BUG_ON() Conversion in ipc/sem.c
[deliverable/linux.git] / ipc / sem.c
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
32 *
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
51 *
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
55 *
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57 *
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc <alan@redhat.com>
62 * Lockless wakeup
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64 */
65
66 #include <linux/config.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/init.h>
70 #include <linux/proc_fs.h>
71 #include <linux/time.h>
72 #include <linux/smp_lock.h>
73 #include <linux/security.h>
74 #include <linux/syscalls.h>
75 #include <linux/audit.h>
76 #include <linux/capability.h>
77 #include <linux/seq_file.h>
78 #include <asm/uaccess.h>
79 #include "util.h"
80
81
82 #define sem_lock(id) ((struct sem_array*)ipc_lock(&sem_ids,id))
83 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
84 #define sem_rmid(id) ((struct sem_array*)ipc_rmid(&sem_ids,id))
85 #define sem_checkid(sma, semid) \
86 ipc_checkid(&sem_ids,&sma->sem_perm,semid)
87 #define sem_buildid(id, seq) \
88 ipc_buildid(&sem_ids, id, seq)
89 static struct ipc_ids sem_ids;
90
91 static int newary (key_t, int, int);
92 static void freeary (struct sem_array *sma, int id);
93 #ifdef CONFIG_PROC_FS
94 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
95 #endif
96
97 #define SEMMSL_FAST 256 /* 512 bytes on stack */
98 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
99
100 /*
101 * linked list protection:
102 * sem_undo.id_next,
103 * sem_array.sem_pending{,last},
104 * sem_array.sem_undo: sem_lock() for read/write
105 * sem_undo.proc_next: only "current" is allowed to read/write that field.
106 *
107 */
108
109 int sem_ctls[4] = {SEMMSL, SEMMNS, SEMOPM, SEMMNI};
110 #define sc_semmsl (sem_ctls[0])
111 #define sc_semmns (sem_ctls[1])
112 #define sc_semopm (sem_ctls[2])
113 #define sc_semmni (sem_ctls[3])
114
115 static int used_sems;
116
117 void __init sem_init (void)
118 {
119 used_sems = 0;
120 ipc_init_ids(&sem_ids,sc_semmni);
121 ipc_init_proc_interface("sysvipc/sem",
122 " key semid perms nsems uid gid cuid cgid otime ctime\n",
123 &sem_ids,
124 sysvipc_sem_proc_show);
125 }
126
127 /*
128 * Lockless wakeup algorithm:
129 * Without the check/retry algorithm a lockless wakeup is possible:
130 * - queue.status is initialized to -EINTR before blocking.
131 * - wakeup is performed by
132 * * unlinking the queue entry from sma->sem_pending
133 * * setting queue.status to IN_WAKEUP
134 * This is the notification for the blocked thread that a
135 * result value is imminent.
136 * * call wake_up_process
137 * * set queue.status to the final value.
138 * - the previously blocked thread checks queue.status:
139 * * if it's IN_WAKEUP, then it must wait until the value changes
140 * * if it's not -EINTR, then the operation was completed by
141 * update_queue. semtimedop can return queue.status without
142 * performing any operation on the semaphore array.
143 * * otherwise it must acquire the spinlock and check what's up.
144 *
145 * The two-stage algorithm is necessary to protect against the following
146 * races:
147 * - if queue.status is set after wake_up_process, then the woken up idle
148 * thread could race forward and try (and fail) to acquire sma->lock
149 * before update_queue had a chance to set queue.status
150 * - if queue.status is written before wake_up_process and if the
151 * blocked process is woken up by a signal between writing
152 * queue.status and the wake_up_process, then the woken up
153 * process could return from semtimedop and die by calling
154 * sys_exit before wake_up_process is called. Then wake_up_process
155 * will oops, because the task structure is already invalid.
156 * (yes, this happened on s390 with sysv msg).
157 *
158 */
159 #define IN_WAKEUP 1
160
161 static int newary (key_t key, int nsems, int semflg)
162 {
163 int id;
164 int retval;
165 struct sem_array *sma;
166 int size;
167
168 if (!nsems)
169 return -EINVAL;
170 if (used_sems + nsems > sc_semmns)
171 return -ENOSPC;
172
173 size = sizeof (*sma) + nsems * sizeof (struct sem);
174 sma = ipc_rcu_alloc(size);
175 if (!sma) {
176 return -ENOMEM;
177 }
178 memset (sma, 0, size);
179
180 sma->sem_perm.mode = (semflg & S_IRWXUGO);
181 sma->sem_perm.key = key;
182
183 sma->sem_perm.security = NULL;
184 retval = security_sem_alloc(sma);
185 if (retval) {
186 ipc_rcu_putref(sma);
187 return retval;
188 }
189
190 id = ipc_addid(&sem_ids, &sma->sem_perm, sc_semmni);
191 if(id == -1) {
192 security_sem_free(sma);
193 ipc_rcu_putref(sma);
194 return -ENOSPC;
195 }
196 used_sems += nsems;
197
198 sma->sem_id = sem_buildid(id, sma->sem_perm.seq);
199 sma->sem_base = (struct sem *) &sma[1];
200 /* sma->sem_pending = NULL; */
201 sma->sem_pending_last = &sma->sem_pending;
202 /* sma->undo = NULL; */
203 sma->sem_nsems = nsems;
204 sma->sem_ctime = get_seconds();
205 sem_unlock(sma);
206
207 return sma->sem_id;
208 }
209
210 asmlinkage long sys_semget (key_t key, int nsems, int semflg)
211 {
212 int id, err = -EINVAL;
213 struct sem_array *sma;
214
215 if (nsems < 0 || nsems > sc_semmsl)
216 return -EINVAL;
217 down(&sem_ids.sem);
218
219 if (key == IPC_PRIVATE) {
220 err = newary(key, nsems, semflg);
221 } else if ((id = ipc_findkey(&sem_ids, key)) == -1) { /* key not used */
222 if (!(semflg & IPC_CREAT))
223 err = -ENOENT;
224 else
225 err = newary(key, nsems, semflg);
226 } else if (semflg & IPC_CREAT && semflg & IPC_EXCL) {
227 err = -EEXIST;
228 } else {
229 sma = sem_lock(id);
230 BUG_ON(sma==NULL);
231 if (nsems > sma->sem_nsems)
232 err = -EINVAL;
233 else if (ipcperms(&sma->sem_perm, semflg))
234 err = -EACCES;
235 else {
236 int semid = sem_buildid(id, sma->sem_perm.seq);
237 err = security_sem_associate(sma, semflg);
238 if (!err)
239 err = semid;
240 }
241 sem_unlock(sma);
242 }
243
244 up(&sem_ids.sem);
245 return err;
246 }
247
248 /* Manage the doubly linked list sma->sem_pending as a FIFO:
249 * insert new queue elements at the tail sma->sem_pending_last.
250 */
251 static inline void append_to_queue (struct sem_array * sma,
252 struct sem_queue * q)
253 {
254 *(q->prev = sma->sem_pending_last) = q;
255 *(sma->sem_pending_last = &q->next) = NULL;
256 }
257
258 static inline void prepend_to_queue (struct sem_array * sma,
259 struct sem_queue * q)
260 {
261 q->next = sma->sem_pending;
262 *(q->prev = &sma->sem_pending) = q;
263 if (q->next)
264 q->next->prev = &q->next;
265 else /* sma->sem_pending_last == &sma->sem_pending */
266 sma->sem_pending_last = &q->next;
267 }
268
269 static inline void remove_from_queue (struct sem_array * sma,
270 struct sem_queue * q)
271 {
272 *(q->prev) = q->next;
273 if (q->next)
274 q->next->prev = q->prev;
275 else /* sma->sem_pending_last == &q->next */
276 sma->sem_pending_last = q->prev;
277 q->prev = NULL; /* mark as removed */
278 }
279
280 /*
281 * Determine whether a sequence of semaphore operations would succeed
282 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
283 */
284
285 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
286 int nsops, struct sem_undo *un, int pid)
287 {
288 int result, sem_op;
289 struct sembuf *sop;
290 struct sem * curr;
291
292 for (sop = sops; sop < sops + nsops; sop++) {
293 curr = sma->sem_base + sop->sem_num;
294 sem_op = sop->sem_op;
295 result = curr->semval;
296
297 if (!sem_op && result)
298 goto would_block;
299
300 result += sem_op;
301 if (result < 0)
302 goto would_block;
303 if (result > SEMVMX)
304 goto out_of_range;
305 if (sop->sem_flg & SEM_UNDO) {
306 int undo = un->semadj[sop->sem_num] - sem_op;
307 /*
308 * Exceeding the undo range is an error.
309 */
310 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
311 goto out_of_range;
312 }
313 curr->semval = result;
314 }
315
316 sop--;
317 while (sop >= sops) {
318 sma->sem_base[sop->sem_num].sempid = pid;
319 if (sop->sem_flg & SEM_UNDO)
320 un->semadj[sop->sem_num] -= sop->sem_op;
321 sop--;
322 }
323
324 sma->sem_otime = get_seconds();
325 return 0;
326
327 out_of_range:
328 result = -ERANGE;
329 goto undo;
330
331 would_block:
332 if (sop->sem_flg & IPC_NOWAIT)
333 result = -EAGAIN;
334 else
335 result = 1;
336
337 undo:
338 sop--;
339 while (sop >= sops) {
340 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
341 sop--;
342 }
343
344 return result;
345 }
346
347 /* Go through the pending queue for the indicated semaphore
348 * looking for tasks that can be completed.
349 */
350 static void update_queue (struct sem_array * sma)
351 {
352 int error;
353 struct sem_queue * q;
354
355 q = sma->sem_pending;
356 while(q) {
357 error = try_atomic_semop(sma, q->sops, q->nsops,
358 q->undo, q->pid);
359
360 /* Does q->sleeper still need to sleep? */
361 if (error <= 0) {
362 struct sem_queue *n;
363 remove_from_queue(sma,q);
364 q->status = IN_WAKEUP;
365 /*
366 * Continue scanning. The next operation
367 * that must be checked depends on the type of the
368 * completed operation:
369 * - if the operation modified the array, then
370 * restart from the head of the queue and
371 * check for threads that might be waiting
372 * for semaphore values to become 0.
373 * - if the operation didn't modify the array,
374 * then just continue.
375 */
376 if (q->alter)
377 n = sma->sem_pending;
378 else
379 n = q->next;
380 wake_up_process(q->sleeper);
381 /* hands-off: q will disappear immediately after
382 * writing q->status.
383 */
384 smp_wmb();
385 q->status = error;
386 q = n;
387 } else {
388 q = q->next;
389 }
390 }
391 }
392
393 /* The following counts are associated to each semaphore:
394 * semncnt number of tasks waiting on semval being nonzero
395 * semzcnt number of tasks waiting on semval being zero
396 * This model assumes that a task waits on exactly one semaphore.
397 * Since semaphore operations are to be performed atomically, tasks actually
398 * wait on a whole sequence of semaphores simultaneously.
399 * The counts we return here are a rough approximation, but still
400 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
401 */
402 static int count_semncnt (struct sem_array * sma, ushort semnum)
403 {
404 int semncnt;
405 struct sem_queue * q;
406
407 semncnt = 0;
408 for (q = sma->sem_pending; q; q = q->next) {
409 struct sembuf * sops = q->sops;
410 int nsops = q->nsops;
411 int i;
412 for (i = 0; i < nsops; i++)
413 if (sops[i].sem_num == semnum
414 && (sops[i].sem_op < 0)
415 && !(sops[i].sem_flg & IPC_NOWAIT))
416 semncnt++;
417 }
418 return semncnt;
419 }
420 static int count_semzcnt (struct sem_array * sma, ushort semnum)
421 {
422 int semzcnt;
423 struct sem_queue * q;
424
425 semzcnt = 0;
426 for (q = sma->sem_pending; q; q = q->next) {
427 struct sembuf * sops = q->sops;
428 int nsops = q->nsops;
429 int i;
430 for (i = 0; i < nsops; i++)
431 if (sops[i].sem_num == semnum
432 && (sops[i].sem_op == 0)
433 && !(sops[i].sem_flg & IPC_NOWAIT))
434 semzcnt++;
435 }
436 return semzcnt;
437 }
438
439 /* Free a semaphore set. freeary() is called with sem_ids.sem down and
440 * the spinlock for this semaphore set hold. sem_ids.sem remains locked
441 * on exit.
442 */
443 static void freeary (struct sem_array *sma, int id)
444 {
445 struct sem_undo *un;
446 struct sem_queue *q;
447 int size;
448
449 /* Invalidate the existing undo structures for this semaphore set.
450 * (They will be freed without any further action in exit_sem()
451 * or during the next semop.)
452 */
453 for (un = sma->undo; un; un = un->id_next)
454 un->semid = -1;
455
456 /* Wake up all pending processes and let them fail with EIDRM. */
457 q = sma->sem_pending;
458 while(q) {
459 struct sem_queue *n;
460 /* lazy remove_from_queue: we are killing the whole queue */
461 q->prev = NULL;
462 n = q->next;
463 q->status = IN_WAKEUP;
464 wake_up_process(q->sleeper); /* doesn't sleep */
465 smp_wmb();
466 q->status = -EIDRM; /* hands-off q */
467 q = n;
468 }
469
470 /* Remove the semaphore set from the ID array*/
471 sma = sem_rmid(id);
472 sem_unlock(sma);
473
474 used_sems -= sma->sem_nsems;
475 size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem);
476 security_sem_free(sma);
477 ipc_rcu_putref(sma);
478 }
479
480 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
481 {
482 switch(version) {
483 case IPC_64:
484 return copy_to_user(buf, in, sizeof(*in));
485 case IPC_OLD:
486 {
487 struct semid_ds out;
488
489 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
490
491 out.sem_otime = in->sem_otime;
492 out.sem_ctime = in->sem_ctime;
493 out.sem_nsems = in->sem_nsems;
494
495 return copy_to_user(buf, &out, sizeof(out));
496 }
497 default:
498 return -EINVAL;
499 }
500 }
501
502 static int semctl_nolock(int semid, int semnum, int cmd, int version, union semun arg)
503 {
504 int err = -EINVAL;
505 struct sem_array *sma;
506
507 switch(cmd) {
508 case IPC_INFO:
509 case SEM_INFO:
510 {
511 struct seminfo seminfo;
512 int max_id;
513
514 err = security_sem_semctl(NULL, cmd);
515 if (err)
516 return err;
517
518 memset(&seminfo,0,sizeof(seminfo));
519 seminfo.semmni = sc_semmni;
520 seminfo.semmns = sc_semmns;
521 seminfo.semmsl = sc_semmsl;
522 seminfo.semopm = sc_semopm;
523 seminfo.semvmx = SEMVMX;
524 seminfo.semmnu = SEMMNU;
525 seminfo.semmap = SEMMAP;
526 seminfo.semume = SEMUME;
527 down(&sem_ids.sem);
528 if (cmd == SEM_INFO) {
529 seminfo.semusz = sem_ids.in_use;
530 seminfo.semaem = used_sems;
531 } else {
532 seminfo.semusz = SEMUSZ;
533 seminfo.semaem = SEMAEM;
534 }
535 max_id = sem_ids.max_id;
536 up(&sem_ids.sem);
537 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
538 return -EFAULT;
539 return (max_id < 0) ? 0: max_id;
540 }
541 case SEM_STAT:
542 {
543 struct semid64_ds tbuf;
544 int id;
545
546 if(semid >= sem_ids.entries->size)
547 return -EINVAL;
548
549 memset(&tbuf,0,sizeof(tbuf));
550
551 sma = sem_lock(semid);
552 if(sma == NULL)
553 return -EINVAL;
554
555 err = -EACCES;
556 if (ipcperms (&sma->sem_perm, S_IRUGO))
557 goto out_unlock;
558
559 err = security_sem_semctl(sma, cmd);
560 if (err)
561 goto out_unlock;
562
563 id = sem_buildid(semid, sma->sem_perm.seq);
564
565 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
566 tbuf.sem_otime = sma->sem_otime;
567 tbuf.sem_ctime = sma->sem_ctime;
568 tbuf.sem_nsems = sma->sem_nsems;
569 sem_unlock(sma);
570 if (copy_semid_to_user (arg.buf, &tbuf, version))
571 return -EFAULT;
572 return id;
573 }
574 default:
575 return -EINVAL;
576 }
577 return err;
578 out_unlock:
579 sem_unlock(sma);
580 return err;
581 }
582
583 static int semctl_main(int semid, int semnum, int cmd, int version, union semun arg)
584 {
585 struct sem_array *sma;
586 struct sem* curr;
587 int err;
588 ushort fast_sem_io[SEMMSL_FAST];
589 ushort* sem_io = fast_sem_io;
590 int nsems;
591
592 sma = sem_lock(semid);
593 if(sma==NULL)
594 return -EINVAL;
595
596 nsems = sma->sem_nsems;
597
598 err=-EIDRM;
599 if (sem_checkid(sma,semid))
600 goto out_unlock;
601
602 err = -EACCES;
603 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
604 goto out_unlock;
605
606 err = security_sem_semctl(sma, cmd);
607 if (err)
608 goto out_unlock;
609
610 err = -EACCES;
611 switch (cmd) {
612 case GETALL:
613 {
614 ushort __user *array = arg.array;
615 int i;
616
617 if(nsems > SEMMSL_FAST) {
618 ipc_rcu_getref(sma);
619 sem_unlock(sma);
620
621 sem_io = ipc_alloc(sizeof(ushort)*nsems);
622 if(sem_io == NULL) {
623 ipc_lock_by_ptr(&sma->sem_perm);
624 ipc_rcu_putref(sma);
625 sem_unlock(sma);
626 return -ENOMEM;
627 }
628
629 ipc_lock_by_ptr(&sma->sem_perm);
630 ipc_rcu_putref(sma);
631 if (sma->sem_perm.deleted) {
632 sem_unlock(sma);
633 err = -EIDRM;
634 goto out_free;
635 }
636 }
637
638 for (i = 0; i < sma->sem_nsems; i++)
639 sem_io[i] = sma->sem_base[i].semval;
640 sem_unlock(sma);
641 err = 0;
642 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
643 err = -EFAULT;
644 goto out_free;
645 }
646 case SETALL:
647 {
648 int i;
649 struct sem_undo *un;
650
651 ipc_rcu_getref(sma);
652 sem_unlock(sma);
653
654 if(nsems > SEMMSL_FAST) {
655 sem_io = ipc_alloc(sizeof(ushort)*nsems);
656 if(sem_io == NULL) {
657 ipc_lock_by_ptr(&sma->sem_perm);
658 ipc_rcu_putref(sma);
659 sem_unlock(sma);
660 return -ENOMEM;
661 }
662 }
663
664 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
665 ipc_lock_by_ptr(&sma->sem_perm);
666 ipc_rcu_putref(sma);
667 sem_unlock(sma);
668 err = -EFAULT;
669 goto out_free;
670 }
671
672 for (i = 0; i < nsems; i++) {
673 if (sem_io[i] > SEMVMX) {
674 ipc_lock_by_ptr(&sma->sem_perm);
675 ipc_rcu_putref(sma);
676 sem_unlock(sma);
677 err = -ERANGE;
678 goto out_free;
679 }
680 }
681 ipc_lock_by_ptr(&sma->sem_perm);
682 ipc_rcu_putref(sma);
683 if (sma->sem_perm.deleted) {
684 sem_unlock(sma);
685 err = -EIDRM;
686 goto out_free;
687 }
688
689 for (i = 0; i < nsems; i++)
690 sma->sem_base[i].semval = sem_io[i];
691 for (un = sma->undo; un; un = un->id_next)
692 for (i = 0; i < nsems; i++)
693 un->semadj[i] = 0;
694 sma->sem_ctime = get_seconds();
695 /* maybe some queued-up processes were waiting for this */
696 update_queue(sma);
697 err = 0;
698 goto out_unlock;
699 }
700 case IPC_STAT:
701 {
702 struct semid64_ds tbuf;
703 memset(&tbuf,0,sizeof(tbuf));
704 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
705 tbuf.sem_otime = sma->sem_otime;
706 tbuf.sem_ctime = sma->sem_ctime;
707 tbuf.sem_nsems = sma->sem_nsems;
708 sem_unlock(sma);
709 if (copy_semid_to_user (arg.buf, &tbuf, version))
710 return -EFAULT;
711 return 0;
712 }
713 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
714 }
715 err = -EINVAL;
716 if(semnum < 0 || semnum >= nsems)
717 goto out_unlock;
718
719 curr = &sma->sem_base[semnum];
720
721 switch (cmd) {
722 case GETVAL:
723 err = curr->semval;
724 goto out_unlock;
725 case GETPID:
726 err = curr->sempid;
727 goto out_unlock;
728 case GETNCNT:
729 err = count_semncnt(sma,semnum);
730 goto out_unlock;
731 case GETZCNT:
732 err = count_semzcnt(sma,semnum);
733 goto out_unlock;
734 case SETVAL:
735 {
736 int val = arg.val;
737 struct sem_undo *un;
738 err = -ERANGE;
739 if (val > SEMVMX || val < 0)
740 goto out_unlock;
741
742 for (un = sma->undo; un; un = un->id_next)
743 un->semadj[semnum] = 0;
744 curr->semval = val;
745 curr->sempid = current->tgid;
746 sma->sem_ctime = get_seconds();
747 /* maybe some queued-up processes were waiting for this */
748 update_queue(sma);
749 err = 0;
750 goto out_unlock;
751 }
752 }
753 out_unlock:
754 sem_unlock(sma);
755 out_free:
756 if(sem_io != fast_sem_io)
757 ipc_free(sem_io, sizeof(ushort)*nsems);
758 return err;
759 }
760
761 struct sem_setbuf {
762 uid_t uid;
763 gid_t gid;
764 mode_t mode;
765 };
766
767 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
768 {
769 switch(version) {
770 case IPC_64:
771 {
772 struct semid64_ds tbuf;
773
774 if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
775 return -EFAULT;
776
777 out->uid = tbuf.sem_perm.uid;
778 out->gid = tbuf.sem_perm.gid;
779 out->mode = tbuf.sem_perm.mode;
780
781 return 0;
782 }
783 case IPC_OLD:
784 {
785 struct semid_ds tbuf_old;
786
787 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
788 return -EFAULT;
789
790 out->uid = tbuf_old.sem_perm.uid;
791 out->gid = tbuf_old.sem_perm.gid;
792 out->mode = tbuf_old.sem_perm.mode;
793
794 return 0;
795 }
796 default:
797 return -EINVAL;
798 }
799 }
800
801 static int semctl_down(int semid, int semnum, int cmd, int version, union semun arg)
802 {
803 struct sem_array *sma;
804 int err;
805 struct sem_setbuf setbuf;
806 struct kern_ipc_perm *ipcp;
807
808 if(cmd == IPC_SET) {
809 if(copy_semid_from_user (&setbuf, arg.buf, version))
810 return -EFAULT;
811 }
812 sma = sem_lock(semid);
813 if(sma==NULL)
814 return -EINVAL;
815
816 if (sem_checkid(sma,semid)) {
817 err=-EIDRM;
818 goto out_unlock;
819 }
820 ipcp = &sma->sem_perm;
821 if (current->euid != ipcp->cuid &&
822 current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
823 err=-EPERM;
824 goto out_unlock;
825 }
826
827 err = security_sem_semctl(sma, cmd);
828 if (err)
829 goto out_unlock;
830
831 switch(cmd){
832 case IPC_RMID:
833 freeary(sma, semid);
834 err = 0;
835 break;
836 case IPC_SET:
837 if ((err = audit_ipc_perms(0, setbuf.uid, setbuf.gid, setbuf.mode, ipcp)))
838 goto out_unlock;
839 ipcp->uid = setbuf.uid;
840 ipcp->gid = setbuf.gid;
841 ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
842 | (setbuf.mode & S_IRWXUGO);
843 sma->sem_ctime = get_seconds();
844 sem_unlock(sma);
845 err = 0;
846 break;
847 default:
848 sem_unlock(sma);
849 err = -EINVAL;
850 break;
851 }
852 return err;
853
854 out_unlock:
855 sem_unlock(sma);
856 return err;
857 }
858
859 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
860 {
861 int err = -EINVAL;
862 int version;
863
864 if (semid < 0)
865 return -EINVAL;
866
867 version = ipc_parse_version(&cmd);
868
869 switch(cmd) {
870 case IPC_INFO:
871 case SEM_INFO:
872 case SEM_STAT:
873 err = semctl_nolock(semid,semnum,cmd,version,arg);
874 return err;
875 case GETALL:
876 case GETVAL:
877 case GETPID:
878 case GETNCNT:
879 case GETZCNT:
880 case IPC_STAT:
881 case SETVAL:
882 case SETALL:
883 err = semctl_main(semid,semnum,cmd,version,arg);
884 return err;
885 case IPC_RMID:
886 case IPC_SET:
887 down(&sem_ids.sem);
888 err = semctl_down(semid,semnum,cmd,version,arg);
889 up(&sem_ids.sem);
890 return err;
891 default:
892 return -EINVAL;
893 }
894 }
895
896 static inline void lock_semundo(void)
897 {
898 struct sem_undo_list *undo_list;
899
900 undo_list = current->sysvsem.undo_list;
901 if (undo_list)
902 spin_lock(&undo_list->lock);
903 }
904
905 /* This code has an interaction with copy_semundo().
906 * Consider; two tasks are sharing the undo_list. task1
907 * acquires the undo_list lock in lock_semundo(). If task2 now
908 * exits before task1 releases the lock (by calling
909 * unlock_semundo()), then task1 will never call spin_unlock().
910 * This leave the sem_undo_list in a locked state. If task1 now creats task3
911 * and once again shares the sem_undo_list, the sem_undo_list will still be
912 * locked, and future SEM_UNDO operations will deadlock. This case is
913 * dealt with in copy_semundo() by having it reinitialize the spin lock when
914 * the refcnt goes from 1 to 2.
915 */
916 static inline void unlock_semundo(void)
917 {
918 struct sem_undo_list *undo_list;
919
920 undo_list = current->sysvsem.undo_list;
921 if (undo_list)
922 spin_unlock(&undo_list->lock);
923 }
924
925
926 /* If the task doesn't already have a undo_list, then allocate one
927 * here. We guarantee there is only one thread using this undo list,
928 * and current is THE ONE
929 *
930 * If this allocation and assignment succeeds, but later
931 * portions of this code fail, there is no need to free the sem_undo_list.
932 * Just let it stay associated with the task, and it'll be freed later
933 * at exit time.
934 *
935 * This can block, so callers must hold no locks.
936 */
937 static inline int get_undo_list(struct sem_undo_list **undo_listp)
938 {
939 struct sem_undo_list *undo_list;
940 int size;
941
942 undo_list = current->sysvsem.undo_list;
943 if (!undo_list) {
944 size = sizeof(struct sem_undo_list);
945 undo_list = (struct sem_undo_list *) kmalloc(size, GFP_KERNEL);
946 if (undo_list == NULL)
947 return -ENOMEM;
948 memset(undo_list, 0, size);
949 spin_lock_init(&undo_list->lock);
950 atomic_set(&undo_list->refcnt, 1);
951 current->sysvsem.undo_list = undo_list;
952 }
953 *undo_listp = undo_list;
954 return 0;
955 }
956
957 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
958 {
959 struct sem_undo **last, *un;
960
961 last = &ulp->proc_list;
962 un = *last;
963 while(un != NULL) {
964 if(un->semid==semid)
965 break;
966 if(un->semid==-1) {
967 *last=un->proc_next;
968 kfree(un);
969 } else {
970 last=&un->proc_next;
971 }
972 un=*last;
973 }
974 return un;
975 }
976
977 static struct sem_undo *find_undo(int semid)
978 {
979 struct sem_array *sma;
980 struct sem_undo_list *ulp;
981 struct sem_undo *un, *new;
982 int nsems;
983 int error;
984
985 error = get_undo_list(&ulp);
986 if (error)
987 return ERR_PTR(error);
988
989 lock_semundo();
990 un = lookup_undo(ulp, semid);
991 unlock_semundo();
992 if (likely(un!=NULL))
993 goto out;
994
995 /* no undo structure around - allocate one. */
996 sma = sem_lock(semid);
997 un = ERR_PTR(-EINVAL);
998 if(sma==NULL)
999 goto out;
1000 un = ERR_PTR(-EIDRM);
1001 if (sem_checkid(sma,semid)) {
1002 sem_unlock(sma);
1003 goto out;
1004 }
1005 nsems = sma->sem_nsems;
1006 ipc_rcu_getref(sma);
1007 sem_unlock(sma);
1008
1009 new = (struct sem_undo *) kmalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1010 if (!new) {
1011 ipc_lock_by_ptr(&sma->sem_perm);
1012 ipc_rcu_putref(sma);
1013 sem_unlock(sma);
1014 return ERR_PTR(-ENOMEM);
1015 }
1016 memset(new, 0, sizeof(struct sem_undo) + sizeof(short)*nsems);
1017 new->semadj = (short *) &new[1];
1018 new->semid = semid;
1019
1020 lock_semundo();
1021 un = lookup_undo(ulp, semid);
1022 if (un) {
1023 unlock_semundo();
1024 kfree(new);
1025 ipc_lock_by_ptr(&sma->sem_perm);
1026 ipc_rcu_putref(sma);
1027 sem_unlock(sma);
1028 goto out;
1029 }
1030 ipc_lock_by_ptr(&sma->sem_perm);
1031 ipc_rcu_putref(sma);
1032 if (sma->sem_perm.deleted) {
1033 sem_unlock(sma);
1034 unlock_semundo();
1035 kfree(new);
1036 un = ERR_PTR(-EIDRM);
1037 goto out;
1038 }
1039 new->proc_next = ulp->proc_list;
1040 ulp->proc_list = new;
1041 new->id_next = sma->undo;
1042 sma->undo = new;
1043 sem_unlock(sma);
1044 un = new;
1045 unlock_semundo();
1046 out:
1047 return un;
1048 }
1049
1050 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1051 unsigned nsops, const struct timespec __user *timeout)
1052 {
1053 int error = -EINVAL;
1054 struct sem_array *sma;
1055 struct sembuf fast_sops[SEMOPM_FAST];
1056 struct sembuf* sops = fast_sops, *sop;
1057 struct sem_undo *un;
1058 int undos = 0, alter = 0, max;
1059 struct sem_queue queue;
1060 unsigned long jiffies_left = 0;
1061
1062 if (nsops < 1 || semid < 0)
1063 return -EINVAL;
1064 if (nsops > sc_semopm)
1065 return -E2BIG;
1066 if(nsops > SEMOPM_FAST) {
1067 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1068 if(sops==NULL)
1069 return -ENOMEM;
1070 }
1071 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1072 error=-EFAULT;
1073 goto out_free;
1074 }
1075 if (timeout) {
1076 struct timespec _timeout;
1077 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1078 error = -EFAULT;
1079 goto out_free;
1080 }
1081 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1082 _timeout.tv_nsec >= 1000000000L) {
1083 error = -EINVAL;
1084 goto out_free;
1085 }
1086 jiffies_left = timespec_to_jiffies(&_timeout);
1087 }
1088 max = 0;
1089 for (sop = sops; sop < sops + nsops; sop++) {
1090 if (sop->sem_num >= max)
1091 max = sop->sem_num;
1092 if (sop->sem_flg & SEM_UNDO)
1093 undos = 1;
1094 if (sop->sem_op != 0)
1095 alter = 1;
1096 }
1097
1098 retry_undos:
1099 if (undos) {
1100 un = find_undo(semid);
1101 if (IS_ERR(un)) {
1102 error = PTR_ERR(un);
1103 goto out_free;
1104 }
1105 } else
1106 un = NULL;
1107
1108 sma = sem_lock(semid);
1109 error=-EINVAL;
1110 if(sma==NULL)
1111 goto out_free;
1112 error = -EIDRM;
1113 if (sem_checkid(sma,semid))
1114 goto out_unlock_free;
1115 /*
1116 * semid identifies are not unique - find_undo may have
1117 * allocated an undo structure, it was invalidated by an RMID
1118 * and now a new array with received the same id. Check and retry.
1119 */
1120 if (un && un->semid == -1) {
1121 sem_unlock(sma);
1122 goto retry_undos;
1123 }
1124 error = -EFBIG;
1125 if (max >= sma->sem_nsems)
1126 goto out_unlock_free;
1127
1128 error = -EACCES;
1129 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1130 goto out_unlock_free;
1131
1132 error = security_sem_semop(sma, sops, nsops, alter);
1133 if (error)
1134 goto out_unlock_free;
1135
1136 error = try_atomic_semop (sma, sops, nsops, un, current->tgid);
1137 if (error <= 0) {
1138 if (alter && error == 0)
1139 update_queue (sma);
1140 goto out_unlock_free;
1141 }
1142
1143 /* We need to sleep on this operation, so we put the current
1144 * task into the pending queue and go to sleep.
1145 */
1146
1147 queue.sma = sma;
1148 queue.sops = sops;
1149 queue.nsops = nsops;
1150 queue.undo = un;
1151 queue.pid = current->tgid;
1152 queue.id = semid;
1153 queue.alter = alter;
1154 if (alter)
1155 append_to_queue(sma ,&queue);
1156 else
1157 prepend_to_queue(sma ,&queue);
1158
1159 queue.status = -EINTR;
1160 queue.sleeper = current;
1161 current->state = TASK_INTERRUPTIBLE;
1162 sem_unlock(sma);
1163
1164 if (timeout)
1165 jiffies_left = schedule_timeout(jiffies_left);
1166 else
1167 schedule();
1168
1169 error = queue.status;
1170 while(unlikely(error == IN_WAKEUP)) {
1171 cpu_relax();
1172 error = queue.status;
1173 }
1174
1175 if (error != -EINTR) {
1176 /* fast path: update_queue already obtained all requested
1177 * resources */
1178 goto out_free;
1179 }
1180
1181 sma = sem_lock(semid);
1182 if(sma==NULL) {
1183 BUG_ON(queue.prev != NULL);
1184 error = -EIDRM;
1185 goto out_free;
1186 }
1187
1188 /*
1189 * If queue.status != -EINTR we are woken up by another process
1190 */
1191 error = queue.status;
1192 if (error != -EINTR) {
1193 goto out_unlock_free;
1194 }
1195
1196 /*
1197 * If an interrupt occurred we have to clean up the queue
1198 */
1199 if (timeout && jiffies_left == 0)
1200 error = -EAGAIN;
1201 remove_from_queue(sma,&queue);
1202 goto out_unlock_free;
1203
1204 out_unlock_free:
1205 sem_unlock(sma);
1206 out_free:
1207 if(sops != fast_sops)
1208 kfree(sops);
1209 return error;
1210 }
1211
1212 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1213 {
1214 return sys_semtimedop(semid, tsops, nsops, NULL);
1215 }
1216
1217 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1218 * parent and child tasks.
1219 *
1220 * See the notes above unlock_semundo() regarding the spin_lock_init()
1221 * in this code. Initialize the undo_list->lock here instead of get_undo_list()
1222 * because of the reasoning in the comment above unlock_semundo.
1223 */
1224
1225 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1226 {
1227 struct sem_undo_list *undo_list;
1228 int error;
1229
1230 if (clone_flags & CLONE_SYSVSEM) {
1231 error = get_undo_list(&undo_list);
1232 if (error)
1233 return error;
1234 atomic_inc(&undo_list->refcnt);
1235 tsk->sysvsem.undo_list = undo_list;
1236 } else
1237 tsk->sysvsem.undo_list = NULL;
1238
1239 return 0;
1240 }
1241
1242 /*
1243 * add semadj values to semaphores, free undo structures.
1244 * undo structures are not freed when semaphore arrays are destroyed
1245 * so some of them may be out of date.
1246 * IMPLEMENTATION NOTE: There is some confusion over whether the
1247 * set of adjustments that needs to be done should be done in an atomic
1248 * manner or not. That is, if we are attempting to decrement the semval
1249 * should we queue up and wait until we can do so legally?
1250 * The original implementation attempted to do this (queue and wait).
1251 * The current implementation does not do so. The POSIX standard
1252 * and SVID should be consulted to determine what behavior is mandated.
1253 */
1254 void exit_sem(struct task_struct *tsk)
1255 {
1256 struct sem_undo_list *undo_list;
1257 struct sem_undo *u, **up;
1258
1259 undo_list = tsk->sysvsem.undo_list;
1260 if (!undo_list)
1261 return;
1262
1263 if (!atomic_dec_and_test(&undo_list->refcnt))
1264 return;
1265
1266 /* There's no need to hold the semundo list lock, as current
1267 * is the last task exiting for this undo list.
1268 */
1269 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1270 struct sem_array *sma;
1271 int nsems, i;
1272 struct sem_undo *un, **unp;
1273 int semid;
1274
1275 semid = u->semid;
1276
1277 if(semid == -1)
1278 continue;
1279 sma = sem_lock(semid);
1280 if (sma == NULL)
1281 continue;
1282
1283 if (u->semid == -1)
1284 goto next_entry;
1285
1286 BUG_ON(sem_checkid(sma,u->semid));
1287
1288 /* remove u from the sma->undo list */
1289 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1290 if (u == un)
1291 goto found;
1292 }
1293 printk ("exit_sem undo list error id=%d\n", u->semid);
1294 goto next_entry;
1295 found:
1296 *unp = un->id_next;
1297 /* perform adjustments registered in u */
1298 nsems = sma->sem_nsems;
1299 for (i = 0; i < nsems; i++) {
1300 struct sem * sem = &sma->sem_base[i];
1301 if (u->semadj[i]) {
1302 sem->semval += u->semadj[i];
1303 /*
1304 * Range checks of the new semaphore value,
1305 * not defined by sus:
1306 * - Some unices ignore the undo entirely
1307 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1308 * - some cap the value (e.g. FreeBSD caps
1309 * at 0, but doesn't enforce SEMVMX)
1310 *
1311 * Linux caps the semaphore value, both at 0
1312 * and at SEMVMX.
1313 *
1314 * Manfred <manfred@colorfullife.com>
1315 */
1316 if (sem->semval < 0)
1317 sem->semval = 0;
1318 if (sem->semval > SEMVMX)
1319 sem->semval = SEMVMX;
1320 sem->sempid = current->tgid;
1321 }
1322 }
1323 sma->sem_otime = get_seconds();
1324 /* maybe some queued-up processes were waiting for this */
1325 update_queue(sma);
1326 next_entry:
1327 sem_unlock(sma);
1328 }
1329 kfree(undo_list);
1330 }
1331
1332 #ifdef CONFIG_PROC_FS
1333 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1334 {
1335 struct sem_array *sma = it;
1336
1337 return seq_printf(s,
1338 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1339 sma->sem_perm.key,
1340 sma->sem_id,
1341 sma->sem_perm.mode,
1342 sma->sem_nsems,
1343 sma->sem_perm.uid,
1344 sma->sem_perm.gid,
1345 sma->sem_perm.cuid,
1346 sma->sem_perm.cgid,
1347 sma->sem_otime,
1348 sma->sem_ctime);
1349 }
1350 #endif
This page took 0.070333 seconds and 5 git commands to generate.