Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58
59 #include <linux/if_link.h>
60 #include <linux/atomic.h>
61 #include <linux/mmu_notifier.h>
62 #include <asm/uaccess.h>
63
64 extern struct workqueue_struct *ib_wq;
65 extern struct workqueue_struct *ib_comp_wq;
66
67 union ib_gid {
68 u8 raw[16];
69 struct {
70 __be64 subnet_prefix;
71 __be64 interface_id;
72 } global;
73 };
74
75 extern union ib_gid zgid;
76
77 enum ib_gid_type {
78 /* If link layer is Ethernet, this is RoCE V1 */
79 IB_GID_TYPE_IB = 0,
80 IB_GID_TYPE_ROCE = 0,
81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
82 IB_GID_TYPE_SIZE
83 };
84
85 #define ROCE_V2_UDP_DPORT 4791
86 struct ib_gid_attr {
87 enum ib_gid_type gid_type;
88 struct net_device *ndev;
89 };
90
91 enum rdma_node_type {
92 /* IB values map to NodeInfo:NodeType. */
93 RDMA_NODE_IB_CA = 1,
94 RDMA_NODE_IB_SWITCH,
95 RDMA_NODE_IB_ROUTER,
96 RDMA_NODE_RNIC,
97 RDMA_NODE_USNIC,
98 RDMA_NODE_USNIC_UDP,
99 };
100
101 enum {
102 /* set the local administered indication */
103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
104 };
105
106 enum rdma_transport_type {
107 RDMA_TRANSPORT_IB,
108 RDMA_TRANSPORT_IWARP,
109 RDMA_TRANSPORT_USNIC,
110 RDMA_TRANSPORT_USNIC_UDP
111 };
112
113 enum rdma_protocol_type {
114 RDMA_PROTOCOL_IB,
115 RDMA_PROTOCOL_IBOE,
116 RDMA_PROTOCOL_IWARP,
117 RDMA_PROTOCOL_USNIC_UDP
118 };
119
120 __attribute_const__ enum rdma_transport_type
121 rdma_node_get_transport(enum rdma_node_type node_type);
122
123 enum rdma_network_type {
124 RDMA_NETWORK_IB,
125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
126 RDMA_NETWORK_IPV4,
127 RDMA_NETWORK_IPV6
128 };
129
130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
131 {
132 if (network_type == RDMA_NETWORK_IPV4 ||
133 network_type == RDMA_NETWORK_IPV6)
134 return IB_GID_TYPE_ROCE_UDP_ENCAP;
135
136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
137 return IB_GID_TYPE_IB;
138 }
139
140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
141 union ib_gid *gid)
142 {
143 if (gid_type == IB_GID_TYPE_IB)
144 return RDMA_NETWORK_IB;
145
146 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
147 return RDMA_NETWORK_IPV4;
148 else
149 return RDMA_NETWORK_IPV6;
150 }
151
152 enum rdma_link_layer {
153 IB_LINK_LAYER_UNSPECIFIED,
154 IB_LINK_LAYER_INFINIBAND,
155 IB_LINK_LAYER_ETHERNET,
156 };
157
158 enum ib_device_cap_flags {
159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
162 IB_DEVICE_RAW_MULTI = (1 << 3),
163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
168 IB_DEVICE_INIT_TYPE = (1 << 9),
169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
172 IB_DEVICE_SRQ_RESIZE = (1 << 13),
173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
174
175 /*
176 * This device supports a per-device lkey or stag that can be
177 * used without performing a memory registration for the local
178 * memory. Note that ULPs should never check this flag, but
179 * instead of use the local_dma_lkey flag in the ib_pd structure,
180 * which will always contain a usable lkey.
181 */
182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
184 IB_DEVICE_MEM_WINDOW = (1 << 17),
185 /*
186 * Devices should set IB_DEVICE_UD_IP_SUM if they support
187 * insertion of UDP and TCP checksum on outgoing UD IPoIB
188 * messages and can verify the validity of checksum for
189 * incoming messages. Setting this flag implies that the
190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
191 */
192 IB_DEVICE_UD_IP_CSUM = (1 << 18),
193 IB_DEVICE_UD_TSO = (1 << 19),
194 IB_DEVICE_XRC = (1 << 20),
195
196 /*
197 * This device supports the IB "base memory management extension",
198 * which includes support for fast registrations (IB_WR_REG_MR,
199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
200 * also be set by any iWarp device which must support FRs to comply
201 * to the iWarp verbs spec. iWarp devices also support the
202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
203 * stag.
204 */
205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
209 IB_DEVICE_RC_IP_CSUM = (1 << 25),
210 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
211 /*
212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
213 * support execution of WQEs that involve synchronization
214 * of I/O operations with single completion queue managed
215 * by hardware.
216 */
217 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
220 IB_DEVICE_ON_DEMAND_PAGING = (1 << 31),
221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
222 IB_DEVICE_VIRTUAL_FUNCTION = ((u64)1 << 33),
223 IB_DEVICE_RAW_SCATTER_FCS = ((u64)1 << 34),
224 };
225
226 enum ib_signature_prot_cap {
227 IB_PROT_T10DIF_TYPE_1 = 1,
228 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
229 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
230 };
231
232 enum ib_signature_guard_cap {
233 IB_GUARD_T10DIF_CRC = 1,
234 IB_GUARD_T10DIF_CSUM = 1 << 1,
235 };
236
237 enum ib_atomic_cap {
238 IB_ATOMIC_NONE,
239 IB_ATOMIC_HCA,
240 IB_ATOMIC_GLOB
241 };
242
243 enum ib_odp_general_cap_bits {
244 IB_ODP_SUPPORT = 1 << 0,
245 };
246
247 enum ib_odp_transport_cap_bits {
248 IB_ODP_SUPPORT_SEND = 1 << 0,
249 IB_ODP_SUPPORT_RECV = 1 << 1,
250 IB_ODP_SUPPORT_WRITE = 1 << 2,
251 IB_ODP_SUPPORT_READ = 1 << 3,
252 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
253 };
254
255 struct ib_odp_caps {
256 uint64_t general_caps;
257 struct {
258 uint32_t rc_odp_caps;
259 uint32_t uc_odp_caps;
260 uint32_t ud_odp_caps;
261 } per_transport_caps;
262 };
263
264 enum ib_cq_creation_flags {
265 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
266 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
267 };
268
269 struct ib_cq_init_attr {
270 unsigned int cqe;
271 int comp_vector;
272 u32 flags;
273 };
274
275 struct ib_device_attr {
276 u64 fw_ver;
277 __be64 sys_image_guid;
278 u64 max_mr_size;
279 u64 page_size_cap;
280 u32 vendor_id;
281 u32 vendor_part_id;
282 u32 hw_ver;
283 int max_qp;
284 int max_qp_wr;
285 u64 device_cap_flags;
286 int max_sge;
287 int max_sge_rd;
288 int max_cq;
289 int max_cqe;
290 int max_mr;
291 int max_pd;
292 int max_qp_rd_atom;
293 int max_ee_rd_atom;
294 int max_res_rd_atom;
295 int max_qp_init_rd_atom;
296 int max_ee_init_rd_atom;
297 enum ib_atomic_cap atomic_cap;
298 enum ib_atomic_cap masked_atomic_cap;
299 int max_ee;
300 int max_rdd;
301 int max_mw;
302 int max_raw_ipv6_qp;
303 int max_raw_ethy_qp;
304 int max_mcast_grp;
305 int max_mcast_qp_attach;
306 int max_total_mcast_qp_attach;
307 int max_ah;
308 int max_fmr;
309 int max_map_per_fmr;
310 int max_srq;
311 int max_srq_wr;
312 int max_srq_sge;
313 unsigned int max_fast_reg_page_list_len;
314 u16 max_pkeys;
315 u8 local_ca_ack_delay;
316 int sig_prot_cap;
317 int sig_guard_cap;
318 struct ib_odp_caps odp_caps;
319 uint64_t timestamp_mask;
320 uint64_t hca_core_clock; /* in KHZ */
321 };
322
323 enum ib_mtu {
324 IB_MTU_256 = 1,
325 IB_MTU_512 = 2,
326 IB_MTU_1024 = 3,
327 IB_MTU_2048 = 4,
328 IB_MTU_4096 = 5
329 };
330
331 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
332 {
333 switch (mtu) {
334 case IB_MTU_256: return 256;
335 case IB_MTU_512: return 512;
336 case IB_MTU_1024: return 1024;
337 case IB_MTU_2048: return 2048;
338 case IB_MTU_4096: return 4096;
339 default: return -1;
340 }
341 }
342
343 enum ib_port_state {
344 IB_PORT_NOP = 0,
345 IB_PORT_DOWN = 1,
346 IB_PORT_INIT = 2,
347 IB_PORT_ARMED = 3,
348 IB_PORT_ACTIVE = 4,
349 IB_PORT_ACTIVE_DEFER = 5
350 };
351
352 enum ib_port_cap_flags {
353 IB_PORT_SM = 1 << 1,
354 IB_PORT_NOTICE_SUP = 1 << 2,
355 IB_PORT_TRAP_SUP = 1 << 3,
356 IB_PORT_OPT_IPD_SUP = 1 << 4,
357 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
358 IB_PORT_SL_MAP_SUP = 1 << 6,
359 IB_PORT_MKEY_NVRAM = 1 << 7,
360 IB_PORT_PKEY_NVRAM = 1 << 8,
361 IB_PORT_LED_INFO_SUP = 1 << 9,
362 IB_PORT_SM_DISABLED = 1 << 10,
363 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
364 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
365 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
366 IB_PORT_CM_SUP = 1 << 16,
367 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
368 IB_PORT_REINIT_SUP = 1 << 18,
369 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
370 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
371 IB_PORT_DR_NOTICE_SUP = 1 << 21,
372 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
373 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
374 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
375 IB_PORT_CLIENT_REG_SUP = 1 << 25,
376 IB_PORT_IP_BASED_GIDS = 1 << 26,
377 };
378
379 enum ib_port_width {
380 IB_WIDTH_1X = 1,
381 IB_WIDTH_4X = 2,
382 IB_WIDTH_8X = 4,
383 IB_WIDTH_12X = 8
384 };
385
386 static inline int ib_width_enum_to_int(enum ib_port_width width)
387 {
388 switch (width) {
389 case IB_WIDTH_1X: return 1;
390 case IB_WIDTH_4X: return 4;
391 case IB_WIDTH_8X: return 8;
392 case IB_WIDTH_12X: return 12;
393 default: return -1;
394 }
395 }
396
397 enum ib_port_speed {
398 IB_SPEED_SDR = 1,
399 IB_SPEED_DDR = 2,
400 IB_SPEED_QDR = 4,
401 IB_SPEED_FDR10 = 8,
402 IB_SPEED_FDR = 16,
403 IB_SPEED_EDR = 32
404 };
405
406 struct ib_protocol_stats {
407 /* TBD... */
408 };
409
410 struct iw_protocol_stats {
411 u64 ipInReceives;
412 u64 ipInHdrErrors;
413 u64 ipInTooBigErrors;
414 u64 ipInNoRoutes;
415 u64 ipInAddrErrors;
416 u64 ipInUnknownProtos;
417 u64 ipInTruncatedPkts;
418 u64 ipInDiscards;
419 u64 ipInDelivers;
420 u64 ipOutForwDatagrams;
421 u64 ipOutRequests;
422 u64 ipOutDiscards;
423 u64 ipOutNoRoutes;
424 u64 ipReasmTimeout;
425 u64 ipReasmReqds;
426 u64 ipReasmOKs;
427 u64 ipReasmFails;
428 u64 ipFragOKs;
429 u64 ipFragFails;
430 u64 ipFragCreates;
431 u64 ipInMcastPkts;
432 u64 ipOutMcastPkts;
433 u64 ipInBcastPkts;
434 u64 ipOutBcastPkts;
435
436 u64 tcpRtoAlgorithm;
437 u64 tcpRtoMin;
438 u64 tcpRtoMax;
439 u64 tcpMaxConn;
440 u64 tcpActiveOpens;
441 u64 tcpPassiveOpens;
442 u64 tcpAttemptFails;
443 u64 tcpEstabResets;
444 u64 tcpCurrEstab;
445 u64 tcpInSegs;
446 u64 tcpOutSegs;
447 u64 tcpRetransSegs;
448 u64 tcpInErrs;
449 u64 tcpOutRsts;
450 };
451
452 union rdma_protocol_stats {
453 struct ib_protocol_stats ib;
454 struct iw_protocol_stats iw;
455 };
456
457 /* Define bits for the various functionality this port needs to be supported by
458 * the core.
459 */
460 /* Management 0x00000FFF */
461 #define RDMA_CORE_CAP_IB_MAD 0x00000001
462 #define RDMA_CORE_CAP_IB_SMI 0x00000002
463 #define RDMA_CORE_CAP_IB_CM 0x00000004
464 #define RDMA_CORE_CAP_IW_CM 0x00000008
465 #define RDMA_CORE_CAP_IB_SA 0x00000010
466 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
467
468 /* Address format 0x000FF000 */
469 #define RDMA_CORE_CAP_AF_IB 0x00001000
470 #define RDMA_CORE_CAP_ETH_AH 0x00002000
471
472 /* Protocol 0xFFF00000 */
473 #define RDMA_CORE_CAP_PROT_IB 0x00100000
474 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
475 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
476 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
477
478 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
479 | RDMA_CORE_CAP_IB_MAD \
480 | RDMA_CORE_CAP_IB_SMI \
481 | RDMA_CORE_CAP_IB_CM \
482 | RDMA_CORE_CAP_IB_SA \
483 | RDMA_CORE_CAP_AF_IB)
484 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
485 | RDMA_CORE_CAP_IB_MAD \
486 | RDMA_CORE_CAP_IB_CM \
487 | RDMA_CORE_CAP_AF_IB \
488 | RDMA_CORE_CAP_ETH_AH)
489 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
490 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
491 | RDMA_CORE_CAP_IB_MAD \
492 | RDMA_CORE_CAP_IB_CM \
493 | RDMA_CORE_CAP_AF_IB \
494 | RDMA_CORE_CAP_ETH_AH)
495 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
496 | RDMA_CORE_CAP_IW_CM)
497 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
498 | RDMA_CORE_CAP_OPA_MAD)
499
500 struct ib_port_attr {
501 u64 subnet_prefix;
502 enum ib_port_state state;
503 enum ib_mtu max_mtu;
504 enum ib_mtu active_mtu;
505 int gid_tbl_len;
506 u32 port_cap_flags;
507 u32 max_msg_sz;
508 u32 bad_pkey_cntr;
509 u32 qkey_viol_cntr;
510 u16 pkey_tbl_len;
511 u16 lid;
512 u16 sm_lid;
513 u8 lmc;
514 u8 max_vl_num;
515 u8 sm_sl;
516 u8 subnet_timeout;
517 u8 init_type_reply;
518 u8 active_width;
519 u8 active_speed;
520 u8 phys_state;
521 bool grh_required;
522 };
523
524 enum ib_device_modify_flags {
525 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
526 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
527 };
528
529 struct ib_device_modify {
530 u64 sys_image_guid;
531 char node_desc[64];
532 };
533
534 enum ib_port_modify_flags {
535 IB_PORT_SHUTDOWN = 1,
536 IB_PORT_INIT_TYPE = (1<<2),
537 IB_PORT_RESET_QKEY_CNTR = (1<<3)
538 };
539
540 struct ib_port_modify {
541 u32 set_port_cap_mask;
542 u32 clr_port_cap_mask;
543 u8 init_type;
544 };
545
546 enum ib_event_type {
547 IB_EVENT_CQ_ERR,
548 IB_EVENT_QP_FATAL,
549 IB_EVENT_QP_REQ_ERR,
550 IB_EVENT_QP_ACCESS_ERR,
551 IB_EVENT_COMM_EST,
552 IB_EVENT_SQ_DRAINED,
553 IB_EVENT_PATH_MIG,
554 IB_EVENT_PATH_MIG_ERR,
555 IB_EVENT_DEVICE_FATAL,
556 IB_EVENT_PORT_ACTIVE,
557 IB_EVENT_PORT_ERR,
558 IB_EVENT_LID_CHANGE,
559 IB_EVENT_PKEY_CHANGE,
560 IB_EVENT_SM_CHANGE,
561 IB_EVENT_SRQ_ERR,
562 IB_EVENT_SRQ_LIMIT_REACHED,
563 IB_EVENT_QP_LAST_WQE_REACHED,
564 IB_EVENT_CLIENT_REREGISTER,
565 IB_EVENT_GID_CHANGE,
566 };
567
568 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
569
570 struct ib_event {
571 struct ib_device *device;
572 union {
573 struct ib_cq *cq;
574 struct ib_qp *qp;
575 struct ib_srq *srq;
576 u8 port_num;
577 } element;
578 enum ib_event_type event;
579 };
580
581 struct ib_event_handler {
582 struct ib_device *device;
583 void (*handler)(struct ib_event_handler *, struct ib_event *);
584 struct list_head list;
585 };
586
587 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
588 do { \
589 (_ptr)->device = _device; \
590 (_ptr)->handler = _handler; \
591 INIT_LIST_HEAD(&(_ptr)->list); \
592 } while (0)
593
594 struct ib_global_route {
595 union ib_gid dgid;
596 u32 flow_label;
597 u8 sgid_index;
598 u8 hop_limit;
599 u8 traffic_class;
600 };
601
602 struct ib_grh {
603 __be32 version_tclass_flow;
604 __be16 paylen;
605 u8 next_hdr;
606 u8 hop_limit;
607 union ib_gid sgid;
608 union ib_gid dgid;
609 };
610
611 union rdma_network_hdr {
612 struct ib_grh ibgrh;
613 struct {
614 /* The IB spec states that if it's IPv4, the header
615 * is located in the last 20 bytes of the header.
616 */
617 u8 reserved[20];
618 struct iphdr roce4grh;
619 };
620 };
621
622 enum {
623 IB_MULTICAST_QPN = 0xffffff
624 };
625
626 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
627 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
628
629 enum ib_ah_flags {
630 IB_AH_GRH = 1
631 };
632
633 enum ib_rate {
634 IB_RATE_PORT_CURRENT = 0,
635 IB_RATE_2_5_GBPS = 2,
636 IB_RATE_5_GBPS = 5,
637 IB_RATE_10_GBPS = 3,
638 IB_RATE_20_GBPS = 6,
639 IB_RATE_30_GBPS = 4,
640 IB_RATE_40_GBPS = 7,
641 IB_RATE_60_GBPS = 8,
642 IB_RATE_80_GBPS = 9,
643 IB_RATE_120_GBPS = 10,
644 IB_RATE_14_GBPS = 11,
645 IB_RATE_56_GBPS = 12,
646 IB_RATE_112_GBPS = 13,
647 IB_RATE_168_GBPS = 14,
648 IB_RATE_25_GBPS = 15,
649 IB_RATE_100_GBPS = 16,
650 IB_RATE_200_GBPS = 17,
651 IB_RATE_300_GBPS = 18
652 };
653
654 /**
655 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
656 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
657 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
658 * @rate: rate to convert.
659 */
660 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
661
662 /**
663 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
664 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
665 * @rate: rate to convert.
666 */
667 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
668
669
670 /**
671 * enum ib_mr_type - memory region type
672 * @IB_MR_TYPE_MEM_REG: memory region that is used for
673 * normal registration
674 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
675 * signature operations (data-integrity
676 * capable regions)
677 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
678 * register any arbitrary sg lists (without
679 * the normal mr constraints - see
680 * ib_map_mr_sg)
681 */
682 enum ib_mr_type {
683 IB_MR_TYPE_MEM_REG,
684 IB_MR_TYPE_SIGNATURE,
685 IB_MR_TYPE_SG_GAPS,
686 };
687
688 /**
689 * Signature types
690 * IB_SIG_TYPE_NONE: Unprotected.
691 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
692 */
693 enum ib_signature_type {
694 IB_SIG_TYPE_NONE,
695 IB_SIG_TYPE_T10_DIF,
696 };
697
698 /**
699 * Signature T10-DIF block-guard types
700 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
701 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
702 */
703 enum ib_t10_dif_bg_type {
704 IB_T10DIF_CRC,
705 IB_T10DIF_CSUM
706 };
707
708 /**
709 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
710 * domain.
711 * @bg_type: T10-DIF block guard type (CRC|CSUM)
712 * @pi_interval: protection information interval.
713 * @bg: seed of guard computation.
714 * @app_tag: application tag of guard block
715 * @ref_tag: initial guard block reference tag.
716 * @ref_remap: Indicate wethear the reftag increments each block
717 * @app_escape: Indicate to skip block check if apptag=0xffff
718 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
719 * @apptag_check_mask: check bitmask of application tag.
720 */
721 struct ib_t10_dif_domain {
722 enum ib_t10_dif_bg_type bg_type;
723 u16 pi_interval;
724 u16 bg;
725 u16 app_tag;
726 u32 ref_tag;
727 bool ref_remap;
728 bool app_escape;
729 bool ref_escape;
730 u16 apptag_check_mask;
731 };
732
733 /**
734 * struct ib_sig_domain - Parameters for signature domain
735 * @sig_type: specific signauture type
736 * @sig: union of all signature domain attributes that may
737 * be used to set domain layout.
738 */
739 struct ib_sig_domain {
740 enum ib_signature_type sig_type;
741 union {
742 struct ib_t10_dif_domain dif;
743 } sig;
744 };
745
746 /**
747 * struct ib_sig_attrs - Parameters for signature handover operation
748 * @check_mask: bitmask for signature byte check (8 bytes)
749 * @mem: memory domain layout desciptor.
750 * @wire: wire domain layout desciptor.
751 */
752 struct ib_sig_attrs {
753 u8 check_mask;
754 struct ib_sig_domain mem;
755 struct ib_sig_domain wire;
756 };
757
758 enum ib_sig_err_type {
759 IB_SIG_BAD_GUARD,
760 IB_SIG_BAD_REFTAG,
761 IB_SIG_BAD_APPTAG,
762 };
763
764 /**
765 * struct ib_sig_err - signature error descriptor
766 */
767 struct ib_sig_err {
768 enum ib_sig_err_type err_type;
769 u32 expected;
770 u32 actual;
771 u64 sig_err_offset;
772 u32 key;
773 };
774
775 enum ib_mr_status_check {
776 IB_MR_CHECK_SIG_STATUS = 1,
777 };
778
779 /**
780 * struct ib_mr_status - Memory region status container
781 *
782 * @fail_status: Bitmask of MR checks status. For each
783 * failed check a corresponding status bit is set.
784 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
785 * failure.
786 */
787 struct ib_mr_status {
788 u32 fail_status;
789 struct ib_sig_err sig_err;
790 };
791
792 /**
793 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
794 * enum.
795 * @mult: multiple to convert.
796 */
797 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
798
799 struct ib_ah_attr {
800 struct ib_global_route grh;
801 u16 dlid;
802 u8 sl;
803 u8 src_path_bits;
804 u8 static_rate;
805 u8 ah_flags;
806 u8 port_num;
807 u8 dmac[ETH_ALEN];
808 };
809
810 enum ib_wc_status {
811 IB_WC_SUCCESS,
812 IB_WC_LOC_LEN_ERR,
813 IB_WC_LOC_QP_OP_ERR,
814 IB_WC_LOC_EEC_OP_ERR,
815 IB_WC_LOC_PROT_ERR,
816 IB_WC_WR_FLUSH_ERR,
817 IB_WC_MW_BIND_ERR,
818 IB_WC_BAD_RESP_ERR,
819 IB_WC_LOC_ACCESS_ERR,
820 IB_WC_REM_INV_REQ_ERR,
821 IB_WC_REM_ACCESS_ERR,
822 IB_WC_REM_OP_ERR,
823 IB_WC_RETRY_EXC_ERR,
824 IB_WC_RNR_RETRY_EXC_ERR,
825 IB_WC_LOC_RDD_VIOL_ERR,
826 IB_WC_REM_INV_RD_REQ_ERR,
827 IB_WC_REM_ABORT_ERR,
828 IB_WC_INV_EECN_ERR,
829 IB_WC_INV_EEC_STATE_ERR,
830 IB_WC_FATAL_ERR,
831 IB_WC_RESP_TIMEOUT_ERR,
832 IB_WC_GENERAL_ERR
833 };
834
835 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
836
837 enum ib_wc_opcode {
838 IB_WC_SEND,
839 IB_WC_RDMA_WRITE,
840 IB_WC_RDMA_READ,
841 IB_WC_COMP_SWAP,
842 IB_WC_FETCH_ADD,
843 IB_WC_LSO,
844 IB_WC_LOCAL_INV,
845 IB_WC_REG_MR,
846 IB_WC_MASKED_COMP_SWAP,
847 IB_WC_MASKED_FETCH_ADD,
848 /*
849 * Set value of IB_WC_RECV so consumers can test if a completion is a
850 * receive by testing (opcode & IB_WC_RECV).
851 */
852 IB_WC_RECV = 1 << 7,
853 IB_WC_RECV_RDMA_WITH_IMM
854 };
855
856 enum ib_wc_flags {
857 IB_WC_GRH = 1,
858 IB_WC_WITH_IMM = (1<<1),
859 IB_WC_WITH_INVALIDATE = (1<<2),
860 IB_WC_IP_CSUM_OK = (1<<3),
861 IB_WC_WITH_SMAC = (1<<4),
862 IB_WC_WITH_VLAN = (1<<5),
863 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
864 };
865
866 struct ib_wc {
867 union {
868 u64 wr_id;
869 struct ib_cqe *wr_cqe;
870 };
871 enum ib_wc_status status;
872 enum ib_wc_opcode opcode;
873 u32 vendor_err;
874 u32 byte_len;
875 struct ib_qp *qp;
876 union {
877 __be32 imm_data;
878 u32 invalidate_rkey;
879 } ex;
880 u32 src_qp;
881 int wc_flags;
882 u16 pkey_index;
883 u16 slid;
884 u8 sl;
885 u8 dlid_path_bits;
886 u8 port_num; /* valid only for DR SMPs on switches */
887 u8 smac[ETH_ALEN];
888 u16 vlan_id;
889 u8 network_hdr_type;
890 };
891
892 enum ib_cq_notify_flags {
893 IB_CQ_SOLICITED = 1 << 0,
894 IB_CQ_NEXT_COMP = 1 << 1,
895 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
896 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
897 };
898
899 enum ib_srq_type {
900 IB_SRQT_BASIC,
901 IB_SRQT_XRC
902 };
903
904 enum ib_srq_attr_mask {
905 IB_SRQ_MAX_WR = 1 << 0,
906 IB_SRQ_LIMIT = 1 << 1,
907 };
908
909 struct ib_srq_attr {
910 u32 max_wr;
911 u32 max_sge;
912 u32 srq_limit;
913 };
914
915 struct ib_srq_init_attr {
916 void (*event_handler)(struct ib_event *, void *);
917 void *srq_context;
918 struct ib_srq_attr attr;
919 enum ib_srq_type srq_type;
920
921 union {
922 struct {
923 struct ib_xrcd *xrcd;
924 struct ib_cq *cq;
925 } xrc;
926 } ext;
927 };
928
929 struct ib_qp_cap {
930 u32 max_send_wr;
931 u32 max_recv_wr;
932 u32 max_send_sge;
933 u32 max_recv_sge;
934 u32 max_inline_data;
935
936 /*
937 * Maximum number of rdma_rw_ctx structures in flight at a time.
938 * ib_create_qp() will calculate the right amount of neededed WRs
939 * and MRs based on this.
940 */
941 u32 max_rdma_ctxs;
942 };
943
944 enum ib_sig_type {
945 IB_SIGNAL_ALL_WR,
946 IB_SIGNAL_REQ_WR
947 };
948
949 enum ib_qp_type {
950 /*
951 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
952 * here (and in that order) since the MAD layer uses them as
953 * indices into a 2-entry table.
954 */
955 IB_QPT_SMI,
956 IB_QPT_GSI,
957
958 IB_QPT_RC,
959 IB_QPT_UC,
960 IB_QPT_UD,
961 IB_QPT_RAW_IPV6,
962 IB_QPT_RAW_ETHERTYPE,
963 IB_QPT_RAW_PACKET = 8,
964 IB_QPT_XRC_INI = 9,
965 IB_QPT_XRC_TGT,
966 IB_QPT_MAX,
967 /* Reserve a range for qp types internal to the low level driver.
968 * These qp types will not be visible at the IB core layer, so the
969 * IB_QPT_MAX usages should not be affected in the core layer
970 */
971 IB_QPT_RESERVED1 = 0x1000,
972 IB_QPT_RESERVED2,
973 IB_QPT_RESERVED3,
974 IB_QPT_RESERVED4,
975 IB_QPT_RESERVED5,
976 IB_QPT_RESERVED6,
977 IB_QPT_RESERVED7,
978 IB_QPT_RESERVED8,
979 IB_QPT_RESERVED9,
980 IB_QPT_RESERVED10,
981 };
982
983 enum ib_qp_create_flags {
984 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
985 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
986 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
987 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
988 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
989 IB_QP_CREATE_NETIF_QP = 1 << 5,
990 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
991 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
992 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
993 /* reserve bits 26-31 for low level drivers' internal use */
994 IB_QP_CREATE_RESERVED_START = 1 << 26,
995 IB_QP_CREATE_RESERVED_END = 1 << 31,
996 };
997
998 /*
999 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1000 * callback to destroy the passed in QP.
1001 */
1002
1003 struct ib_qp_init_attr {
1004 void (*event_handler)(struct ib_event *, void *);
1005 void *qp_context;
1006 struct ib_cq *send_cq;
1007 struct ib_cq *recv_cq;
1008 struct ib_srq *srq;
1009 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1010 struct ib_qp_cap cap;
1011 enum ib_sig_type sq_sig_type;
1012 enum ib_qp_type qp_type;
1013 enum ib_qp_create_flags create_flags;
1014
1015 /*
1016 * Only needed for special QP types, or when using the RW API.
1017 */
1018 u8 port_num;
1019 };
1020
1021 struct ib_qp_open_attr {
1022 void (*event_handler)(struct ib_event *, void *);
1023 void *qp_context;
1024 u32 qp_num;
1025 enum ib_qp_type qp_type;
1026 };
1027
1028 enum ib_rnr_timeout {
1029 IB_RNR_TIMER_655_36 = 0,
1030 IB_RNR_TIMER_000_01 = 1,
1031 IB_RNR_TIMER_000_02 = 2,
1032 IB_RNR_TIMER_000_03 = 3,
1033 IB_RNR_TIMER_000_04 = 4,
1034 IB_RNR_TIMER_000_06 = 5,
1035 IB_RNR_TIMER_000_08 = 6,
1036 IB_RNR_TIMER_000_12 = 7,
1037 IB_RNR_TIMER_000_16 = 8,
1038 IB_RNR_TIMER_000_24 = 9,
1039 IB_RNR_TIMER_000_32 = 10,
1040 IB_RNR_TIMER_000_48 = 11,
1041 IB_RNR_TIMER_000_64 = 12,
1042 IB_RNR_TIMER_000_96 = 13,
1043 IB_RNR_TIMER_001_28 = 14,
1044 IB_RNR_TIMER_001_92 = 15,
1045 IB_RNR_TIMER_002_56 = 16,
1046 IB_RNR_TIMER_003_84 = 17,
1047 IB_RNR_TIMER_005_12 = 18,
1048 IB_RNR_TIMER_007_68 = 19,
1049 IB_RNR_TIMER_010_24 = 20,
1050 IB_RNR_TIMER_015_36 = 21,
1051 IB_RNR_TIMER_020_48 = 22,
1052 IB_RNR_TIMER_030_72 = 23,
1053 IB_RNR_TIMER_040_96 = 24,
1054 IB_RNR_TIMER_061_44 = 25,
1055 IB_RNR_TIMER_081_92 = 26,
1056 IB_RNR_TIMER_122_88 = 27,
1057 IB_RNR_TIMER_163_84 = 28,
1058 IB_RNR_TIMER_245_76 = 29,
1059 IB_RNR_TIMER_327_68 = 30,
1060 IB_RNR_TIMER_491_52 = 31
1061 };
1062
1063 enum ib_qp_attr_mask {
1064 IB_QP_STATE = 1,
1065 IB_QP_CUR_STATE = (1<<1),
1066 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1067 IB_QP_ACCESS_FLAGS = (1<<3),
1068 IB_QP_PKEY_INDEX = (1<<4),
1069 IB_QP_PORT = (1<<5),
1070 IB_QP_QKEY = (1<<6),
1071 IB_QP_AV = (1<<7),
1072 IB_QP_PATH_MTU = (1<<8),
1073 IB_QP_TIMEOUT = (1<<9),
1074 IB_QP_RETRY_CNT = (1<<10),
1075 IB_QP_RNR_RETRY = (1<<11),
1076 IB_QP_RQ_PSN = (1<<12),
1077 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1078 IB_QP_ALT_PATH = (1<<14),
1079 IB_QP_MIN_RNR_TIMER = (1<<15),
1080 IB_QP_SQ_PSN = (1<<16),
1081 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1082 IB_QP_PATH_MIG_STATE = (1<<18),
1083 IB_QP_CAP = (1<<19),
1084 IB_QP_DEST_QPN = (1<<20),
1085 IB_QP_RESERVED1 = (1<<21),
1086 IB_QP_RESERVED2 = (1<<22),
1087 IB_QP_RESERVED3 = (1<<23),
1088 IB_QP_RESERVED4 = (1<<24),
1089 };
1090
1091 enum ib_qp_state {
1092 IB_QPS_RESET,
1093 IB_QPS_INIT,
1094 IB_QPS_RTR,
1095 IB_QPS_RTS,
1096 IB_QPS_SQD,
1097 IB_QPS_SQE,
1098 IB_QPS_ERR
1099 };
1100
1101 enum ib_mig_state {
1102 IB_MIG_MIGRATED,
1103 IB_MIG_REARM,
1104 IB_MIG_ARMED
1105 };
1106
1107 enum ib_mw_type {
1108 IB_MW_TYPE_1 = 1,
1109 IB_MW_TYPE_2 = 2
1110 };
1111
1112 struct ib_qp_attr {
1113 enum ib_qp_state qp_state;
1114 enum ib_qp_state cur_qp_state;
1115 enum ib_mtu path_mtu;
1116 enum ib_mig_state path_mig_state;
1117 u32 qkey;
1118 u32 rq_psn;
1119 u32 sq_psn;
1120 u32 dest_qp_num;
1121 int qp_access_flags;
1122 struct ib_qp_cap cap;
1123 struct ib_ah_attr ah_attr;
1124 struct ib_ah_attr alt_ah_attr;
1125 u16 pkey_index;
1126 u16 alt_pkey_index;
1127 u8 en_sqd_async_notify;
1128 u8 sq_draining;
1129 u8 max_rd_atomic;
1130 u8 max_dest_rd_atomic;
1131 u8 min_rnr_timer;
1132 u8 port_num;
1133 u8 timeout;
1134 u8 retry_cnt;
1135 u8 rnr_retry;
1136 u8 alt_port_num;
1137 u8 alt_timeout;
1138 };
1139
1140 enum ib_wr_opcode {
1141 IB_WR_RDMA_WRITE,
1142 IB_WR_RDMA_WRITE_WITH_IMM,
1143 IB_WR_SEND,
1144 IB_WR_SEND_WITH_IMM,
1145 IB_WR_RDMA_READ,
1146 IB_WR_ATOMIC_CMP_AND_SWP,
1147 IB_WR_ATOMIC_FETCH_AND_ADD,
1148 IB_WR_LSO,
1149 IB_WR_SEND_WITH_INV,
1150 IB_WR_RDMA_READ_WITH_INV,
1151 IB_WR_LOCAL_INV,
1152 IB_WR_REG_MR,
1153 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1154 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1155 IB_WR_REG_SIG_MR,
1156 /* reserve values for low level drivers' internal use.
1157 * These values will not be used at all in the ib core layer.
1158 */
1159 IB_WR_RESERVED1 = 0xf0,
1160 IB_WR_RESERVED2,
1161 IB_WR_RESERVED3,
1162 IB_WR_RESERVED4,
1163 IB_WR_RESERVED5,
1164 IB_WR_RESERVED6,
1165 IB_WR_RESERVED7,
1166 IB_WR_RESERVED8,
1167 IB_WR_RESERVED9,
1168 IB_WR_RESERVED10,
1169 };
1170
1171 enum ib_send_flags {
1172 IB_SEND_FENCE = 1,
1173 IB_SEND_SIGNALED = (1<<1),
1174 IB_SEND_SOLICITED = (1<<2),
1175 IB_SEND_INLINE = (1<<3),
1176 IB_SEND_IP_CSUM = (1<<4),
1177
1178 /* reserve bits 26-31 for low level drivers' internal use */
1179 IB_SEND_RESERVED_START = (1 << 26),
1180 IB_SEND_RESERVED_END = (1 << 31),
1181 };
1182
1183 struct ib_sge {
1184 u64 addr;
1185 u32 length;
1186 u32 lkey;
1187 };
1188
1189 struct ib_cqe {
1190 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1191 };
1192
1193 struct ib_send_wr {
1194 struct ib_send_wr *next;
1195 union {
1196 u64 wr_id;
1197 struct ib_cqe *wr_cqe;
1198 };
1199 struct ib_sge *sg_list;
1200 int num_sge;
1201 enum ib_wr_opcode opcode;
1202 int send_flags;
1203 union {
1204 __be32 imm_data;
1205 u32 invalidate_rkey;
1206 } ex;
1207 };
1208
1209 struct ib_rdma_wr {
1210 struct ib_send_wr wr;
1211 u64 remote_addr;
1212 u32 rkey;
1213 };
1214
1215 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1216 {
1217 return container_of(wr, struct ib_rdma_wr, wr);
1218 }
1219
1220 struct ib_atomic_wr {
1221 struct ib_send_wr wr;
1222 u64 remote_addr;
1223 u64 compare_add;
1224 u64 swap;
1225 u64 compare_add_mask;
1226 u64 swap_mask;
1227 u32 rkey;
1228 };
1229
1230 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1231 {
1232 return container_of(wr, struct ib_atomic_wr, wr);
1233 }
1234
1235 struct ib_ud_wr {
1236 struct ib_send_wr wr;
1237 struct ib_ah *ah;
1238 void *header;
1239 int hlen;
1240 int mss;
1241 u32 remote_qpn;
1242 u32 remote_qkey;
1243 u16 pkey_index; /* valid for GSI only */
1244 u8 port_num; /* valid for DR SMPs on switch only */
1245 };
1246
1247 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1248 {
1249 return container_of(wr, struct ib_ud_wr, wr);
1250 }
1251
1252 struct ib_reg_wr {
1253 struct ib_send_wr wr;
1254 struct ib_mr *mr;
1255 u32 key;
1256 int access;
1257 };
1258
1259 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1260 {
1261 return container_of(wr, struct ib_reg_wr, wr);
1262 }
1263
1264 struct ib_sig_handover_wr {
1265 struct ib_send_wr wr;
1266 struct ib_sig_attrs *sig_attrs;
1267 struct ib_mr *sig_mr;
1268 int access_flags;
1269 struct ib_sge *prot;
1270 };
1271
1272 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1273 {
1274 return container_of(wr, struct ib_sig_handover_wr, wr);
1275 }
1276
1277 struct ib_recv_wr {
1278 struct ib_recv_wr *next;
1279 union {
1280 u64 wr_id;
1281 struct ib_cqe *wr_cqe;
1282 };
1283 struct ib_sge *sg_list;
1284 int num_sge;
1285 };
1286
1287 enum ib_access_flags {
1288 IB_ACCESS_LOCAL_WRITE = 1,
1289 IB_ACCESS_REMOTE_WRITE = (1<<1),
1290 IB_ACCESS_REMOTE_READ = (1<<2),
1291 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1292 IB_ACCESS_MW_BIND = (1<<4),
1293 IB_ZERO_BASED = (1<<5),
1294 IB_ACCESS_ON_DEMAND = (1<<6),
1295 };
1296
1297 /*
1298 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1299 * are hidden here instead of a uapi header!
1300 */
1301 enum ib_mr_rereg_flags {
1302 IB_MR_REREG_TRANS = 1,
1303 IB_MR_REREG_PD = (1<<1),
1304 IB_MR_REREG_ACCESS = (1<<2),
1305 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1306 };
1307
1308 struct ib_fmr_attr {
1309 int max_pages;
1310 int max_maps;
1311 u8 page_shift;
1312 };
1313
1314 struct ib_umem;
1315
1316 struct ib_ucontext {
1317 struct ib_device *device;
1318 struct list_head pd_list;
1319 struct list_head mr_list;
1320 struct list_head mw_list;
1321 struct list_head cq_list;
1322 struct list_head qp_list;
1323 struct list_head srq_list;
1324 struct list_head ah_list;
1325 struct list_head xrcd_list;
1326 struct list_head rule_list;
1327 int closing;
1328
1329 struct pid *tgid;
1330 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1331 struct rb_root umem_tree;
1332 /*
1333 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1334 * mmu notifiers registration.
1335 */
1336 struct rw_semaphore umem_rwsem;
1337 void (*invalidate_range)(struct ib_umem *umem,
1338 unsigned long start, unsigned long end);
1339
1340 struct mmu_notifier mn;
1341 atomic_t notifier_count;
1342 /* A list of umems that don't have private mmu notifier counters yet. */
1343 struct list_head no_private_counters;
1344 int odp_mrs_count;
1345 #endif
1346 };
1347
1348 struct ib_uobject {
1349 u64 user_handle; /* handle given to us by userspace */
1350 struct ib_ucontext *context; /* associated user context */
1351 void *object; /* containing object */
1352 struct list_head list; /* link to context's list */
1353 int id; /* index into kernel idr */
1354 struct kref ref;
1355 struct rw_semaphore mutex; /* protects .live */
1356 struct rcu_head rcu; /* kfree_rcu() overhead */
1357 int live;
1358 };
1359
1360 struct ib_udata {
1361 const void __user *inbuf;
1362 void __user *outbuf;
1363 size_t inlen;
1364 size_t outlen;
1365 };
1366
1367 struct ib_pd {
1368 u32 local_dma_lkey;
1369 struct ib_device *device;
1370 struct ib_uobject *uobject;
1371 atomic_t usecnt; /* count all resources */
1372 struct ib_mr *local_mr;
1373 };
1374
1375 struct ib_xrcd {
1376 struct ib_device *device;
1377 atomic_t usecnt; /* count all exposed resources */
1378 struct inode *inode;
1379
1380 struct mutex tgt_qp_mutex;
1381 struct list_head tgt_qp_list;
1382 };
1383
1384 struct ib_ah {
1385 struct ib_device *device;
1386 struct ib_pd *pd;
1387 struct ib_uobject *uobject;
1388 };
1389
1390 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1391
1392 enum ib_poll_context {
1393 IB_POLL_DIRECT, /* caller context, no hw completions */
1394 IB_POLL_SOFTIRQ, /* poll from softirq context */
1395 IB_POLL_WORKQUEUE, /* poll from workqueue */
1396 };
1397
1398 struct ib_cq {
1399 struct ib_device *device;
1400 struct ib_uobject *uobject;
1401 ib_comp_handler comp_handler;
1402 void (*event_handler)(struct ib_event *, void *);
1403 void *cq_context;
1404 int cqe;
1405 atomic_t usecnt; /* count number of work queues */
1406 enum ib_poll_context poll_ctx;
1407 struct ib_wc *wc;
1408 union {
1409 struct irq_poll iop;
1410 struct work_struct work;
1411 };
1412 };
1413
1414 struct ib_srq {
1415 struct ib_device *device;
1416 struct ib_pd *pd;
1417 struct ib_uobject *uobject;
1418 void (*event_handler)(struct ib_event *, void *);
1419 void *srq_context;
1420 enum ib_srq_type srq_type;
1421 atomic_t usecnt;
1422
1423 union {
1424 struct {
1425 struct ib_xrcd *xrcd;
1426 struct ib_cq *cq;
1427 u32 srq_num;
1428 } xrc;
1429 } ext;
1430 };
1431
1432 struct ib_qp {
1433 struct ib_device *device;
1434 struct ib_pd *pd;
1435 struct ib_cq *send_cq;
1436 struct ib_cq *recv_cq;
1437 spinlock_t mr_lock;
1438 int mrs_used;
1439 struct list_head rdma_mrs;
1440 struct list_head sig_mrs;
1441 struct ib_srq *srq;
1442 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1443 struct list_head xrcd_list;
1444
1445 /* count times opened, mcast attaches, flow attaches */
1446 atomic_t usecnt;
1447 struct list_head open_list;
1448 struct ib_qp *real_qp;
1449 struct ib_uobject *uobject;
1450 void (*event_handler)(struct ib_event *, void *);
1451 void *qp_context;
1452 u32 qp_num;
1453 enum ib_qp_type qp_type;
1454 };
1455
1456 struct ib_mr {
1457 struct ib_device *device;
1458 struct ib_pd *pd;
1459 u32 lkey;
1460 u32 rkey;
1461 u64 iova;
1462 u32 length;
1463 unsigned int page_size;
1464 bool need_inval;
1465 union {
1466 struct ib_uobject *uobject; /* user */
1467 struct list_head qp_entry; /* FR */
1468 };
1469 };
1470
1471 struct ib_mw {
1472 struct ib_device *device;
1473 struct ib_pd *pd;
1474 struct ib_uobject *uobject;
1475 u32 rkey;
1476 enum ib_mw_type type;
1477 };
1478
1479 struct ib_fmr {
1480 struct ib_device *device;
1481 struct ib_pd *pd;
1482 struct list_head list;
1483 u32 lkey;
1484 u32 rkey;
1485 };
1486
1487 /* Supported steering options */
1488 enum ib_flow_attr_type {
1489 /* steering according to rule specifications */
1490 IB_FLOW_ATTR_NORMAL = 0x0,
1491 /* default unicast and multicast rule -
1492 * receive all Eth traffic which isn't steered to any QP
1493 */
1494 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1495 /* default multicast rule -
1496 * receive all Eth multicast traffic which isn't steered to any QP
1497 */
1498 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1499 /* sniffer rule - receive all port traffic */
1500 IB_FLOW_ATTR_SNIFFER = 0x3
1501 };
1502
1503 /* Supported steering header types */
1504 enum ib_flow_spec_type {
1505 /* L2 headers*/
1506 IB_FLOW_SPEC_ETH = 0x20,
1507 IB_FLOW_SPEC_IB = 0x22,
1508 /* L3 header*/
1509 IB_FLOW_SPEC_IPV4 = 0x30,
1510 /* L4 headers*/
1511 IB_FLOW_SPEC_TCP = 0x40,
1512 IB_FLOW_SPEC_UDP = 0x41
1513 };
1514 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1515 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1516
1517 /* Flow steering rule priority is set according to it's domain.
1518 * Lower domain value means higher priority.
1519 */
1520 enum ib_flow_domain {
1521 IB_FLOW_DOMAIN_USER,
1522 IB_FLOW_DOMAIN_ETHTOOL,
1523 IB_FLOW_DOMAIN_RFS,
1524 IB_FLOW_DOMAIN_NIC,
1525 IB_FLOW_DOMAIN_NUM /* Must be last */
1526 };
1527
1528 enum ib_flow_flags {
1529 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1530 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1531 };
1532
1533 struct ib_flow_eth_filter {
1534 u8 dst_mac[6];
1535 u8 src_mac[6];
1536 __be16 ether_type;
1537 __be16 vlan_tag;
1538 };
1539
1540 struct ib_flow_spec_eth {
1541 enum ib_flow_spec_type type;
1542 u16 size;
1543 struct ib_flow_eth_filter val;
1544 struct ib_flow_eth_filter mask;
1545 };
1546
1547 struct ib_flow_ib_filter {
1548 __be16 dlid;
1549 __u8 sl;
1550 };
1551
1552 struct ib_flow_spec_ib {
1553 enum ib_flow_spec_type type;
1554 u16 size;
1555 struct ib_flow_ib_filter val;
1556 struct ib_flow_ib_filter mask;
1557 };
1558
1559 struct ib_flow_ipv4_filter {
1560 __be32 src_ip;
1561 __be32 dst_ip;
1562 };
1563
1564 struct ib_flow_spec_ipv4 {
1565 enum ib_flow_spec_type type;
1566 u16 size;
1567 struct ib_flow_ipv4_filter val;
1568 struct ib_flow_ipv4_filter mask;
1569 };
1570
1571 struct ib_flow_tcp_udp_filter {
1572 __be16 dst_port;
1573 __be16 src_port;
1574 };
1575
1576 struct ib_flow_spec_tcp_udp {
1577 enum ib_flow_spec_type type;
1578 u16 size;
1579 struct ib_flow_tcp_udp_filter val;
1580 struct ib_flow_tcp_udp_filter mask;
1581 };
1582
1583 union ib_flow_spec {
1584 struct {
1585 enum ib_flow_spec_type type;
1586 u16 size;
1587 };
1588 struct ib_flow_spec_eth eth;
1589 struct ib_flow_spec_ib ib;
1590 struct ib_flow_spec_ipv4 ipv4;
1591 struct ib_flow_spec_tcp_udp tcp_udp;
1592 };
1593
1594 struct ib_flow_attr {
1595 enum ib_flow_attr_type type;
1596 u16 size;
1597 u16 priority;
1598 u32 flags;
1599 u8 num_of_specs;
1600 u8 port;
1601 /* Following are the optional layers according to user request
1602 * struct ib_flow_spec_xxx
1603 * struct ib_flow_spec_yyy
1604 */
1605 };
1606
1607 struct ib_flow {
1608 struct ib_qp *qp;
1609 struct ib_uobject *uobject;
1610 };
1611
1612 struct ib_mad_hdr;
1613 struct ib_grh;
1614
1615 enum ib_process_mad_flags {
1616 IB_MAD_IGNORE_MKEY = 1,
1617 IB_MAD_IGNORE_BKEY = 2,
1618 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1619 };
1620
1621 enum ib_mad_result {
1622 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1623 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1624 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1625 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1626 };
1627
1628 #define IB_DEVICE_NAME_MAX 64
1629
1630 struct ib_cache {
1631 rwlock_t lock;
1632 struct ib_event_handler event_handler;
1633 struct ib_pkey_cache **pkey_cache;
1634 struct ib_gid_table **gid_cache;
1635 u8 *lmc_cache;
1636 };
1637
1638 struct ib_dma_mapping_ops {
1639 int (*mapping_error)(struct ib_device *dev,
1640 u64 dma_addr);
1641 u64 (*map_single)(struct ib_device *dev,
1642 void *ptr, size_t size,
1643 enum dma_data_direction direction);
1644 void (*unmap_single)(struct ib_device *dev,
1645 u64 addr, size_t size,
1646 enum dma_data_direction direction);
1647 u64 (*map_page)(struct ib_device *dev,
1648 struct page *page, unsigned long offset,
1649 size_t size,
1650 enum dma_data_direction direction);
1651 void (*unmap_page)(struct ib_device *dev,
1652 u64 addr, size_t size,
1653 enum dma_data_direction direction);
1654 int (*map_sg)(struct ib_device *dev,
1655 struct scatterlist *sg, int nents,
1656 enum dma_data_direction direction);
1657 void (*unmap_sg)(struct ib_device *dev,
1658 struct scatterlist *sg, int nents,
1659 enum dma_data_direction direction);
1660 void (*sync_single_for_cpu)(struct ib_device *dev,
1661 u64 dma_handle,
1662 size_t size,
1663 enum dma_data_direction dir);
1664 void (*sync_single_for_device)(struct ib_device *dev,
1665 u64 dma_handle,
1666 size_t size,
1667 enum dma_data_direction dir);
1668 void *(*alloc_coherent)(struct ib_device *dev,
1669 size_t size,
1670 u64 *dma_handle,
1671 gfp_t flag);
1672 void (*free_coherent)(struct ib_device *dev,
1673 size_t size, void *cpu_addr,
1674 u64 dma_handle);
1675 };
1676
1677 struct iw_cm_verbs;
1678
1679 struct ib_port_immutable {
1680 int pkey_tbl_len;
1681 int gid_tbl_len;
1682 u32 core_cap_flags;
1683 u32 max_mad_size;
1684 };
1685
1686 struct ib_device {
1687 struct device *dma_device;
1688
1689 char name[IB_DEVICE_NAME_MAX];
1690
1691 struct list_head event_handler_list;
1692 spinlock_t event_handler_lock;
1693
1694 spinlock_t client_data_lock;
1695 struct list_head core_list;
1696 /* Access to the client_data_list is protected by the client_data_lock
1697 * spinlock and the lists_rwsem read-write semaphore */
1698 struct list_head client_data_list;
1699
1700 struct ib_cache cache;
1701 /**
1702 * port_immutable is indexed by port number
1703 */
1704 struct ib_port_immutable *port_immutable;
1705
1706 int num_comp_vectors;
1707
1708 struct iw_cm_verbs *iwcm;
1709
1710 int (*get_protocol_stats)(struct ib_device *device,
1711 union rdma_protocol_stats *stats);
1712 int (*query_device)(struct ib_device *device,
1713 struct ib_device_attr *device_attr,
1714 struct ib_udata *udata);
1715 int (*query_port)(struct ib_device *device,
1716 u8 port_num,
1717 struct ib_port_attr *port_attr);
1718 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1719 u8 port_num);
1720 /* When calling get_netdev, the HW vendor's driver should return the
1721 * net device of device @device at port @port_num or NULL if such
1722 * a net device doesn't exist. The vendor driver should call dev_hold
1723 * on this net device. The HW vendor's device driver must guarantee
1724 * that this function returns NULL before the net device reaches
1725 * NETDEV_UNREGISTER_FINAL state.
1726 */
1727 struct net_device *(*get_netdev)(struct ib_device *device,
1728 u8 port_num);
1729 int (*query_gid)(struct ib_device *device,
1730 u8 port_num, int index,
1731 union ib_gid *gid);
1732 /* When calling add_gid, the HW vendor's driver should
1733 * add the gid of device @device at gid index @index of
1734 * port @port_num to be @gid. Meta-info of that gid (for example,
1735 * the network device related to this gid is available
1736 * at @attr. @context allows the HW vendor driver to store extra
1737 * information together with a GID entry. The HW vendor may allocate
1738 * memory to contain this information and store it in @context when a
1739 * new GID entry is written to. Params are consistent until the next
1740 * call of add_gid or delete_gid. The function should return 0 on
1741 * success or error otherwise. The function could be called
1742 * concurrently for different ports. This function is only called
1743 * when roce_gid_table is used.
1744 */
1745 int (*add_gid)(struct ib_device *device,
1746 u8 port_num,
1747 unsigned int index,
1748 const union ib_gid *gid,
1749 const struct ib_gid_attr *attr,
1750 void **context);
1751 /* When calling del_gid, the HW vendor's driver should delete the
1752 * gid of device @device at gid index @index of port @port_num.
1753 * Upon the deletion of a GID entry, the HW vendor must free any
1754 * allocated memory. The caller will clear @context afterwards.
1755 * This function is only called when roce_gid_table is used.
1756 */
1757 int (*del_gid)(struct ib_device *device,
1758 u8 port_num,
1759 unsigned int index,
1760 void **context);
1761 int (*query_pkey)(struct ib_device *device,
1762 u8 port_num, u16 index, u16 *pkey);
1763 int (*modify_device)(struct ib_device *device,
1764 int device_modify_mask,
1765 struct ib_device_modify *device_modify);
1766 int (*modify_port)(struct ib_device *device,
1767 u8 port_num, int port_modify_mask,
1768 struct ib_port_modify *port_modify);
1769 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1770 struct ib_udata *udata);
1771 int (*dealloc_ucontext)(struct ib_ucontext *context);
1772 int (*mmap)(struct ib_ucontext *context,
1773 struct vm_area_struct *vma);
1774 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1775 struct ib_ucontext *context,
1776 struct ib_udata *udata);
1777 int (*dealloc_pd)(struct ib_pd *pd);
1778 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1779 struct ib_ah_attr *ah_attr);
1780 int (*modify_ah)(struct ib_ah *ah,
1781 struct ib_ah_attr *ah_attr);
1782 int (*query_ah)(struct ib_ah *ah,
1783 struct ib_ah_attr *ah_attr);
1784 int (*destroy_ah)(struct ib_ah *ah);
1785 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1786 struct ib_srq_init_attr *srq_init_attr,
1787 struct ib_udata *udata);
1788 int (*modify_srq)(struct ib_srq *srq,
1789 struct ib_srq_attr *srq_attr,
1790 enum ib_srq_attr_mask srq_attr_mask,
1791 struct ib_udata *udata);
1792 int (*query_srq)(struct ib_srq *srq,
1793 struct ib_srq_attr *srq_attr);
1794 int (*destroy_srq)(struct ib_srq *srq);
1795 int (*post_srq_recv)(struct ib_srq *srq,
1796 struct ib_recv_wr *recv_wr,
1797 struct ib_recv_wr **bad_recv_wr);
1798 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1799 struct ib_qp_init_attr *qp_init_attr,
1800 struct ib_udata *udata);
1801 int (*modify_qp)(struct ib_qp *qp,
1802 struct ib_qp_attr *qp_attr,
1803 int qp_attr_mask,
1804 struct ib_udata *udata);
1805 int (*query_qp)(struct ib_qp *qp,
1806 struct ib_qp_attr *qp_attr,
1807 int qp_attr_mask,
1808 struct ib_qp_init_attr *qp_init_attr);
1809 int (*destroy_qp)(struct ib_qp *qp);
1810 int (*post_send)(struct ib_qp *qp,
1811 struct ib_send_wr *send_wr,
1812 struct ib_send_wr **bad_send_wr);
1813 int (*post_recv)(struct ib_qp *qp,
1814 struct ib_recv_wr *recv_wr,
1815 struct ib_recv_wr **bad_recv_wr);
1816 struct ib_cq * (*create_cq)(struct ib_device *device,
1817 const struct ib_cq_init_attr *attr,
1818 struct ib_ucontext *context,
1819 struct ib_udata *udata);
1820 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1821 u16 cq_period);
1822 int (*destroy_cq)(struct ib_cq *cq);
1823 int (*resize_cq)(struct ib_cq *cq, int cqe,
1824 struct ib_udata *udata);
1825 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1826 struct ib_wc *wc);
1827 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1828 int (*req_notify_cq)(struct ib_cq *cq,
1829 enum ib_cq_notify_flags flags);
1830 int (*req_ncomp_notif)(struct ib_cq *cq,
1831 int wc_cnt);
1832 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1833 int mr_access_flags);
1834 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1835 u64 start, u64 length,
1836 u64 virt_addr,
1837 int mr_access_flags,
1838 struct ib_udata *udata);
1839 int (*rereg_user_mr)(struct ib_mr *mr,
1840 int flags,
1841 u64 start, u64 length,
1842 u64 virt_addr,
1843 int mr_access_flags,
1844 struct ib_pd *pd,
1845 struct ib_udata *udata);
1846 int (*dereg_mr)(struct ib_mr *mr);
1847 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1848 enum ib_mr_type mr_type,
1849 u32 max_num_sg);
1850 int (*map_mr_sg)(struct ib_mr *mr,
1851 struct scatterlist *sg,
1852 int sg_nents,
1853 unsigned int *sg_offset);
1854 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1855 enum ib_mw_type type,
1856 struct ib_udata *udata);
1857 int (*dealloc_mw)(struct ib_mw *mw);
1858 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1859 int mr_access_flags,
1860 struct ib_fmr_attr *fmr_attr);
1861 int (*map_phys_fmr)(struct ib_fmr *fmr,
1862 u64 *page_list, int list_len,
1863 u64 iova);
1864 int (*unmap_fmr)(struct list_head *fmr_list);
1865 int (*dealloc_fmr)(struct ib_fmr *fmr);
1866 int (*attach_mcast)(struct ib_qp *qp,
1867 union ib_gid *gid,
1868 u16 lid);
1869 int (*detach_mcast)(struct ib_qp *qp,
1870 union ib_gid *gid,
1871 u16 lid);
1872 int (*process_mad)(struct ib_device *device,
1873 int process_mad_flags,
1874 u8 port_num,
1875 const struct ib_wc *in_wc,
1876 const struct ib_grh *in_grh,
1877 const struct ib_mad_hdr *in_mad,
1878 size_t in_mad_size,
1879 struct ib_mad_hdr *out_mad,
1880 size_t *out_mad_size,
1881 u16 *out_mad_pkey_index);
1882 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1883 struct ib_ucontext *ucontext,
1884 struct ib_udata *udata);
1885 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1886 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1887 struct ib_flow_attr
1888 *flow_attr,
1889 int domain);
1890 int (*destroy_flow)(struct ib_flow *flow_id);
1891 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1892 struct ib_mr_status *mr_status);
1893 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1894 void (*drain_rq)(struct ib_qp *qp);
1895 void (*drain_sq)(struct ib_qp *qp);
1896 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
1897 int state);
1898 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
1899 struct ifla_vf_info *ivf);
1900 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
1901 struct ifla_vf_stats *stats);
1902 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
1903 int type);
1904
1905 struct ib_dma_mapping_ops *dma_ops;
1906
1907 struct module *owner;
1908 struct device dev;
1909 struct kobject *ports_parent;
1910 struct list_head port_list;
1911
1912 enum {
1913 IB_DEV_UNINITIALIZED,
1914 IB_DEV_REGISTERED,
1915 IB_DEV_UNREGISTERED
1916 } reg_state;
1917
1918 int uverbs_abi_ver;
1919 u64 uverbs_cmd_mask;
1920 u64 uverbs_ex_cmd_mask;
1921
1922 char node_desc[64];
1923 __be64 node_guid;
1924 u32 local_dma_lkey;
1925 u16 is_switch:1;
1926 u8 node_type;
1927 u8 phys_port_cnt;
1928 struct ib_device_attr attrs;
1929
1930 /**
1931 * The following mandatory functions are used only at device
1932 * registration. Keep functions such as these at the end of this
1933 * structure to avoid cache line misses when accessing struct ib_device
1934 * in fast paths.
1935 */
1936 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1937 };
1938
1939 struct ib_client {
1940 char *name;
1941 void (*add) (struct ib_device *);
1942 void (*remove)(struct ib_device *, void *client_data);
1943
1944 /* Returns the net_dev belonging to this ib_client and matching the
1945 * given parameters.
1946 * @dev: An RDMA device that the net_dev use for communication.
1947 * @port: A physical port number on the RDMA device.
1948 * @pkey: P_Key that the net_dev uses if applicable.
1949 * @gid: A GID that the net_dev uses to communicate.
1950 * @addr: An IP address the net_dev is configured with.
1951 * @client_data: The device's client data set by ib_set_client_data().
1952 *
1953 * An ib_client that implements a net_dev on top of RDMA devices
1954 * (such as IP over IB) should implement this callback, allowing the
1955 * rdma_cm module to find the right net_dev for a given request.
1956 *
1957 * The caller is responsible for calling dev_put on the returned
1958 * netdev. */
1959 struct net_device *(*get_net_dev_by_params)(
1960 struct ib_device *dev,
1961 u8 port,
1962 u16 pkey,
1963 const union ib_gid *gid,
1964 const struct sockaddr *addr,
1965 void *client_data);
1966 struct list_head list;
1967 };
1968
1969 struct ib_device *ib_alloc_device(size_t size);
1970 void ib_dealloc_device(struct ib_device *device);
1971
1972 int ib_register_device(struct ib_device *device,
1973 int (*port_callback)(struct ib_device *,
1974 u8, struct kobject *));
1975 void ib_unregister_device(struct ib_device *device);
1976
1977 int ib_register_client (struct ib_client *client);
1978 void ib_unregister_client(struct ib_client *client);
1979
1980 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1981 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1982 void *data);
1983
1984 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1985 {
1986 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1987 }
1988
1989 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1990 {
1991 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1992 }
1993
1994 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
1995 size_t offset,
1996 size_t len)
1997 {
1998 const void __user *p = udata->inbuf + offset;
1999 bool ret = false;
2000 u8 *buf;
2001
2002 if (len > USHRT_MAX)
2003 return false;
2004
2005 buf = kmalloc(len, GFP_KERNEL);
2006 if (!buf)
2007 return false;
2008
2009 if (copy_from_user(buf, p, len))
2010 goto free;
2011
2012 ret = !memchr_inv(buf, 0, len);
2013
2014 free:
2015 kfree(buf);
2016 return ret;
2017 }
2018
2019 /**
2020 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2021 * contains all required attributes and no attributes not allowed for
2022 * the given QP state transition.
2023 * @cur_state: Current QP state
2024 * @next_state: Next QP state
2025 * @type: QP type
2026 * @mask: Mask of supplied QP attributes
2027 * @ll : link layer of port
2028 *
2029 * This function is a helper function that a low-level driver's
2030 * modify_qp method can use to validate the consumer's input. It
2031 * checks that cur_state and next_state are valid QP states, that a
2032 * transition from cur_state to next_state is allowed by the IB spec,
2033 * and that the attribute mask supplied is allowed for the transition.
2034 */
2035 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2036 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2037 enum rdma_link_layer ll);
2038
2039 int ib_register_event_handler (struct ib_event_handler *event_handler);
2040 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2041 void ib_dispatch_event(struct ib_event *event);
2042
2043 int ib_query_port(struct ib_device *device,
2044 u8 port_num, struct ib_port_attr *port_attr);
2045
2046 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2047 u8 port_num);
2048
2049 /**
2050 * rdma_cap_ib_switch - Check if the device is IB switch
2051 * @device: Device to check
2052 *
2053 * Device driver is responsible for setting is_switch bit on
2054 * in ib_device structure at init time.
2055 *
2056 * Return: true if the device is IB switch.
2057 */
2058 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2059 {
2060 return device->is_switch;
2061 }
2062
2063 /**
2064 * rdma_start_port - Return the first valid port number for the device
2065 * specified
2066 *
2067 * @device: Device to be checked
2068 *
2069 * Return start port number
2070 */
2071 static inline u8 rdma_start_port(const struct ib_device *device)
2072 {
2073 return rdma_cap_ib_switch(device) ? 0 : 1;
2074 }
2075
2076 /**
2077 * rdma_end_port - Return the last valid port number for the device
2078 * specified
2079 *
2080 * @device: Device to be checked
2081 *
2082 * Return last port number
2083 */
2084 static inline u8 rdma_end_port(const struct ib_device *device)
2085 {
2086 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2087 }
2088
2089 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2090 {
2091 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2092 }
2093
2094 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2095 {
2096 return device->port_immutable[port_num].core_cap_flags &
2097 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2098 }
2099
2100 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2101 {
2102 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2103 }
2104
2105 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2106 {
2107 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2108 }
2109
2110 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2111 {
2112 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2113 }
2114
2115 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2116 {
2117 return rdma_protocol_ib(device, port_num) ||
2118 rdma_protocol_roce(device, port_num);
2119 }
2120
2121 /**
2122 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2123 * Management Datagrams.
2124 * @device: Device to check
2125 * @port_num: Port number to check
2126 *
2127 * Management Datagrams (MAD) are a required part of the InfiniBand
2128 * specification and are supported on all InfiniBand devices. A slightly
2129 * extended version are also supported on OPA interfaces.
2130 *
2131 * Return: true if the port supports sending/receiving of MAD packets.
2132 */
2133 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2134 {
2135 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2136 }
2137
2138 /**
2139 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2140 * Management Datagrams.
2141 * @device: Device to check
2142 * @port_num: Port number to check
2143 *
2144 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2145 * datagrams with their own versions. These OPA MADs share many but not all of
2146 * the characteristics of InfiniBand MADs.
2147 *
2148 * OPA MADs differ in the following ways:
2149 *
2150 * 1) MADs are variable size up to 2K
2151 * IBTA defined MADs remain fixed at 256 bytes
2152 * 2) OPA SMPs must carry valid PKeys
2153 * 3) OPA SMP packets are a different format
2154 *
2155 * Return: true if the port supports OPA MAD packet formats.
2156 */
2157 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2158 {
2159 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2160 == RDMA_CORE_CAP_OPA_MAD;
2161 }
2162
2163 /**
2164 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2165 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2166 * @device: Device to check
2167 * @port_num: Port number to check
2168 *
2169 * Each InfiniBand node is required to provide a Subnet Management Agent
2170 * that the subnet manager can access. Prior to the fabric being fully
2171 * configured by the subnet manager, the SMA is accessed via a well known
2172 * interface called the Subnet Management Interface (SMI). This interface
2173 * uses directed route packets to communicate with the SM to get around the
2174 * chicken and egg problem of the SM needing to know what's on the fabric
2175 * in order to configure the fabric, and needing to configure the fabric in
2176 * order to send packets to the devices on the fabric. These directed
2177 * route packets do not need the fabric fully configured in order to reach
2178 * their destination. The SMI is the only method allowed to send
2179 * directed route packets on an InfiniBand fabric.
2180 *
2181 * Return: true if the port provides an SMI.
2182 */
2183 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2184 {
2185 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2186 }
2187
2188 /**
2189 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2190 * Communication Manager.
2191 * @device: Device to check
2192 * @port_num: Port number to check
2193 *
2194 * The InfiniBand Communication Manager is one of many pre-defined General
2195 * Service Agents (GSA) that are accessed via the General Service
2196 * Interface (GSI). It's role is to facilitate establishment of connections
2197 * between nodes as well as other management related tasks for established
2198 * connections.
2199 *
2200 * Return: true if the port supports an IB CM (this does not guarantee that
2201 * a CM is actually running however).
2202 */
2203 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2204 {
2205 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2206 }
2207
2208 /**
2209 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2210 * Communication Manager.
2211 * @device: Device to check
2212 * @port_num: Port number to check
2213 *
2214 * Similar to above, but specific to iWARP connections which have a different
2215 * managment protocol than InfiniBand.
2216 *
2217 * Return: true if the port supports an iWARP CM (this does not guarantee that
2218 * a CM is actually running however).
2219 */
2220 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2221 {
2222 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2223 }
2224
2225 /**
2226 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2227 * Subnet Administration.
2228 * @device: Device to check
2229 * @port_num: Port number to check
2230 *
2231 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2232 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2233 * fabrics, devices should resolve routes to other hosts by contacting the
2234 * SA to query the proper route.
2235 *
2236 * Return: true if the port should act as a client to the fabric Subnet
2237 * Administration interface. This does not imply that the SA service is
2238 * running locally.
2239 */
2240 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2241 {
2242 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2243 }
2244
2245 /**
2246 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2247 * Multicast.
2248 * @device: Device to check
2249 * @port_num: Port number to check
2250 *
2251 * InfiniBand multicast registration is more complex than normal IPv4 or
2252 * IPv6 multicast registration. Each Host Channel Adapter must register
2253 * with the Subnet Manager when it wishes to join a multicast group. It
2254 * should do so only once regardless of how many queue pairs it subscribes
2255 * to this group. And it should leave the group only after all queue pairs
2256 * attached to the group have been detached.
2257 *
2258 * Return: true if the port must undertake the additional adminstrative
2259 * overhead of registering/unregistering with the SM and tracking of the
2260 * total number of queue pairs attached to the multicast group.
2261 */
2262 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2263 {
2264 return rdma_cap_ib_sa(device, port_num);
2265 }
2266
2267 /**
2268 * rdma_cap_af_ib - Check if the port of device has the capability
2269 * Native Infiniband Address.
2270 * @device: Device to check
2271 * @port_num: Port number to check
2272 *
2273 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2274 * GID. RoCE uses a different mechanism, but still generates a GID via
2275 * a prescribed mechanism and port specific data.
2276 *
2277 * Return: true if the port uses a GID address to identify devices on the
2278 * network.
2279 */
2280 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2281 {
2282 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2283 }
2284
2285 /**
2286 * rdma_cap_eth_ah - Check if the port of device has the capability
2287 * Ethernet Address Handle.
2288 * @device: Device to check
2289 * @port_num: Port number to check
2290 *
2291 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2292 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2293 * port. Normally, packet headers are generated by the sending host
2294 * adapter, but when sending connectionless datagrams, we must manually
2295 * inject the proper headers for the fabric we are communicating over.
2296 *
2297 * Return: true if we are running as a RoCE port and must force the
2298 * addition of a Global Route Header built from our Ethernet Address
2299 * Handle into our header list for connectionless packets.
2300 */
2301 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2302 {
2303 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2304 }
2305
2306 /**
2307 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2308 *
2309 * @device: Device
2310 * @port_num: Port number
2311 *
2312 * This MAD size includes the MAD headers and MAD payload. No other headers
2313 * are included.
2314 *
2315 * Return the max MAD size required by the Port. Will return 0 if the port
2316 * does not support MADs
2317 */
2318 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2319 {
2320 return device->port_immutable[port_num].max_mad_size;
2321 }
2322
2323 /**
2324 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2325 * @device: Device to check
2326 * @port_num: Port number to check
2327 *
2328 * RoCE GID table mechanism manages the various GIDs for a device.
2329 *
2330 * NOTE: if allocating the port's GID table has failed, this call will still
2331 * return true, but any RoCE GID table API will fail.
2332 *
2333 * Return: true if the port uses RoCE GID table mechanism in order to manage
2334 * its GIDs.
2335 */
2336 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2337 u8 port_num)
2338 {
2339 return rdma_protocol_roce(device, port_num) &&
2340 device->add_gid && device->del_gid;
2341 }
2342
2343 /*
2344 * Check if the device supports READ W/ INVALIDATE.
2345 */
2346 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2347 {
2348 /*
2349 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2350 * has support for it yet.
2351 */
2352 return rdma_protocol_iwarp(dev, port_num);
2353 }
2354
2355 int ib_query_gid(struct ib_device *device,
2356 u8 port_num, int index, union ib_gid *gid,
2357 struct ib_gid_attr *attr);
2358
2359 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2360 int state);
2361 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2362 struct ifla_vf_info *info);
2363 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2364 struct ifla_vf_stats *stats);
2365 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2366 int type);
2367
2368 int ib_query_pkey(struct ib_device *device,
2369 u8 port_num, u16 index, u16 *pkey);
2370
2371 int ib_modify_device(struct ib_device *device,
2372 int device_modify_mask,
2373 struct ib_device_modify *device_modify);
2374
2375 int ib_modify_port(struct ib_device *device,
2376 u8 port_num, int port_modify_mask,
2377 struct ib_port_modify *port_modify);
2378
2379 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2380 enum ib_gid_type gid_type, struct net_device *ndev,
2381 u8 *port_num, u16 *index);
2382
2383 int ib_find_pkey(struct ib_device *device,
2384 u8 port_num, u16 pkey, u16 *index);
2385
2386 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2387
2388 void ib_dealloc_pd(struct ib_pd *pd);
2389
2390 /**
2391 * ib_create_ah - Creates an address handle for the given address vector.
2392 * @pd: The protection domain associated with the address handle.
2393 * @ah_attr: The attributes of the address vector.
2394 *
2395 * The address handle is used to reference a local or global destination
2396 * in all UD QP post sends.
2397 */
2398 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2399
2400 /**
2401 * ib_init_ah_from_wc - Initializes address handle attributes from a
2402 * work completion.
2403 * @device: Device on which the received message arrived.
2404 * @port_num: Port on which the received message arrived.
2405 * @wc: Work completion associated with the received message.
2406 * @grh: References the received global route header. This parameter is
2407 * ignored unless the work completion indicates that the GRH is valid.
2408 * @ah_attr: Returned attributes that can be used when creating an address
2409 * handle for replying to the message.
2410 */
2411 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2412 const struct ib_wc *wc, const struct ib_grh *grh,
2413 struct ib_ah_attr *ah_attr);
2414
2415 /**
2416 * ib_create_ah_from_wc - Creates an address handle associated with the
2417 * sender of the specified work completion.
2418 * @pd: The protection domain associated with the address handle.
2419 * @wc: Work completion information associated with a received message.
2420 * @grh: References the received global route header. This parameter is
2421 * ignored unless the work completion indicates that the GRH is valid.
2422 * @port_num: The outbound port number to associate with the address.
2423 *
2424 * The address handle is used to reference a local or global destination
2425 * in all UD QP post sends.
2426 */
2427 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2428 const struct ib_grh *grh, u8 port_num);
2429
2430 /**
2431 * ib_modify_ah - Modifies the address vector associated with an address
2432 * handle.
2433 * @ah: The address handle to modify.
2434 * @ah_attr: The new address vector attributes to associate with the
2435 * address handle.
2436 */
2437 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2438
2439 /**
2440 * ib_query_ah - Queries the address vector associated with an address
2441 * handle.
2442 * @ah: The address handle to query.
2443 * @ah_attr: The address vector attributes associated with the address
2444 * handle.
2445 */
2446 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2447
2448 /**
2449 * ib_destroy_ah - Destroys an address handle.
2450 * @ah: The address handle to destroy.
2451 */
2452 int ib_destroy_ah(struct ib_ah *ah);
2453
2454 /**
2455 * ib_create_srq - Creates a SRQ associated with the specified protection
2456 * domain.
2457 * @pd: The protection domain associated with the SRQ.
2458 * @srq_init_attr: A list of initial attributes required to create the
2459 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2460 * the actual capabilities of the created SRQ.
2461 *
2462 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2463 * requested size of the SRQ, and set to the actual values allocated
2464 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2465 * will always be at least as large as the requested values.
2466 */
2467 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2468 struct ib_srq_init_attr *srq_init_attr);
2469
2470 /**
2471 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2472 * @srq: The SRQ to modify.
2473 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2474 * the current values of selected SRQ attributes are returned.
2475 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2476 * are being modified.
2477 *
2478 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2479 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2480 * the number of receives queued drops below the limit.
2481 */
2482 int ib_modify_srq(struct ib_srq *srq,
2483 struct ib_srq_attr *srq_attr,
2484 enum ib_srq_attr_mask srq_attr_mask);
2485
2486 /**
2487 * ib_query_srq - Returns the attribute list and current values for the
2488 * specified SRQ.
2489 * @srq: The SRQ to query.
2490 * @srq_attr: The attributes of the specified SRQ.
2491 */
2492 int ib_query_srq(struct ib_srq *srq,
2493 struct ib_srq_attr *srq_attr);
2494
2495 /**
2496 * ib_destroy_srq - Destroys the specified SRQ.
2497 * @srq: The SRQ to destroy.
2498 */
2499 int ib_destroy_srq(struct ib_srq *srq);
2500
2501 /**
2502 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2503 * @srq: The SRQ to post the work request on.
2504 * @recv_wr: A list of work requests to post on the receive queue.
2505 * @bad_recv_wr: On an immediate failure, this parameter will reference
2506 * the work request that failed to be posted on the QP.
2507 */
2508 static inline int ib_post_srq_recv(struct ib_srq *srq,
2509 struct ib_recv_wr *recv_wr,
2510 struct ib_recv_wr **bad_recv_wr)
2511 {
2512 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2513 }
2514
2515 /**
2516 * ib_create_qp - Creates a QP associated with the specified protection
2517 * domain.
2518 * @pd: The protection domain associated with the QP.
2519 * @qp_init_attr: A list of initial attributes required to create the
2520 * QP. If QP creation succeeds, then the attributes are updated to
2521 * the actual capabilities of the created QP.
2522 */
2523 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2524 struct ib_qp_init_attr *qp_init_attr);
2525
2526 /**
2527 * ib_modify_qp - Modifies the attributes for the specified QP and then
2528 * transitions the QP to the given state.
2529 * @qp: The QP to modify.
2530 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2531 * the current values of selected QP attributes are returned.
2532 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2533 * are being modified.
2534 */
2535 int ib_modify_qp(struct ib_qp *qp,
2536 struct ib_qp_attr *qp_attr,
2537 int qp_attr_mask);
2538
2539 /**
2540 * ib_query_qp - Returns the attribute list and current values for the
2541 * specified QP.
2542 * @qp: The QP to query.
2543 * @qp_attr: The attributes of the specified QP.
2544 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2545 * @qp_init_attr: Additional attributes of the selected QP.
2546 *
2547 * The qp_attr_mask may be used to limit the query to gathering only the
2548 * selected attributes.
2549 */
2550 int ib_query_qp(struct ib_qp *qp,
2551 struct ib_qp_attr *qp_attr,
2552 int qp_attr_mask,
2553 struct ib_qp_init_attr *qp_init_attr);
2554
2555 /**
2556 * ib_destroy_qp - Destroys the specified QP.
2557 * @qp: The QP to destroy.
2558 */
2559 int ib_destroy_qp(struct ib_qp *qp);
2560
2561 /**
2562 * ib_open_qp - Obtain a reference to an existing sharable QP.
2563 * @xrcd - XRC domain
2564 * @qp_open_attr: Attributes identifying the QP to open.
2565 *
2566 * Returns a reference to a sharable QP.
2567 */
2568 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2569 struct ib_qp_open_attr *qp_open_attr);
2570
2571 /**
2572 * ib_close_qp - Release an external reference to a QP.
2573 * @qp: The QP handle to release
2574 *
2575 * The opened QP handle is released by the caller. The underlying
2576 * shared QP is not destroyed until all internal references are released.
2577 */
2578 int ib_close_qp(struct ib_qp *qp);
2579
2580 /**
2581 * ib_post_send - Posts a list of work requests to the send queue of
2582 * the specified QP.
2583 * @qp: The QP to post the work request on.
2584 * @send_wr: A list of work requests to post on the send queue.
2585 * @bad_send_wr: On an immediate failure, this parameter will reference
2586 * the work request that failed to be posted on the QP.
2587 *
2588 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2589 * error is returned, the QP state shall not be affected,
2590 * ib_post_send() will return an immediate error after queueing any
2591 * earlier work requests in the list.
2592 */
2593 static inline int ib_post_send(struct ib_qp *qp,
2594 struct ib_send_wr *send_wr,
2595 struct ib_send_wr **bad_send_wr)
2596 {
2597 return qp->device->post_send(qp, send_wr, bad_send_wr);
2598 }
2599
2600 /**
2601 * ib_post_recv - Posts a list of work requests to the receive queue of
2602 * the specified QP.
2603 * @qp: The QP to post the work request on.
2604 * @recv_wr: A list of work requests to post on the receive queue.
2605 * @bad_recv_wr: On an immediate failure, this parameter will reference
2606 * the work request that failed to be posted on the QP.
2607 */
2608 static inline int ib_post_recv(struct ib_qp *qp,
2609 struct ib_recv_wr *recv_wr,
2610 struct ib_recv_wr **bad_recv_wr)
2611 {
2612 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2613 }
2614
2615 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2616 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2617 void ib_free_cq(struct ib_cq *cq);
2618 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2619
2620 /**
2621 * ib_create_cq - Creates a CQ on the specified device.
2622 * @device: The device on which to create the CQ.
2623 * @comp_handler: A user-specified callback that is invoked when a
2624 * completion event occurs on the CQ.
2625 * @event_handler: A user-specified callback that is invoked when an
2626 * asynchronous event not associated with a completion occurs on the CQ.
2627 * @cq_context: Context associated with the CQ returned to the user via
2628 * the associated completion and event handlers.
2629 * @cq_attr: The attributes the CQ should be created upon.
2630 *
2631 * Users can examine the cq structure to determine the actual CQ size.
2632 */
2633 struct ib_cq *ib_create_cq(struct ib_device *device,
2634 ib_comp_handler comp_handler,
2635 void (*event_handler)(struct ib_event *, void *),
2636 void *cq_context,
2637 const struct ib_cq_init_attr *cq_attr);
2638
2639 /**
2640 * ib_resize_cq - Modifies the capacity of the CQ.
2641 * @cq: The CQ to resize.
2642 * @cqe: The minimum size of the CQ.
2643 *
2644 * Users can examine the cq structure to determine the actual CQ size.
2645 */
2646 int ib_resize_cq(struct ib_cq *cq, int cqe);
2647
2648 /**
2649 * ib_modify_cq - Modifies moderation params of the CQ
2650 * @cq: The CQ to modify.
2651 * @cq_count: number of CQEs that will trigger an event
2652 * @cq_period: max period of time in usec before triggering an event
2653 *
2654 */
2655 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2656
2657 /**
2658 * ib_destroy_cq - Destroys the specified CQ.
2659 * @cq: The CQ to destroy.
2660 */
2661 int ib_destroy_cq(struct ib_cq *cq);
2662
2663 /**
2664 * ib_poll_cq - poll a CQ for completion(s)
2665 * @cq:the CQ being polled
2666 * @num_entries:maximum number of completions to return
2667 * @wc:array of at least @num_entries &struct ib_wc where completions
2668 * will be returned
2669 *
2670 * Poll a CQ for (possibly multiple) completions. If the return value
2671 * is < 0, an error occurred. If the return value is >= 0, it is the
2672 * number of completions returned. If the return value is
2673 * non-negative and < num_entries, then the CQ was emptied.
2674 */
2675 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2676 struct ib_wc *wc)
2677 {
2678 return cq->device->poll_cq(cq, num_entries, wc);
2679 }
2680
2681 /**
2682 * ib_peek_cq - Returns the number of unreaped completions currently
2683 * on the specified CQ.
2684 * @cq: The CQ to peek.
2685 * @wc_cnt: A minimum number of unreaped completions to check for.
2686 *
2687 * If the number of unreaped completions is greater than or equal to wc_cnt,
2688 * this function returns wc_cnt, otherwise, it returns the actual number of
2689 * unreaped completions.
2690 */
2691 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2692
2693 /**
2694 * ib_req_notify_cq - Request completion notification on a CQ.
2695 * @cq: The CQ to generate an event for.
2696 * @flags:
2697 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2698 * to request an event on the next solicited event or next work
2699 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2700 * may also be |ed in to request a hint about missed events, as
2701 * described below.
2702 *
2703 * Return Value:
2704 * < 0 means an error occurred while requesting notification
2705 * == 0 means notification was requested successfully, and if
2706 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2707 * were missed and it is safe to wait for another event. In
2708 * this case is it guaranteed that any work completions added
2709 * to the CQ since the last CQ poll will trigger a completion
2710 * notification event.
2711 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2712 * in. It means that the consumer must poll the CQ again to
2713 * make sure it is empty to avoid missing an event because of a
2714 * race between requesting notification and an entry being
2715 * added to the CQ. This return value means it is possible
2716 * (but not guaranteed) that a work completion has been added
2717 * to the CQ since the last poll without triggering a
2718 * completion notification event.
2719 */
2720 static inline int ib_req_notify_cq(struct ib_cq *cq,
2721 enum ib_cq_notify_flags flags)
2722 {
2723 return cq->device->req_notify_cq(cq, flags);
2724 }
2725
2726 /**
2727 * ib_req_ncomp_notif - Request completion notification when there are
2728 * at least the specified number of unreaped completions on the CQ.
2729 * @cq: The CQ to generate an event for.
2730 * @wc_cnt: The number of unreaped completions that should be on the
2731 * CQ before an event is generated.
2732 */
2733 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2734 {
2735 return cq->device->req_ncomp_notif ?
2736 cq->device->req_ncomp_notif(cq, wc_cnt) :
2737 -ENOSYS;
2738 }
2739
2740 /**
2741 * ib_get_dma_mr - Returns a memory region for system memory that is
2742 * usable for DMA.
2743 * @pd: The protection domain associated with the memory region.
2744 * @mr_access_flags: Specifies the memory access rights.
2745 *
2746 * Note that the ib_dma_*() functions defined below must be used
2747 * to create/destroy addresses used with the Lkey or Rkey returned
2748 * by ib_get_dma_mr().
2749 */
2750 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2751
2752 /**
2753 * ib_dma_mapping_error - check a DMA addr for error
2754 * @dev: The device for which the dma_addr was created
2755 * @dma_addr: The DMA address to check
2756 */
2757 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2758 {
2759 if (dev->dma_ops)
2760 return dev->dma_ops->mapping_error(dev, dma_addr);
2761 return dma_mapping_error(dev->dma_device, dma_addr);
2762 }
2763
2764 /**
2765 * ib_dma_map_single - Map a kernel virtual address to DMA address
2766 * @dev: The device for which the dma_addr is to be created
2767 * @cpu_addr: The kernel virtual address
2768 * @size: The size of the region in bytes
2769 * @direction: The direction of the DMA
2770 */
2771 static inline u64 ib_dma_map_single(struct ib_device *dev,
2772 void *cpu_addr, size_t size,
2773 enum dma_data_direction direction)
2774 {
2775 if (dev->dma_ops)
2776 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2777 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2778 }
2779
2780 /**
2781 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2782 * @dev: The device for which the DMA address was created
2783 * @addr: The DMA address
2784 * @size: The size of the region in bytes
2785 * @direction: The direction of the DMA
2786 */
2787 static inline void ib_dma_unmap_single(struct ib_device *dev,
2788 u64 addr, size_t size,
2789 enum dma_data_direction direction)
2790 {
2791 if (dev->dma_ops)
2792 dev->dma_ops->unmap_single(dev, addr, size, direction);
2793 else
2794 dma_unmap_single(dev->dma_device, addr, size, direction);
2795 }
2796
2797 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2798 void *cpu_addr, size_t size,
2799 enum dma_data_direction direction,
2800 struct dma_attrs *attrs)
2801 {
2802 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2803 direction, attrs);
2804 }
2805
2806 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2807 u64 addr, size_t size,
2808 enum dma_data_direction direction,
2809 struct dma_attrs *attrs)
2810 {
2811 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2812 direction, attrs);
2813 }
2814
2815 /**
2816 * ib_dma_map_page - Map a physical page to DMA address
2817 * @dev: The device for which the dma_addr is to be created
2818 * @page: The page to be mapped
2819 * @offset: The offset within the page
2820 * @size: The size of the region in bytes
2821 * @direction: The direction of the DMA
2822 */
2823 static inline u64 ib_dma_map_page(struct ib_device *dev,
2824 struct page *page,
2825 unsigned long offset,
2826 size_t size,
2827 enum dma_data_direction direction)
2828 {
2829 if (dev->dma_ops)
2830 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2831 return dma_map_page(dev->dma_device, page, offset, size, direction);
2832 }
2833
2834 /**
2835 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2836 * @dev: The device for which the DMA address was created
2837 * @addr: The DMA address
2838 * @size: The size of the region in bytes
2839 * @direction: The direction of the DMA
2840 */
2841 static inline void ib_dma_unmap_page(struct ib_device *dev,
2842 u64 addr, size_t size,
2843 enum dma_data_direction direction)
2844 {
2845 if (dev->dma_ops)
2846 dev->dma_ops->unmap_page(dev, addr, size, direction);
2847 else
2848 dma_unmap_page(dev->dma_device, addr, size, direction);
2849 }
2850
2851 /**
2852 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2853 * @dev: The device for which the DMA addresses are to be created
2854 * @sg: The array of scatter/gather entries
2855 * @nents: The number of scatter/gather entries
2856 * @direction: The direction of the DMA
2857 */
2858 static inline int ib_dma_map_sg(struct ib_device *dev,
2859 struct scatterlist *sg, int nents,
2860 enum dma_data_direction direction)
2861 {
2862 if (dev->dma_ops)
2863 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2864 return dma_map_sg(dev->dma_device, sg, nents, direction);
2865 }
2866
2867 /**
2868 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2869 * @dev: The device for which the DMA addresses were created
2870 * @sg: The array of scatter/gather entries
2871 * @nents: The number of scatter/gather entries
2872 * @direction: The direction of the DMA
2873 */
2874 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2875 struct scatterlist *sg, int nents,
2876 enum dma_data_direction direction)
2877 {
2878 if (dev->dma_ops)
2879 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2880 else
2881 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2882 }
2883
2884 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2885 struct scatterlist *sg, int nents,
2886 enum dma_data_direction direction,
2887 struct dma_attrs *attrs)
2888 {
2889 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2890 }
2891
2892 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2893 struct scatterlist *sg, int nents,
2894 enum dma_data_direction direction,
2895 struct dma_attrs *attrs)
2896 {
2897 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2898 }
2899 /**
2900 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2901 * @dev: The device for which the DMA addresses were created
2902 * @sg: The scatter/gather entry
2903 *
2904 * Note: this function is obsolete. To do: change all occurrences of
2905 * ib_sg_dma_address() into sg_dma_address().
2906 */
2907 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2908 struct scatterlist *sg)
2909 {
2910 return sg_dma_address(sg);
2911 }
2912
2913 /**
2914 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2915 * @dev: The device for which the DMA addresses were created
2916 * @sg: The scatter/gather entry
2917 *
2918 * Note: this function is obsolete. To do: change all occurrences of
2919 * ib_sg_dma_len() into sg_dma_len().
2920 */
2921 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2922 struct scatterlist *sg)
2923 {
2924 return sg_dma_len(sg);
2925 }
2926
2927 /**
2928 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2929 * @dev: The device for which the DMA address was created
2930 * @addr: The DMA address
2931 * @size: The size of the region in bytes
2932 * @dir: The direction of the DMA
2933 */
2934 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2935 u64 addr,
2936 size_t size,
2937 enum dma_data_direction dir)
2938 {
2939 if (dev->dma_ops)
2940 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2941 else
2942 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2943 }
2944
2945 /**
2946 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2947 * @dev: The device for which the DMA address was created
2948 * @addr: The DMA address
2949 * @size: The size of the region in bytes
2950 * @dir: The direction of the DMA
2951 */
2952 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2953 u64 addr,
2954 size_t size,
2955 enum dma_data_direction dir)
2956 {
2957 if (dev->dma_ops)
2958 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2959 else
2960 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2961 }
2962
2963 /**
2964 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2965 * @dev: The device for which the DMA address is requested
2966 * @size: The size of the region to allocate in bytes
2967 * @dma_handle: A pointer for returning the DMA address of the region
2968 * @flag: memory allocator flags
2969 */
2970 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2971 size_t size,
2972 u64 *dma_handle,
2973 gfp_t flag)
2974 {
2975 if (dev->dma_ops)
2976 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2977 else {
2978 dma_addr_t handle;
2979 void *ret;
2980
2981 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2982 *dma_handle = handle;
2983 return ret;
2984 }
2985 }
2986
2987 /**
2988 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2989 * @dev: The device for which the DMA addresses were allocated
2990 * @size: The size of the region
2991 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2992 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2993 */
2994 static inline void ib_dma_free_coherent(struct ib_device *dev,
2995 size_t size, void *cpu_addr,
2996 u64 dma_handle)
2997 {
2998 if (dev->dma_ops)
2999 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3000 else
3001 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3002 }
3003
3004 /**
3005 * ib_dereg_mr - Deregisters a memory region and removes it from the
3006 * HCA translation table.
3007 * @mr: The memory region to deregister.
3008 *
3009 * This function can fail, if the memory region has memory windows bound to it.
3010 */
3011 int ib_dereg_mr(struct ib_mr *mr);
3012
3013 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3014 enum ib_mr_type mr_type,
3015 u32 max_num_sg);
3016
3017 /**
3018 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3019 * R_Key and L_Key.
3020 * @mr - struct ib_mr pointer to be updated.
3021 * @newkey - new key to be used.
3022 */
3023 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3024 {
3025 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3026 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3027 }
3028
3029 /**
3030 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3031 * for calculating a new rkey for type 2 memory windows.
3032 * @rkey - the rkey to increment.
3033 */
3034 static inline u32 ib_inc_rkey(u32 rkey)
3035 {
3036 const u32 mask = 0x000000ff;
3037 return ((rkey + 1) & mask) | (rkey & ~mask);
3038 }
3039
3040 /**
3041 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3042 * @pd: The protection domain associated with the unmapped region.
3043 * @mr_access_flags: Specifies the memory access rights.
3044 * @fmr_attr: Attributes of the unmapped region.
3045 *
3046 * A fast memory region must be mapped before it can be used as part of
3047 * a work request.
3048 */
3049 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3050 int mr_access_flags,
3051 struct ib_fmr_attr *fmr_attr);
3052
3053 /**
3054 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3055 * @fmr: The fast memory region to associate with the pages.
3056 * @page_list: An array of physical pages to map to the fast memory region.
3057 * @list_len: The number of pages in page_list.
3058 * @iova: The I/O virtual address to use with the mapped region.
3059 */
3060 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3061 u64 *page_list, int list_len,
3062 u64 iova)
3063 {
3064 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3065 }
3066
3067 /**
3068 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3069 * @fmr_list: A linked list of fast memory regions to unmap.
3070 */
3071 int ib_unmap_fmr(struct list_head *fmr_list);
3072
3073 /**
3074 * ib_dealloc_fmr - Deallocates a fast memory region.
3075 * @fmr: The fast memory region to deallocate.
3076 */
3077 int ib_dealloc_fmr(struct ib_fmr *fmr);
3078
3079 /**
3080 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3081 * @qp: QP to attach to the multicast group. The QP must be type
3082 * IB_QPT_UD.
3083 * @gid: Multicast group GID.
3084 * @lid: Multicast group LID in host byte order.
3085 *
3086 * In order to send and receive multicast packets, subnet
3087 * administration must have created the multicast group and configured
3088 * the fabric appropriately. The port associated with the specified
3089 * QP must also be a member of the multicast group.
3090 */
3091 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3092
3093 /**
3094 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3095 * @qp: QP to detach from the multicast group.
3096 * @gid: Multicast group GID.
3097 * @lid: Multicast group LID in host byte order.
3098 */
3099 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3100
3101 /**
3102 * ib_alloc_xrcd - Allocates an XRC domain.
3103 * @device: The device on which to allocate the XRC domain.
3104 */
3105 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3106
3107 /**
3108 * ib_dealloc_xrcd - Deallocates an XRC domain.
3109 * @xrcd: The XRC domain to deallocate.
3110 */
3111 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3112
3113 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3114 struct ib_flow_attr *flow_attr, int domain);
3115 int ib_destroy_flow(struct ib_flow *flow_id);
3116
3117 static inline int ib_check_mr_access(int flags)
3118 {
3119 /*
3120 * Local write permission is required if remote write or
3121 * remote atomic permission is also requested.
3122 */
3123 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3124 !(flags & IB_ACCESS_LOCAL_WRITE))
3125 return -EINVAL;
3126
3127 return 0;
3128 }
3129
3130 /**
3131 * ib_check_mr_status: lightweight check of MR status.
3132 * This routine may provide status checks on a selected
3133 * ib_mr. first use is for signature status check.
3134 *
3135 * @mr: A memory region.
3136 * @check_mask: Bitmask of which checks to perform from
3137 * ib_mr_status_check enumeration.
3138 * @mr_status: The container of relevant status checks.
3139 * failed checks will be indicated in the status bitmask
3140 * and the relevant info shall be in the error item.
3141 */
3142 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3143 struct ib_mr_status *mr_status);
3144
3145 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3146 u16 pkey, const union ib_gid *gid,
3147 const struct sockaddr *addr);
3148
3149 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3150 unsigned int *sg_offset, unsigned int page_size);
3151
3152 static inline int
3153 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3154 unsigned int *sg_offset, unsigned int page_size)
3155 {
3156 int n;
3157
3158 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3159 mr->iova = 0;
3160
3161 return n;
3162 }
3163
3164 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3165 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3166
3167 void ib_drain_rq(struct ib_qp *qp);
3168 void ib_drain_sq(struct ib_qp *qp);
3169 void ib_drain_qp(struct ib_qp *qp);
3170 #endif /* IB_VERBS_H */
This page took 0.261358 seconds and 5 git commands to generate.