IPC: introduce ipc_update_perm()
[deliverable/linux.git] / ipc / sem.c
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
32 *
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
51 *
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
55 *
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57 *
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc <alan@redhat.com>
62 * Lockless wakeup
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64 *
65 * support for audit of ipc object properties and permission changes
66 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
67 *
68 * namespaces support
69 * OpenVZ, SWsoft Inc.
70 * Pavel Emelianov <xemul@openvz.org>
71 */
72
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86
87 #include <asm/uaccess.h>
88 #include "util.h"
89
90 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
91
92 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
93 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
94
95 static int newary(struct ipc_namespace *, struct ipc_params *);
96 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
97 #ifdef CONFIG_PROC_FS
98 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
99 #endif
100
101 #define SEMMSL_FAST 256 /* 512 bytes on stack */
102 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
103
104 /*
105 * linked list protection:
106 * sem_undo.id_next,
107 * sem_array.sem_pending{,last},
108 * sem_array.sem_undo: sem_lock() for read/write
109 * sem_undo.proc_next: only "current" is allowed to read/write that field.
110 *
111 */
112
113 #define sc_semmsl sem_ctls[0]
114 #define sc_semmns sem_ctls[1]
115 #define sc_semopm sem_ctls[2]
116 #define sc_semmni sem_ctls[3]
117
118 void sem_init_ns(struct ipc_namespace *ns)
119 {
120 ns->sc_semmsl = SEMMSL;
121 ns->sc_semmns = SEMMNS;
122 ns->sc_semopm = SEMOPM;
123 ns->sc_semmni = SEMMNI;
124 ns->used_sems = 0;
125 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
126 }
127
128 #ifdef CONFIG_IPC_NS
129 void sem_exit_ns(struct ipc_namespace *ns)
130 {
131 free_ipcs(ns, &sem_ids(ns), freeary);
132 }
133 #endif
134
135 void __init sem_init (void)
136 {
137 sem_init_ns(&init_ipc_ns);
138 ipc_init_proc_interface("sysvipc/sem",
139 " key semid perms nsems uid gid cuid cgid otime ctime\n",
140 IPC_SEM_IDS, sysvipc_sem_proc_show);
141 }
142
143 /*
144 * This routine is called in the paths where the rw_mutex is held to protect
145 * access to the idr tree.
146 */
147 static inline struct sem_array *sem_lock_check_down(struct ipc_namespace *ns,
148 int id)
149 {
150 struct kern_ipc_perm *ipcp = ipc_lock_check_down(&sem_ids(ns), id);
151
152 if (IS_ERR(ipcp))
153 return (struct sem_array *)ipcp;
154
155 return container_of(ipcp, struct sem_array, sem_perm);
156 }
157
158 /*
159 * sem_lock_(check_) routines are called in the paths where the rw_mutex
160 * is not held.
161 */
162 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
163 {
164 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
165
166 if (IS_ERR(ipcp))
167 return (struct sem_array *)ipcp;
168
169 return container_of(ipcp, struct sem_array, sem_perm);
170 }
171
172 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
173 int id)
174 {
175 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
176
177 if (IS_ERR(ipcp))
178 return (struct sem_array *)ipcp;
179
180 return container_of(ipcp, struct sem_array, sem_perm);
181 }
182
183 static inline void sem_lock_and_putref(struct sem_array *sma)
184 {
185 ipc_lock_by_ptr(&sma->sem_perm);
186 ipc_rcu_putref(sma);
187 }
188
189 static inline void sem_getref_and_unlock(struct sem_array *sma)
190 {
191 ipc_rcu_getref(sma);
192 ipc_unlock(&(sma)->sem_perm);
193 }
194
195 static inline void sem_putref(struct sem_array *sma)
196 {
197 ipc_lock_by_ptr(&sma->sem_perm);
198 ipc_rcu_putref(sma);
199 ipc_unlock(&(sma)->sem_perm);
200 }
201
202 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
203 {
204 ipc_rmid(&sem_ids(ns), &s->sem_perm);
205 }
206
207 /*
208 * Lockless wakeup algorithm:
209 * Without the check/retry algorithm a lockless wakeup is possible:
210 * - queue.status is initialized to -EINTR before blocking.
211 * - wakeup is performed by
212 * * unlinking the queue entry from sma->sem_pending
213 * * setting queue.status to IN_WAKEUP
214 * This is the notification for the blocked thread that a
215 * result value is imminent.
216 * * call wake_up_process
217 * * set queue.status to the final value.
218 * - the previously blocked thread checks queue.status:
219 * * if it's IN_WAKEUP, then it must wait until the value changes
220 * * if it's not -EINTR, then the operation was completed by
221 * update_queue. semtimedop can return queue.status without
222 * performing any operation on the sem array.
223 * * otherwise it must acquire the spinlock and check what's up.
224 *
225 * The two-stage algorithm is necessary to protect against the following
226 * races:
227 * - if queue.status is set after wake_up_process, then the woken up idle
228 * thread could race forward and try (and fail) to acquire sma->lock
229 * before update_queue had a chance to set queue.status
230 * - if queue.status is written before wake_up_process and if the
231 * blocked process is woken up by a signal between writing
232 * queue.status and the wake_up_process, then the woken up
233 * process could return from semtimedop and die by calling
234 * sys_exit before wake_up_process is called. Then wake_up_process
235 * will oops, because the task structure is already invalid.
236 * (yes, this happened on s390 with sysv msg).
237 *
238 */
239 #define IN_WAKEUP 1
240
241 /**
242 * newary - Create a new semaphore set
243 * @ns: namespace
244 * @params: ptr to the structure that contains key, semflg and nsems
245 *
246 * Called with sem_ids.rw_mutex held (as a writer)
247 */
248
249 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
250 {
251 int id;
252 int retval;
253 struct sem_array *sma;
254 int size;
255 key_t key = params->key;
256 int nsems = params->u.nsems;
257 int semflg = params->flg;
258
259 if (!nsems)
260 return -EINVAL;
261 if (ns->used_sems + nsems > ns->sc_semmns)
262 return -ENOSPC;
263
264 size = sizeof (*sma) + nsems * sizeof (struct sem);
265 sma = ipc_rcu_alloc(size);
266 if (!sma) {
267 return -ENOMEM;
268 }
269 memset (sma, 0, size);
270
271 sma->sem_perm.mode = (semflg & S_IRWXUGO);
272 sma->sem_perm.key = key;
273
274 sma->sem_perm.security = NULL;
275 retval = security_sem_alloc(sma);
276 if (retval) {
277 ipc_rcu_putref(sma);
278 return retval;
279 }
280
281 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
282 if (id < 0) {
283 security_sem_free(sma);
284 ipc_rcu_putref(sma);
285 return id;
286 }
287 ns->used_sems += nsems;
288
289 sma->sem_base = (struct sem *) &sma[1];
290 /* sma->sem_pending = NULL; */
291 sma->sem_pending_last = &sma->sem_pending;
292 /* sma->undo = NULL; */
293 sma->sem_nsems = nsems;
294 sma->sem_ctime = get_seconds();
295 sem_unlock(sma);
296
297 return sma->sem_perm.id;
298 }
299
300
301 /*
302 * Called with sem_ids.rw_mutex and ipcp locked.
303 */
304 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
305 {
306 struct sem_array *sma;
307
308 sma = container_of(ipcp, struct sem_array, sem_perm);
309 return security_sem_associate(sma, semflg);
310 }
311
312 /*
313 * Called with sem_ids.rw_mutex and ipcp locked.
314 */
315 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
316 struct ipc_params *params)
317 {
318 struct sem_array *sma;
319
320 sma = container_of(ipcp, struct sem_array, sem_perm);
321 if (params->u.nsems > sma->sem_nsems)
322 return -EINVAL;
323
324 return 0;
325 }
326
327 asmlinkage long sys_semget(key_t key, int nsems, int semflg)
328 {
329 struct ipc_namespace *ns;
330 struct ipc_ops sem_ops;
331 struct ipc_params sem_params;
332
333 ns = current->nsproxy->ipc_ns;
334
335 if (nsems < 0 || nsems > ns->sc_semmsl)
336 return -EINVAL;
337
338 sem_ops.getnew = newary;
339 sem_ops.associate = sem_security;
340 sem_ops.more_checks = sem_more_checks;
341
342 sem_params.key = key;
343 sem_params.flg = semflg;
344 sem_params.u.nsems = nsems;
345
346 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
347 }
348
349 /* Manage the doubly linked list sma->sem_pending as a FIFO:
350 * insert new queue elements at the tail sma->sem_pending_last.
351 */
352 static inline void append_to_queue (struct sem_array * sma,
353 struct sem_queue * q)
354 {
355 *(q->prev = sma->sem_pending_last) = q;
356 *(sma->sem_pending_last = &q->next) = NULL;
357 }
358
359 static inline void prepend_to_queue (struct sem_array * sma,
360 struct sem_queue * q)
361 {
362 q->next = sma->sem_pending;
363 *(q->prev = &sma->sem_pending) = q;
364 if (q->next)
365 q->next->prev = &q->next;
366 else /* sma->sem_pending_last == &sma->sem_pending */
367 sma->sem_pending_last = &q->next;
368 }
369
370 static inline void remove_from_queue (struct sem_array * sma,
371 struct sem_queue * q)
372 {
373 *(q->prev) = q->next;
374 if (q->next)
375 q->next->prev = q->prev;
376 else /* sma->sem_pending_last == &q->next */
377 sma->sem_pending_last = q->prev;
378 q->prev = NULL; /* mark as removed */
379 }
380
381 /*
382 * Determine whether a sequence of semaphore operations would succeed
383 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
384 */
385
386 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
387 int nsops, struct sem_undo *un, int pid)
388 {
389 int result, sem_op;
390 struct sembuf *sop;
391 struct sem * curr;
392
393 for (sop = sops; sop < sops + nsops; sop++) {
394 curr = sma->sem_base + sop->sem_num;
395 sem_op = sop->sem_op;
396 result = curr->semval;
397
398 if (!sem_op && result)
399 goto would_block;
400
401 result += sem_op;
402 if (result < 0)
403 goto would_block;
404 if (result > SEMVMX)
405 goto out_of_range;
406 if (sop->sem_flg & SEM_UNDO) {
407 int undo = un->semadj[sop->sem_num] - sem_op;
408 /*
409 * Exceeding the undo range is an error.
410 */
411 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
412 goto out_of_range;
413 }
414 curr->semval = result;
415 }
416
417 sop--;
418 while (sop >= sops) {
419 sma->sem_base[sop->sem_num].sempid = pid;
420 if (sop->sem_flg & SEM_UNDO)
421 un->semadj[sop->sem_num] -= sop->sem_op;
422 sop--;
423 }
424
425 sma->sem_otime = get_seconds();
426 return 0;
427
428 out_of_range:
429 result = -ERANGE;
430 goto undo;
431
432 would_block:
433 if (sop->sem_flg & IPC_NOWAIT)
434 result = -EAGAIN;
435 else
436 result = 1;
437
438 undo:
439 sop--;
440 while (sop >= sops) {
441 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
442 sop--;
443 }
444
445 return result;
446 }
447
448 /* Go through the pending queue for the indicated semaphore
449 * looking for tasks that can be completed.
450 */
451 static void update_queue (struct sem_array * sma)
452 {
453 int error;
454 struct sem_queue * q;
455
456 q = sma->sem_pending;
457 while(q) {
458 error = try_atomic_semop(sma, q->sops, q->nsops,
459 q->undo, q->pid);
460
461 /* Does q->sleeper still need to sleep? */
462 if (error <= 0) {
463 struct sem_queue *n;
464 remove_from_queue(sma,q);
465 q->status = IN_WAKEUP;
466 /*
467 * Continue scanning. The next operation
468 * that must be checked depends on the type of the
469 * completed operation:
470 * - if the operation modified the array, then
471 * restart from the head of the queue and
472 * check for threads that might be waiting
473 * for semaphore values to become 0.
474 * - if the operation didn't modify the array,
475 * then just continue.
476 */
477 if (q->alter)
478 n = sma->sem_pending;
479 else
480 n = q->next;
481 wake_up_process(q->sleeper);
482 /* hands-off: q will disappear immediately after
483 * writing q->status.
484 */
485 smp_wmb();
486 q->status = error;
487 q = n;
488 } else {
489 q = q->next;
490 }
491 }
492 }
493
494 /* The following counts are associated to each semaphore:
495 * semncnt number of tasks waiting on semval being nonzero
496 * semzcnt number of tasks waiting on semval being zero
497 * This model assumes that a task waits on exactly one semaphore.
498 * Since semaphore operations are to be performed atomically, tasks actually
499 * wait on a whole sequence of semaphores simultaneously.
500 * The counts we return here are a rough approximation, but still
501 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
502 */
503 static int count_semncnt (struct sem_array * sma, ushort semnum)
504 {
505 int semncnt;
506 struct sem_queue * q;
507
508 semncnt = 0;
509 for (q = sma->sem_pending; q; q = q->next) {
510 struct sembuf * sops = q->sops;
511 int nsops = q->nsops;
512 int i;
513 for (i = 0; i < nsops; i++)
514 if (sops[i].sem_num == semnum
515 && (sops[i].sem_op < 0)
516 && !(sops[i].sem_flg & IPC_NOWAIT))
517 semncnt++;
518 }
519 return semncnt;
520 }
521 static int count_semzcnt (struct sem_array * sma, ushort semnum)
522 {
523 int semzcnt;
524 struct sem_queue * q;
525
526 semzcnt = 0;
527 for (q = sma->sem_pending; q; q = q->next) {
528 struct sembuf * sops = q->sops;
529 int nsops = q->nsops;
530 int i;
531 for (i = 0; i < nsops; i++)
532 if (sops[i].sem_num == semnum
533 && (sops[i].sem_op == 0)
534 && !(sops[i].sem_flg & IPC_NOWAIT))
535 semzcnt++;
536 }
537 return semzcnt;
538 }
539
540 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
541 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
542 * remains locked on exit.
543 */
544 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
545 {
546 struct sem_undo *un;
547 struct sem_queue *q;
548 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
549
550 /* Invalidate the existing undo structures for this semaphore set.
551 * (They will be freed without any further action in exit_sem()
552 * or during the next semop.)
553 */
554 for (un = sma->undo; un; un = un->id_next)
555 un->semid = -1;
556
557 /* Wake up all pending processes and let them fail with EIDRM. */
558 q = sma->sem_pending;
559 while(q) {
560 struct sem_queue *n;
561 /* lazy remove_from_queue: we are killing the whole queue */
562 q->prev = NULL;
563 n = q->next;
564 q->status = IN_WAKEUP;
565 wake_up_process(q->sleeper); /* doesn't sleep */
566 smp_wmb();
567 q->status = -EIDRM; /* hands-off q */
568 q = n;
569 }
570
571 /* Remove the semaphore set from the IDR */
572 sem_rmid(ns, sma);
573 sem_unlock(sma);
574
575 ns->used_sems -= sma->sem_nsems;
576 security_sem_free(sma);
577 ipc_rcu_putref(sma);
578 }
579
580 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
581 {
582 switch(version) {
583 case IPC_64:
584 return copy_to_user(buf, in, sizeof(*in));
585 case IPC_OLD:
586 {
587 struct semid_ds out;
588
589 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
590
591 out.sem_otime = in->sem_otime;
592 out.sem_ctime = in->sem_ctime;
593 out.sem_nsems = in->sem_nsems;
594
595 return copy_to_user(buf, &out, sizeof(out));
596 }
597 default:
598 return -EINVAL;
599 }
600 }
601
602 static int semctl_nolock(struct ipc_namespace *ns, int semid,
603 int cmd, int version, union semun arg)
604 {
605 int err = -EINVAL;
606 struct sem_array *sma;
607
608 switch(cmd) {
609 case IPC_INFO:
610 case SEM_INFO:
611 {
612 struct seminfo seminfo;
613 int max_id;
614
615 err = security_sem_semctl(NULL, cmd);
616 if (err)
617 return err;
618
619 memset(&seminfo,0,sizeof(seminfo));
620 seminfo.semmni = ns->sc_semmni;
621 seminfo.semmns = ns->sc_semmns;
622 seminfo.semmsl = ns->sc_semmsl;
623 seminfo.semopm = ns->sc_semopm;
624 seminfo.semvmx = SEMVMX;
625 seminfo.semmnu = SEMMNU;
626 seminfo.semmap = SEMMAP;
627 seminfo.semume = SEMUME;
628 down_read(&sem_ids(ns).rw_mutex);
629 if (cmd == SEM_INFO) {
630 seminfo.semusz = sem_ids(ns).in_use;
631 seminfo.semaem = ns->used_sems;
632 } else {
633 seminfo.semusz = SEMUSZ;
634 seminfo.semaem = SEMAEM;
635 }
636 max_id = ipc_get_maxid(&sem_ids(ns));
637 up_read(&sem_ids(ns).rw_mutex);
638 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
639 return -EFAULT;
640 return (max_id < 0) ? 0: max_id;
641 }
642 case IPC_STAT:
643 case SEM_STAT:
644 {
645 struct semid64_ds tbuf;
646 int id;
647
648 if (cmd == SEM_STAT) {
649 sma = sem_lock(ns, semid);
650 if (IS_ERR(sma))
651 return PTR_ERR(sma);
652 id = sma->sem_perm.id;
653 } else {
654 sma = sem_lock_check(ns, semid);
655 if (IS_ERR(sma))
656 return PTR_ERR(sma);
657 id = 0;
658 }
659
660 err = -EACCES;
661 if (ipcperms (&sma->sem_perm, S_IRUGO))
662 goto out_unlock;
663
664 err = security_sem_semctl(sma, cmd);
665 if (err)
666 goto out_unlock;
667
668 memset(&tbuf, 0, sizeof(tbuf));
669
670 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
671 tbuf.sem_otime = sma->sem_otime;
672 tbuf.sem_ctime = sma->sem_ctime;
673 tbuf.sem_nsems = sma->sem_nsems;
674 sem_unlock(sma);
675 if (copy_semid_to_user (arg.buf, &tbuf, version))
676 return -EFAULT;
677 return id;
678 }
679 default:
680 return -EINVAL;
681 }
682 return err;
683 out_unlock:
684 sem_unlock(sma);
685 return err;
686 }
687
688 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
689 int cmd, int version, union semun arg)
690 {
691 struct sem_array *sma;
692 struct sem* curr;
693 int err;
694 ushort fast_sem_io[SEMMSL_FAST];
695 ushort* sem_io = fast_sem_io;
696 int nsems;
697
698 sma = sem_lock_check(ns, semid);
699 if (IS_ERR(sma))
700 return PTR_ERR(sma);
701
702 nsems = sma->sem_nsems;
703
704 err = -EACCES;
705 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
706 goto out_unlock;
707
708 err = security_sem_semctl(sma, cmd);
709 if (err)
710 goto out_unlock;
711
712 err = -EACCES;
713 switch (cmd) {
714 case GETALL:
715 {
716 ushort __user *array = arg.array;
717 int i;
718
719 if(nsems > SEMMSL_FAST) {
720 sem_getref_and_unlock(sma);
721
722 sem_io = ipc_alloc(sizeof(ushort)*nsems);
723 if(sem_io == NULL) {
724 sem_putref(sma);
725 return -ENOMEM;
726 }
727
728 sem_lock_and_putref(sma);
729 if (sma->sem_perm.deleted) {
730 sem_unlock(sma);
731 err = -EIDRM;
732 goto out_free;
733 }
734 }
735
736 for (i = 0; i < sma->sem_nsems; i++)
737 sem_io[i] = sma->sem_base[i].semval;
738 sem_unlock(sma);
739 err = 0;
740 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
741 err = -EFAULT;
742 goto out_free;
743 }
744 case SETALL:
745 {
746 int i;
747 struct sem_undo *un;
748
749 sem_getref_and_unlock(sma);
750
751 if(nsems > SEMMSL_FAST) {
752 sem_io = ipc_alloc(sizeof(ushort)*nsems);
753 if(sem_io == NULL) {
754 sem_putref(sma);
755 return -ENOMEM;
756 }
757 }
758
759 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
760 sem_putref(sma);
761 err = -EFAULT;
762 goto out_free;
763 }
764
765 for (i = 0; i < nsems; i++) {
766 if (sem_io[i] > SEMVMX) {
767 sem_putref(sma);
768 err = -ERANGE;
769 goto out_free;
770 }
771 }
772 sem_lock_and_putref(sma);
773 if (sma->sem_perm.deleted) {
774 sem_unlock(sma);
775 err = -EIDRM;
776 goto out_free;
777 }
778
779 for (i = 0; i < nsems; i++)
780 sma->sem_base[i].semval = sem_io[i];
781 for (un = sma->undo; un; un = un->id_next)
782 for (i = 0; i < nsems; i++)
783 un->semadj[i] = 0;
784 sma->sem_ctime = get_seconds();
785 /* maybe some queued-up processes were waiting for this */
786 update_queue(sma);
787 err = 0;
788 goto out_unlock;
789 }
790 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
791 }
792 err = -EINVAL;
793 if(semnum < 0 || semnum >= nsems)
794 goto out_unlock;
795
796 curr = &sma->sem_base[semnum];
797
798 switch (cmd) {
799 case GETVAL:
800 err = curr->semval;
801 goto out_unlock;
802 case GETPID:
803 err = curr->sempid;
804 goto out_unlock;
805 case GETNCNT:
806 err = count_semncnt(sma,semnum);
807 goto out_unlock;
808 case GETZCNT:
809 err = count_semzcnt(sma,semnum);
810 goto out_unlock;
811 case SETVAL:
812 {
813 int val = arg.val;
814 struct sem_undo *un;
815 err = -ERANGE;
816 if (val > SEMVMX || val < 0)
817 goto out_unlock;
818
819 for (un = sma->undo; un; un = un->id_next)
820 un->semadj[semnum] = 0;
821 curr->semval = val;
822 curr->sempid = task_tgid_vnr(current);
823 sma->sem_ctime = get_seconds();
824 /* maybe some queued-up processes were waiting for this */
825 update_queue(sma);
826 err = 0;
827 goto out_unlock;
828 }
829 }
830 out_unlock:
831 sem_unlock(sma);
832 out_free:
833 if(sem_io != fast_sem_io)
834 ipc_free(sem_io, sizeof(ushort)*nsems);
835 return err;
836 }
837
838 static inline unsigned long
839 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
840 {
841 switch(version) {
842 case IPC_64:
843 if (copy_from_user(out, buf, sizeof(*out)))
844 return -EFAULT;
845 return 0;
846 case IPC_OLD:
847 {
848 struct semid_ds tbuf_old;
849
850 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
851 return -EFAULT;
852
853 out->sem_perm.uid = tbuf_old.sem_perm.uid;
854 out->sem_perm.gid = tbuf_old.sem_perm.gid;
855 out->sem_perm.mode = tbuf_old.sem_perm.mode;
856
857 return 0;
858 }
859 default:
860 return -EINVAL;
861 }
862 }
863
864 /*
865 * This function handles some semctl commands which require the rw_mutex
866 * to be held in write mode.
867 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
868 */
869 static int semctl_down(struct ipc_namespace *ns, int semid,
870 int cmd, int version, union semun arg)
871 {
872 struct sem_array *sma;
873 int err;
874 struct semid64_ds semid64;
875 struct kern_ipc_perm *ipcp;
876
877 if(cmd == IPC_SET) {
878 if (copy_semid_from_user(&semid64, arg.buf, version))
879 return -EFAULT;
880 }
881 down_write(&sem_ids(ns).rw_mutex);
882 sma = sem_lock_check_down(ns, semid);
883 if (IS_ERR(sma)) {
884 err = PTR_ERR(sma);
885 goto out_up;
886 }
887
888 ipcp = &sma->sem_perm;
889
890 err = audit_ipc_obj(ipcp);
891 if (err)
892 goto out_unlock;
893
894 if (cmd == IPC_SET) {
895 err = audit_ipc_set_perm(0, semid64.sem_perm.uid,
896 semid64.sem_perm.gid,
897 semid64.sem_perm.mode);
898 if (err)
899 goto out_unlock;
900 }
901 if (current->euid != ipcp->cuid &&
902 current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
903 err=-EPERM;
904 goto out_unlock;
905 }
906
907 err = security_sem_semctl(sma, cmd);
908 if (err)
909 goto out_unlock;
910
911 switch(cmd){
912 case IPC_RMID:
913 freeary(ns, ipcp);
914 goto out_up;
915 case IPC_SET:
916 ipc_update_perm(&semid64.sem_perm, ipcp);
917 sma->sem_ctime = get_seconds();
918 break;
919 default:
920 err = -EINVAL;
921 }
922
923 out_unlock:
924 sem_unlock(sma);
925 out_up:
926 up_write(&sem_ids(ns).rw_mutex);
927 return err;
928 }
929
930 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
931 {
932 int err = -EINVAL;
933 int version;
934 struct ipc_namespace *ns;
935
936 if (semid < 0)
937 return -EINVAL;
938
939 version = ipc_parse_version(&cmd);
940 ns = current->nsproxy->ipc_ns;
941
942 switch(cmd) {
943 case IPC_INFO:
944 case SEM_INFO:
945 case IPC_STAT:
946 case SEM_STAT:
947 err = semctl_nolock(ns, semid, cmd, version, arg);
948 return err;
949 case GETALL:
950 case GETVAL:
951 case GETPID:
952 case GETNCNT:
953 case GETZCNT:
954 case SETVAL:
955 case SETALL:
956 err = semctl_main(ns,semid,semnum,cmd,version,arg);
957 return err;
958 case IPC_RMID:
959 case IPC_SET:
960 err = semctl_down(ns, semid, cmd, version, arg);
961 return err;
962 default:
963 return -EINVAL;
964 }
965 }
966
967 /* If the task doesn't already have a undo_list, then allocate one
968 * here. We guarantee there is only one thread using this undo list,
969 * and current is THE ONE
970 *
971 * If this allocation and assignment succeeds, but later
972 * portions of this code fail, there is no need to free the sem_undo_list.
973 * Just let it stay associated with the task, and it'll be freed later
974 * at exit time.
975 *
976 * This can block, so callers must hold no locks.
977 */
978 static inline int get_undo_list(struct sem_undo_list **undo_listp)
979 {
980 struct sem_undo_list *undo_list;
981
982 undo_list = current->sysvsem.undo_list;
983 if (!undo_list) {
984 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
985 if (undo_list == NULL)
986 return -ENOMEM;
987 spin_lock_init(&undo_list->lock);
988 atomic_set(&undo_list->refcnt, 1);
989 current->sysvsem.undo_list = undo_list;
990 }
991 *undo_listp = undo_list;
992 return 0;
993 }
994
995 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
996 {
997 struct sem_undo **last, *un;
998
999 last = &ulp->proc_list;
1000 un = *last;
1001 while(un != NULL) {
1002 if(un->semid==semid)
1003 break;
1004 if(un->semid==-1) {
1005 *last=un->proc_next;
1006 kfree(un);
1007 } else {
1008 last=&un->proc_next;
1009 }
1010 un=*last;
1011 }
1012 return un;
1013 }
1014
1015 static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid)
1016 {
1017 struct sem_array *sma;
1018 struct sem_undo_list *ulp;
1019 struct sem_undo *un, *new;
1020 int nsems;
1021 int error;
1022
1023 error = get_undo_list(&ulp);
1024 if (error)
1025 return ERR_PTR(error);
1026
1027 spin_lock(&ulp->lock);
1028 un = lookup_undo(ulp, semid);
1029 spin_unlock(&ulp->lock);
1030 if (likely(un!=NULL))
1031 goto out;
1032
1033 /* no undo structure around - allocate one. */
1034 sma = sem_lock_check(ns, semid);
1035 if (IS_ERR(sma))
1036 return ERR_PTR(PTR_ERR(sma));
1037
1038 nsems = sma->sem_nsems;
1039 sem_getref_and_unlock(sma);
1040
1041 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1042 if (!new) {
1043 sem_putref(sma);
1044 return ERR_PTR(-ENOMEM);
1045 }
1046 new->semadj = (short *) &new[1];
1047 new->semid = semid;
1048
1049 spin_lock(&ulp->lock);
1050 un = lookup_undo(ulp, semid);
1051 if (un) {
1052 spin_unlock(&ulp->lock);
1053 kfree(new);
1054 sem_putref(sma);
1055 goto out;
1056 }
1057 sem_lock_and_putref(sma);
1058 if (sma->sem_perm.deleted) {
1059 sem_unlock(sma);
1060 spin_unlock(&ulp->lock);
1061 kfree(new);
1062 un = ERR_PTR(-EIDRM);
1063 goto out;
1064 }
1065 new->proc_next = ulp->proc_list;
1066 ulp->proc_list = new;
1067 new->id_next = sma->undo;
1068 sma->undo = new;
1069 sem_unlock(sma);
1070 un = new;
1071 spin_unlock(&ulp->lock);
1072 out:
1073 return un;
1074 }
1075
1076 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1077 unsigned nsops, const struct timespec __user *timeout)
1078 {
1079 int error = -EINVAL;
1080 struct sem_array *sma;
1081 struct sembuf fast_sops[SEMOPM_FAST];
1082 struct sembuf* sops = fast_sops, *sop;
1083 struct sem_undo *un;
1084 int undos = 0, alter = 0, max;
1085 struct sem_queue queue;
1086 unsigned long jiffies_left = 0;
1087 struct ipc_namespace *ns;
1088
1089 ns = current->nsproxy->ipc_ns;
1090
1091 if (nsops < 1 || semid < 0)
1092 return -EINVAL;
1093 if (nsops > ns->sc_semopm)
1094 return -E2BIG;
1095 if(nsops > SEMOPM_FAST) {
1096 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1097 if(sops==NULL)
1098 return -ENOMEM;
1099 }
1100 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1101 error=-EFAULT;
1102 goto out_free;
1103 }
1104 if (timeout) {
1105 struct timespec _timeout;
1106 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1107 error = -EFAULT;
1108 goto out_free;
1109 }
1110 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1111 _timeout.tv_nsec >= 1000000000L) {
1112 error = -EINVAL;
1113 goto out_free;
1114 }
1115 jiffies_left = timespec_to_jiffies(&_timeout);
1116 }
1117 max = 0;
1118 for (sop = sops; sop < sops + nsops; sop++) {
1119 if (sop->sem_num >= max)
1120 max = sop->sem_num;
1121 if (sop->sem_flg & SEM_UNDO)
1122 undos = 1;
1123 if (sop->sem_op != 0)
1124 alter = 1;
1125 }
1126
1127 retry_undos:
1128 if (undos) {
1129 un = find_undo(ns, semid);
1130 if (IS_ERR(un)) {
1131 error = PTR_ERR(un);
1132 goto out_free;
1133 }
1134 } else
1135 un = NULL;
1136
1137 sma = sem_lock_check(ns, semid);
1138 if (IS_ERR(sma)) {
1139 error = PTR_ERR(sma);
1140 goto out_free;
1141 }
1142
1143 /*
1144 * semid identifiers are not unique - find_undo may have
1145 * allocated an undo structure, it was invalidated by an RMID
1146 * and now a new array with received the same id. Check and retry.
1147 */
1148 if (un && un->semid == -1) {
1149 sem_unlock(sma);
1150 goto retry_undos;
1151 }
1152 error = -EFBIG;
1153 if (max >= sma->sem_nsems)
1154 goto out_unlock_free;
1155
1156 error = -EACCES;
1157 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1158 goto out_unlock_free;
1159
1160 error = security_sem_semop(sma, sops, nsops, alter);
1161 if (error)
1162 goto out_unlock_free;
1163
1164 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1165 if (error <= 0) {
1166 if (alter && error == 0)
1167 update_queue (sma);
1168 goto out_unlock_free;
1169 }
1170
1171 /* We need to sleep on this operation, so we put the current
1172 * task into the pending queue and go to sleep.
1173 */
1174
1175 queue.sma = sma;
1176 queue.sops = sops;
1177 queue.nsops = nsops;
1178 queue.undo = un;
1179 queue.pid = task_tgid_vnr(current);
1180 queue.id = semid;
1181 queue.alter = alter;
1182 if (alter)
1183 append_to_queue(sma ,&queue);
1184 else
1185 prepend_to_queue(sma ,&queue);
1186
1187 queue.status = -EINTR;
1188 queue.sleeper = current;
1189 current->state = TASK_INTERRUPTIBLE;
1190 sem_unlock(sma);
1191
1192 if (timeout)
1193 jiffies_left = schedule_timeout(jiffies_left);
1194 else
1195 schedule();
1196
1197 error = queue.status;
1198 while(unlikely(error == IN_WAKEUP)) {
1199 cpu_relax();
1200 error = queue.status;
1201 }
1202
1203 if (error != -EINTR) {
1204 /* fast path: update_queue already obtained all requested
1205 * resources */
1206 goto out_free;
1207 }
1208
1209 sma = sem_lock(ns, semid);
1210 if (IS_ERR(sma)) {
1211 BUG_ON(queue.prev != NULL);
1212 error = -EIDRM;
1213 goto out_free;
1214 }
1215
1216 /*
1217 * If queue.status != -EINTR we are woken up by another process
1218 */
1219 error = queue.status;
1220 if (error != -EINTR) {
1221 goto out_unlock_free;
1222 }
1223
1224 /*
1225 * If an interrupt occurred we have to clean up the queue
1226 */
1227 if (timeout && jiffies_left == 0)
1228 error = -EAGAIN;
1229 remove_from_queue(sma,&queue);
1230 goto out_unlock_free;
1231
1232 out_unlock_free:
1233 sem_unlock(sma);
1234 out_free:
1235 if(sops != fast_sops)
1236 kfree(sops);
1237 return error;
1238 }
1239
1240 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1241 {
1242 return sys_semtimedop(semid, tsops, nsops, NULL);
1243 }
1244
1245 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1246 * parent and child tasks.
1247 */
1248
1249 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1250 {
1251 struct sem_undo_list *undo_list;
1252 int error;
1253
1254 if (clone_flags & CLONE_SYSVSEM) {
1255 error = get_undo_list(&undo_list);
1256 if (error)
1257 return error;
1258 atomic_inc(&undo_list->refcnt);
1259 tsk->sysvsem.undo_list = undo_list;
1260 } else
1261 tsk->sysvsem.undo_list = NULL;
1262
1263 return 0;
1264 }
1265
1266 /*
1267 * add semadj values to semaphores, free undo structures.
1268 * undo structures are not freed when semaphore arrays are destroyed
1269 * so some of them may be out of date.
1270 * IMPLEMENTATION NOTE: There is some confusion over whether the
1271 * set of adjustments that needs to be done should be done in an atomic
1272 * manner or not. That is, if we are attempting to decrement the semval
1273 * should we queue up and wait until we can do so legally?
1274 * The original implementation attempted to do this (queue and wait).
1275 * The current implementation does not do so. The POSIX standard
1276 * and SVID should be consulted to determine what behavior is mandated.
1277 */
1278 void exit_sem(struct task_struct *tsk)
1279 {
1280 struct sem_undo_list *undo_list;
1281 struct sem_undo *u, **up;
1282 struct ipc_namespace *ns;
1283
1284 undo_list = tsk->sysvsem.undo_list;
1285 if (!undo_list)
1286 return;
1287
1288 if (!atomic_dec_and_test(&undo_list->refcnt))
1289 return;
1290
1291 ns = tsk->nsproxy->ipc_ns;
1292 /* There's no need to hold the semundo list lock, as current
1293 * is the last task exiting for this undo list.
1294 */
1295 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1296 struct sem_array *sma;
1297 int nsems, i;
1298 struct sem_undo *un, **unp;
1299 int semid;
1300
1301 semid = u->semid;
1302
1303 if(semid == -1)
1304 continue;
1305 sma = sem_lock(ns, semid);
1306 if (IS_ERR(sma))
1307 continue;
1308
1309 if (u->semid == -1)
1310 goto next_entry;
1311
1312 BUG_ON(sem_checkid(sma, u->semid));
1313
1314 /* remove u from the sma->undo list */
1315 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1316 if (u == un)
1317 goto found;
1318 }
1319 printk ("exit_sem undo list error id=%d\n", u->semid);
1320 goto next_entry;
1321 found:
1322 *unp = un->id_next;
1323 /* perform adjustments registered in u */
1324 nsems = sma->sem_nsems;
1325 for (i = 0; i < nsems; i++) {
1326 struct sem * semaphore = &sma->sem_base[i];
1327 if (u->semadj[i]) {
1328 semaphore->semval += u->semadj[i];
1329 /*
1330 * Range checks of the new semaphore value,
1331 * not defined by sus:
1332 * - Some unices ignore the undo entirely
1333 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1334 * - some cap the value (e.g. FreeBSD caps
1335 * at 0, but doesn't enforce SEMVMX)
1336 *
1337 * Linux caps the semaphore value, both at 0
1338 * and at SEMVMX.
1339 *
1340 * Manfred <manfred@colorfullife.com>
1341 */
1342 if (semaphore->semval < 0)
1343 semaphore->semval = 0;
1344 if (semaphore->semval > SEMVMX)
1345 semaphore->semval = SEMVMX;
1346 semaphore->sempid = task_tgid_vnr(current);
1347 }
1348 }
1349 sma->sem_otime = get_seconds();
1350 /* maybe some queued-up processes were waiting for this */
1351 update_queue(sma);
1352 next_entry:
1353 sem_unlock(sma);
1354 }
1355 kfree(undo_list);
1356 }
1357
1358 #ifdef CONFIG_PROC_FS
1359 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1360 {
1361 struct sem_array *sma = it;
1362
1363 return seq_printf(s,
1364 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1365 sma->sem_perm.key,
1366 sma->sem_perm.id,
1367 sma->sem_perm.mode,
1368 sma->sem_nsems,
1369 sma->sem_perm.uid,
1370 sma->sem_perm.gid,
1371 sma->sem_perm.cuid,
1372 sma->sem_perm.cgid,
1373 sma->sem_otime,
1374 sma->sem_ctime);
1375 }
1376 #endif
This page took 0.102338 seconds and 5 git commands to generate.