_grh *grh, u8 port_num);
1621
1622 /**
1623 * ib_modify_ah - Modifies the address vector associated with an address
1624 * handle.
1625 * @ah: The address handle to modify.
1626 * @ah_attr: The new address vector attributes to associate with the
1627 * address handle.
1628 */
1629 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1630
1631 /**
1632 * ib_query_ah - Queries the address vector associated with an address
1633 * handle.
1634 * @ah: The address handle to query.
1635 * @ah_attr: The address vector attributes associated with the address
1636 * handle.
1637 */
1638 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1639
1640 /**
1641 * ib_destroy_ah - Destroys an address handle.
1642 * @ah: The address handle to destroy.
1643 */
1644 int ib_destroy_ah(struct ib_ah *ah);
1645
1646 /**
1647 * ib_create_srq - Creates a SRQ associated with the specified protection
1648 * domain.
1649 * @pd: The protection domain associated with the SRQ.
1650 * @srq_init_attr: A list of initial attributes required to create the
1651 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1652 * the actual capabilities of the created SRQ.
1653 *
1654 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1655 * requested size of the SRQ, and set to the actual values allocated
1656 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1657 * will always be at least as large as the requested values.
1658 */
1659 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1660 struct ib_srq_init_attr *srq_init_attr);
1661
1662 /**
1663 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1664 * @srq: The SRQ to modify.
1665 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1666 * the current values of selected SRQ attributes are returned.
1667 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1668 * are being modified.
1669 *
1670 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1671 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1672 * the number of receives queued drops below the limit.
1673 */
1674 int ib_modify_srq(struct ib_srq *srq,
1675 struct ib_srq_attr *srq_attr,
1676 enum ib_srq_attr_mask srq_attr_mask);
1677
1678 /**
1679 * ib_query_srq - Returns the attribute list and current values for the
1680 * specified SRQ.
1681 * @srq: The SRQ to query.
1682 * @srq_attr: The attributes of the specified SRQ.
1683 */
1684 int ib_query_srq(struct ib_srq *srq,
1685 struct ib_srq_attr *srq_attr);
1686
1687 /**
1688 * ib_destroy_srq - Destroys the specified SRQ.
1689 * @srq: The SRQ to destroy.
1690 */
1691 int ib_destroy_srq(struct ib_srq *srq);
1692
1693 /**
1694 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1695 * @srq: The SRQ to post the work request on.
1696 * @recv_wr: A list of work requests to post on the receive queue.
1697 * @bad_recv_wr: On an immediate failure, this parameter will reference
1698 * the work request that failed to be posted on the QP.
1699 */
1700 static inline int ib_post_srq_recv(struct ib_srq *srq,
1701 struct ib_recv_wr *recv_wr,
1702 struct ib_recv_wr **bad_recv_wr)
1703 {
1704 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1705 }
1706
1707 /**
1708 * ib_create_qp - Creates a QP associated with the specified protection
1709 * domain.
1710 * @pd: The protection domain associated with the QP.
1711 * @qp_init_attr: A list of initial attributes required to create the
1712 * QP. If QP creation succeeds, then the attributes are updated to
1713 * the actual capabilities of the created QP.
1714 */
1715 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1716 struct ib_qp_init_attr *qp_init_attr);
1717
1718 /**
1719 * ib_modify_qp - Modifies the attributes for the specified QP and then
1720 * transitions the QP to the given state.
1721 * @qp: The QP to modify.
1722 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1723 * the current values of selected QP attributes are returned.
1724 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1725 * are being modified.
1726 */
1727 int ib_modify_qp(struct ib_qp *qp,
1728 struct ib_qp_attr *qp_attr,
1729 int qp_attr_mask);
1730
1731 /**
1732 * ib_query_qp - Returns the attribute list and current values for the
1733 * specified QP.
1734 * @qp: The QP to query.
1735 * @qp_attr: The attributes of the specified QP.
1736 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1737 * @qp_init_attr: Additional attributes of the selected QP.
1738 *
1739 * The qp_attr_mask may be used to limit the query to gathering only the
1740 * selected attributes.
1741 */
1742 int ib_query_qp(struct ib_qp *qp,
1743 struct ib_qp_attr *qp_attr,
1744 int qp_attr_mask,
1745 struct ib_qp_init_attr *qp_init_attr);
1746
1747 /**
1748 * ib_destroy_qp - Destroys the specified QP.
1749 * @qp: The QP to destroy.
1750 */
1751 int ib_destroy_qp(struct ib_qp *qp);
1752
1753 /**
1754 * ib_open_qp - Obtain a reference to an existing sharable QP.
1755 * @xrcd - XRC domain
1756 * @qp_open_attr: Attributes identifying the QP to open.
1757 *
1758 * Returns a reference to a sharable QP.
1759 */
1760 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1761 struct ib_qp_open_attr *qp_open_attr);
1762
1763 /**
1764 * ib_close_qp - Release an external reference to a QP.
1765 * @qp: The QP handle to release
1766 *
1767 * The opened QP handle is released by the caller. The underlying
1768 * shared QP is not destroyed until all internal references are released.
1769 */
1770 int ib_close_qp(struct ib_qp *qp);
1771
1772 /**
1773 * ib_post_send - Posts a list of work requests to the send queue of
1774 * the specified QP.
1775 * @qp: The QP to post the work request on.
1776 * @send_wr: A list of work requests to post on the send queue.
1777 * @bad_send_wr: On an immediate failure, this parameter will reference
1778 * the work request that failed to be posted on the QP.
1779 *
1780 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1781 * error is returned, the QP state shall not be affected,
1782 * ib_post_send() will return an immediate error after queueing any
1783 * earlier work requests in the list.
1784 */
1785 static inline int ib_post_send(struct ib_qp *qp,
1786 struct ib_send_wr *send_wr,
1787 struct ib_send_wr **bad_send_wr)
1788 {
1789 return qp->device->post_send(qp, send_wr, bad_send_wr);
1790 }
1791
1792 /**
1793 * ib_post_recv - Posts a list of work requests to the receive queue of
1794 * the specified QP.
1795 * @qp: The QP to post the work request on.
1796 * @recv_wr: A list of work requests to post on the receive queue.
1797 * @bad_recv_wr: On an immediate failure, this parameter will reference
1798 * the work request that failed to be posted on the QP.
1799 */
1800 static inline int ib_post_recv(struct ib_qp *qp,
1801 struct ib_recv_wr *recv_wr,
1802 struct ib_recv_wr **bad_recv_wr)
1803 {
1804 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1805 }
1806
1807 /**
1808 * ib_create_cq - Creates a CQ on the specified device.
1809 * @device: The device on which to create the CQ.
1810 * @comp_handler: A user-specified callback that is invoked when a
1811 * completion event occurs on the CQ.
1812 * @event_handler: A user-specified callback that is invoked when an
1813 * asynchronous event not associated with a completion occurs on the CQ.
1814 * @cq_context: Context associated with the CQ returned to the user via
1815 * the associated completion and event handlers.
1816 * @cqe: The minimum size of the CQ.
1817 * @comp_vector - Completion vector used to signal completion events.
1818 * Must be >= 0 and < context->num_comp_vectors.
1819 *
1820 * Users can examine the cq structure to determine the actual CQ size.
1821 */
1822 struct ib_cq *ib_create_cq(struct ib_device *device,
1823 ib_comp_handler comp_handler,
1824 void (*event_handler)(struct ib_event *, void *),
1825 void *cq_context, int cqe, int comp_vector);
1826
1827 /**
1828 * ib_resize_cq - Modifies the capacity of the CQ.
1829 * @cq: The CQ to resize.
1830 * @cqe: The minimum size of the CQ.
1831 *
1832 * Users can examine the cq structure to determine the actual CQ size.
1833 */
1834 int ib_resize_cq(struct ib_cq *cq, int cqe);
1835
1836 /**
1837 * ib_modify_cq - Modifies moderation params of the CQ
1838 * @cq: The CQ to modify.
1839 * @cq_count: number of CQEs that will trigger an event
1840 * @cq_period: max period of time in usec before triggering an event
1841 *
1842 */
1843 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1844
1845 /**
1846 * ib_destroy_cq - Destroys the specified CQ.
1847 * @cq: The CQ to destroy.
1848 */
1849 int ib_destroy_cq(struct ib_cq *cq);
1850
1851 /**
1852 * ib_poll_cq - poll a CQ for completion(s)
1853 * @cq:the CQ being polled
1854 * @num_entries:maximum number of completions to return
1855 * @wc:array of at least @num_entries &struct ib_wc where completions
1856 * will be returned
1857 *
1858 * Poll a CQ for (possibly multiple) completions. If the return value
1859 * is < 0, an error occurred. If the return value is >= 0, it is the
1860 * number of completions returned. If the return value is
1861 * non-negative and < num_entries, then the CQ was emptied.
1862 */
1863 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1864 struct ib_wc *wc)
1865 {
1866 return cq->device->poll_cq(cq, num_entries, wc);
1867 }
1868
1869 /**
1870 * ib_peek_cq - Returns the number of unreaped completions currently
1871 * on the specified CQ.
1872 * @cq: The CQ to peek.
1873 * @wc_cnt: A minimum number of unreaped completions to check for.
1874 *
1875 * If the number of unreaped completions is greater than or equal to wc_cnt,
1876 * this function returns wc_cnt, otherwise, it returns the actual number of
1877 * unreaped completions.
1878 */
1879 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1880
1881 /**
1882 * ib_req_notify_cq - Request completion notification on a CQ.
1883 * @cq: The CQ to generate an event for.
1884 * @flags:
1885 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1886 * to request an event on the next solicited event or next work
1887 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1888 * may also be |ed in to request a hint about missed events, as
1889 * described below.
1890 *
1891 * Return Value:
1892 * < 0 means an error occurred while requesting notification
1893 * == 0 means notification was requested successfully, and if
1894 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1895 * were missed and it is safe to wait for another event. In
1896 * this case is it guaranteed that any work completions added
1897 * to the CQ since the last CQ poll will trigger a completion
1898 * notification event.
1899 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1900 * in. It means that the consumer must poll the CQ again to
1901 * make sure it is empty to avoid missing an event because of a
1902 * race between requesting notification and an entry being
1903 * added to the CQ. This return value means it is possible
1904 * (but not guaranteed) that a work completion has been added
1905 * to the CQ since the last poll without triggering a
1906 * completion notification event.
1907 */
1908 static inline int ib_req_notify_cq(struct ib_cq *cq,
1909 enum ib_cq_notify_flags flags)
1910 {
1911 return cq->device->req_notify_cq(cq, flags);
1912 }
1913
1914 /**
1915 * ib_req_ncomp_notif - Request completion notification when there are
1916 * at least the specified number of unreaped completions on the CQ.
1917 * @cq: The CQ to generate an event for.
1918 * @wc_cnt: The number of unreaped completions that should be on the
1919 * CQ before an event is generated.
1920 */
1921 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1922 {
1923 return cq->device->req_ncomp_notif ?
1924 cq->device->req_ncomp_notif(cq, wc_cnt) :
1925 -ENOSYS;
1926 }
1927
1928 /**
1929 * ib_get_dma_mr - Returns a memory region for system memory that is
1930 * usable for DMA.
1931 * @pd: The protection domain associated with the memory region.
1932 * @mr_access_flags: Specifies the memory access rights.
1933 *
1934 * Note that the ib_dma_*() functions defined below must be used
1935 * to create/destroy addresses used with the Lkey or Rkey returned
1936 * by ib_get_dma_mr().
1937 */
1938 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1939
1940 /**
1941 * ib_dma_mapping_error - check a DMA addr for error
1942 * @dev: The device for which the dma_addr was created
1943 * @dma_addr: The DMA address to check
1944 */
1945 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1946 {
1947 if (dev->dma_ops)
1948 return dev->dma_ops->mapping_error(dev, dma_addr);
1949 return dma_mapping_error(dev->dma_device, dma_addr);
1950 }
1951
1952 /**
1953 * ib_dma_map_single - Map a kernel virtual address to DMA address
1954 * @dev: The device for which the dma_addr is to be created
1955 * @cpu_addr: The kernel virtual address
1956 * @size: The size of the region in bytes
1957 * @direction: The direction of the DMA
1958 */
1959 static inline u64 ib_dma_map_single(struct ib_device *dev,
1960 void *cpu_addr, size_t size,
1961 enum dma_data_direction direction)
1962 {
1963 if (dev->dma_ops)
1964 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1965 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1966 }
1967
1968 /**
1969 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1970 * @dev: The device for which the DMA address was created
1971 * @addr: The DMA address
1972 * @size: The size of the region in bytes
1973 * @direction: The direction of the DMA
1974 */
1975 static inline void ib_dma_unmap_single(struct ib_device *dev,
1976 u64 addr, size_t size,
1977 enum dma_data_direction direction)
1978 {
1979 if (dev->dma_ops)
1980 dev->dma_ops->unmap_single(dev, addr, size, direction);
1981 else
1982 dma_unmap_single(dev->dma_device, addr, size, direction);
1983 }
1984
1985 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1986 void *cpu_addr, size_t size,
1987 enum dma_data_direction direction,
1988 struct dma_attrs *attrs)
1989 {
1990 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1991 direction, attrs);
1992 }
1993
1994 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1995 u64 addr, size_t size,
1996 enum dma_data_direction direction,
1997 struct dma_attrs *attrs)
1998 {
1999 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2000 direction, attrs);
2001 }
2002
2003 /**
2004 * ib_dma_map_page - Map a physical page to DMA address
2005 * @dev: The device for which the dma_addr is to be created
2006 * @page: The page to be mapped
2007 * @offset: The offset within the page
2008 * @size: The size of the region in bytes
2009 * @direction: The direction of the DMA
2010 */
2011 static inline u64 ib_dma_map_page(struct ib_device *dev,
2012 struct page *page,
2013 unsigned long offset,
2014 size_t size,
2015 enum dma_data_direction direction)
2016 {
2017 if (dev->dma_ops)
2018 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2019 return dma_map_page(dev->dma_device, page, offset, size, direction);
2020 }
2021
2022 /**
2023 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2024 * @dev: The device for which the DMA address was created
2025 * @addr: The DMA address
2026 * @size: The size of the region in bytes
2027 * @direction: The direction of the DMA
2028 */
2029 static inline void ib_dma_unmap_page(struct ib_device *dev,
2030 u64 addr, size_t size,
2031 enum dma_data_direction direction)
2032 {
2033 if (dev->dma_ops)
2034 dev->dma_ops->unmap_page(dev, addr, size, direction);
2035 else
2036 dma_unmap_page(dev->dma_device, addr, size, direction);
2037 }
2038
2039 /**
2040 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2041 * @dev: The device for which the DMA addresses are to be created
2042 * @sg: The array of scatter/gather entries
2043 * @nents: The number of scatter/gather entries
2044 * @direction: The direction of the DMA
2045 */
2046 static inline int ib_dma_map_sg(struct ib_device *dev,
2047 struct scatterlist *sg, int nents,
2048 enum dma_data_direction direction)
2049 {
2050 if (dev->dma_ops)
2051 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2052 return dma_map_sg(dev->dma_device, sg, nents, direction);
2053 }
2054
2055 /**
2056 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2057 * @dev: The device for which the DMA addresses were created
2058 * @sg: The array of scatter/gather entries
2059 * @nents: The number of scatter/gather entries
2060 * @direction: The direction of the DMA
2061 */
2062 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2063 struct scatterlist *sg, int nents,
2064 enum dma_data_direction direction)
2065 {
2066 if (dev->dma_ops)
2067 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2068 else
2069 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2070 }
2071
2072 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2073 struct scatterlist *sg, int nents,
2074 enum dma_data_direction direction,
2075 struct dma_attrs *attrs)
2076 {
2077 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2078 }
2079
2080 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2081 struct scatterlist *sg, int nents,
2082 enum dma_data_direction direction,
2083 struct dma_attrs *attrs)
2084 {
2085 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2086 }
2087 /**
2088 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2089 * @dev: The device for which the DMA addresses were created
2090 * @sg: The scatter/gather entry
2091 */
2092 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2093 struct scatterlist *sg)
2094 {
2095 if (dev->dma_ops)
2096 return dev->dma_ops->dma_address(dev, sg);
2097 return sg_dma_address(sg);
2098 }
2099
2100 /**
2101 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2102 * @dev: The device for which the DMA addresses were created
2103 * @sg: The scatter/gather entry
2104 */
2105 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2106 struct scatterlist *sg)
2107 {
2108 if (dev->dma_ops)
2109 return dev->dma_ops->dma_len(dev, sg);
2110 return sg_dma_len(sg);
2111 }
2112
2113 /**
2114 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2115 * @dev: The device for which the DMA address was created
2116 * @addr: The DMA address
2117 * @size: The size of the region in bytes
2118 * @dir: The direction of the DMA
2119 */
2120 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2121 u64 addr,
2122 size_t size,
2123 enum dma_data_direction dir)
2124 {
2125 if (dev->dma_ops)
2126 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2127 else
2128 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2129 }
2130
2131 /**
2132 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2133 * @dev: The device for which the DMA address was created
2134 * @addr: The DMA address
2135 * @size: The size of the region in bytes
2136 * @dir: The direction of the DMA
2137 */
2138 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2139 u64 addr,
2140 size_t size,
2141 enum dma_data_direction dir)
2142 {
2143 if (dev->dma_ops)
2144 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2145 else
2146 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2147 }
2148
2149 /**
2150 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2151 * @dev: The device for which the DMA address is requested
2152 * @size: The size of the region to allocate in bytes
2153 * @dma_handle: A pointer for returning the DMA address of the region
2154 * @flag: memory allocator flags
2155 */
2156 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2157 size_t size,
2158 u64 *dma_handle,
2159 gfp_t flag)
2160 {
2161 if (dev->dma_ops)
2162 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2163 else {
2164 dma_addr_t handle;
2165 void *ret;
2166
2167 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2168 *dma_handle = handle;
2169 return ret;
2170 }
2171 }
2172
2173 /**
2174 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2175 * @dev: The device for which the DMA addresses were allocated
2176 * @size: The size of the region
2177 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2178 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2179 */
2180 static inline void ib_dma_free_coherent(struct ib_device *dev,
2181 size_t size, void *cpu_addr,
2182 u64 dma_handle)
2183 {
2184 if (dev->dma_ops)
2185 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2186 else
2187 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2188 }
2189
2190 /**
2191 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2192 * by an HCA.
2193 * @pd: The protection domain associated assigned to the registered region.
2194 * @phys_buf_array: Specifies a list of physical buffers to use in the
2195 * memory region.
2196 * @num_phys_buf: Specifies the size of the phys_buf_array.
2197 * @mr_access_flags: Specifies the memory access rights.
2198 * @iova_start: The offset of the region's starting I/O virtual address.
2199 */
2200 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2201 struct ib_phys_buf *phys_buf_array,
2202 int num_phys_buf,
2203 int mr_access_flags,
2204 u64 *iova_start);
2205
2206 /**
2207 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2208 * Conceptually, this call performs the functions deregister memory region
2209 * followed by register physical memory region. Where possible,
2210 * resources are reused instead of deallocated and reallocated.
2211 * @mr: The memory region to modify.
2212 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2213 * properties of the memory region are being modified.
2214 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2215 * the new protection domain to associated with the memory region,
2216 * otherwise, this parameter is ignored.
2217 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2218 * field specifies a list of physical buffers to use in the new
2219 * translation, otherwise, this parameter is ignored.
2220 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2221 * field specifies the size of the phys_buf_array, otherwise, this
2222 * parameter is ignored.
2223 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2224 * field specifies the new memory access rights, otherwise, this
2225 * parameter is ignored.
2226 * @iova_start: The offset of the region's starting I/O virtual address.
2227 */
2228 int ib_rereg_phys_mr(struct ib_mr *mr,
2229 int mr_rereg_mask,
2230 struct ib_pd *pd,
2231 struct ib_phys_buf *phys_buf_array,
2232 int num_phys_buf,
2233 int mr_access_flags,
2234 u64 *iova_start);
2235
2236 /**
2237 * ib_query_mr - Retrieves information about a specific memory region.
2238 * @mr: The memory region to retrieve information about.
2239 * @mr_attr: The attributes of the specified memory region.
2240 */
2241 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2242
2243 /**
2244 * ib_dereg_mr - Deregisters a memory region and removes it from the
2245 * HCA translation table.
2246 * @mr: The memory region to deregister.
2247 *
2248 * This function can fail, if the memory region has memory windows bound to it.
2249 */
2250 int ib_dereg_mr(struct ib_mr *mr);
2251
2252 /**
2253 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2254 * IB_WR_FAST_REG_MR send work request.
2255 * @pd: The protection domain associated with the region.
2256 * @max_page_list_len: requested max physical buffer list length to be
2257 * used with fast register work requests for this MR.
2258 */
2259 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2260
2261 /**
2262 * ib_alloc_fast_reg_page_list - Allocates a page list array
2263 * @device - ib device pointer.
2264 * @page_list_len - size of the page list array to be allocated.
2265 *
2266 * This allocates and returns a struct ib_fast_reg_page_list * and a
2267 * page_list array that is at least page_list_len in size. The actual
2268 * size is returned in max_page_list_len. The caller is responsible
2269 * for initializing the contents of the page_list array before posting
2270 * a send work request with the IB_WC_FAST_REG_MR opcode.
2271 *
2272 * The page_list array entries must be translated using one of the
2273 * ib_dma_*() functions just like the addresses passed to
2274 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2275 * ib_fast_reg_page_list must not be modified by the caller until the
2276 * IB_WC_FAST_REG_MR work request completes.
2277 */
2278 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2279 struct ib_device *device, int page_list_len);
2280
2281 /**
2282 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2283 * page list array.
2284 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2285 */
2286 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2287
2288 /**
2289 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2290 * R_Key and L_Key.
2291 * @mr - struct ib_mr pointer to be updated.
2292 * @newkey - new key to be used.
2293 */
2294 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2295 {
2296 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2297 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2298 }
2299
2300 /**
2301 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2302 * for calculating a new rkey for type 2 memory windows.
2303 * @rkey - the rkey to increment.
2304 */
2305 static inline u32 ib_inc_rkey(u32 rkey)
2306 {
2307 const u32 mask = 0x000000ff;
2308 return ((rkey + 1) & mask) | (rkey & ~mask);
2309 }
2310
2311 /**
2312 * ib_alloc_mw - Allocates a memory window.
2313 * @pd: The protection domain associated with the memory window.
2314 * @type: The type of the memory window (1 or 2).
2315 */
2316 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2317
2318 /**
2319 * ib_bind_mw - Posts a work request to the send queue of the specified
2320 * QP, which binds the memory window to the given address range and
2321 * remote access attributes.
2322 * @qp: QP to post the bind work request on.
2323 * @mw: The memory window to bind.
2324 * @mw_bind: Specifies information about the memory window, including
2325 * its address range, remote access rights, and associated memory region.
2326 *
2327 * If there is no immediate error, the function will update the rkey member
2328 * of the mw parameter to its new value. The bind operation can still fail
2329 * asynchronously.
2330 */
2331 static inline int ib_bind_mw(struct ib_qp *qp,
2332 struct ib_mw *mw,
2333 struct ib_mw_bind *mw_bind)
2334 {
2335 /* XXX reference counting in corresponding MR? */
2336 return mw->device->bind_mw ?
2337 mw->device->bind_mw(qp, mw, mw_bind) :
2338 -ENOSYS;
2339 }
2340
2341 /**
2342 * ib_dealloc_mw - Deallocates a memory window.
2343 * @mw: The memory window to deallocate.
2344 */
2345 int ib_dealloc_mw(struct ib_mw *mw);
2346
2347 /**
2348 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2349 * @pd: The protection domain associated with the unmapped region.
2350 * @mr_access_flags: Specifies the memory access rights.
2351 * @fmr_attr: Attributes of the unmapped region.
2352 *
2353 * A fast memory region must be mapped before it can be used as part of
2354 * a work request.
2355 */
2356 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2357 int mr_access_flags,
2358 struct ib_fmr_attr *fmr_attr);
2359
2360 /**
2361 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2362 * @fmr: The fast memory region to associate with the pages.
2363 * @page_list: An array of physical pages to map to the fast memory region.
2364 * @list_len: The number of pages in page_list.
2365 * @iova: The I/O virtual address to use with the mapped region.
2366 */
2367 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2368 u64 *page_list, int list_len,
2369 u64 iova)
2370 {
2371 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2372 }
2373
2374 /**
2375 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2376 * @fmr_list: A linked list of fast memory regions to unmap.
2377 */
2378 int ib_unmap_fmr(struct list_head *fmr_list);
2379
2380 /**
2381 * ib_dealloc_fmr - Deallocates a fast memory region.
2382 * @fmr: The fast memory region to deallocate.
2383 */
2384 int ib_dealloc_fmr(struct ib_fmr *fmr);
2385
2386 /**
2387 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2388 * @qp: QP to attach to the multicast group. The QP must be type
2389 * IB_QPT_UD.
2390 * @gid: Multicast group GID.
2391 * @lid: Multicast group LID in host byte order.
2392 *
2393 * In order to send and receive multicast packets, subnet
2394 * administration must have created the multicast group and configured
2395 * the fabric appropriately. The port associated with the specified
2396 * QP must also be a member of the multicast group.
2397 */
2398 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2399
2400 /**
2401 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2402 * @qp: QP to detach from the multicast group.
2403 * @gid: Multicast group GID.
2404 * @lid: Multicast group LID in host byte order.
2405 */
2406 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2407
2408 /**
2409 * ib_alloc_xrcd - Allocates an XRC domain.
2410 * @device: The device on which to allocate the XRC domain.
2411 */
2412 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2413
2414 /**
2415 * ib_dealloc_xrcd - Deallocates an XRC domain.
2416 * @xrcd: The XRC domain to deallocate.
2417 */
2418 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2419
2420 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2421 struct ib_flow_attr *flow_attr, int domain);
2422 int ib_destroy_flow(struct ib_flow *flow_id);
2423
2424 static inline int ib_check_mr_access(int flags)
2425 {
2426 /*
2427 * Local write permission is required if remote write or
2428 * remote atomic permission is also requested.
2429 */
2430 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2431 !(flags & IB_ACCESS_LOCAL_WRITE))
2432 return -EINVAL;
2433
2434 return 0;
2435 }
2436
2437 #endif /* IB_VERBS_H */
This page took 0.098716 seconds and 5 git commands to generate.