ipc/sem.c: add a per-semaphore pending list
[deliverable/linux.git] / ipc / sem.c
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
32 *
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
51 *
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
55 *
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57 *
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc
62 * Lockless wakeup
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64 *
65 * support for audit of ipc object properties and permission changes
66 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
67 *
68 * namespaces support
69 * OpenVZ, SWsoft Inc.
70 * Pavel Emelianov <xemul@openvz.org>
71 */
72
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86
87 #include <asm/uaccess.h>
88 #include "util.h"
89
90 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
91
92 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
93 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
94
95 static int newary(struct ipc_namespace *, struct ipc_params *);
96 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
97 #ifdef CONFIG_PROC_FS
98 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
99 #endif
100
101 #define SEMMSL_FAST 256 /* 512 bytes on stack */
102 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
103
104 /*
105 * linked list protection:
106 * sem_undo.id_next,
107 * sem_array.sem_pending{,last},
108 * sem_array.sem_undo: sem_lock() for read/write
109 * sem_undo.proc_next: only "current" is allowed to read/write that field.
110 *
111 */
112
113 #define sc_semmsl sem_ctls[0]
114 #define sc_semmns sem_ctls[1]
115 #define sc_semopm sem_ctls[2]
116 #define sc_semmni sem_ctls[3]
117
118 void sem_init_ns(struct ipc_namespace *ns)
119 {
120 ns->sc_semmsl = SEMMSL;
121 ns->sc_semmns = SEMMNS;
122 ns->sc_semopm = SEMOPM;
123 ns->sc_semmni = SEMMNI;
124 ns->used_sems = 0;
125 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
126 }
127
128 #ifdef CONFIG_IPC_NS
129 void sem_exit_ns(struct ipc_namespace *ns)
130 {
131 free_ipcs(ns, &sem_ids(ns), freeary);
132 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
133 }
134 #endif
135
136 void __init sem_init (void)
137 {
138 sem_init_ns(&init_ipc_ns);
139 ipc_init_proc_interface("sysvipc/sem",
140 " key semid perms nsems uid gid cuid cgid otime ctime\n",
141 IPC_SEM_IDS, sysvipc_sem_proc_show);
142 }
143
144 /*
145 * sem_lock_(check_) routines are called in the paths where the rw_mutex
146 * is not held.
147 */
148 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
149 {
150 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
151
152 if (IS_ERR(ipcp))
153 return (struct sem_array *)ipcp;
154
155 return container_of(ipcp, struct sem_array, sem_perm);
156 }
157
158 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
159 int id)
160 {
161 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
162
163 if (IS_ERR(ipcp))
164 return (struct sem_array *)ipcp;
165
166 return container_of(ipcp, struct sem_array, sem_perm);
167 }
168
169 static inline void sem_lock_and_putref(struct sem_array *sma)
170 {
171 ipc_lock_by_ptr(&sma->sem_perm);
172 ipc_rcu_putref(sma);
173 }
174
175 static inline void sem_getref_and_unlock(struct sem_array *sma)
176 {
177 ipc_rcu_getref(sma);
178 ipc_unlock(&(sma)->sem_perm);
179 }
180
181 static inline void sem_putref(struct sem_array *sma)
182 {
183 ipc_lock_by_ptr(&sma->sem_perm);
184 ipc_rcu_putref(sma);
185 ipc_unlock(&(sma)->sem_perm);
186 }
187
188 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
189 {
190 ipc_rmid(&sem_ids(ns), &s->sem_perm);
191 }
192
193 /*
194 * Lockless wakeup algorithm:
195 * Without the check/retry algorithm a lockless wakeup is possible:
196 * - queue.status is initialized to -EINTR before blocking.
197 * - wakeup is performed by
198 * * unlinking the queue entry from sma->sem_pending
199 * * setting queue.status to IN_WAKEUP
200 * This is the notification for the blocked thread that a
201 * result value is imminent.
202 * * call wake_up_process
203 * * set queue.status to the final value.
204 * - the previously blocked thread checks queue.status:
205 * * if it's IN_WAKEUP, then it must wait until the value changes
206 * * if it's not -EINTR, then the operation was completed by
207 * update_queue. semtimedop can return queue.status without
208 * performing any operation on the sem array.
209 * * otherwise it must acquire the spinlock and check what's up.
210 *
211 * The two-stage algorithm is necessary to protect against the following
212 * races:
213 * - if queue.status is set after wake_up_process, then the woken up idle
214 * thread could race forward and try (and fail) to acquire sma->lock
215 * before update_queue had a chance to set queue.status
216 * - if queue.status is written before wake_up_process and if the
217 * blocked process is woken up by a signal between writing
218 * queue.status and the wake_up_process, then the woken up
219 * process could return from semtimedop and die by calling
220 * sys_exit before wake_up_process is called. Then wake_up_process
221 * will oops, because the task structure is already invalid.
222 * (yes, this happened on s390 with sysv msg).
223 *
224 */
225 #define IN_WAKEUP 1
226
227 /**
228 * newary - Create a new semaphore set
229 * @ns: namespace
230 * @params: ptr to the structure that contains key, semflg and nsems
231 *
232 * Called with sem_ids.rw_mutex held (as a writer)
233 */
234
235 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
236 {
237 int id;
238 int retval;
239 struct sem_array *sma;
240 int size;
241 key_t key = params->key;
242 int nsems = params->u.nsems;
243 int semflg = params->flg;
244 int i;
245
246 if (!nsems)
247 return -EINVAL;
248 if (ns->used_sems + nsems > ns->sc_semmns)
249 return -ENOSPC;
250
251 size = sizeof (*sma) + nsems * sizeof (struct sem);
252 sma = ipc_rcu_alloc(size);
253 if (!sma) {
254 return -ENOMEM;
255 }
256 memset (sma, 0, size);
257
258 sma->sem_perm.mode = (semflg & S_IRWXUGO);
259 sma->sem_perm.key = key;
260
261 sma->sem_perm.security = NULL;
262 retval = security_sem_alloc(sma);
263 if (retval) {
264 ipc_rcu_putref(sma);
265 return retval;
266 }
267
268 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
269 if (id < 0) {
270 security_sem_free(sma);
271 ipc_rcu_putref(sma);
272 return id;
273 }
274 ns->used_sems += nsems;
275
276 sma->sem_base = (struct sem *) &sma[1];
277
278 for (i = 0; i < nsems; i++)
279 INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
280
281 sma->complex_count = 0;
282 INIT_LIST_HEAD(&sma->sem_pending);
283 INIT_LIST_HEAD(&sma->list_id);
284 sma->sem_nsems = nsems;
285 sma->sem_ctime = get_seconds();
286 sem_unlock(sma);
287
288 return sma->sem_perm.id;
289 }
290
291
292 /*
293 * Called with sem_ids.rw_mutex and ipcp locked.
294 */
295 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
296 {
297 struct sem_array *sma;
298
299 sma = container_of(ipcp, struct sem_array, sem_perm);
300 return security_sem_associate(sma, semflg);
301 }
302
303 /*
304 * Called with sem_ids.rw_mutex and ipcp locked.
305 */
306 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
307 struct ipc_params *params)
308 {
309 struct sem_array *sma;
310
311 sma = container_of(ipcp, struct sem_array, sem_perm);
312 if (params->u.nsems > sma->sem_nsems)
313 return -EINVAL;
314
315 return 0;
316 }
317
318 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
319 {
320 struct ipc_namespace *ns;
321 struct ipc_ops sem_ops;
322 struct ipc_params sem_params;
323
324 ns = current->nsproxy->ipc_ns;
325
326 if (nsems < 0 || nsems > ns->sc_semmsl)
327 return -EINVAL;
328
329 sem_ops.getnew = newary;
330 sem_ops.associate = sem_security;
331 sem_ops.more_checks = sem_more_checks;
332
333 sem_params.key = key;
334 sem_params.flg = semflg;
335 sem_params.u.nsems = nsems;
336
337 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
338 }
339
340 /*
341 * Determine whether a sequence of semaphore operations would succeed
342 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
343 */
344
345 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
346 int nsops, struct sem_undo *un, int pid)
347 {
348 int result, sem_op;
349 struct sembuf *sop;
350 struct sem * curr;
351
352 for (sop = sops; sop < sops + nsops; sop++) {
353 curr = sma->sem_base + sop->sem_num;
354 sem_op = sop->sem_op;
355 result = curr->semval;
356
357 if (!sem_op && result)
358 goto would_block;
359
360 result += sem_op;
361 if (result < 0)
362 goto would_block;
363 if (result > SEMVMX)
364 goto out_of_range;
365 if (sop->sem_flg & SEM_UNDO) {
366 int undo = un->semadj[sop->sem_num] - sem_op;
367 /*
368 * Exceeding the undo range is an error.
369 */
370 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
371 goto out_of_range;
372 }
373 curr->semval = result;
374 }
375
376 sop--;
377 while (sop >= sops) {
378 sma->sem_base[sop->sem_num].sempid = pid;
379 if (sop->sem_flg & SEM_UNDO)
380 un->semadj[sop->sem_num] -= sop->sem_op;
381 sop--;
382 }
383
384 sma->sem_otime = get_seconds();
385 return 0;
386
387 out_of_range:
388 result = -ERANGE;
389 goto undo;
390
391 would_block:
392 if (sop->sem_flg & IPC_NOWAIT)
393 result = -EAGAIN;
394 else
395 result = 1;
396
397 undo:
398 sop--;
399 while (sop >= sops) {
400 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
401 sop--;
402 }
403
404 return result;
405 }
406
407 /*
408 * Wake up a process waiting on the sem queue with a given error.
409 * The queue is invalid (may not be accessed) after the function returns.
410 */
411 static void wake_up_sem_queue(struct sem_queue *q, int error)
412 {
413 /*
414 * Hold preempt off so that we don't get preempted and have the
415 * wakee busy-wait until we're scheduled back on. We're holding
416 * locks here so it may not strictly be needed, however if the
417 * locks become preemptible then this prevents such a problem.
418 */
419 preempt_disable();
420 q->status = IN_WAKEUP;
421 wake_up_process(q->sleeper);
422 /* hands-off: q can disappear immediately after writing q->status. */
423 smp_wmb();
424 q->status = error;
425 preempt_enable();
426 }
427
428 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
429 {
430 list_del(&q->list);
431 if (q->nsops == 1)
432 list_del(&q->simple_list);
433 else
434 sma->complex_count--;
435 }
436
437 /* Go through the pending queue for the indicated semaphore
438 * looking for tasks that can be completed.
439 */
440 static void update_queue (struct sem_array * sma)
441 {
442 struct sem_queue *q, *tq;
443
444 again:
445 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
446 int error;
447 int alter;
448
449 error = try_atomic_semop(sma, q->sops, q->nsops,
450 q->undo, q->pid);
451
452 /* Does q->sleeper still need to sleep? */
453 if (error > 0)
454 continue;
455
456 unlink_queue(sma, q);
457
458 /*
459 * The next operation that must be checked depends on the type
460 * of the completed operation:
461 * - if the operation modified the array, then restart from the
462 * head of the queue and check for threads that might be
463 * waiting for the new semaphore values.
464 * - if the operation didn't modify the array, then just
465 * continue.
466 */
467 alter = q->alter;
468 wake_up_sem_queue(q, error);
469 if (alter && !error)
470 goto again;
471 }
472 }
473
474 /* The following counts are associated to each semaphore:
475 * semncnt number of tasks waiting on semval being nonzero
476 * semzcnt number of tasks waiting on semval being zero
477 * This model assumes that a task waits on exactly one semaphore.
478 * Since semaphore operations are to be performed atomically, tasks actually
479 * wait on a whole sequence of semaphores simultaneously.
480 * The counts we return here are a rough approximation, but still
481 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
482 */
483 static int count_semncnt (struct sem_array * sma, ushort semnum)
484 {
485 int semncnt;
486 struct sem_queue * q;
487
488 semncnt = 0;
489 list_for_each_entry(q, &sma->sem_pending, list) {
490 struct sembuf * sops = q->sops;
491 int nsops = q->nsops;
492 int i;
493 for (i = 0; i < nsops; i++)
494 if (sops[i].sem_num == semnum
495 && (sops[i].sem_op < 0)
496 && !(sops[i].sem_flg & IPC_NOWAIT))
497 semncnt++;
498 }
499 return semncnt;
500 }
501
502 static int count_semzcnt (struct sem_array * sma, ushort semnum)
503 {
504 int semzcnt;
505 struct sem_queue * q;
506
507 semzcnt = 0;
508 list_for_each_entry(q, &sma->sem_pending, list) {
509 struct sembuf * sops = q->sops;
510 int nsops = q->nsops;
511 int i;
512 for (i = 0; i < nsops; i++)
513 if (sops[i].sem_num == semnum
514 && (sops[i].sem_op == 0)
515 && !(sops[i].sem_flg & IPC_NOWAIT))
516 semzcnt++;
517 }
518 return semzcnt;
519 }
520
521 static void free_un(struct rcu_head *head)
522 {
523 struct sem_undo *un = container_of(head, struct sem_undo, rcu);
524 kfree(un);
525 }
526
527 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
528 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
529 * remains locked on exit.
530 */
531 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
532 {
533 struct sem_undo *un, *tu;
534 struct sem_queue *q, *tq;
535 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
536
537 /* Free the existing undo structures for this semaphore set. */
538 assert_spin_locked(&sma->sem_perm.lock);
539 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
540 list_del(&un->list_id);
541 spin_lock(&un->ulp->lock);
542 un->semid = -1;
543 list_del_rcu(&un->list_proc);
544 spin_unlock(&un->ulp->lock);
545 call_rcu(&un->rcu, free_un);
546 }
547
548 /* Wake up all pending processes and let them fail with EIDRM. */
549 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
550 unlink_queue(sma, q);
551 wake_up_sem_queue(q, -EIDRM);
552 }
553
554 /* Remove the semaphore set from the IDR */
555 sem_rmid(ns, sma);
556 sem_unlock(sma);
557
558 ns->used_sems -= sma->sem_nsems;
559 security_sem_free(sma);
560 ipc_rcu_putref(sma);
561 }
562
563 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
564 {
565 switch(version) {
566 case IPC_64:
567 return copy_to_user(buf, in, sizeof(*in));
568 case IPC_OLD:
569 {
570 struct semid_ds out;
571
572 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
573
574 out.sem_otime = in->sem_otime;
575 out.sem_ctime = in->sem_ctime;
576 out.sem_nsems = in->sem_nsems;
577
578 return copy_to_user(buf, &out, sizeof(out));
579 }
580 default:
581 return -EINVAL;
582 }
583 }
584
585 static int semctl_nolock(struct ipc_namespace *ns, int semid,
586 int cmd, int version, union semun arg)
587 {
588 int err = -EINVAL;
589 struct sem_array *sma;
590
591 switch(cmd) {
592 case IPC_INFO:
593 case SEM_INFO:
594 {
595 struct seminfo seminfo;
596 int max_id;
597
598 err = security_sem_semctl(NULL, cmd);
599 if (err)
600 return err;
601
602 memset(&seminfo,0,sizeof(seminfo));
603 seminfo.semmni = ns->sc_semmni;
604 seminfo.semmns = ns->sc_semmns;
605 seminfo.semmsl = ns->sc_semmsl;
606 seminfo.semopm = ns->sc_semopm;
607 seminfo.semvmx = SEMVMX;
608 seminfo.semmnu = SEMMNU;
609 seminfo.semmap = SEMMAP;
610 seminfo.semume = SEMUME;
611 down_read(&sem_ids(ns).rw_mutex);
612 if (cmd == SEM_INFO) {
613 seminfo.semusz = sem_ids(ns).in_use;
614 seminfo.semaem = ns->used_sems;
615 } else {
616 seminfo.semusz = SEMUSZ;
617 seminfo.semaem = SEMAEM;
618 }
619 max_id = ipc_get_maxid(&sem_ids(ns));
620 up_read(&sem_ids(ns).rw_mutex);
621 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
622 return -EFAULT;
623 return (max_id < 0) ? 0: max_id;
624 }
625 case IPC_STAT:
626 case SEM_STAT:
627 {
628 struct semid64_ds tbuf;
629 int id;
630
631 if (cmd == SEM_STAT) {
632 sma = sem_lock(ns, semid);
633 if (IS_ERR(sma))
634 return PTR_ERR(sma);
635 id = sma->sem_perm.id;
636 } else {
637 sma = sem_lock_check(ns, semid);
638 if (IS_ERR(sma))
639 return PTR_ERR(sma);
640 id = 0;
641 }
642
643 err = -EACCES;
644 if (ipcperms (&sma->sem_perm, S_IRUGO))
645 goto out_unlock;
646
647 err = security_sem_semctl(sma, cmd);
648 if (err)
649 goto out_unlock;
650
651 memset(&tbuf, 0, sizeof(tbuf));
652
653 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
654 tbuf.sem_otime = sma->sem_otime;
655 tbuf.sem_ctime = sma->sem_ctime;
656 tbuf.sem_nsems = sma->sem_nsems;
657 sem_unlock(sma);
658 if (copy_semid_to_user (arg.buf, &tbuf, version))
659 return -EFAULT;
660 return id;
661 }
662 default:
663 return -EINVAL;
664 }
665 return err;
666 out_unlock:
667 sem_unlock(sma);
668 return err;
669 }
670
671 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
672 int cmd, int version, union semun arg)
673 {
674 struct sem_array *sma;
675 struct sem* curr;
676 int err;
677 ushort fast_sem_io[SEMMSL_FAST];
678 ushort* sem_io = fast_sem_io;
679 int nsems;
680
681 sma = sem_lock_check(ns, semid);
682 if (IS_ERR(sma))
683 return PTR_ERR(sma);
684
685 nsems = sma->sem_nsems;
686
687 err = -EACCES;
688 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
689 goto out_unlock;
690
691 err = security_sem_semctl(sma, cmd);
692 if (err)
693 goto out_unlock;
694
695 err = -EACCES;
696 switch (cmd) {
697 case GETALL:
698 {
699 ushort __user *array = arg.array;
700 int i;
701
702 if(nsems > SEMMSL_FAST) {
703 sem_getref_and_unlock(sma);
704
705 sem_io = ipc_alloc(sizeof(ushort)*nsems);
706 if(sem_io == NULL) {
707 sem_putref(sma);
708 return -ENOMEM;
709 }
710
711 sem_lock_and_putref(sma);
712 if (sma->sem_perm.deleted) {
713 sem_unlock(sma);
714 err = -EIDRM;
715 goto out_free;
716 }
717 }
718
719 for (i = 0; i < sma->sem_nsems; i++)
720 sem_io[i] = sma->sem_base[i].semval;
721 sem_unlock(sma);
722 err = 0;
723 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
724 err = -EFAULT;
725 goto out_free;
726 }
727 case SETALL:
728 {
729 int i;
730 struct sem_undo *un;
731
732 sem_getref_and_unlock(sma);
733
734 if(nsems > SEMMSL_FAST) {
735 sem_io = ipc_alloc(sizeof(ushort)*nsems);
736 if(sem_io == NULL) {
737 sem_putref(sma);
738 return -ENOMEM;
739 }
740 }
741
742 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
743 sem_putref(sma);
744 err = -EFAULT;
745 goto out_free;
746 }
747
748 for (i = 0; i < nsems; i++) {
749 if (sem_io[i] > SEMVMX) {
750 sem_putref(sma);
751 err = -ERANGE;
752 goto out_free;
753 }
754 }
755 sem_lock_and_putref(sma);
756 if (sma->sem_perm.deleted) {
757 sem_unlock(sma);
758 err = -EIDRM;
759 goto out_free;
760 }
761
762 for (i = 0; i < nsems; i++)
763 sma->sem_base[i].semval = sem_io[i];
764
765 assert_spin_locked(&sma->sem_perm.lock);
766 list_for_each_entry(un, &sma->list_id, list_id) {
767 for (i = 0; i < nsems; i++)
768 un->semadj[i] = 0;
769 }
770 sma->sem_ctime = get_seconds();
771 /* maybe some queued-up processes were waiting for this */
772 update_queue(sma);
773 err = 0;
774 goto out_unlock;
775 }
776 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
777 }
778 err = -EINVAL;
779 if(semnum < 0 || semnum >= nsems)
780 goto out_unlock;
781
782 curr = &sma->sem_base[semnum];
783
784 switch (cmd) {
785 case GETVAL:
786 err = curr->semval;
787 goto out_unlock;
788 case GETPID:
789 err = curr->sempid;
790 goto out_unlock;
791 case GETNCNT:
792 err = count_semncnt(sma,semnum);
793 goto out_unlock;
794 case GETZCNT:
795 err = count_semzcnt(sma,semnum);
796 goto out_unlock;
797 case SETVAL:
798 {
799 int val = arg.val;
800 struct sem_undo *un;
801
802 err = -ERANGE;
803 if (val > SEMVMX || val < 0)
804 goto out_unlock;
805
806 assert_spin_locked(&sma->sem_perm.lock);
807 list_for_each_entry(un, &sma->list_id, list_id)
808 un->semadj[semnum] = 0;
809
810 curr->semval = val;
811 curr->sempid = task_tgid_vnr(current);
812 sma->sem_ctime = get_seconds();
813 /* maybe some queued-up processes were waiting for this */
814 update_queue(sma);
815 err = 0;
816 goto out_unlock;
817 }
818 }
819 out_unlock:
820 sem_unlock(sma);
821 out_free:
822 if(sem_io != fast_sem_io)
823 ipc_free(sem_io, sizeof(ushort)*nsems);
824 return err;
825 }
826
827 static inline unsigned long
828 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
829 {
830 switch(version) {
831 case IPC_64:
832 if (copy_from_user(out, buf, sizeof(*out)))
833 return -EFAULT;
834 return 0;
835 case IPC_OLD:
836 {
837 struct semid_ds tbuf_old;
838
839 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
840 return -EFAULT;
841
842 out->sem_perm.uid = tbuf_old.sem_perm.uid;
843 out->sem_perm.gid = tbuf_old.sem_perm.gid;
844 out->sem_perm.mode = tbuf_old.sem_perm.mode;
845
846 return 0;
847 }
848 default:
849 return -EINVAL;
850 }
851 }
852
853 /*
854 * This function handles some semctl commands which require the rw_mutex
855 * to be held in write mode.
856 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
857 */
858 static int semctl_down(struct ipc_namespace *ns, int semid,
859 int cmd, int version, union semun arg)
860 {
861 struct sem_array *sma;
862 int err;
863 struct semid64_ds semid64;
864 struct kern_ipc_perm *ipcp;
865
866 if(cmd == IPC_SET) {
867 if (copy_semid_from_user(&semid64, arg.buf, version))
868 return -EFAULT;
869 }
870
871 ipcp = ipcctl_pre_down(&sem_ids(ns), semid, cmd, &semid64.sem_perm, 0);
872 if (IS_ERR(ipcp))
873 return PTR_ERR(ipcp);
874
875 sma = container_of(ipcp, struct sem_array, sem_perm);
876
877 err = security_sem_semctl(sma, cmd);
878 if (err)
879 goto out_unlock;
880
881 switch(cmd){
882 case IPC_RMID:
883 freeary(ns, ipcp);
884 goto out_up;
885 case IPC_SET:
886 ipc_update_perm(&semid64.sem_perm, ipcp);
887 sma->sem_ctime = get_seconds();
888 break;
889 default:
890 err = -EINVAL;
891 }
892
893 out_unlock:
894 sem_unlock(sma);
895 out_up:
896 up_write(&sem_ids(ns).rw_mutex);
897 return err;
898 }
899
900 SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg)
901 {
902 int err = -EINVAL;
903 int version;
904 struct ipc_namespace *ns;
905
906 if (semid < 0)
907 return -EINVAL;
908
909 version = ipc_parse_version(&cmd);
910 ns = current->nsproxy->ipc_ns;
911
912 switch(cmd) {
913 case IPC_INFO:
914 case SEM_INFO:
915 case IPC_STAT:
916 case SEM_STAT:
917 err = semctl_nolock(ns, semid, cmd, version, arg);
918 return err;
919 case GETALL:
920 case GETVAL:
921 case GETPID:
922 case GETNCNT:
923 case GETZCNT:
924 case SETVAL:
925 case SETALL:
926 err = semctl_main(ns,semid,semnum,cmd,version,arg);
927 return err;
928 case IPC_RMID:
929 case IPC_SET:
930 err = semctl_down(ns, semid, cmd, version, arg);
931 return err;
932 default:
933 return -EINVAL;
934 }
935 }
936 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
937 asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg)
938 {
939 return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg);
940 }
941 SYSCALL_ALIAS(sys_semctl, SyS_semctl);
942 #endif
943
944 /* If the task doesn't already have a undo_list, then allocate one
945 * here. We guarantee there is only one thread using this undo list,
946 * and current is THE ONE
947 *
948 * If this allocation and assignment succeeds, but later
949 * portions of this code fail, there is no need to free the sem_undo_list.
950 * Just let it stay associated with the task, and it'll be freed later
951 * at exit time.
952 *
953 * This can block, so callers must hold no locks.
954 */
955 static inline int get_undo_list(struct sem_undo_list **undo_listp)
956 {
957 struct sem_undo_list *undo_list;
958
959 undo_list = current->sysvsem.undo_list;
960 if (!undo_list) {
961 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
962 if (undo_list == NULL)
963 return -ENOMEM;
964 spin_lock_init(&undo_list->lock);
965 atomic_set(&undo_list->refcnt, 1);
966 INIT_LIST_HEAD(&undo_list->list_proc);
967
968 current->sysvsem.undo_list = undo_list;
969 }
970 *undo_listp = undo_list;
971 return 0;
972 }
973
974 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
975 {
976 struct sem_undo *un;
977
978 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
979 if (un->semid == semid)
980 return un;
981 }
982 return NULL;
983 }
984
985 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
986 {
987 struct sem_undo *un;
988
989 assert_spin_locked(&ulp->lock);
990
991 un = __lookup_undo(ulp, semid);
992 if (un) {
993 list_del_rcu(&un->list_proc);
994 list_add_rcu(&un->list_proc, &ulp->list_proc);
995 }
996 return un;
997 }
998
999 /**
1000 * find_alloc_undo - Lookup (and if not present create) undo array
1001 * @ns: namespace
1002 * @semid: semaphore array id
1003 *
1004 * The function looks up (and if not present creates) the undo structure.
1005 * The size of the undo structure depends on the size of the semaphore
1006 * array, thus the alloc path is not that straightforward.
1007 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1008 * performs a rcu_read_lock().
1009 */
1010 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1011 {
1012 struct sem_array *sma;
1013 struct sem_undo_list *ulp;
1014 struct sem_undo *un, *new;
1015 int nsems;
1016 int error;
1017
1018 error = get_undo_list(&ulp);
1019 if (error)
1020 return ERR_PTR(error);
1021
1022 rcu_read_lock();
1023 spin_lock(&ulp->lock);
1024 un = lookup_undo(ulp, semid);
1025 spin_unlock(&ulp->lock);
1026 if (likely(un!=NULL))
1027 goto out;
1028 rcu_read_unlock();
1029
1030 /* no undo structure around - allocate one. */
1031 /* step 1: figure out the size of the semaphore array */
1032 sma = sem_lock_check(ns, semid);
1033 if (IS_ERR(sma))
1034 return ERR_PTR(PTR_ERR(sma));
1035
1036 nsems = sma->sem_nsems;
1037 sem_getref_and_unlock(sma);
1038
1039 /* step 2: allocate new undo structure */
1040 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1041 if (!new) {
1042 sem_putref(sma);
1043 return ERR_PTR(-ENOMEM);
1044 }
1045
1046 /* step 3: Acquire the lock on semaphore array */
1047 sem_lock_and_putref(sma);
1048 if (sma->sem_perm.deleted) {
1049 sem_unlock(sma);
1050 kfree(new);
1051 un = ERR_PTR(-EIDRM);
1052 goto out;
1053 }
1054 spin_lock(&ulp->lock);
1055
1056 /*
1057 * step 4: check for races: did someone else allocate the undo struct?
1058 */
1059 un = lookup_undo(ulp, semid);
1060 if (un) {
1061 kfree(new);
1062 goto success;
1063 }
1064 /* step 5: initialize & link new undo structure */
1065 new->semadj = (short *) &new[1];
1066 new->ulp = ulp;
1067 new->semid = semid;
1068 assert_spin_locked(&ulp->lock);
1069 list_add_rcu(&new->list_proc, &ulp->list_proc);
1070 assert_spin_locked(&sma->sem_perm.lock);
1071 list_add(&new->list_id, &sma->list_id);
1072 un = new;
1073
1074 success:
1075 spin_unlock(&ulp->lock);
1076 rcu_read_lock();
1077 sem_unlock(sma);
1078 out:
1079 return un;
1080 }
1081
1082 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1083 unsigned, nsops, const struct timespec __user *, timeout)
1084 {
1085 int error = -EINVAL;
1086 struct sem_array *sma;
1087 struct sembuf fast_sops[SEMOPM_FAST];
1088 struct sembuf* sops = fast_sops, *sop;
1089 struct sem_undo *un;
1090 int undos = 0, alter = 0, max;
1091 struct sem_queue queue;
1092 unsigned long jiffies_left = 0;
1093 struct ipc_namespace *ns;
1094
1095 ns = current->nsproxy->ipc_ns;
1096
1097 if (nsops < 1 || semid < 0)
1098 return -EINVAL;
1099 if (nsops > ns->sc_semopm)
1100 return -E2BIG;
1101 if(nsops > SEMOPM_FAST) {
1102 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1103 if(sops==NULL)
1104 return -ENOMEM;
1105 }
1106 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1107 error=-EFAULT;
1108 goto out_free;
1109 }
1110 if (timeout) {
1111 struct timespec _timeout;
1112 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1113 error = -EFAULT;
1114 goto out_free;
1115 }
1116 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1117 _timeout.tv_nsec >= 1000000000L) {
1118 error = -EINVAL;
1119 goto out_free;
1120 }
1121 jiffies_left = timespec_to_jiffies(&_timeout);
1122 }
1123 max = 0;
1124 for (sop = sops; sop < sops + nsops; sop++) {
1125 if (sop->sem_num >= max)
1126 max = sop->sem_num;
1127 if (sop->sem_flg & SEM_UNDO)
1128 undos = 1;
1129 if (sop->sem_op != 0)
1130 alter = 1;
1131 }
1132
1133 if (undos) {
1134 un = find_alloc_undo(ns, semid);
1135 if (IS_ERR(un)) {
1136 error = PTR_ERR(un);
1137 goto out_free;
1138 }
1139 } else
1140 un = NULL;
1141
1142 sma = sem_lock_check(ns, semid);
1143 if (IS_ERR(sma)) {
1144 if (un)
1145 rcu_read_unlock();
1146 error = PTR_ERR(sma);
1147 goto out_free;
1148 }
1149
1150 /*
1151 * semid identifiers are not unique - find_alloc_undo may have
1152 * allocated an undo structure, it was invalidated by an RMID
1153 * and now a new array with received the same id. Check and fail.
1154 * This case can be detected checking un->semid. The existance of
1155 * "un" itself is guaranteed by rcu.
1156 */
1157 error = -EIDRM;
1158 if (un) {
1159 if (un->semid == -1) {
1160 rcu_read_unlock();
1161 goto out_unlock_free;
1162 } else {
1163 /*
1164 * rcu lock can be released, "un" cannot disappear:
1165 * - sem_lock is acquired, thus IPC_RMID is
1166 * impossible.
1167 * - exit_sem is impossible, it always operates on
1168 * current (or a dead task).
1169 */
1170
1171 rcu_read_unlock();
1172 }
1173 }
1174
1175 error = -EFBIG;
1176 if (max >= sma->sem_nsems)
1177 goto out_unlock_free;
1178
1179 error = -EACCES;
1180 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1181 goto out_unlock_free;
1182
1183 error = security_sem_semop(sma, sops, nsops, alter);
1184 if (error)
1185 goto out_unlock_free;
1186
1187 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1188 if (error <= 0) {
1189 if (alter && error == 0)
1190 update_queue (sma);
1191 goto out_unlock_free;
1192 }
1193
1194 /* We need to sleep on this operation, so we put the current
1195 * task into the pending queue and go to sleep.
1196 */
1197
1198 queue.sops = sops;
1199 queue.nsops = nsops;
1200 queue.undo = un;
1201 queue.pid = task_tgid_vnr(current);
1202 queue.alter = alter;
1203 if (alter)
1204 list_add_tail(&queue.list, &sma->sem_pending);
1205 else
1206 list_add(&queue.list, &sma->sem_pending);
1207
1208 if (nsops == 1) {
1209 struct sem *curr;
1210 curr = &sma->sem_base[sops->sem_num];
1211
1212 if (alter)
1213 list_add_tail(&queue.simple_list, &curr->sem_pending);
1214 else
1215 list_add(&queue.simple_list, &curr->sem_pending);
1216 } else {
1217 INIT_LIST_HEAD(&queue.simple_list);
1218 sma->complex_count++;
1219 }
1220
1221 queue.status = -EINTR;
1222 queue.sleeper = current;
1223 current->state = TASK_INTERRUPTIBLE;
1224 sem_unlock(sma);
1225
1226 if (timeout)
1227 jiffies_left = schedule_timeout(jiffies_left);
1228 else
1229 schedule();
1230
1231 error = queue.status;
1232 while(unlikely(error == IN_WAKEUP)) {
1233 cpu_relax();
1234 error = queue.status;
1235 }
1236
1237 if (error != -EINTR) {
1238 /* fast path: update_queue already obtained all requested
1239 * resources */
1240 goto out_free;
1241 }
1242
1243 sma = sem_lock(ns, semid);
1244 if (IS_ERR(sma)) {
1245 error = -EIDRM;
1246 goto out_free;
1247 }
1248
1249 /*
1250 * If queue.status != -EINTR we are woken up by another process
1251 */
1252 error = queue.status;
1253 if (error != -EINTR) {
1254 goto out_unlock_free;
1255 }
1256
1257 /*
1258 * If an interrupt occurred we have to clean up the queue
1259 */
1260 if (timeout && jiffies_left == 0)
1261 error = -EAGAIN;
1262 unlink_queue(sma, &queue);
1263
1264 out_unlock_free:
1265 sem_unlock(sma);
1266 out_free:
1267 if(sops != fast_sops)
1268 kfree(sops);
1269 return error;
1270 }
1271
1272 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1273 unsigned, nsops)
1274 {
1275 return sys_semtimedop(semid, tsops, nsops, NULL);
1276 }
1277
1278 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1279 * parent and child tasks.
1280 */
1281
1282 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1283 {
1284 struct sem_undo_list *undo_list;
1285 int error;
1286
1287 if (clone_flags & CLONE_SYSVSEM) {
1288 error = get_undo_list(&undo_list);
1289 if (error)
1290 return error;
1291 atomic_inc(&undo_list->refcnt);
1292 tsk->sysvsem.undo_list = undo_list;
1293 } else
1294 tsk->sysvsem.undo_list = NULL;
1295
1296 return 0;
1297 }
1298
1299 /*
1300 * add semadj values to semaphores, free undo structures.
1301 * undo structures are not freed when semaphore arrays are destroyed
1302 * so some of them may be out of date.
1303 * IMPLEMENTATION NOTE: There is some confusion over whether the
1304 * set of adjustments that needs to be done should be done in an atomic
1305 * manner or not. That is, if we are attempting to decrement the semval
1306 * should we queue up and wait until we can do so legally?
1307 * The original implementation attempted to do this (queue and wait).
1308 * The current implementation does not do so. The POSIX standard
1309 * and SVID should be consulted to determine what behavior is mandated.
1310 */
1311 void exit_sem(struct task_struct *tsk)
1312 {
1313 struct sem_undo_list *ulp;
1314
1315 ulp = tsk->sysvsem.undo_list;
1316 if (!ulp)
1317 return;
1318 tsk->sysvsem.undo_list = NULL;
1319
1320 if (!atomic_dec_and_test(&ulp->refcnt))
1321 return;
1322
1323 for (;;) {
1324 struct sem_array *sma;
1325 struct sem_undo *un;
1326 int semid;
1327 int i;
1328
1329 rcu_read_lock();
1330 un = list_entry_rcu(ulp->list_proc.next,
1331 struct sem_undo, list_proc);
1332 if (&un->list_proc == &ulp->list_proc)
1333 semid = -1;
1334 else
1335 semid = un->semid;
1336 rcu_read_unlock();
1337
1338 if (semid == -1)
1339 break;
1340
1341 sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid);
1342
1343 /* exit_sem raced with IPC_RMID, nothing to do */
1344 if (IS_ERR(sma))
1345 continue;
1346
1347 un = __lookup_undo(ulp, semid);
1348 if (un == NULL) {
1349 /* exit_sem raced with IPC_RMID+semget() that created
1350 * exactly the same semid. Nothing to do.
1351 */
1352 sem_unlock(sma);
1353 continue;
1354 }
1355
1356 /* remove un from the linked lists */
1357 assert_spin_locked(&sma->sem_perm.lock);
1358 list_del(&un->list_id);
1359
1360 spin_lock(&ulp->lock);
1361 list_del_rcu(&un->list_proc);
1362 spin_unlock(&ulp->lock);
1363
1364 /* perform adjustments registered in un */
1365 for (i = 0; i < sma->sem_nsems; i++) {
1366 struct sem * semaphore = &sma->sem_base[i];
1367 if (un->semadj[i]) {
1368 semaphore->semval += un->semadj[i];
1369 /*
1370 * Range checks of the new semaphore value,
1371 * not defined by sus:
1372 * - Some unices ignore the undo entirely
1373 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1374 * - some cap the value (e.g. FreeBSD caps
1375 * at 0, but doesn't enforce SEMVMX)
1376 *
1377 * Linux caps the semaphore value, both at 0
1378 * and at SEMVMX.
1379 *
1380 * Manfred <manfred@colorfullife.com>
1381 */
1382 if (semaphore->semval < 0)
1383 semaphore->semval = 0;
1384 if (semaphore->semval > SEMVMX)
1385 semaphore->semval = SEMVMX;
1386 semaphore->sempid = task_tgid_vnr(current);
1387 }
1388 }
1389 sma->sem_otime = get_seconds();
1390 /* maybe some queued-up processes were waiting for this */
1391 update_queue(sma);
1392 sem_unlock(sma);
1393
1394 call_rcu(&un->rcu, free_un);
1395 }
1396 kfree(ulp);
1397 }
1398
1399 #ifdef CONFIG_PROC_FS
1400 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1401 {
1402 struct sem_array *sma = it;
1403
1404 return seq_printf(s,
1405 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
1406 sma->sem_perm.key,
1407 sma->sem_perm.id,
1408 sma->sem_perm.mode,
1409 sma->sem_nsems,
1410 sma->sem_perm.uid,
1411 sma->sem_perm.gid,
1412 sma->sem_perm.cuid,
1413 sma->sem_perm.cgid,
1414 sma->sem_otime,
1415 sma->sem_ctime);
1416 }
1417 #endif
This page took 0.080514 seconds and 6 git commands to generate.