Merge branches 'hfi1' and 'sge-limit' into k.o/for-4.8-2
[deliverable/linux.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58
59 #include <linux/if_link.h>
60 #include <linux/atomic.h>
61 #include <linux/mmu_notifier.h>
62 #include <asm/uaccess.h>
63
64 extern struct workqueue_struct *ib_wq;
65 extern struct workqueue_struct *ib_comp_wq;
66
67 union ib_gid {
68 u8 raw[16];
69 struct {
70 __be64 subnet_prefix;
71 __be64 interface_id;
72 } global;
73 };
74
75 extern union ib_gid zgid;
76
77 enum ib_gid_type {
78 /* If link layer is Ethernet, this is RoCE V1 */
79 IB_GID_TYPE_IB = 0,
80 IB_GID_TYPE_ROCE = 0,
81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
82 IB_GID_TYPE_SIZE
83 };
84
85 #define ROCE_V2_UDP_DPORT 4791
86 struct ib_gid_attr {
87 enum ib_gid_type gid_type;
88 struct net_device *ndev;
89 };
90
91 enum rdma_node_type {
92 /* IB values map to NodeInfo:NodeType. */
93 RDMA_NODE_IB_CA = 1,
94 RDMA_NODE_IB_SWITCH,
95 RDMA_NODE_IB_ROUTER,
96 RDMA_NODE_RNIC,
97 RDMA_NODE_USNIC,
98 RDMA_NODE_USNIC_UDP,
99 };
100
101 enum {
102 /* set the local administered indication */
103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
104 };
105
106 enum rdma_transport_type {
107 RDMA_TRANSPORT_IB,
108 RDMA_TRANSPORT_IWARP,
109 RDMA_TRANSPORT_USNIC,
110 RDMA_TRANSPORT_USNIC_UDP
111 };
112
113 enum rdma_protocol_type {
114 RDMA_PROTOCOL_IB,
115 RDMA_PROTOCOL_IBOE,
116 RDMA_PROTOCOL_IWARP,
117 RDMA_PROTOCOL_USNIC_UDP
118 };
119
120 __attribute_const__ enum rdma_transport_type
121 rdma_node_get_transport(enum rdma_node_type node_type);
122
123 enum rdma_network_type {
124 RDMA_NETWORK_IB,
125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
126 RDMA_NETWORK_IPV4,
127 RDMA_NETWORK_IPV6
128 };
129
130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
131 {
132 if (network_type == RDMA_NETWORK_IPV4 ||
133 network_type == RDMA_NETWORK_IPV6)
134 return IB_GID_TYPE_ROCE_UDP_ENCAP;
135
136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
137 return IB_GID_TYPE_IB;
138 }
139
140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
141 union ib_gid *gid)
142 {
143 if (gid_type == IB_GID_TYPE_IB)
144 return RDMA_NETWORK_IB;
145
146 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
147 return RDMA_NETWORK_IPV4;
148 else
149 return RDMA_NETWORK_IPV6;
150 }
151
152 enum rdma_link_layer {
153 IB_LINK_LAYER_UNSPECIFIED,
154 IB_LINK_LAYER_INFINIBAND,
155 IB_LINK_LAYER_ETHERNET,
156 };
157
158 enum ib_device_cap_flags {
159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
162 IB_DEVICE_RAW_MULTI = (1 << 3),
163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
168 IB_DEVICE_INIT_TYPE = (1 << 9),
169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
172 IB_DEVICE_SRQ_RESIZE = (1 << 13),
173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
174
175 /*
176 * This device supports a per-device lkey or stag that can be
177 * used without performing a memory registration for the local
178 * memory. Note that ULPs should never check this flag, but
179 * instead of use the local_dma_lkey flag in the ib_pd structure,
180 * which will always contain a usable lkey.
181 */
182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
184 IB_DEVICE_MEM_WINDOW = (1 << 17),
185 /*
186 * Devices should set IB_DEVICE_UD_IP_SUM if they support
187 * insertion of UDP and TCP checksum on outgoing UD IPoIB
188 * messages and can verify the validity of checksum for
189 * incoming messages. Setting this flag implies that the
190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
191 */
192 IB_DEVICE_UD_IP_CSUM = (1 << 18),
193 IB_DEVICE_UD_TSO = (1 << 19),
194 IB_DEVICE_XRC = (1 << 20),
195
196 /*
197 * This device supports the IB "base memory management extension",
198 * which includes support for fast registrations (IB_WR_REG_MR,
199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
200 * also be set by any iWarp device which must support FRs to comply
201 * to the iWarp verbs spec. iWarp devices also support the
202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
203 * stag.
204 */
205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
209 IB_DEVICE_RC_IP_CSUM = (1 << 25),
210 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
211 /*
212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
213 * support execution of WQEs that involve synchronization
214 * of I/O operations with single completion queue managed
215 * by hardware.
216 */
217 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
224 };
225
226 enum ib_signature_prot_cap {
227 IB_PROT_T10DIF_TYPE_1 = 1,
228 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
229 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
230 };
231
232 enum ib_signature_guard_cap {
233 IB_GUARD_T10DIF_CRC = 1,
234 IB_GUARD_T10DIF_CSUM = 1 << 1,
235 };
236
237 enum ib_atomic_cap {
238 IB_ATOMIC_NONE,
239 IB_ATOMIC_HCA,
240 IB_ATOMIC_GLOB
241 };
242
243 enum ib_odp_general_cap_bits {
244 IB_ODP_SUPPORT = 1 << 0,
245 };
246
247 enum ib_odp_transport_cap_bits {
248 IB_ODP_SUPPORT_SEND = 1 << 0,
249 IB_ODP_SUPPORT_RECV = 1 << 1,
250 IB_ODP_SUPPORT_WRITE = 1 << 2,
251 IB_ODP_SUPPORT_READ = 1 << 3,
252 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
253 };
254
255 struct ib_odp_caps {
256 uint64_t general_caps;
257 struct {
258 uint32_t rc_odp_caps;
259 uint32_t uc_odp_caps;
260 uint32_t ud_odp_caps;
261 } per_transport_caps;
262 };
263
264 enum ib_cq_creation_flags {
265 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
266 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
267 };
268
269 struct ib_cq_init_attr {
270 unsigned int cqe;
271 int comp_vector;
272 u32 flags;
273 };
274
275 struct ib_device_attr {
276 u64 fw_ver;
277 __be64 sys_image_guid;
278 u64 max_mr_size;
279 u64 page_size_cap;
280 u32 vendor_id;
281 u32 vendor_part_id;
282 u32 hw_ver;
283 int max_qp;
284 int max_qp_wr;
285 u64 device_cap_flags;
286 int max_sge;
287 int max_sge_rd;
288 int max_cq;
289 int max_cqe;
290 int max_mr;
291 int max_pd;
292 int max_qp_rd_atom;
293 int max_ee_rd_atom;
294 int max_res_rd_atom;
295 int max_qp_init_rd_atom;
296 int max_ee_init_rd_atom;
297 enum ib_atomic_cap atomic_cap;
298 enum ib_atomic_cap masked_atomic_cap;
299 int max_ee;
300 int max_rdd;
301 int max_mw;
302 int max_raw_ipv6_qp;
303 int max_raw_ethy_qp;
304 int max_mcast_grp;
305 int max_mcast_qp_attach;
306 int max_total_mcast_qp_attach;
307 int max_ah;
308 int max_fmr;
309 int max_map_per_fmr;
310 int max_srq;
311 int max_srq_wr;
312 int max_srq_sge;
313 unsigned int max_fast_reg_page_list_len;
314 u16 max_pkeys;
315 u8 local_ca_ack_delay;
316 int sig_prot_cap;
317 int sig_guard_cap;
318 struct ib_odp_caps odp_caps;
319 uint64_t timestamp_mask;
320 uint64_t hca_core_clock; /* in KHZ */
321 };
322
323 enum ib_mtu {
324 IB_MTU_256 = 1,
325 IB_MTU_512 = 2,
326 IB_MTU_1024 = 3,
327 IB_MTU_2048 = 4,
328 IB_MTU_4096 = 5
329 };
330
331 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
332 {
333 switch (mtu) {
334 case IB_MTU_256: return 256;
335 case IB_MTU_512: return 512;
336 case IB_MTU_1024: return 1024;
337 case IB_MTU_2048: return 2048;
338 case IB_MTU_4096: return 4096;
339 default: return -1;
340 }
341 }
342
343 enum ib_port_state {
344 IB_PORT_NOP = 0,
345 IB_PORT_DOWN = 1,
346 IB_PORT_INIT = 2,
347 IB_PORT_ARMED = 3,
348 IB_PORT_ACTIVE = 4,
349 IB_PORT_ACTIVE_DEFER = 5
350 };
351
352 enum ib_port_cap_flags {
353 IB_PORT_SM = 1 << 1,
354 IB_PORT_NOTICE_SUP = 1 << 2,
355 IB_PORT_TRAP_SUP = 1 << 3,
356 IB_PORT_OPT_IPD_SUP = 1 << 4,
357 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
358 IB_PORT_SL_MAP_SUP = 1 << 6,
359 IB_PORT_MKEY_NVRAM = 1 << 7,
360 IB_PORT_PKEY_NVRAM = 1 << 8,
361 IB_PORT_LED_INFO_SUP = 1 << 9,
362 IB_PORT_SM_DISABLED = 1 << 10,
363 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
364 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
365 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
366 IB_PORT_CM_SUP = 1 << 16,
367 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
368 IB_PORT_REINIT_SUP = 1 << 18,
369 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
370 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
371 IB_PORT_DR_NOTICE_SUP = 1 << 21,
372 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
373 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
374 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
375 IB_PORT_CLIENT_REG_SUP = 1 << 25,
376 IB_PORT_IP_BASED_GIDS = 1 << 26,
377 };
378
379 enum ib_port_width {
380 IB_WIDTH_1X = 1,
381 IB_WIDTH_4X = 2,
382 IB_WIDTH_8X = 4,
383 IB_WIDTH_12X = 8
384 };
385
386 static inline int ib_width_enum_to_int(enum ib_port_width width)
387 {
388 switch (width) {
389 case IB_WIDTH_1X: return 1;
390 case IB_WIDTH_4X: return 4;
391 case IB_WIDTH_8X: return 8;
392 case IB_WIDTH_12X: return 12;
393 default: return -1;
394 }
395 }
396
397 enum ib_port_speed {
398 IB_SPEED_SDR = 1,
399 IB_SPEED_DDR = 2,
400 IB_SPEED_QDR = 4,
401 IB_SPEED_FDR10 = 8,
402 IB_SPEED_FDR = 16,
403 IB_SPEED_EDR = 32
404 };
405
406 /**
407 * struct rdma_hw_stats
408 * @timestamp - Used by the core code to track when the last update was
409 * @lifespan - Used by the core code to determine how old the counters
410 * should be before being updated again. Stored in jiffies, defaults
411 * to 10 milliseconds, drivers can override the default be specifying
412 * their own value during their allocation routine.
413 * @name - Array of pointers to static names used for the counters in
414 * directory.
415 * @num_counters - How many hardware counters there are. If name is
416 * shorter than this number, a kernel oops will result. Driver authors
417 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
418 * in their code to prevent this.
419 * @value - Array of u64 counters that are accessed by the sysfs code and
420 * filled in by the drivers get_stats routine
421 */
422 struct rdma_hw_stats {
423 unsigned long timestamp;
424 unsigned long lifespan;
425 const char * const *names;
426 int num_counters;
427 u64 value[];
428 };
429
430 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
431 /**
432 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
433 * for drivers.
434 * @names - Array of static const char *
435 * @num_counters - How many elements in array
436 * @lifespan - How many milliseconds between updates
437 */
438 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
439 const char * const *names, int num_counters,
440 unsigned long lifespan)
441 {
442 struct rdma_hw_stats *stats;
443
444 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
445 GFP_KERNEL);
446 if (!stats)
447 return NULL;
448 stats->names = names;
449 stats->num_counters = num_counters;
450 stats->lifespan = msecs_to_jiffies(lifespan);
451
452 return stats;
453 }
454
455
456 /* Define bits for the various functionality this port needs to be supported by
457 * the core.
458 */
459 /* Management 0x00000FFF */
460 #define RDMA_CORE_CAP_IB_MAD 0x00000001
461 #define RDMA_CORE_CAP_IB_SMI 0x00000002
462 #define RDMA_CORE_CAP_IB_CM 0x00000004
463 #define RDMA_CORE_CAP_IW_CM 0x00000008
464 #define RDMA_CORE_CAP_IB_SA 0x00000010
465 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
466
467 /* Address format 0x000FF000 */
468 #define RDMA_CORE_CAP_AF_IB 0x00001000
469 #define RDMA_CORE_CAP_ETH_AH 0x00002000
470
471 /* Protocol 0xFFF00000 */
472 #define RDMA_CORE_CAP_PROT_IB 0x00100000
473 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
474 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
475 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
476
477 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
478 | RDMA_CORE_CAP_IB_MAD \
479 | RDMA_CORE_CAP_IB_SMI \
480 | RDMA_CORE_CAP_IB_CM \
481 | RDMA_CORE_CAP_IB_SA \
482 | RDMA_CORE_CAP_AF_IB)
483 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
484 | RDMA_CORE_CAP_IB_MAD \
485 | RDMA_CORE_CAP_IB_CM \
486 | RDMA_CORE_CAP_AF_IB \
487 | RDMA_CORE_CAP_ETH_AH)
488 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
489 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
490 | RDMA_CORE_CAP_IB_MAD \
491 | RDMA_CORE_CAP_IB_CM \
492 | RDMA_CORE_CAP_AF_IB \
493 | RDMA_CORE_CAP_ETH_AH)
494 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
495 | RDMA_CORE_CAP_IW_CM)
496 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
497 | RDMA_CORE_CAP_OPA_MAD)
498
499 struct ib_port_attr {
500 u64 subnet_prefix;
501 enum ib_port_state state;
502 enum ib_mtu max_mtu;
503 enum ib_mtu active_mtu;
504 int gid_tbl_len;
505 u32 port_cap_flags;
506 u32 max_msg_sz;
507 u32 bad_pkey_cntr;
508 u32 qkey_viol_cntr;
509 u16 pkey_tbl_len;
510 u16 lid;
511 u16 sm_lid;
512 u8 lmc;
513 u8 max_vl_num;
514 u8 sm_sl;
515 u8 subnet_timeout;
516 u8 init_type_reply;
517 u8 active_width;
518 u8 active_speed;
519 u8 phys_state;
520 bool grh_required;
521 };
522
523 enum ib_device_modify_flags {
524 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
525 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
526 };
527
528 struct ib_device_modify {
529 u64 sys_image_guid;
530 char node_desc[64];
531 };
532
533 enum ib_port_modify_flags {
534 IB_PORT_SHUTDOWN = 1,
535 IB_PORT_INIT_TYPE = (1<<2),
536 IB_PORT_RESET_QKEY_CNTR = (1<<3)
537 };
538
539 struct ib_port_modify {
540 u32 set_port_cap_mask;
541 u32 clr_port_cap_mask;
542 u8 init_type;
543 };
544
545 enum ib_event_type {
546 IB_EVENT_CQ_ERR,
547 IB_EVENT_QP_FATAL,
548 IB_EVENT_QP_REQ_ERR,
549 IB_EVENT_QP_ACCESS_ERR,
550 IB_EVENT_COMM_EST,
551 IB_EVENT_SQ_DRAINED,
552 IB_EVENT_PATH_MIG,
553 IB_EVENT_PATH_MIG_ERR,
554 IB_EVENT_DEVICE_FATAL,
555 IB_EVENT_PORT_ACTIVE,
556 IB_EVENT_PORT_ERR,
557 IB_EVENT_LID_CHANGE,
558 IB_EVENT_PKEY_CHANGE,
559 IB_EVENT_SM_CHANGE,
560 IB_EVENT_SRQ_ERR,
561 IB_EVENT_SRQ_LIMIT_REACHED,
562 IB_EVENT_QP_LAST_WQE_REACHED,
563 IB_EVENT_CLIENT_REREGISTER,
564 IB_EVENT_GID_CHANGE,
565 };
566
567 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
568
569 struct ib_event {
570 struct ib_device *device;
571 union {
572 struct ib_cq *cq;
573 struct ib_qp *qp;
574 struct ib_srq *srq;
575 u8 port_num;
576 } element;
577 enum ib_event_type event;
578 };
579
580 struct ib_event_handler {
581 struct ib_device *device;
582 void (*handler)(struct ib_event_handler *, struct ib_event *);
583 struct list_head list;
584 };
585
586 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
587 do { \
588 (_ptr)->device = _device; \
589 (_ptr)->handler = _handler; \
590 INIT_LIST_HEAD(&(_ptr)->list); \
591 } while (0)
592
593 struct ib_global_route {
594 union ib_gid dgid;
595 u32 flow_label;
596 u8 sgid_index;
597 u8 hop_limit;
598 u8 traffic_class;
599 };
600
601 struct ib_grh {
602 __be32 version_tclass_flow;
603 __be16 paylen;
604 u8 next_hdr;
605 u8 hop_limit;
606 union ib_gid sgid;
607 union ib_gid dgid;
608 };
609
610 union rdma_network_hdr {
611 struct ib_grh ibgrh;
612 struct {
613 /* The IB spec states that if it's IPv4, the header
614 * is located in the last 20 bytes of the header.
615 */
616 u8 reserved[20];
617 struct iphdr roce4grh;
618 };
619 };
620
621 enum {
622 IB_MULTICAST_QPN = 0xffffff
623 };
624
625 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
626 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
627
628 enum ib_ah_flags {
629 IB_AH_GRH = 1
630 };
631
632 enum ib_rate {
633 IB_RATE_PORT_CURRENT = 0,
634 IB_RATE_2_5_GBPS = 2,
635 IB_RATE_5_GBPS = 5,
636 IB_RATE_10_GBPS = 3,
637 IB_RATE_20_GBPS = 6,
638 IB_RATE_30_GBPS = 4,
639 IB_RATE_40_GBPS = 7,
640 IB_RATE_60_GBPS = 8,
641 IB_RATE_80_GBPS = 9,
642 IB_RATE_120_GBPS = 10,
643 IB_RATE_14_GBPS = 11,
644 IB_RATE_56_GBPS = 12,
645 IB_RATE_112_GBPS = 13,
646 IB_RATE_168_GBPS = 14,
647 IB_RATE_25_GBPS = 15,
648 IB_RATE_100_GBPS = 16,
649 IB_RATE_200_GBPS = 17,
650 IB_RATE_300_GBPS = 18
651 };
652
653 /**
654 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
655 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
656 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
657 * @rate: rate to convert.
658 */
659 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
660
661 /**
662 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
663 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
664 * @rate: rate to convert.
665 */
666 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
667
668
669 /**
670 * enum ib_mr_type - memory region type
671 * @IB_MR_TYPE_MEM_REG: memory region that is used for
672 * normal registration
673 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
674 * signature operations (data-integrity
675 * capable regions)
676 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
677 * register any arbitrary sg lists (without
678 * the normal mr constraints - see
679 * ib_map_mr_sg)
680 */
681 enum ib_mr_type {
682 IB_MR_TYPE_MEM_REG,
683 IB_MR_TYPE_SIGNATURE,
684 IB_MR_TYPE_SG_GAPS,
685 };
686
687 /**
688 * Signature types
689 * IB_SIG_TYPE_NONE: Unprotected.
690 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
691 */
692 enum ib_signature_type {
693 IB_SIG_TYPE_NONE,
694 IB_SIG_TYPE_T10_DIF,
695 };
696
697 /**
698 * Signature T10-DIF block-guard types
699 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
700 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
701 */
702 enum ib_t10_dif_bg_type {
703 IB_T10DIF_CRC,
704 IB_T10DIF_CSUM
705 };
706
707 /**
708 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
709 * domain.
710 * @bg_type: T10-DIF block guard type (CRC|CSUM)
711 * @pi_interval: protection information interval.
712 * @bg: seed of guard computation.
713 * @app_tag: application tag of guard block
714 * @ref_tag: initial guard block reference tag.
715 * @ref_remap: Indicate wethear the reftag increments each block
716 * @app_escape: Indicate to skip block check if apptag=0xffff
717 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
718 * @apptag_check_mask: check bitmask of application tag.
719 */
720 struct ib_t10_dif_domain {
721 enum ib_t10_dif_bg_type bg_type;
722 u16 pi_interval;
723 u16 bg;
724 u16 app_tag;
725 u32 ref_tag;
726 bool ref_remap;
727 bool app_escape;
728 bool ref_escape;
729 u16 apptag_check_mask;
730 };
731
732 /**
733 * struct ib_sig_domain - Parameters for signature domain
734 * @sig_type: specific signauture type
735 * @sig: union of all signature domain attributes that may
736 * be used to set domain layout.
737 */
738 struct ib_sig_domain {
739 enum ib_signature_type sig_type;
740 union {
741 struct ib_t10_dif_domain dif;
742 } sig;
743 };
744
745 /**
746 * struct ib_sig_attrs - Parameters for signature handover operation
747 * @check_mask: bitmask for signature byte check (8 bytes)
748 * @mem: memory domain layout desciptor.
749 * @wire: wire domain layout desciptor.
750 */
751 struct ib_sig_attrs {
752 u8 check_mask;
753 struct ib_sig_domain mem;
754 struct ib_sig_domain wire;
755 };
756
757 enum ib_sig_err_type {
758 IB_SIG_BAD_GUARD,
759 IB_SIG_BAD_REFTAG,
760 IB_SIG_BAD_APPTAG,
761 };
762
763 /**
764 * struct ib_sig_err - signature error descriptor
765 */
766 struct ib_sig_err {
767 enum ib_sig_err_type err_type;
768 u32 expected;
769 u32 actual;
770 u64 sig_err_offset;
771 u32 key;
772 };
773
774 enum ib_mr_status_check {
775 IB_MR_CHECK_SIG_STATUS = 1,
776 };
777
778 /**
779 * struct ib_mr_status - Memory region status container
780 *
781 * @fail_status: Bitmask of MR checks status. For each
782 * failed check a corresponding status bit is set.
783 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
784 * failure.
785 */
786 struct ib_mr_status {
787 u32 fail_status;
788 struct ib_sig_err sig_err;
789 };
790
791 /**
792 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
793 * enum.
794 * @mult: multiple to convert.
795 */
796 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
797
798 struct ib_ah_attr {
799 struct ib_global_route grh;
800 u16 dlid;
801 u8 sl;
802 u8 src_path_bits;
803 u8 static_rate;
804 u8 ah_flags;
805 u8 port_num;
806 u8 dmac[ETH_ALEN];
807 };
808
809 enum ib_wc_status {
810 IB_WC_SUCCESS,
811 IB_WC_LOC_LEN_ERR,
812 IB_WC_LOC_QP_OP_ERR,
813 IB_WC_LOC_EEC_OP_ERR,
814 IB_WC_LOC_PROT_ERR,
815 IB_WC_WR_FLUSH_ERR,
816 IB_WC_MW_BIND_ERR,
817 IB_WC_BAD_RESP_ERR,
818 IB_WC_LOC_ACCESS_ERR,
819 IB_WC_REM_INV_REQ_ERR,
820 IB_WC_REM_ACCESS_ERR,
821 IB_WC_REM_OP_ERR,
822 IB_WC_RETRY_EXC_ERR,
823 IB_WC_RNR_RETRY_EXC_ERR,
824 IB_WC_LOC_RDD_VIOL_ERR,
825 IB_WC_REM_INV_RD_REQ_ERR,
826 IB_WC_REM_ABORT_ERR,
827 IB_WC_INV_EECN_ERR,
828 IB_WC_INV_EEC_STATE_ERR,
829 IB_WC_FATAL_ERR,
830 IB_WC_RESP_TIMEOUT_ERR,
831 IB_WC_GENERAL_ERR
832 };
833
834 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
835
836 enum ib_wc_opcode {
837 IB_WC_SEND,
838 IB_WC_RDMA_WRITE,
839 IB_WC_RDMA_READ,
840 IB_WC_COMP_SWAP,
841 IB_WC_FETCH_ADD,
842 IB_WC_LSO,
843 IB_WC_LOCAL_INV,
844 IB_WC_REG_MR,
845 IB_WC_MASKED_COMP_SWAP,
846 IB_WC_MASKED_FETCH_ADD,
847 /*
848 * Set value of IB_WC_RECV so consumers can test if a completion is a
849 * receive by testing (opcode & IB_WC_RECV).
850 */
851 IB_WC_RECV = 1 << 7,
852 IB_WC_RECV_RDMA_WITH_IMM
853 };
854
855 enum ib_wc_flags {
856 IB_WC_GRH = 1,
857 IB_WC_WITH_IMM = (1<<1),
858 IB_WC_WITH_INVALIDATE = (1<<2),
859 IB_WC_IP_CSUM_OK = (1<<3),
860 IB_WC_WITH_SMAC = (1<<4),
861 IB_WC_WITH_VLAN = (1<<5),
862 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
863 };
864
865 struct ib_wc {
866 union {
867 u64 wr_id;
868 struct ib_cqe *wr_cqe;
869 };
870 enum ib_wc_status status;
871 enum ib_wc_opcode opcode;
872 u32 vendor_err;
873 u32 byte_len;
874 struct ib_qp *qp;
875 union {
876 __be32 imm_data;
877 u32 invalidate_rkey;
878 } ex;
879 u32 src_qp;
880 int wc_flags;
881 u16 pkey_index;
882 u16 slid;
883 u8 sl;
884 u8 dlid_path_bits;
885 u8 port_num; /* valid only for DR SMPs on switches */
886 u8 smac[ETH_ALEN];
887 u16 vlan_id;
888 u8 network_hdr_type;
889 };
890
891 enum ib_cq_notify_flags {
892 IB_CQ_SOLICITED = 1 << 0,
893 IB_CQ_NEXT_COMP = 1 << 1,
894 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
895 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
896 };
897
898 enum ib_srq_type {
899 IB_SRQT_BASIC,
900 IB_SRQT_XRC
901 };
902
903 enum ib_srq_attr_mask {
904 IB_SRQ_MAX_WR = 1 << 0,
905 IB_SRQ_LIMIT = 1 << 1,
906 };
907
908 struct ib_srq_attr {
909 u32 max_wr;
910 u32 max_sge;
911 u32 srq_limit;
912 };
913
914 struct ib_srq_init_attr {
915 void (*event_handler)(struct ib_event *, void *);
916 void *srq_context;
917 struct ib_srq_attr attr;
918 enum ib_srq_type srq_type;
919
920 union {
921 struct {
922 struct ib_xrcd *xrcd;
923 struct ib_cq *cq;
924 } xrc;
925 } ext;
926 };
927
928 struct ib_qp_cap {
929 u32 max_send_wr;
930 u32 max_recv_wr;
931 u32 max_send_sge;
932 u32 max_recv_sge;
933 u32 max_inline_data;
934
935 /*
936 * Maximum number of rdma_rw_ctx structures in flight at a time.
937 * ib_create_qp() will calculate the right amount of neededed WRs
938 * and MRs based on this.
939 */
940 u32 max_rdma_ctxs;
941 };
942
943 enum ib_sig_type {
944 IB_SIGNAL_ALL_WR,
945 IB_SIGNAL_REQ_WR
946 };
947
948 enum ib_qp_type {
949 /*
950 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
951 * here (and in that order) since the MAD layer uses them as
952 * indices into a 2-entry table.
953 */
954 IB_QPT_SMI,
955 IB_QPT_GSI,
956
957 IB_QPT_RC,
958 IB_QPT_UC,
959 IB_QPT_UD,
960 IB_QPT_RAW_IPV6,
961 IB_QPT_RAW_ETHERTYPE,
962 IB_QPT_RAW_PACKET = 8,
963 IB_QPT_XRC_INI = 9,
964 IB_QPT_XRC_TGT,
965 IB_QPT_MAX,
966 /* Reserve a range for qp types internal to the low level driver.
967 * These qp types will not be visible at the IB core layer, so the
968 * IB_QPT_MAX usages should not be affected in the core layer
969 */
970 IB_QPT_RESERVED1 = 0x1000,
971 IB_QPT_RESERVED2,
972 IB_QPT_RESERVED3,
973 IB_QPT_RESERVED4,
974 IB_QPT_RESERVED5,
975 IB_QPT_RESERVED6,
976 IB_QPT_RESERVED7,
977 IB_QPT_RESERVED8,
978 IB_QPT_RESERVED9,
979 IB_QPT_RESERVED10,
980 };
981
982 enum ib_qp_create_flags {
983 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
984 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
985 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
986 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
987 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
988 IB_QP_CREATE_NETIF_QP = 1 << 5,
989 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
990 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
991 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
992 /* reserve bits 26-31 for low level drivers' internal use */
993 IB_QP_CREATE_RESERVED_START = 1 << 26,
994 IB_QP_CREATE_RESERVED_END = 1 << 31,
995 };
996
997 /*
998 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
999 * callback to destroy the passed in QP.
1000 */
1001
1002 struct ib_qp_init_attr {
1003 void (*event_handler)(struct ib_event *, void *);
1004 void *qp_context;
1005 struct ib_cq *send_cq;
1006 struct ib_cq *recv_cq;
1007 struct ib_srq *srq;
1008 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1009 struct ib_qp_cap cap;
1010 enum ib_sig_type sq_sig_type;
1011 enum ib_qp_type qp_type;
1012 enum ib_qp_create_flags create_flags;
1013
1014 /*
1015 * Only needed for special QP types, or when using the RW API.
1016 */
1017 u8 port_num;
1018 };
1019
1020 struct ib_qp_open_attr {
1021 void (*event_handler)(struct ib_event *, void *);
1022 void *qp_context;
1023 u32 qp_num;
1024 enum ib_qp_type qp_type;
1025 };
1026
1027 enum ib_rnr_timeout {
1028 IB_RNR_TIMER_655_36 = 0,
1029 IB_RNR_TIMER_000_01 = 1,
1030 IB_RNR_TIMER_000_02 = 2,
1031 IB_RNR_TIMER_000_03 = 3,
1032 IB_RNR_TIMER_000_04 = 4,
1033 IB_RNR_TIMER_000_06 = 5,
1034 IB_RNR_TIMER_000_08 = 6,
1035 IB_RNR_TIMER_000_12 = 7,
1036 IB_RNR_TIMER_000_16 = 8,
1037 IB_RNR_TIMER_000_24 = 9,
1038 IB_RNR_TIMER_000_32 = 10,
1039 IB_RNR_TIMER_000_48 = 11,
1040 IB_RNR_TIMER_000_64 = 12,
1041 IB_RNR_TIMER_000_96 = 13,
1042 IB_RNR_TIMER_001_28 = 14,
1043 IB_RNR_TIMER_001_92 = 15,
1044 IB_RNR_TIMER_002_56 = 16,
1045 IB_RNR_TIMER_003_84 = 17,
1046 IB_RNR_TIMER_005_12 = 18,
1047 IB_RNR_TIMER_007_68 = 19,
1048 IB_RNR_TIMER_010_24 = 20,
1049 IB_RNR_TIMER_015_36 = 21,
1050 IB_RNR_TIMER_020_48 = 22,
1051 IB_RNR_TIMER_030_72 = 23,
1052 IB_RNR_TIMER_040_96 = 24,
1053 IB_RNR_TIMER_061_44 = 25,
1054 IB_RNR_TIMER_081_92 = 26,
1055 IB_RNR_TIMER_122_88 = 27,
1056 IB_RNR_TIMER_163_84 = 28,
1057 IB_RNR_TIMER_245_76 = 29,
1058 IB_RNR_TIMER_327_68 = 30,
1059 IB_RNR_TIMER_491_52 = 31
1060 };
1061
1062 enum ib_qp_attr_mask {
1063 IB_QP_STATE = 1,
1064 IB_QP_CUR_STATE = (1<<1),
1065 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1066 IB_QP_ACCESS_FLAGS = (1<<3),
1067 IB_QP_PKEY_INDEX = (1<<4),
1068 IB_QP_PORT = (1<<5),
1069 IB_QP_QKEY = (1<<6),
1070 IB_QP_AV = (1<<7),
1071 IB_QP_PATH_MTU = (1<<8),
1072 IB_QP_TIMEOUT = (1<<9),
1073 IB_QP_RETRY_CNT = (1<<10),
1074 IB_QP_RNR_RETRY = (1<<11),
1075 IB_QP_RQ_PSN = (1<<12),
1076 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1077 IB_QP_ALT_PATH = (1<<14),
1078 IB_QP_MIN_RNR_TIMER = (1<<15),
1079 IB_QP_SQ_PSN = (1<<16),
1080 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1081 IB_QP_PATH_MIG_STATE = (1<<18),
1082 IB_QP_CAP = (1<<19),
1083 IB_QP_DEST_QPN = (1<<20),
1084 IB_QP_RESERVED1 = (1<<21),
1085 IB_QP_RESERVED2 = (1<<22),
1086 IB_QP_RESERVED3 = (1<<23),
1087 IB_QP_RESERVED4 = (1<<24),
1088 };
1089
1090 enum ib_qp_state {
1091 IB_QPS_RESET,
1092 IB_QPS_INIT,
1093 IB_QPS_RTR,
1094 IB_QPS_RTS,
1095 IB_QPS_SQD,
1096 IB_QPS_SQE,
1097 IB_QPS_ERR
1098 };
1099
1100 enum ib_mig_state {
1101 IB_MIG_MIGRATED,
1102 IB_MIG_REARM,
1103 IB_MIG_ARMED
1104 };
1105
1106 enum ib_mw_type {
1107 IB_MW_TYPE_1 = 1,
1108 IB_MW_TYPE_2 = 2
1109 };
1110
1111 struct ib_qp_attr {
1112 enum ib_qp_state qp_state;
1113 enum ib_qp_state cur_qp_state;
1114 enum ib_mtu path_mtu;
1115 enum ib_mig_state path_mig_state;
1116 u32 qkey;
1117 u32 rq_psn;
1118 u32 sq_psn;
1119 u32 dest_qp_num;
1120 int qp_access_flags;
1121 struct ib_qp_cap cap;
1122 struct ib_ah_attr ah_attr;
1123 struct ib_ah_attr alt_ah_attr;
1124 u16 pkey_index;
1125 u16 alt_pkey_index;
1126 u8 en_sqd_async_notify;
1127 u8 sq_draining;
1128 u8 max_rd_atomic;
1129 u8 max_dest_rd_atomic;
1130 u8 min_rnr_timer;
1131 u8 port_num;
1132 u8 timeout;
1133 u8 retry_cnt;
1134 u8 rnr_retry;
1135 u8 alt_port_num;
1136 u8 alt_timeout;
1137 };
1138
1139 enum ib_wr_opcode {
1140 IB_WR_RDMA_WRITE,
1141 IB_WR_RDMA_WRITE_WITH_IMM,
1142 IB_WR_SEND,
1143 IB_WR_SEND_WITH_IMM,
1144 IB_WR_RDMA_READ,
1145 IB_WR_ATOMIC_CMP_AND_SWP,
1146 IB_WR_ATOMIC_FETCH_AND_ADD,
1147 IB_WR_LSO,
1148 IB_WR_SEND_WITH_INV,
1149 IB_WR_RDMA_READ_WITH_INV,
1150 IB_WR_LOCAL_INV,
1151 IB_WR_REG_MR,
1152 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1153 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1154 IB_WR_REG_SIG_MR,
1155 /* reserve values for low level drivers' internal use.
1156 * These values will not be used at all in the ib core layer.
1157 */
1158 IB_WR_RESERVED1 = 0xf0,
1159 IB_WR_RESERVED2,
1160 IB_WR_RESERVED3,
1161 IB_WR_RESERVED4,
1162 IB_WR_RESERVED5,
1163 IB_WR_RESERVED6,
1164 IB_WR_RESERVED7,
1165 IB_WR_RESERVED8,
1166 IB_WR_RESERVED9,
1167 IB_WR_RESERVED10,
1168 };
1169
1170 enum ib_send_flags {
1171 IB_SEND_FENCE = 1,
1172 IB_SEND_SIGNALED = (1<<1),
1173 IB_SEND_SOLICITED = (1<<2),
1174 IB_SEND_INLINE = (1<<3),
1175 IB_SEND_IP_CSUM = (1<<4),
1176
1177 /* reserve bits 26-31 for low level drivers' internal use */
1178 IB_SEND_RESERVED_START = (1 << 26),
1179 IB_SEND_RESERVED_END = (1 << 31),
1180 };
1181
1182 struct ib_sge {
1183 u64 addr;
1184 u32 length;
1185 u32 lkey;
1186 };
1187
1188 struct ib_cqe {
1189 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1190 };
1191
1192 struct ib_send_wr {
1193 struct ib_send_wr *next;
1194 union {
1195 u64 wr_id;
1196 struct ib_cqe *wr_cqe;
1197 };
1198 struct ib_sge *sg_list;
1199 int num_sge;
1200 enum ib_wr_opcode opcode;
1201 int send_flags;
1202 union {
1203 __be32 imm_data;
1204 u32 invalidate_rkey;
1205 } ex;
1206 };
1207
1208 struct ib_rdma_wr {
1209 struct ib_send_wr wr;
1210 u64 remote_addr;
1211 u32 rkey;
1212 };
1213
1214 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1215 {
1216 return container_of(wr, struct ib_rdma_wr, wr);
1217 }
1218
1219 struct ib_atomic_wr {
1220 struct ib_send_wr wr;
1221 u64 remote_addr;
1222 u64 compare_add;
1223 u64 swap;
1224 u64 compare_add_mask;
1225 u64 swap_mask;
1226 u32 rkey;
1227 };
1228
1229 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1230 {
1231 return container_of(wr, struct ib_atomic_wr, wr);
1232 }
1233
1234 struct ib_ud_wr {
1235 struct ib_send_wr wr;
1236 struct ib_ah *ah;
1237 void *header;
1238 int hlen;
1239 int mss;
1240 u32 remote_qpn;
1241 u32 remote_qkey;
1242 u16 pkey_index; /* valid for GSI only */
1243 u8 port_num; /* valid for DR SMPs on switch only */
1244 };
1245
1246 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1247 {
1248 return container_of(wr, struct ib_ud_wr, wr);
1249 }
1250
1251 struct ib_reg_wr {
1252 struct ib_send_wr wr;
1253 struct ib_mr *mr;
1254 u32 key;
1255 int access;
1256 };
1257
1258 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1259 {
1260 return container_of(wr, struct ib_reg_wr, wr);
1261 }
1262
1263 struct ib_sig_handover_wr {
1264 struct ib_send_wr wr;
1265 struct ib_sig_attrs *sig_attrs;
1266 struct ib_mr *sig_mr;
1267 int access_flags;
1268 struct ib_sge *prot;
1269 };
1270
1271 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1272 {
1273 return container_of(wr, struct ib_sig_handover_wr, wr);
1274 }
1275
1276 struct ib_recv_wr {
1277 struct ib_recv_wr *next;
1278 union {
1279 u64 wr_id;
1280 struct ib_cqe *wr_cqe;
1281 };
1282 struct ib_sge *sg_list;
1283 int num_sge;
1284 };
1285
1286 enum ib_access_flags {
1287 IB_ACCESS_LOCAL_WRITE = 1,
1288 IB_ACCESS_REMOTE_WRITE = (1<<1),
1289 IB_ACCESS_REMOTE_READ = (1<<2),
1290 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1291 IB_ACCESS_MW_BIND = (1<<4),
1292 IB_ZERO_BASED = (1<<5),
1293 IB_ACCESS_ON_DEMAND = (1<<6),
1294 };
1295
1296 /*
1297 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1298 * are hidden here instead of a uapi header!
1299 */
1300 enum ib_mr_rereg_flags {
1301 IB_MR_REREG_TRANS = 1,
1302 IB_MR_REREG_PD = (1<<1),
1303 IB_MR_REREG_ACCESS = (1<<2),
1304 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1305 };
1306
1307 struct ib_fmr_attr {
1308 int max_pages;
1309 int max_maps;
1310 u8 page_shift;
1311 };
1312
1313 struct ib_umem;
1314
1315 struct ib_ucontext {
1316 struct ib_device *device;
1317 struct list_head pd_list;
1318 struct list_head mr_list;
1319 struct list_head mw_list;
1320 struct list_head cq_list;
1321 struct list_head qp_list;
1322 struct list_head srq_list;
1323 struct list_head ah_list;
1324 struct list_head xrcd_list;
1325 struct list_head rule_list;
1326 int closing;
1327
1328 struct pid *tgid;
1329 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1330 struct rb_root umem_tree;
1331 /*
1332 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1333 * mmu notifiers registration.
1334 */
1335 struct rw_semaphore umem_rwsem;
1336 void (*invalidate_range)(struct ib_umem *umem,
1337 unsigned long start, unsigned long end);
1338
1339 struct mmu_notifier mn;
1340 atomic_t notifier_count;
1341 /* A list of umems that don't have private mmu notifier counters yet. */
1342 struct list_head no_private_counters;
1343 int odp_mrs_count;
1344 #endif
1345 };
1346
1347 struct ib_uobject {
1348 u64 user_handle; /* handle given to us by userspace */
1349 struct ib_ucontext *context; /* associated user context */
1350 void *object; /* containing object */
1351 struct list_head list; /* link to context's list */
1352 int id; /* index into kernel idr */
1353 struct kref ref;
1354 struct rw_semaphore mutex; /* protects .live */
1355 struct rcu_head rcu; /* kfree_rcu() overhead */
1356 int live;
1357 };
1358
1359 struct ib_udata {
1360 const void __user *inbuf;
1361 void __user *outbuf;
1362 size_t inlen;
1363 size_t outlen;
1364 };
1365
1366 struct ib_pd {
1367 u32 local_dma_lkey;
1368 struct ib_device *device;
1369 struct ib_uobject *uobject;
1370 atomic_t usecnt; /* count all resources */
1371 struct ib_mr *local_mr;
1372 };
1373
1374 struct ib_xrcd {
1375 struct ib_device *device;
1376 atomic_t usecnt; /* count all exposed resources */
1377 struct inode *inode;
1378
1379 struct mutex tgt_qp_mutex;
1380 struct list_head tgt_qp_list;
1381 };
1382
1383 struct ib_ah {
1384 struct ib_device *device;
1385 struct ib_pd *pd;
1386 struct ib_uobject *uobject;
1387 };
1388
1389 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1390
1391 enum ib_poll_context {
1392 IB_POLL_DIRECT, /* caller context, no hw completions */
1393 IB_POLL_SOFTIRQ, /* poll from softirq context */
1394 IB_POLL_WORKQUEUE, /* poll from workqueue */
1395 };
1396
1397 struct ib_cq {
1398 struct ib_device *device;
1399 struct ib_uobject *uobject;
1400 ib_comp_handler comp_handler;
1401 void (*event_handler)(struct ib_event *, void *);
1402 void *cq_context;
1403 int cqe;
1404 atomic_t usecnt; /* count number of work queues */
1405 enum ib_poll_context poll_ctx;
1406 struct ib_wc *wc;
1407 union {
1408 struct irq_poll iop;
1409 struct work_struct work;
1410 };
1411 };
1412
1413 struct ib_srq {
1414 struct ib_device *device;
1415 struct ib_pd *pd;
1416 struct ib_uobject *uobject;
1417 void (*event_handler)(struct ib_event *, void *);
1418 void *srq_context;
1419 enum ib_srq_type srq_type;
1420 atomic_t usecnt;
1421
1422 union {
1423 struct {
1424 struct ib_xrcd *xrcd;
1425 struct ib_cq *cq;
1426 u32 srq_num;
1427 } xrc;
1428 } ext;
1429 };
1430
1431 /*
1432 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1433 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1434 */
1435 struct ib_qp {
1436 struct ib_device *device;
1437 struct ib_pd *pd;
1438 struct ib_cq *send_cq;
1439 struct ib_cq *recv_cq;
1440 spinlock_t mr_lock;
1441 int mrs_used;
1442 struct list_head rdma_mrs;
1443 struct list_head sig_mrs;
1444 struct ib_srq *srq;
1445 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1446 struct list_head xrcd_list;
1447
1448 /* count times opened, mcast attaches, flow attaches */
1449 atomic_t usecnt;
1450 struct list_head open_list;
1451 struct ib_qp *real_qp;
1452 struct ib_uobject *uobject;
1453 void (*event_handler)(struct ib_event *, void *);
1454 void *qp_context;
1455 u32 qp_num;
1456 u32 max_write_sge;
1457 u32 max_read_sge;
1458 enum ib_qp_type qp_type;
1459 };
1460
1461 struct ib_mr {
1462 struct ib_device *device;
1463 struct ib_pd *pd;
1464 u32 lkey;
1465 u32 rkey;
1466 u64 iova;
1467 u32 length;
1468 unsigned int page_size;
1469 bool need_inval;
1470 union {
1471 struct ib_uobject *uobject; /* user */
1472 struct list_head qp_entry; /* FR */
1473 };
1474 };
1475
1476 struct ib_mw {
1477 struct ib_device *device;
1478 struct ib_pd *pd;
1479 struct ib_uobject *uobject;
1480 u32 rkey;
1481 enum ib_mw_type type;
1482 };
1483
1484 struct ib_fmr {
1485 struct ib_device *device;
1486 struct ib_pd *pd;
1487 struct list_head list;
1488 u32 lkey;
1489 u32 rkey;
1490 };
1491
1492 /* Supported steering options */
1493 enum ib_flow_attr_type {
1494 /* steering according to rule specifications */
1495 IB_FLOW_ATTR_NORMAL = 0x0,
1496 /* default unicast and multicast rule -
1497 * receive all Eth traffic which isn't steered to any QP
1498 */
1499 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1500 /* default multicast rule -
1501 * receive all Eth multicast traffic which isn't steered to any QP
1502 */
1503 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1504 /* sniffer rule - receive all port traffic */
1505 IB_FLOW_ATTR_SNIFFER = 0x3
1506 };
1507
1508 /* Supported steering header types */
1509 enum ib_flow_spec_type {
1510 /* L2 headers*/
1511 IB_FLOW_SPEC_ETH = 0x20,
1512 IB_FLOW_SPEC_IB = 0x22,
1513 /* L3 header*/
1514 IB_FLOW_SPEC_IPV4 = 0x30,
1515 /* L4 headers*/
1516 IB_FLOW_SPEC_TCP = 0x40,
1517 IB_FLOW_SPEC_UDP = 0x41
1518 };
1519 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1520 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1521
1522 /* Flow steering rule priority is set according to it's domain.
1523 * Lower domain value means higher priority.
1524 */
1525 enum ib_flow_domain {
1526 IB_FLOW_DOMAIN_USER,
1527 IB_FLOW_DOMAIN_ETHTOOL,
1528 IB_FLOW_DOMAIN_RFS,
1529 IB_FLOW_DOMAIN_NIC,
1530 IB_FLOW_DOMAIN_NUM /* Must be last */
1531 };
1532
1533 enum ib_flow_flags {
1534 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1535 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1536 };
1537
1538 struct ib_flow_eth_filter {
1539 u8 dst_mac[6];
1540 u8 src_mac[6];
1541 __be16 ether_type;
1542 __be16 vlan_tag;
1543 };
1544
1545 struct ib_flow_spec_eth {
1546 enum ib_flow_spec_type type;
1547 u16 size;
1548 struct ib_flow_eth_filter val;
1549 struct ib_flow_eth_filter mask;
1550 };
1551
1552 struct ib_flow_ib_filter {
1553 __be16 dlid;
1554 __u8 sl;
1555 };
1556
1557 struct ib_flow_spec_ib {
1558 enum ib_flow_spec_type type;
1559 u16 size;
1560 struct ib_flow_ib_filter val;
1561 struct ib_flow_ib_filter mask;
1562 };
1563
1564 struct ib_flow_ipv4_filter {
1565 __be32 src_ip;
1566 __be32 dst_ip;
1567 };
1568
1569 struct ib_flow_spec_ipv4 {
1570 enum ib_flow_spec_type type;
1571 u16 size;
1572 struct ib_flow_ipv4_filter val;
1573 struct ib_flow_ipv4_filter mask;
1574 };
1575
1576 struct ib_flow_tcp_udp_filter {
1577 __be16 dst_port;
1578 __be16 src_port;
1579 };
1580
1581 struct ib_flow_spec_tcp_udp {
1582 enum ib_flow_spec_type type;
1583 u16 size;
1584 struct ib_flow_tcp_udp_filter val;
1585 struct ib_flow_tcp_udp_filter mask;
1586 };
1587
1588 union ib_flow_spec {
1589 struct {
1590 enum ib_flow_spec_type type;
1591 u16 size;
1592 };
1593 struct ib_flow_spec_eth eth;
1594 struct ib_flow_spec_ib ib;
1595 struct ib_flow_spec_ipv4 ipv4;
1596 struct ib_flow_spec_tcp_udp tcp_udp;
1597 };
1598
1599 struct ib_flow_attr {
1600 enum ib_flow_attr_type type;
1601 u16 size;
1602 u16 priority;
1603 u32 flags;
1604 u8 num_of_specs;
1605 u8 port;
1606 /* Following are the optional layers according to user request
1607 * struct ib_flow_spec_xxx
1608 * struct ib_flow_spec_yyy
1609 */
1610 };
1611
1612 struct ib_flow {
1613 struct ib_qp *qp;
1614 struct ib_uobject *uobject;
1615 };
1616
1617 struct ib_mad_hdr;
1618 struct ib_grh;
1619
1620 enum ib_process_mad_flags {
1621 IB_MAD_IGNORE_MKEY = 1,
1622 IB_MAD_IGNORE_BKEY = 2,
1623 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1624 };
1625
1626 enum ib_mad_result {
1627 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1628 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1629 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1630 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1631 };
1632
1633 #define IB_DEVICE_NAME_MAX 64
1634
1635 struct ib_cache {
1636 rwlock_t lock;
1637 struct ib_event_handler event_handler;
1638 struct ib_pkey_cache **pkey_cache;
1639 struct ib_gid_table **gid_cache;
1640 u8 *lmc_cache;
1641 };
1642
1643 struct ib_dma_mapping_ops {
1644 int (*mapping_error)(struct ib_device *dev,
1645 u64 dma_addr);
1646 u64 (*map_single)(struct ib_device *dev,
1647 void *ptr, size_t size,
1648 enum dma_data_direction direction);
1649 void (*unmap_single)(struct ib_device *dev,
1650 u64 addr, size_t size,
1651 enum dma_data_direction direction);
1652 u64 (*map_page)(struct ib_device *dev,
1653 struct page *page, unsigned long offset,
1654 size_t size,
1655 enum dma_data_direction direction);
1656 void (*unmap_page)(struct ib_device *dev,
1657 u64 addr, size_t size,
1658 enum dma_data_direction direction);
1659 int (*map_sg)(struct ib_device *dev,
1660 struct scatterlist *sg, int nents,
1661 enum dma_data_direction direction);
1662 void (*unmap_sg)(struct ib_device *dev,
1663 struct scatterlist *sg, int nents,
1664 enum dma_data_direction direction);
1665 void (*sync_single_for_cpu)(struct ib_device *dev,
1666 u64 dma_handle,
1667 size_t size,
1668 enum dma_data_direction dir);
1669 void (*sync_single_for_device)(struct ib_device *dev,
1670 u64 dma_handle,
1671 size_t size,
1672 enum dma_data_direction dir);
1673 void *(*alloc_coherent)(struct ib_device *dev,
1674 size_t size,
1675 u64 *dma_handle,
1676 gfp_t flag);
1677 void (*free_coherent)(struct ib_device *dev,
1678 size_t size, void *cpu_addr,
1679 u64 dma_handle);
1680 };
1681
1682 struct iw_cm_verbs;
1683
1684 struct ib_port_immutable {
1685 int pkey_tbl_len;
1686 int gid_tbl_len;
1687 u32 core_cap_flags;
1688 u32 max_mad_size;
1689 };
1690
1691 struct ib_device {
1692 struct device *dma_device;
1693
1694 char name[IB_DEVICE_NAME_MAX];
1695
1696 struct list_head event_handler_list;
1697 spinlock_t event_handler_lock;
1698
1699 spinlock_t client_data_lock;
1700 struct list_head core_list;
1701 /* Access to the client_data_list is protected by the client_data_lock
1702 * spinlock and the lists_rwsem read-write semaphore */
1703 struct list_head client_data_list;
1704
1705 struct ib_cache cache;
1706 /**
1707 * port_immutable is indexed by port number
1708 */
1709 struct ib_port_immutable *port_immutable;
1710
1711 int num_comp_vectors;
1712
1713 struct iw_cm_verbs *iwcm;
1714
1715 /**
1716 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1717 * driver initialized data. The struct is kfree()'ed by the sysfs
1718 * core when the device is removed. A lifespan of -1 in the return
1719 * struct tells the core to set a default lifespan.
1720 */
1721 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
1722 u8 port_num);
1723 /**
1724 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1725 * @index - The index in the value array we wish to have updated, or
1726 * num_counters if we want all stats updated
1727 * Return codes -
1728 * < 0 - Error, no counters updated
1729 * index - Updated the single counter pointed to by index
1730 * num_counters - Updated all counters (will reset the timestamp
1731 * and prevent further calls for lifespan milliseconds)
1732 * Drivers are allowed to update all counters in leiu of just the
1733 * one given in index at their option
1734 */
1735 int (*get_hw_stats)(struct ib_device *device,
1736 struct rdma_hw_stats *stats,
1737 u8 port, int index);
1738 int (*query_device)(struct ib_device *device,
1739 struct ib_device_attr *device_attr,
1740 struct ib_udata *udata);
1741 int (*query_port)(struct ib_device *device,
1742 u8 port_num,
1743 struct ib_port_attr *port_attr);
1744 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1745 u8 port_num);
1746 /* When calling get_netdev, the HW vendor's driver should return the
1747 * net device of device @device at port @port_num or NULL if such
1748 * a net device doesn't exist. The vendor driver should call dev_hold
1749 * on this net device. The HW vendor's device driver must guarantee
1750 * that this function returns NULL before the net device reaches
1751 * NETDEV_UNREGISTER_FINAL state.
1752 */
1753 struct net_device *(*get_netdev)(struct ib_device *device,
1754 u8 port_num);
1755 int (*query_gid)(struct ib_device *device,
1756 u8 port_num, int index,
1757 union ib_gid *gid);
1758 /* When calling add_gid, the HW vendor's driver should
1759 * add the gid of device @device at gid index @index of
1760 * port @port_num to be @gid. Meta-info of that gid (for example,
1761 * the network device related to this gid is available
1762 * at @attr. @context allows the HW vendor driver to store extra
1763 * information together with a GID entry. The HW vendor may allocate
1764 * memory to contain this information and store it in @context when a
1765 * new GID entry is written to. Params are consistent until the next
1766 * call of add_gid or delete_gid. The function should return 0 on
1767 * success or error otherwise. The function could be called
1768 * concurrently for different ports. This function is only called
1769 * when roce_gid_table is used.
1770 */
1771 int (*add_gid)(struct ib_device *device,
1772 u8 port_num,
1773 unsigned int index,
1774 const union ib_gid *gid,
1775 const struct ib_gid_attr *attr,
1776 void **context);
1777 /* When calling del_gid, the HW vendor's driver should delete the
1778 * gid of device @device at gid index @index of port @port_num.
1779 * Upon the deletion of a GID entry, the HW vendor must free any
1780 * allocated memory. The caller will clear @context afterwards.
1781 * This function is only called when roce_gid_table is used.
1782 */
1783 int (*del_gid)(struct ib_device *device,
1784 u8 port_num,
1785 unsigned int index,
1786 void **context);
1787 int (*query_pkey)(struct ib_device *device,
1788 u8 port_num, u16 index, u16 *pkey);
1789 int (*modify_device)(struct ib_device *device,
1790 int device_modify_mask,
1791 struct ib_device_modify *device_modify);
1792 int (*modify_port)(struct ib_device *device,
1793 u8 port_num, int port_modify_mask,
1794 struct ib_port_modify *port_modify);
1795 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1796 struct ib_udata *udata);
1797 int (*dealloc_ucontext)(struct ib_ucontext *context);
1798 int (*mmap)(struct ib_ucontext *context,
1799 struct vm_area_struct *vma);
1800 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1801 struct ib_ucontext *context,
1802 struct ib_udata *udata);
1803 int (*dealloc_pd)(struct ib_pd *pd);
1804 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1805 struct ib_ah_attr *ah_attr);
1806 int (*modify_ah)(struct ib_ah *ah,
1807 struct ib_ah_attr *ah_attr);
1808 int (*query_ah)(struct ib_ah *ah,
1809 struct ib_ah_attr *ah_attr);
1810 int (*destroy_ah)(struct ib_ah *ah);
1811 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1812 struct ib_srq_init_attr *srq_init_attr,
1813 struct ib_udata *udata);
1814 int (*modify_srq)(struct ib_srq *srq,
1815 struct ib_srq_attr *srq_attr,
1816 enum ib_srq_attr_mask srq_attr_mask,
1817 struct ib_udata *udata);
1818 int (*query_srq)(struct ib_srq *srq,
1819 struct ib_srq_attr *srq_attr);
1820 int (*destroy_srq)(struct ib_srq *srq);
1821 int (*post_srq_recv)(struct ib_srq *srq,
1822 struct ib_recv_wr *recv_wr,
1823 struct ib_recv_wr **bad_recv_wr);
1824 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1825 struct ib_qp_init_attr *qp_init_attr,
1826 struct ib_udata *udata);
1827 int (*modify_qp)(struct ib_qp *qp,
1828 struct ib_qp_attr *qp_attr,
1829 int qp_attr_mask,
1830 struct ib_udata *udata);
1831 int (*query_qp)(struct ib_qp *qp,
1832 struct ib_qp_attr *qp_attr,
1833 int qp_attr_mask,
1834 struct ib_qp_init_attr *qp_init_attr);
1835 int (*destroy_qp)(struct ib_qp *qp);
1836 int (*post_send)(struct ib_qp *qp,
1837 struct ib_send_wr *send_wr,
1838 struct ib_send_wr **bad_send_wr);
1839 int (*post_recv)(struct ib_qp *qp,
1840 struct ib_recv_wr *recv_wr,
1841 struct ib_recv_wr **bad_recv_wr);
1842 struct ib_cq * (*create_cq)(struct ib_device *device,
1843 const struct ib_cq_init_attr *attr,
1844 struct ib_ucontext *context,
1845 struct ib_udata *udata);
1846 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1847 u16 cq_period);
1848 int (*destroy_cq)(struct ib_cq *cq);
1849 int (*resize_cq)(struct ib_cq *cq, int cqe,
1850 struct ib_udata *udata);
1851 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1852 struct ib_wc *wc);
1853 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1854 int (*req_notify_cq)(struct ib_cq *cq,
1855 enum ib_cq_notify_flags flags);
1856 int (*req_ncomp_notif)(struct ib_cq *cq,
1857 int wc_cnt);
1858 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1859 int mr_access_flags);
1860 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1861 u64 start, u64 length,
1862 u64 virt_addr,
1863 int mr_access_flags,
1864 struct ib_udata *udata);
1865 int (*rereg_user_mr)(struct ib_mr *mr,
1866 int flags,
1867 u64 start, u64 length,
1868 u64 virt_addr,
1869 int mr_access_flags,
1870 struct ib_pd *pd,
1871 struct ib_udata *udata);
1872 int (*dereg_mr)(struct ib_mr *mr);
1873 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1874 enum ib_mr_type mr_type,
1875 u32 max_num_sg);
1876 int (*map_mr_sg)(struct ib_mr *mr,
1877 struct scatterlist *sg,
1878 int sg_nents,
1879 unsigned int *sg_offset);
1880 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1881 enum ib_mw_type type,
1882 struct ib_udata *udata);
1883 int (*dealloc_mw)(struct ib_mw *mw);
1884 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1885 int mr_access_flags,
1886 struct ib_fmr_attr *fmr_attr);
1887 int (*map_phys_fmr)(struct ib_fmr *fmr,
1888 u64 *page_list, int list_len,
1889 u64 iova);
1890 int (*unmap_fmr)(struct list_head *fmr_list);
1891 int (*dealloc_fmr)(struct ib_fmr *fmr);
1892 int (*attach_mcast)(struct ib_qp *qp,
1893 union ib_gid *gid,
1894 u16 lid);
1895 int (*detach_mcast)(struct ib_qp *qp,
1896 union ib_gid *gid,
1897 u16 lid);
1898 int (*process_mad)(struct ib_device *device,
1899 int process_mad_flags,
1900 u8 port_num,
1901 const struct ib_wc *in_wc,
1902 const struct ib_grh *in_grh,
1903 const struct ib_mad_hdr *in_mad,
1904 size_t in_mad_size,
1905 struct ib_mad_hdr *out_mad,
1906 size_t *out_mad_size,
1907 u16 *out_mad_pkey_index);
1908 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1909 struct ib_ucontext *ucontext,
1910 struct ib_udata *udata);
1911 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1912 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1913 struct ib_flow_attr
1914 *flow_attr,
1915 int domain);
1916 int (*destroy_flow)(struct ib_flow *flow_id);
1917 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1918 struct ib_mr_status *mr_status);
1919 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1920 void (*drain_rq)(struct ib_qp *qp);
1921 void (*drain_sq)(struct ib_qp *qp);
1922 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
1923 int state);
1924 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
1925 struct ifla_vf_info *ivf);
1926 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
1927 struct ifla_vf_stats *stats);
1928 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
1929 int type);
1930
1931 struct ib_dma_mapping_ops *dma_ops;
1932
1933 struct module *owner;
1934 struct device dev;
1935 struct kobject *ports_parent;
1936 struct list_head port_list;
1937
1938 enum {
1939 IB_DEV_UNINITIALIZED,
1940 IB_DEV_REGISTERED,
1941 IB_DEV_UNREGISTERED
1942 } reg_state;
1943
1944 int uverbs_abi_ver;
1945 u64 uverbs_cmd_mask;
1946 u64 uverbs_ex_cmd_mask;
1947
1948 char node_desc[64];
1949 __be64 node_guid;
1950 u32 local_dma_lkey;
1951 u16 is_switch:1;
1952 u8 node_type;
1953 u8 phys_port_cnt;
1954 struct ib_device_attr attrs;
1955 struct attribute_group *hw_stats_ag;
1956 struct rdma_hw_stats *hw_stats;
1957
1958 /**
1959 * The following mandatory functions are used only at device
1960 * registration. Keep functions such as these at the end of this
1961 * structure to avoid cache line misses when accessing struct ib_device
1962 * in fast paths.
1963 */
1964 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1965 };
1966
1967 struct ib_client {
1968 char *name;
1969 void (*add) (struct ib_device *);
1970 void (*remove)(struct ib_device *, void *client_data);
1971
1972 /* Returns the net_dev belonging to this ib_client and matching the
1973 * given parameters.
1974 * @dev: An RDMA device that the net_dev use for communication.
1975 * @port: A physical port number on the RDMA device.
1976 * @pkey: P_Key that the net_dev uses if applicable.
1977 * @gid: A GID that the net_dev uses to communicate.
1978 * @addr: An IP address the net_dev is configured with.
1979 * @client_data: The device's client data set by ib_set_client_data().
1980 *
1981 * An ib_client that implements a net_dev on top of RDMA devices
1982 * (such as IP over IB) should implement this callback, allowing the
1983 * rdma_cm module to find the right net_dev for a given request.
1984 *
1985 * The caller is responsible for calling dev_put on the returned
1986 * netdev. */
1987 struct net_device *(*get_net_dev_by_params)(
1988 struct ib_device *dev,
1989 u8 port,
1990 u16 pkey,
1991 const union ib_gid *gid,
1992 const struct sockaddr *addr,
1993 void *client_data);
1994 struct list_head list;
1995 };
1996
1997 struct ib_device *ib_alloc_device(size_t size);
1998 void ib_dealloc_device(struct ib_device *device);
1999
2000 int ib_register_device(struct ib_device *device,
2001 int (*port_callback)(struct ib_device *,
2002 u8, struct kobject *));
2003 void ib_unregister_device(struct ib_device *device);
2004
2005 int ib_register_client (struct ib_client *client);
2006 void ib_unregister_client(struct ib_client *client);
2007
2008 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2009 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2010 void *data);
2011
2012 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2013 {
2014 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2015 }
2016
2017 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2018 {
2019 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2020 }
2021
2022 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2023 size_t offset,
2024 size_t len)
2025 {
2026 const void __user *p = udata->inbuf + offset;
2027 bool ret = false;
2028 u8 *buf;
2029
2030 if (len > USHRT_MAX)
2031 return false;
2032
2033 buf = kmalloc(len, GFP_KERNEL);
2034 if (!buf)
2035 return false;
2036
2037 if (copy_from_user(buf, p, len))
2038 goto free;
2039
2040 ret = !memchr_inv(buf, 0, len);
2041
2042 free:
2043 kfree(buf);
2044 return ret;
2045 }
2046
2047 /**
2048 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2049 * contains all required attributes and no attributes not allowed for
2050 * the given QP state transition.
2051 * @cur_state: Current QP state
2052 * @next_state: Next QP state
2053 * @type: QP type
2054 * @mask: Mask of supplied QP attributes
2055 * @ll : link layer of port
2056 *
2057 * This function is a helper function that a low-level driver's
2058 * modify_qp method can use to validate the consumer's input. It
2059 * checks that cur_state and next_state are valid QP states, that a
2060 * transition from cur_state to next_state is allowed by the IB spec,
2061 * and that the attribute mask supplied is allowed for the transition.
2062 */
2063 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2064 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2065 enum rdma_link_layer ll);
2066
2067 int ib_register_event_handler (struct ib_event_handler *event_handler);
2068 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2069 void ib_dispatch_event(struct ib_event *event);
2070
2071 int ib_query_port(struct ib_device *device,
2072 u8 port_num, struct ib_port_attr *port_attr);
2073
2074 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2075 u8 port_num);
2076
2077 /**
2078 * rdma_cap_ib_switch - Check if the device is IB switch
2079 * @device: Device to check
2080 *
2081 * Device driver is responsible for setting is_switch bit on
2082 * in ib_device structure at init time.
2083 *
2084 * Return: true if the device is IB switch.
2085 */
2086 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2087 {
2088 return device->is_switch;
2089 }
2090
2091 /**
2092 * rdma_start_port - Return the first valid port number for the device
2093 * specified
2094 *
2095 * @device: Device to be checked
2096 *
2097 * Return start port number
2098 */
2099 static inline u8 rdma_start_port(const struct ib_device *device)
2100 {
2101 return rdma_cap_ib_switch(device) ? 0 : 1;
2102 }
2103
2104 /**
2105 * rdma_end_port - Return the last valid port number for the device
2106 * specified
2107 *
2108 * @device: Device to be checked
2109 *
2110 * Return last port number
2111 */
2112 static inline u8 rdma_end_port(const struct ib_device *device)
2113 {
2114 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2115 }
2116
2117 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2118 {
2119 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2120 }
2121
2122 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2123 {
2124 return device->port_immutable[port_num].core_cap_flags &
2125 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2126 }
2127
2128 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2129 {
2130 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2131 }
2132
2133 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2134 {
2135 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2136 }
2137
2138 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2139 {
2140 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2141 }
2142
2143 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2144 {
2145 return rdma_protocol_ib(device, port_num) ||
2146 rdma_protocol_roce(device, port_num);
2147 }
2148
2149 /**
2150 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2151 * Management Datagrams.
2152 * @device: Device to check
2153 * @port_num: Port number to check
2154 *
2155 * Management Datagrams (MAD) are a required part of the InfiniBand
2156 * specification and are supported on all InfiniBand devices. A slightly
2157 * extended version are also supported on OPA interfaces.
2158 *
2159 * Return: true if the port supports sending/receiving of MAD packets.
2160 */
2161 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2162 {
2163 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2164 }
2165
2166 /**
2167 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2168 * Management Datagrams.
2169 * @device: Device to check
2170 * @port_num: Port number to check
2171 *
2172 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2173 * datagrams with their own versions. These OPA MADs share many but not all of
2174 * the characteristics of InfiniBand MADs.
2175 *
2176 * OPA MADs differ in the following ways:
2177 *
2178 * 1) MADs are variable size up to 2K
2179 * IBTA defined MADs remain fixed at 256 bytes
2180 * 2) OPA SMPs must carry valid PKeys
2181 * 3) OPA SMP packets are a different format
2182 *
2183 * Return: true if the port supports OPA MAD packet formats.
2184 */
2185 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2186 {
2187 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2188 == RDMA_CORE_CAP_OPA_MAD;
2189 }
2190
2191 /**
2192 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2193 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2194 * @device: Device to check
2195 * @port_num: Port number to check
2196 *
2197 * Each InfiniBand node is required to provide a Subnet Management Agent
2198 * that the subnet manager can access. Prior to the fabric being fully
2199 * configured by the subnet manager, the SMA is accessed via a well known
2200 * interface called the Subnet Management Interface (SMI). This interface
2201 * uses directed route packets to communicate with the SM to get around the
2202 * chicken and egg problem of the SM needing to know what's on the fabric
2203 * in order to configure the fabric, and needing to configure the fabric in
2204 * order to send packets to the devices on the fabric. These directed
2205 * route packets do not need the fabric fully configured in order to reach
2206 * their destination. The SMI is the only method allowed to send
2207 * directed route packets on an InfiniBand fabric.
2208 *
2209 * Return: true if the port provides an SMI.
2210 */
2211 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2212 {
2213 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2214 }
2215
2216 /**
2217 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2218 * Communication Manager.
2219 * @device: Device to check
2220 * @port_num: Port number to check
2221 *
2222 * The InfiniBand Communication Manager is one of many pre-defined General
2223 * Service Agents (GSA) that are accessed via the General Service
2224 * Interface (GSI). It's role is to facilitate establishment of connections
2225 * between nodes as well as other management related tasks for established
2226 * connections.
2227 *
2228 * Return: true if the port supports an IB CM (this does not guarantee that
2229 * a CM is actually running however).
2230 */
2231 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2232 {
2233 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2234 }
2235
2236 /**
2237 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2238 * Communication Manager.
2239 * @device: Device to check
2240 * @port_num: Port number to check
2241 *
2242 * Similar to above, but specific to iWARP connections which have a different
2243 * managment protocol than InfiniBand.
2244 *
2245 * Return: true if the port supports an iWARP CM (this does not guarantee that
2246 * a CM is actually running however).
2247 */
2248 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2249 {
2250 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2251 }
2252
2253 /**
2254 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2255 * Subnet Administration.
2256 * @device: Device to check
2257 * @port_num: Port number to check
2258 *
2259 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2260 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2261 * fabrics, devices should resolve routes to other hosts by contacting the
2262 * SA to query the proper route.
2263 *
2264 * Return: true if the port should act as a client to the fabric Subnet
2265 * Administration interface. This does not imply that the SA service is
2266 * running locally.
2267 */
2268 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2269 {
2270 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2271 }
2272
2273 /**
2274 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2275 * Multicast.
2276 * @device: Device to check
2277 * @port_num: Port number to check
2278 *
2279 * InfiniBand multicast registration is more complex than normal IPv4 or
2280 * IPv6 multicast registration. Each Host Channel Adapter must register
2281 * with the Subnet Manager when it wishes to join a multicast group. It
2282 * should do so only once regardless of how many queue pairs it subscribes
2283 * to this group. And it should leave the group only after all queue pairs
2284 * attached to the group have been detached.
2285 *
2286 * Return: true if the port must undertake the additional adminstrative
2287 * overhead of registering/unregistering with the SM and tracking of the
2288 * total number of queue pairs attached to the multicast group.
2289 */
2290 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2291 {
2292 return rdma_cap_ib_sa(device, port_num);
2293 }
2294
2295 /**
2296 * rdma_cap_af_ib - Check if the port of device has the capability
2297 * Native Infiniband Address.
2298 * @device: Device to check
2299 * @port_num: Port number to check
2300 *
2301 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2302 * GID. RoCE uses a different mechanism, but still generates a GID via
2303 * a prescribed mechanism and port specific data.
2304 *
2305 * Return: true if the port uses a GID address to identify devices on the
2306 * network.
2307 */
2308 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2309 {
2310 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2311 }
2312
2313 /**
2314 * rdma_cap_eth_ah - Check if the port of device has the capability
2315 * Ethernet Address Handle.
2316 * @device: Device to check
2317 * @port_num: Port number to check
2318 *
2319 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2320 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2321 * port. Normally, packet headers are generated by the sending host
2322 * adapter, but when sending connectionless datagrams, we must manually
2323 * inject the proper headers for the fabric we are communicating over.
2324 *
2325 * Return: true if we are running as a RoCE port and must force the
2326 * addition of a Global Route Header built from our Ethernet Address
2327 * Handle into our header list for connectionless packets.
2328 */
2329 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2330 {
2331 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2332 }
2333
2334 /**
2335 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2336 *
2337 * @device: Device
2338 * @port_num: Port number
2339 *
2340 * This MAD size includes the MAD headers and MAD payload. No other headers
2341 * are included.
2342 *
2343 * Return the max MAD size required by the Port. Will return 0 if the port
2344 * does not support MADs
2345 */
2346 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2347 {
2348 return device->port_immutable[port_num].max_mad_size;
2349 }
2350
2351 /**
2352 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2353 * @device: Device to check
2354 * @port_num: Port number to check
2355 *
2356 * RoCE GID table mechanism manages the various GIDs for a device.
2357 *
2358 * NOTE: if allocating the port's GID table has failed, this call will still
2359 * return true, but any RoCE GID table API will fail.
2360 *
2361 * Return: true if the port uses RoCE GID table mechanism in order to manage
2362 * its GIDs.
2363 */
2364 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2365 u8 port_num)
2366 {
2367 return rdma_protocol_roce(device, port_num) &&
2368 device->add_gid && device->del_gid;
2369 }
2370
2371 /*
2372 * Check if the device supports READ W/ INVALIDATE.
2373 */
2374 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2375 {
2376 /*
2377 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2378 * has support for it yet.
2379 */
2380 return rdma_protocol_iwarp(dev, port_num);
2381 }
2382
2383 int ib_query_gid(struct ib_device *device,
2384 u8 port_num, int index, union ib_gid *gid,
2385 struct ib_gid_attr *attr);
2386
2387 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2388 int state);
2389 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2390 struct ifla_vf_info *info);
2391 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2392 struct ifla_vf_stats *stats);
2393 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2394 int type);
2395
2396 int ib_query_pkey(struct ib_device *device,
2397 u8 port_num, u16 index, u16 *pkey);
2398
2399 int ib_modify_device(struct ib_device *device,
2400 int device_modify_mask,
2401 struct ib_device_modify *device_modify);
2402
2403 int ib_modify_port(struct ib_device *device,
2404 u8 port_num, int port_modify_mask,
2405 struct ib_port_modify *port_modify);
2406
2407 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2408 enum ib_gid_type gid_type, struct net_device *ndev,
2409 u8 *port_num, u16 *index);
2410
2411 int ib_find_pkey(struct ib_device *device,
2412 u8 port_num, u16 pkey, u16 *index);
2413
2414 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2415
2416 void ib_dealloc_pd(struct ib_pd *pd);
2417
2418 /**
2419 * ib_create_ah - Creates an address handle for the given address vector.
2420 * @pd: The protection domain associated with the address handle.
2421 * @ah_attr: The attributes of the address vector.
2422 *
2423 * The address handle is used to reference a local or global destination
2424 * in all UD QP post sends.
2425 */
2426 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2427
2428 /**
2429 * ib_init_ah_from_wc - Initializes address handle attributes from a
2430 * work completion.
2431 * @device: Device on which the received message arrived.
2432 * @port_num: Port on which the received message arrived.
2433 * @wc: Work completion associated with the received message.
2434 * @grh: References the received global route header. This parameter is
2435 * ignored unless the work completion indicates that the GRH is valid.
2436 * @ah_attr: Returned attributes that can be used when creating an address
2437 * handle for replying to the message.
2438 */
2439 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2440 const struct ib_wc *wc, const struct ib_grh *grh,
2441 struct ib_ah_attr *ah_attr);
2442
2443 /**
2444 * ib_create_ah_from_wc - Creates an address handle associated with the
2445 * sender of the specified work completion.
2446 * @pd: The protection domain associated with the address handle.
2447 * @wc: Work completion information associated with a received message.
2448 * @grh: References the received global route header. This parameter is
2449 * ignored unless the work completion indicates that the GRH is valid.
2450 * @port_num: The outbound port number to associate with the address.
2451 *
2452 * The address handle is used to reference a local or global destination
2453 * in all UD QP post sends.
2454 */
2455 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2456 const struct ib_grh *grh, u8 port_num);
2457
2458 /**
2459 * ib_modify_ah - Modifies the address vector associated with an address
2460 * handle.
2461 * @ah: The address handle to modify.
2462 * @ah_attr: The new address vector attributes to associate with the
2463 * address handle.
2464 */
2465 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2466
2467 /**
2468 * ib_query_ah - Queries the address vector associated with an address
2469 * handle.
2470 * @ah: The address handle to query.
2471 * @ah_attr: The address vector attributes associated with the address
2472 * handle.
2473 */
2474 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2475
2476 /**
2477 * ib_destroy_ah - Destroys an address handle.
2478 * @ah: The address handle to destroy.
2479 */
2480 int ib_destroy_ah(struct ib_ah *ah);
2481
2482 /**
2483 * ib_create_srq - Creates a SRQ associated with the specified protection
2484 * domain.
2485 * @pd: The protection domain associated with the SRQ.
2486 * @srq_init_attr: A list of initial attributes required to create the
2487 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2488 * the actual capabilities of the created SRQ.
2489 *
2490 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2491 * requested size of the SRQ, and set to the actual values allocated
2492 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2493 * will always be at least as large as the requested values.
2494 */
2495 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2496 struct ib_srq_init_attr *srq_init_attr);
2497
2498 /**
2499 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2500 * @srq: The SRQ to modify.
2501 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2502 * the current values of selected SRQ attributes are returned.
2503 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2504 * are being modified.
2505 *
2506 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2507 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2508 * the number of receives queued drops below the limit.
2509 */
2510 int ib_modify_srq(struct ib_srq *srq,
2511 struct ib_srq_attr *srq_attr,
2512 enum ib_srq_attr_mask srq_attr_mask);
2513
2514 /**
2515 * ib_query_srq - Returns the attribute list and current values for the
2516 * specified SRQ.
2517 * @srq: The SRQ to query.
2518 * @srq_attr: The attributes of the specified SRQ.
2519 */
2520 int ib_query_srq(struct ib_srq *srq,
2521 struct ib_srq_attr *srq_attr);
2522
2523 /**
2524 * ib_destroy_srq - Destroys the specified SRQ.
2525 * @srq: The SRQ to destroy.
2526 */
2527 int ib_destroy_srq(struct ib_srq *srq);
2528
2529 /**
2530 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2531 * @srq: The SRQ to post the work request on.
2532 * @recv_wr: A list of work requests to post on the receive queue.
2533 * @bad_recv_wr: On an immediate failure, this parameter will reference
2534 * the work request that failed to be posted on the QP.
2535 */
2536 static inline int ib_post_srq_recv(struct ib_srq *srq,
2537 struct ib_recv_wr *recv_wr,
2538 struct ib_recv_wr **bad_recv_wr)
2539 {
2540 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2541 }
2542
2543 /**
2544 * ib_create_qp - Creates a QP associated with the specified protection
2545 * domain.
2546 * @pd: The protection domain associated with the QP.
2547 * @qp_init_attr: A list of initial attributes required to create the
2548 * QP. If QP creation succeeds, then the attributes are updated to
2549 * the actual capabilities of the created QP.
2550 */
2551 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2552 struct ib_qp_init_attr *qp_init_attr);
2553
2554 /**
2555 * ib_modify_qp - Modifies the attributes for the specified QP and then
2556 * transitions the QP to the given state.
2557 * @qp: The QP to modify.
2558 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2559 * the current values of selected QP attributes are returned.
2560 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2561 * are being modified.
2562 */
2563 int ib_modify_qp(struct ib_qp *qp,
2564 struct ib_qp_attr *qp_attr,
2565 int qp_attr_mask);
2566
2567 /**
2568 * ib_query_qp - Returns the attribute list and current values for the
2569 * specified QP.
2570 * @qp: The QP to query.
2571 * @qp_attr: The attributes of the specified QP.
2572 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2573 * @qp_init_attr: Additional attributes of the selected QP.
2574 *
2575 * The qp_attr_mask may be used to limit the query to gathering only the
2576 * selected attributes.
2577 */
2578 int ib_query_qp(struct ib_qp *qp,
2579 struct ib_qp_attr *qp_attr,
2580 int qp_attr_mask,
2581 struct ib_qp_init_attr *qp_init_attr);
2582
2583 /**
2584 * ib_destroy_qp - Destroys the specified QP.
2585 * @qp: The QP to destroy.
2586 */
2587 int ib_destroy_qp(struct ib_qp *qp);
2588
2589 /**
2590 * ib_open_qp - Obtain a reference to an existing sharable QP.
2591 * @xrcd - XRC domain
2592 * @qp_open_attr: Attributes identifying the QP to open.
2593 *
2594 * Returns a reference to a sharable QP.
2595 */
2596 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2597 struct ib_qp_open_attr *qp_open_attr);
2598
2599 /**
2600 * ib_close_qp - Release an external reference to a QP.
2601 * @qp: The QP handle to release
2602 *
2603 * The opened QP handle is released by the caller. The underlying
2604 * shared QP is not destroyed until all internal references are released.
2605 */
2606 int ib_close_qp(struct ib_qp *qp);
2607
2608 /**
2609 * ib_post_send - Posts a list of work requests to the send queue of
2610 * the specified QP.
2611 * @qp: The QP to post the work request on.
2612 * @send_wr: A list of work requests to post on the send queue.
2613 * @bad_send_wr: On an immediate failure, this parameter will reference
2614 * the work request that failed to be posted on the QP.
2615 *
2616 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2617 * error is returned, the QP state shall not be affected,
2618 * ib_post_send() will return an immediate error after queueing any
2619 * earlier work requests in the list.
2620 */
2621 static inline int ib_post_send(struct ib_qp *qp,
2622 struct ib_send_wr *send_wr,
2623 struct ib_send_wr **bad_send_wr)
2624 {
2625 return qp->device->post_send(qp, send_wr, bad_send_wr);
2626 }
2627
2628 /**
2629 * ib_post_recv - Posts a list of work requests to the receive queue of
2630 * the specified QP.
2631 * @qp: The QP to post the work request on.
2632 * @recv_wr: A list of work requests to post on the receive queue.
2633 * @bad_recv_wr: On an immediate failure, this parameter will reference
2634 * the work request that failed to be posted on the QP.
2635 */
2636 static inline int ib_post_recv(struct ib_qp *qp,
2637 struct ib_recv_wr *recv_wr,
2638 struct ib_recv_wr **bad_recv_wr)
2639 {
2640 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2641 }
2642
2643 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2644 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2645 void ib_free_cq(struct ib_cq *cq);
2646 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2647
2648 /**
2649 * ib_create_cq - Creates a CQ on the specified device.
2650 * @device: The device on which to create the CQ.
2651 * @comp_handler: A user-specified callback that is invoked when a
2652 * completion event occurs on the CQ.
2653 * @event_handler: A user-specified callback that is invoked when an
2654 * asynchronous event not associated with a completion occurs on the CQ.
2655 * @cq_context: Context associated with the CQ returned to the user via
2656 * the associated completion and event handlers.
2657 * @cq_attr: The attributes the CQ should be created upon.
2658 *
2659 * Users can examine the cq structure to determine the actual CQ size.
2660 */
2661 struct ib_cq *ib_create_cq(struct ib_device *device,
2662 ib_comp_handler comp_handler,
2663 void (*event_handler)(struct ib_event *, void *),
2664 void *cq_context,
2665 const struct ib_cq_init_attr *cq_attr);
2666
2667 /**
2668 * ib_resize_cq - Modifies the capacity of the CQ.
2669 * @cq: The CQ to resize.
2670 * @cqe: The minimum size of the CQ.
2671 *
2672 * Users can examine the cq structure to determine the actual CQ size.
2673 */
2674 int ib_resize_cq(struct ib_cq *cq, int cqe);
2675
2676 /**
2677 * ib_modify_cq - Modifies moderation params of the CQ
2678 * @cq: The CQ to modify.
2679 * @cq_count: number of CQEs that will trigger an event
2680 * @cq_period: max period of time in usec before triggering an event
2681 *
2682 */
2683 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2684
2685 /**
2686 * ib_destroy_cq - Destroys the specified CQ.
2687 * @cq: The CQ to destroy.
2688 */
2689 int ib_destroy_cq(struct ib_cq *cq);
2690
2691 /**
2692 * ib_poll_cq - poll a CQ for completion(s)
2693 * @cq:the CQ being polled
2694 * @num_entries:maximum number of completions to return
2695 * @wc:array of at least @num_entries &struct ib_wc where completions
2696 * will be returned
2697 *
2698 * Poll a CQ for (possibly multiple) completions. If the return value
2699 * is < 0, an error occurred. If the return value is >= 0, it is the
2700 * number of completions returned. If the return value is
2701 * non-negative and < num_entries, then the CQ was emptied.
2702 */
2703 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2704 struct ib_wc *wc)
2705 {
2706 return cq->device->poll_cq(cq, num_entries, wc);
2707 }
2708
2709 /**
2710 * ib_peek_cq - Returns the number of unreaped completions currently
2711 * on the specified CQ.
2712 * @cq: The CQ to peek.
2713 * @wc_cnt: A minimum number of unreaped completions to check for.
2714 *
2715 * If the number of unreaped completions is greater than or equal to wc_cnt,
2716 * this function returns wc_cnt, otherwise, it returns the actual number of
2717 * unreaped completions.
2718 */
2719 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2720
2721 /**
2722 * ib_req_notify_cq - Request completion notification on a CQ.
2723 * @cq: The CQ to generate an event for.
2724 * @flags:
2725 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2726 * to request an event on the next solicited event or next work
2727 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2728 * may also be |ed in to request a hint about missed events, as
2729 * described below.
2730 *
2731 * Return Value:
2732 * < 0 means an error occurred while requesting notification
2733 * == 0 means notification was requested successfully, and if
2734 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2735 * were missed and it is safe to wait for another event. In
2736 * this case is it guaranteed that any work completions added
2737 * to the CQ since the last CQ poll will trigger a completion
2738 * notification event.
2739 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2740 * in. It means that the consumer must poll the CQ again to
2741 * make sure it is empty to avoid missing an event because of a
2742 * race between requesting notification and an entry being
2743 * added to the CQ. This return value means it is possible
2744 * (but not guaranteed) that a work completion has been added
2745 * to the CQ since the last poll without triggering a
2746 * completion notification event.
2747 */
2748 static inline int ib_req_notify_cq(struct ib_cq *cq,
2749 enum ib_cq_notify_flags flags)
2750 {
2751 return cq->device->req_notify_cq(cq, flags);
2752 }
2753
2754 /**
2755 * ib_req_ncomp_notif - Request completion notification when there are
2756 * at least the specified number of unreaped completions on the CQ.
2757 * @cq: The CQ to generate an event for.
2758 * @wc_cnt: The number of unreaped completions that should be on the
2759 * CQ before an event is generated.
2760 */
2761 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2762 {
2763 return cq->device->req_ncomp_notif ?
2764 cq->device->req_ncomp_notif(cq, wc_cnt) :
2765 -ENOSYS;
2766 }
2767
2768 /**
2769 * ib_get_dma_mr - Returns a memory region for system memory that is
2770 * usable for DMA.
2771 * @pd: The protection domain associated with the memory region.
2772 * @mr_access_flags: Specifies the memory access rights.
2773 *
2774 * Note that the ib_dma_*() functions defined below must be used
2775 * to create/destroy addresses used with the Lkey or Rkey returned
2776 * by ib_get_dma_mr().
2777 */
2778 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2779
2780 /**
2781 * ib_dma_mapping_error - check a DMA addr for error
2782 * @dev: The device for which the dma_addr was created
2783 * @dma_addr: The DMA address to check
2784 */
2785 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2786 {
2787 if (dev->dma_ops)
2788 return dev->dma_ops->mapping_error(dev, dma_addr);
2789 return dma_mapping_error(dev->dma_device, dma_addr);
2790 }
2791
2792 /**
2793 * ib_dma_map_single - Map a kernel virtual address to DMA address
2794 * @dev: The device for which the dma_addr is to be created
2795 * @cpu_addr: The kernel virtual address
2796 * @size: The size of the region in bytes
2797 * @direction: The direction of the DMA
2798 */
2799 static inline u64 ib_dma_map_single(struct ib_device *dev,
2800 void *cpu_addr, size_t size,
2801 enum dma_data_direction direction)
2802 {
2803 if (dev->dma_ops)
2804 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2805 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2806 }
2807
2808 /**
2809 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2810 * @dev: The device for which the DMA address was created
2811 * @addr: The DMA address
2812 * @size: The size of the region in bytes
2813 * @direction: The direction of the DMA
2814 */
2815 static inline void ib_dma_unmap_single(struct ib_device *dev,
2816 u64 addr, size_t size,
2817 enum dma_data_direction direction)
2818 {
2819 if (dev->dma_ops)
2820 dev->dma_ops->unmap_single(dev, addr, size, direction);
2821 else
2822 dma_unmap_single(dev->dma_device, addr, size, direction);
2823 }
2824
2825 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2826 void *cpu_addr, size_t size,
2827 enum dma_data_direction direction,
2828 struct dma_attrs *attrs)
2829 {
2830 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2831 direction, attrs);
2832 }
2833
2834 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2835 u64 addr, size_t size,
2836 enum dma_data_direction direction,
2837 struct dma_attrs *attrs)
2838 {
2839 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2840 direction, attrs);
2841 }
2842
2843 /**
2844 * ib_dma_map_page - Map a physical page to DMA address
2845 * @dev: The device for which the dma_addr is to be created
2846 * @page: The page to be mapped
2847 * @offset: The offset within the page
2848 * @size: The size of the region in bytes
2849 * @direction: The direction of the DMA
2850 */
2851 static inline u64 ib_dma_map_page(struct ib_device *dev,
2852 struct page *page,
2853 unsigned long offset,
2854 size_t size,
2855 enum dma_data_direction direction)
2856 {
2857 if (dev->dma_ops)
2858 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2859 return dma_map_page(dev->dma_device, page, offset, size, direction);
2860 }
2861
2862 /**
2863 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2864 * @dev: The device for which the DMA address was created
2865 * @addr: The DMA address
2866 * @size: The size of the region in bytes
2867 * @direction: The direction of the DMA
2868 */
2869 static inline void ib_dma_unmap_page(struct ib_device *dev,
2870 u64 addr, size_t size,
2871 enum dma_data_direction direction)
2872 {
2873 if (dev->dma_ops)
2874 dev->dma_ops->unmap_page(dev, addr, size, direction);
2875 else
2876 dma_unmap_page(dev->dma_device, addr, size, direction);
2877 }
2878
2879 /**
2880 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2881 * @dev: The device for which the DMA addresses are to be created
2882 * @sg: The array of scatter/gather entries
2883 * @nents: The number of scatter/gather entries
2884 * @direction: The direction of the DMA
2885 */
2886 static inline int ib_dma_map_sg(struct ib_device *dev,
2887 struct scatterlist *sg, int nents,
2888 enum dma_data_direction direction)
2889 {
2890 if (dev->dma_ops)
2891 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2892 return dma_map_sg(dev->dma_device, sg, nents, direction);
2893 }
2894
2895 /**
2896 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2897 * @dev: The device for which the DMA addresses were created
2898 * @sg: The array of scatter/gather entries
2899 * @nents: The number of scatter/gather entries
2900 * @direction: The direction of the DMA
2901 */
2902 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2903 struct scatterlist *sg, int nents,
2904 enum dma_data_direction direction)
2905 {
2906 if (dev->dma_ops)
2907 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2908 else
2909 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2910 }
2911
2912 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2913 struct scatterlist *sg, int nents,
2914 enum dma_data_direction direction,
2915 struct dma_attrs *attrs)
2916 {
2917 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2918 }
2919
2920 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2921 struct scatterlist *sg, int nents,
2922 enum dma_data_direction direction,
2923 struct dma_attrs *attrs)
2924 {
2925 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2926 }
2927 /**
2928 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2929 * @dev: The device for which the DMA addresses were created
2930 * @sg: The scatter/gather entry
2931 *
2932 * Note: this function is obsolete. To do: change all occurrences of
2933 * ib_sg_dma_address() into sg_dma_address().
2934 */
2935 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2936 struct scatterlist *sg)
2937 {
2938 return sg_dma_address(sg);
2939 }
2940
2941 /**
2942 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2943 * @dev: The device for which the DMA addresses were created
2944 * @sg: The scatter/gather entry
2945 *
2946 * Note: this function is obsolete. To do: change all occurrences of
2947 * ib_sg_dma_len() into sg_dma_len().
2948 */
2949 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2950 struct scatterlist *sg)
2951 {
2952 return sg_dma_len(sg);
2953 }
2954
2955 /**
2956 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2957 * @dev: The device for which the DMA address was created
2958 * @addr: The DMA address
2959 * @size: The size of the region in bytes
2960 * @dir: The direction of the DMA
2961 */
2962 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2963 u64 addr,
2964 size_t size,
2965 enum dma_data_direction dir)
2966 {
2967 if (dev->dma_ops)
2968 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2969 else
2970 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2971 }
2972
2973 /**
2974 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2975 * @dev: The device for which the DMA address was created
2976 * @addr: The DMA address
2977 * @size: The size of the region in bytes
2978 * @dir: The direction of the DMA
2979 */
2980 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2981 u64 addr,
2982 size_t size,
2983 enum dma_data_direction dir)
2984 {
2985 if (dev->dma_ops)
2986 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2987 else
2988 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2989 }
2990
2991 /**
2992 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2993 * @dev: The device for which the DMA address is requested
2994 * @size: The size of the region to allocate in bytes
2995 * @dma_handle: A pointer for returning the DMA address of the region
2996 * @flag: memory allocator flags
2997 */
2998 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2999 size_t size,
3000 u64 *dma_handle,
3001 gfp_t flag)
3002 {
3003 if (dev->dma_ops)
3004 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3005 else {
3006 dma_addr_t handle;
3007 void *ret;
3008
3009 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3010 *dma_handle = handle;
3011 return ret;
3012 }
3013 }
3014
3015 /**
3016 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3017 * @dev: The device for which the DMA addresses were allocated
3018 * @size: The size of the region
3019 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3020 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3021 */
3022 static inline void ib_dma_free_coherent(struct ib_device *dev,
3023 size_t size, void *cpu_addr,
3024 u64 dma_handle)
3025 {
3026 if (dev->dma_ops)
3027 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3028 else
3029 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3030 }
3031
3032 /**
3033 * ib_dereg_mr - Deregisters a memory region and removes it from the
3034 * HCA translation table.
3035 * @mr: The memory region to deregister.
3036 *
3037 * This function can fail, if the memory region has memory windows bound to it.
3038 */
3039 int ib_dereg_mr(struct ib_mr *mr);
3040
3041 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3042 enum ib_mr_type mr_type,
3043 u32 max_num_sg);
3044
3045 /**
3046 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3047 * R_Key and L_Key.
3048 * @mr - struct ib_mr pointer to be updated.
3049 * @newkey - new key to be used.
3050 */
3051 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3052 {
3053 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3054 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3055 }
3056
3057 /**
3058 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3059 * for calculating a new rkey for type 2 memory windows.
3060 * @rkey - the rkey to increment.
3061 */
3062 static inline u32 ib_inc_rkey(u32 rkey)
3063 {
3064 const u32 mask = 0x000000ff;
3065 return ((rkey + 1) & mask) | (rkey & ~mask);
3066 }
3067
3068 /**
3069 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3070 * @pd: The protection domain associated with the unmapped region.
3071 * @mr_access_flags: Specifies the memory access rights.
3072 * @fmr_attr: Attributes of the unmapped region.
3073 *
3074 * A fast memory region must be mapped before it can be used as part of
3075 * a work request.
3076 */
3077 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3078 int mr_access_flags,
3079 struct ib_fmr_attr *fmr_attr);
3080
3081 /**
3082 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3083 * @fmr: The fast memory region to associate with the pages.
3084 * @page_list: An array of physical pages to map to the fast memory region.
3085 * @list_len: The number of pages in page_list.
3086 * @iova: The I/O virtual address to use with the mapped region.
3087 */
3088 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3089 u64 *page_list, int list_len,
3090 u64 iova)
3091 {
3092 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3093 }
3094
3095 /**
3096 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3097 * @fmr_list: A linked list of fast memory regions to unmap.
3098 */
3099 int ib_unmap_fmr(struct list_head *fmr_list);
3100
3101 /**
3102 * ib_dealloc_fmr - Deallocates a fast memory region.
3103 * @fmr: The fast memory region to deallocate.
3104 */
3105 int ib_dealloc_fmr(struct ib_fmr *fmr);
3106
3107 /**
3108 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3109 * @qp: QP to attach to the multicast group. The QP must be type
3110 * IB_QPT_UD.
3111 * @gid: Multicast group GID.
3112 * @lid: Multicast group LID in host byte order.
3113 *
3114 * In order to send and receive multicast packets, subnet
3115 * administration must have created the multicast group and configured
3116 * the fabric appropriately. The port associated with the specified
3117 * QP must also be a member of the multicast group.
3118 */
3119 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3120
3121 /**
3122 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3123 * @qp: QP to detach from the multicast group.
3124 * @gid: Multicast group GID.
3125 * @lid: Multicast group LID in host byte order.
3126 */
3127 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3128
3129 /**
3130 * ib_alloc_xrcd - Allocates an XRC domain.
3131 * @device: The device on which to allocate the XRC domain.
3132 */
3133 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3134
3135 /**
3136 * ib_dealloc_xrcd - Deallocates an XRC domain.
3137 * @xrcd: The XRC domain to deallocate.
3138 */
3139 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3140
3141 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3142 struct ib_flow_attr *flow_attr, int domain);
3143 int ib_destroy_flow(struct ib_flow *flow_id);
3144
3145 static inline int ib_check_mr_access(int flags)
3146 {
3147 /*
3148 * Local write permission is required if remote write or
3149 * remote atomic permission is also requested.
3150 */
3151 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3152 !(flags & IB_ACCESS_LOCAL_WRITE))
3153 return -EINVAL;
3154
3155 return 0;
3156 }
3157
3158 /**
3159 * ib_check_mr_status: lightweight check of MR status.
3160 * This routine may provide status checks on a selected
3161 * ib_mr. first use is for signature status check.
3162 *
3163 * @mr: A memory region.
3164 * @check_mask: Bitmask of which checks to perform from
3165 * ib_mr_status_check enumeration.
3166 * @mr_status: The container of relevant status checks.
3167 * failed checks will be indicated in the status bitmask
3168 * and the relevant info shall be in the error item.
3169 */
3170 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3171 struct ib_mr_status *mr_status);
3172
3173 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3174 u16 pkey, const union ib_gid *gid,
3175 const struct sockaddr *addr);
3176
3177 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3178 unsigned int *sg_offset, unsigned int page_size);
3179
3180 static inline int
3181 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3182 unsigned int *sg_offset, unsigned int page_size)
3183 {
3184 int n;
3185
3186 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3187 mr->iova = 0;
3188
3189 return n;
3190 }
3191
3192 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3193 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3194
3195 void ib_drain_rq(struct ib_qp *qp);
3196 void ib_drain_sq(struct ib_qp *qp);
3197 void ib_drain_qp(struct ib_qp *qp);
3198 #endif /* IB_VERBS_H */
This page took 0.11228 seconds and 5 git commands to generate.