audit: Limit audit requests to processes in the initial pid and user namespaces.
[deliverable/linux.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <linux/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/err.h>
51 #include <linux/kthread.h>
52
53 #include <linux/audit.h>
54
55 #include <net/sock.h>
56 #include <net/netlink.h>
57 #include <linux/skbuff.h>
58 #ifdef CONFIG_SECURITY
59 #include <linux/security.h>
60 #endif
61 #include <linux/netlink.h>
62 #include <linux/freezer.h>
63 #include <linux/tty.h>
64 #include <linux/pid_namespace.h>
65
66 #include "audit.h"
67
68 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
69 * (Initialization happens after skb_init is called.) */
70 #define AUDIT_DISABLED -1
71 #define AUDIT_UNINITIALIZED 0
72 #define AUDIT_INITIALIZED 1
73 static int audit_initialized;
74
75 #define AUDIT_OFF 0
76 #define AUDIT_ON 1
77 #define AUDIT_LOCKED 2
78 int audit_enabled;
79 int audit_ever_enabled;
80
81 EXPORT_SYMBOL_GPL(audit_enabled);
82
83 /* Default state when kernel boots without any parameters. */
84 static int audit_default;
85
86 /* If auditing cannot proceed, audit_failure selects what happens. */
87 static int audit_failure = AUDIT_FAIL_PRINTK;
88
89 /*
90 * If audit records are to be written to the netlink socket, audit_pid
91 * contains the pid of the auditd process and audit_nlk_pid contains
92 * the pid to use to send netlink messages to that process.
93 */
94 int audit_pid;
95 static int audit_nlk_pid;
96
97 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
98 * to that number per second. This prevents DoS attacks, but results in
99 * audit records being dropped. */
100 static int audit_rate_limit;
101
102 /* Number of outstanding audit_buffers allowed. */
103 static int audit_backlog_limit = 64;
104 static int audit_backlog_wait_time = 60 * HZ;
105 static int audit_backlog_wait_overflow = 0;
106
107 /* The identity of the user shutting down the audit system. */
108 uid_t audit_sig_uid = -1;
109 pid_t audit_sig_pid = -1;
110 u32 audit_sig_sid = 0;
111
112 /* Records can be lost in several ways:
113 0) [suppressed in audit_alloc]
114 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
115 2) out of memory in audit_log_move [alloc_skb]
116 3) suppressed due to audit_rate_limit
117 4) suppressed due to audit_backlog_limit
118 */
119 static atomic_t audit_lost = ATOMIC_INIT(0);
120
121 /* The netlink socket. */
122 static struct sock *audit_sock;
123
124 /* Hash for inode-based rules */
125 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
126
127 /* The audit_freelist is a list of pre-allocated audit buffers (if more
128 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
129 * being placed on the freelist). */
130 static DEFINE_SPINLOCK(audit_freelist_lock);
131 static int audit_freelist_count;
132 static LIST_HEAD(audit_freelist);
133
134 static struct sk_buff_head audit_skb_queue;
135 /* queue of skbs to send to auditd when/if it comes back */
136 static struct sk_buff_head audit_skb_hold_queue;
137 static struct task_struct *kauditd_task;
138 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
139 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
140
141 /* Serialize requests from userspace. */
142 DEFINE_MUTEX(audit_cmd_mutex);
143
144 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
145 * audit records. Since printk uses a 1024 byte buffer, this buffer
146 * should be at least that large. */
147 #define AUDIT_BUFSIZ 1024
148
149 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
150 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
151 #define AUDIT_MAXFREE (2*NR_CPUS)
152
153 /* The audit_buffer is used when formatting an audit record. The caller
154 * locks briefly to get the record off the freelist or to allocate the
155 * buffer, and locks briefly to send the buffer to the netlink layer or
156 * to place it on a transmit queue. Multiple audit_buffers can be in
157 * use simultaneously. */
158 struct audit_buffer {
159 struct list_head list;
160 struct sk_buff *skb; /* formatted skb ready to send */
161 struct audit_context *ctx; /* NULL or associated context */
162 gfp_t gfp_mask;
163 };
164
165 struct audit_reply {
166 int pid;
167 struct sk_buff *skb;
168 };
169
170 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
171 {
172 if (ab) {
173 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
174 nlh->nlmsg_pid = pid;
175 }
176 }
177
178 void audit_panic(const char *message)
179 {
180 switch (audit_failure)
181 {
182 case AUDIT_FAIL_SILENT:
183 break;
184 case AUDIT_FAIL_PRINTK:
185 if (printk_ratelimit())
186 printk(KERN_ERR "audit: %s\n", message);
187 break;
188 case AUDIT_FAIL_PANIC:
189 /* test audit_pid since printk is always losey, why bother? */
190 if (audit_pid)
191 panic("audit: %s\n", message);
192 break;
193 }
194 }
195
196 static inline int audit_rate_check(void)
197 {
198 static unsigned long last_check = 0;
199 static int messages = 0;
200 static DEFINE_SPINLOCK(lock);
201 unsigned long flags;
202 unsigned long now;
203 unsigned long elapsed;
204 int retval = 0;
205
206 if (!audit_rate_limit) return 1;
207
208 spin_lock_irqsave(&lock, flags);
209 if (++messages < audit_rate_limit) {
210 retval = 1;
211 } else {
212 now = jiffies;
213 elapsed = now - last_check;
214 if (elapsed > HZ) {
215 last_check = now;
216 messages = 0;
217 retval = 1;
218 }
219 }
220 spin_unlock_irqrestore(&lock, flags);
221
222 return retval;
223 }
224
225 /**
226 * audit_log_lost - conditionally log lost audit message event
227 * @message: the message stating reason for lost audit message
228 *
229 * Emit at least 1 message per second, even if audit_rate_check is
230 * throttling.
231 * Always increment the lost messages counter.
232 */
233 void audit_log_lost(const char *message)
234 {
235 static unsigned long last_msg = 0;
236 static DEFINE_SPINLOCK(lock);
237 unsigned long flags;
238 unsigned long now;
239 int print;
240
241 atomic_inc(&audit_lost);
242
243 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
244
245 if (!print) {
246 spin_lock_irqsave(&lock, flags);
247 now = jiffies;
248 if (now - last_msg > HZ) {
249 print = 1;
250 last_msg = now;
251 }
252 spin_unlock_irqrestore(&lock, flags);
253 }
254
255 if (print) {
256 if (printk_ratelimit())
257 printk(KERN_WARNING
258 "audit: audit_lost=%d audit_rate_limit=%d "
259 "audit_backlog_limit=%d\n",
260 atomic_read(&audit_lost),
261 audit_rate_limit,
262 audit_backlog_limit);
263 audit_panic(message);
264 }
265 }
266
267 static int audit_log_config_change(char *function_name, int new, int old,
268 uid_t loginuid, u32 sessionid, u32 sid,
269 int allow_changes)
270 {
271 struct audit_buffer *ab;
272 int rc = 0;
273
274 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
275 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
276 old, loginuid, sessionid);
277 if (sid) {
278 char *ctx = NULL;
279 u32 len;
280
281 rc = security_secid_to_secctx(sid, &ctx, &len);
282 if (rc) {
283 audit_log_format(ab, " sid=%u", sid);
284 allow_changes = 0; /* Something weird, deny request */
285 } else {
286 audit_log_format(ab, " subj=%s", ctx);
287 security_release_secctx(ctx, len);
288 }
289 }
290 audit_log_format(ab, " res=%d", allow_changes);
291 audit_log_end(ab);
292 return rc;
293 }
294
295 static int audit_do_config_change(char *function_name, int *to_change,
296 int new, uid_t loginuid, u32 sessionid,
297 u32 sid)
298 {
299 int allow_changes, rc = 0, old = *to_change;
300
301 /* check if we are locked */
302 if (audit_enabled == AUDIT_LOCKED)
303 allow_changes = 0;
304 else
305 allow_changes = 1;
306
307 if (audit_enabled != AUDIT_OFF) {
308 rc = audit_log_config_change(function_name, new, old, loginuid,
309 sessionid, sid, allow_changes);
310 if (rc)
311 allow_changes = 0;
312 }
313
314 /* If we are allowed, make the change */
315 if (allow_changes == 1)
316 *to_change = new;
317 /* Not allowed, update reason */
318 else if (rc == 0)
319 rc = -EPERM;
320 return rc;
321 }
322
323 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
324 u32 sid)
325 {
326 return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
327 limit, loginuid, sessionid, sid);
328 }
329
330 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
331 u32 sid)
332 {
333 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
334 limit, loginuid, sessionid, sid);
335 }
336
337 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
338 {
339 int rc;
340 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
341 return -EINVAL;
342
343 rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
344 loginuid, sessionid, sid);
345
346 if (!rc)
347 audit_ever_enabled |= !!state;
348
349 return rc;
350 }
351
352 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
353 {
354 if (state != AUDIT_FAIL_SILENT
355 && state != AUDIT_FAIL_PRINTK
356 && state != AUDIT_FAIL_PANIC)
357 return -EINVAL;
358
359 return audit_do_config_change("audit_failure", &audit_failure, state,
360 loginuid, sessionid, sid);
361 }
362
363 /*
364 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
365 * already have been sent via prink/syslog and so if these messages are dropped
366 * it is not a huge concern since we already passed the audit_log_lost()
367 * notification and stuff. This is just nice to get audit messages during
368 * boot before auditd is running or messages generated while auditd is stopped.
369 * This only holds messages is audit_default is set, aka booting with audit=1
370 * or building your kernel that way.
371 */
372 static void audit_hold_skb(struct sk_buff *skb)
373 {
374 if (audit_default &&
375 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
376 skb_queue_tail(&audit_skb_hold_queue, skb);
377 else
378 kfree_skb(skb);
379 }
380
381 /*
382 * For one reason or another this nlh isn't getting delivered to the userspace
383 * audit daemon, just send it to printk.
384 */
385 static void audit_printk_skb(struct sk_buff *skb)
386 {
387 struct nlmsghdr *nlh = nlmsg_hdr(skb);
388 char *data = nlmsg_data(nlh);
389
390 if (nlh->nlmsg_type != AUDIT_EOE) {
391 if (printk_ratelimit())
392 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
393 else
394 audit_log_lost("printk limit exceeded\n");
395 }
396
397 audit_hold_skb(skb);
398 }
399
400 static void kauditd_send_skb(struct sk_buff *skb)
401 {
402 int err;
403 /* take a reference in case we can't send it and we want to hold it */
404 skb_get(skb);
405 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
406 if (err < 0) {
407 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
408 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
409 audit_log_lost("auditd disappeared\n");
410 audit_pid = 0;
411 /* we might get lucky and get this in the next auditd */
412 audit_hold_skb(skb);
413 } else
414 /* drop the extra reference if sent ok */
415 consume_skb(skb);
416 }
417
418 static int kauditd_thread(void *dummy)
419 {
420 struct sk_buff *skb;
421
422 set_freezable();
423 while (!kthread_should_stop()) {
424 /*
425 * if auditd just started drain the queue of messages already
426 * sent to syslog/printk. remember loss here is ok. we already
427 * called audit_log_lost() if it didn't go out normally. so the
428 * race between the skb_dequeue and the next check for audit_pid
429 * doesn't matter.
430 *
431 * if you ever find kauditd to be too slow we can get a perf win
432 * by doing our own locking and keeping better track if there
433 * are messages in this queue. I don't see the need now, but
434 * in 5 years when I want to play with this again I'll see this
435 * note and still have no friggin idea what i'm thinking today.
436 */
437 if (audit_default && audit_pid) {
438 skb = skb_dequeue(&audit_skb_hold_queue);
439 if (unlikely(skb)) {
440 while (skb && audit_pid) {
441 kauditd_send_skb(skb);
442 skb = skb_dequeue(&audit_skb_hold_queue);
443 }
444 }
445 }
446
447 skb = skb_dequeue(&audit_skb_queue);
448 wake_up(&audit_backlog_wait);
449 if (skb) {
450 if (audit_pid)
451 kauditd_send_skb(skb);
452 else
453 audit_printk_skb(skb);
454 } else {
455 DECLARE_WAITQUEUE(wait, current);
456 set_current_state(TASK_INTERRUPTIBLE);
457 add_wait_queue(&kauditd_wait, &wait);
458
459 if (!skb_queue_len(&audit_skb_queue)) {
460 try_to_freeze();
461 schedule();
462 }
463
464 __set_current_state(TASK_RUNNING);
465 remove_wait_queue(&kauditd_wait, &wait);
466 }
467 }
468 return 0;
469 }
470
471 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
472 {
473 struct task_struct *tsk;
474 int err;
475
476 rcu_read_lock();
477 tsk = find_task_by_vpid(pid);
478 if (!tsk) {
479 rcu_read_unlock();
480 return -ESRCH;
481 }
482 get_task_struct(tsk);
483 rcu_read_unlock();
484 err = tty_audit_push_task(tsk, loginuid, sessionid);
485 put_task_struct(tsk);
486 return err;
487 }
488
489 int audit_send_list(void *_dest)
490 {
491 struct audit_netlink_list *dest = _dest;
492 int pid = dest->pid;
493 struct sk_buff *skb;
494
495 /* wait for parent to finish and send an ACK */
496 mutex_lock(&audit_cmd_mutex);
497 mutex_unlock(&audit_cmd_mutex);
498
499 while ((skb = __skb_dequeue(&dest->q)) != NULL)
500 netlink_unicast(audit_sock, skb, pid, 0);
501
502 kfree(dest);
503
504 return 0;
505 }
506
507 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
508 int multi, const void *payload, int size)
509 {
510 struct sk_buff *skb;
511 struct nlmsghdr *nlh;
512 void *data;
513 int flags = multi ? NLM_F_MULTI : 0;
514 int t = done ? NLMSG_DONE : type;
515
516 skb = nlmsg_new(size, GFP_KERNEL);
517 if (!skb)
518 return NULL;
519
520 nlh = nlmsg_put(skb, pid, seq, t, size, flags);
521 if (!nlh)
522 goto out_kfree_skb;
523 data = nlmsg_data(nlh);
524 memcpy(data, payload, size);
525 return skb;
526
527 out_kfree_skb:
528 kfree_skb(skb);
529 return NULL;
530 }
531
532 static int audit_send_reply_thread(void *arg)
533 {
534 struct audit_reply *reply = (struct audit_reply *)arg;
535
536 mutex_lock(&audit_cmd_mutex);
537 mutex_unlock(&audit_cmd_mutex);
538
539 /* Ignore failure. It'll only happen if the sender goes away,
540 because our timeout is set to infinite. */
541 netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
542 kfree(reply);
543 return 0;
544 }
545 /**
546 * audit_send_reply - send an audit reply message via netlink
547 * @pid: process id to send reply to
548 * @seq: sequence number
549 * @type: audit message type
550 * @done: done (last) flag
551 * @multi: multi-part message flag
552 * @payload: payload data
553 * @size: payload size
554 *
555 * Allocates an skb, builds the netlink message, and sends it to the pid.
556 * No failure notifications.
557 */
558 static void audit_send_reply(int pid, int seq, int type, int done, int multi,
559 const void *payload, int size)
560 {
561 struct sk_buff *skb;
562 struct task_struct *tsk;
563 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
564 GFP_KERNEL);
565
566 if (!reply)
567 return;
568
569 skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
570 if (!skb)
571 goto out;
572
573 reply->pid = pid;
574 reply->skb = skb;
575
576 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
577 if (!IS_ERR(tsk))
578 return;
579 kfree_skb(skb);
580 out:
581 kfree(reply);
582 }
583
584 /*
585 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
586 * control messages.
587 */
588 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
589 {
590 int err = 0;
591
592 /* Only support the initial namespaces for now. */
593 if ((current_user_ns() != &init_user_ns) ||
594 (task_active_pid_ns(current) != &init_pid_ns))
595 return -EPERM;
596
597 switch (msg_type) {
598 case AUDIT_GET:
599 case AUDIT_LIST:
600 case AUDIT_LIST_RULES:
601 case AUDIT_SET:
602 case AUDIT_ADD:
603 case AUDIT_ADD_RULE:
604 case AUDIT_DEL:
605 case AUDIT_DEL_RULE:
606 case AUDIT_SIGNAL_INFO:
607 case AUDIT_TTY_GET:
608 case AUDIT_TTY_SET:
609 case AUDIT_TRIM:
610 case AUDIT_MAKE_EQUIV:
611 if (!capable(CAP_AUDIT_CONTROL))
612 err = -EPERM;
613 break;
614 case AUDIT_USER:
615 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
616 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
617 if (!capable(CAP_AUDIT_WRITE))
618 err = -EPERM;
619 break;
620 default: /* bad msg */
621 err = -EINVAL;
622 }
623
624 return err;
625 }
626
627 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
628 u32 pid, u32 uid, uid_t auid, u32 ses,
629 u32 sid)
630 {
631 int rc = 0;
632 char *ctx = NULL;
633 u32 len;
634
635 if (!audit_enabled) {
636 *ab = NULL;
637 return rc;
638 }
639
640 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
641 audit_log_format(*ab, "pid=%d uid=%u auid=%u ses=%u",
642 pid, uid, auid, ses);
643 if (sid) {
644 rc = security_secid_to_secctx(sid, &ctx, &len);
645 if (rc)
646 audit_log_format(*ab, " ssid=%u", sid);
647 else {
648 audit_log_format(*ab, " subj=%s", ctx);
649 security_release_secctx(ctx, len);
650 }
651 }
652
653 return rc;
654 }
655
656 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
657 {
658 u32 uid, pid, seq, sid;
659 void *data;
660 struct audit_status *status_get, status_set;
661 int err;
662 struct audit_buffer *ab;
663 u16 msg_type = nlh->nlmsg_type;
664 uid_t loginuid; /* loginuid of sender */
665 u32 sessionid;
666 struct audit_sig_info *sig_data;
667 char *ctx = NULL;
668 u32 len;
669
670 err = audit_netlink_ok(skb, msg_type);
671 if (err)
672 return err;
673
674 /* As soon as there's any sign of userspace auditd,
675 * start kauditd to talk to it */
676 if (!kauditd_task)
677 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
678 if (IS_ERR(kauditd_task)) {
679 err = PTR_ERR(kauditd_task);
680 kauditd_task = NULL;
681 return err;
682 }
683
684 pid = NETLINK_CREDS(skb)->pid;
685 uid = NETLINK_CREDS(skb)->uid;
686 loginuid = audit_get_loginuid(current);
687 sessionid = audit_get_sessionid(current);
688 security_task_getsecid(current, &sid);
689 seq = nlh->nlmsg_seq;
690 data = nlmsg_data(nlh);
691
692 switch (msg_type) {
693 case AUDIT_GET:
694 status_set.enabled = audit_enabled;
695 status_set.failure = audit_failure;
696 status_set.pid = audit_pid;
697 status_set.rate_limit = audit_rate_limit;
698 status_set.backlog_limit = audit_backlog_limit;
699 status_set.lost = atomic_read(&audit_lost);
700 status_set.backlog = skb_queue_len(&audit_skb_queue);
701 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
702 &status_set, sizeof(status_set));
703 break;
704 case AUDIT_SET:
705 if (nlh->nlmsg_len < sizeof(struct audit_status))
706 return -EINVAL;
707 status_get = (struct audit_status *)data;
708 if (status_get->mask & AUDIT_STATUS_ENABLED) {
709 err = audit_set_enabled(status_get->enabled,
710 loginuid, sessionid, sid);
711 if (err < 0)
712 return err;
713 }
714 if (status_get->mask & AUDIT_STATUS_FAILURE) {
715 err = audit_set_failure(status_get->failure,
716 loginuid, sessionid, sid);
717 if (err < 0)
718 return err;
719 }
720 if (status_get->mask & AUDIT_STATUS_PID) {
721 int new_pid = status_get->pid;
722
723 if (audit_enabled != AUDIT_OFF)
724 audit_log_config_change("audit_pid", new_pid,
725 audit_pid, loginuid,
726 sessionid, sid, 1);
727
728 audit_pid = new_pid;
729 audit_nlk_pid = NETLINK_CB(skb).pid;
730 }
731 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
732 err = audit_set_rate_limit(status_get->rate_limit,
733 loginuid, sessionid, sid);
734 if (err < 0)
735 return err;
736 }
737 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
738 err = audit_set_backlog_limit(status_get->backlog_limit,
739 loginuid, sessionid, sid);
740 break;
741 case AUDIT_USER:
742 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
743 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
744 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
745 return 0;
746
747 err = audit_filter_user(&NETLINK_CB(skb));
748 if (err == 1) {
749 err = 0;
750 if (msg_type == AUDIT_USER_TTY) {
751 err = audit_prepare_user_tty(pid, loginuid,
752 sessionid);
753 if (err)
754 break;
755 }
756 audit_log_common_recv_msg(&ab, msg_type, pid, uid,
757 loginuid, sessionid, sid);
758
759 if (msg_type != AUDIT_USER_TTY)
760 audit_log_format(ab, " msg='%.1024s'",
761 (char *)data);
762 else {
763 int size;
764
765 audit_log_format(ab, " msg=");
766 size = nlmsg_len(nlh);
767 if (size > 0 &&
768 ((unsigned char *)data)[size - 1] == '\0')
769 size--;
770 audit_log_n_untrustedstring(ab, data, size);
771 }
772 audit_set_pid(ab, pid);
773 audit_log_end(ab);
774 }
775 break;
776 case AUDIT_ADD:
777 case AUDIT_DEL:
778 if (nlmsg_len(nlh) < sizeof(struct audit_rule))
779 return -EINVAL;
780 if (audit_enabled == AUDIT_LOCKED) {
781 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
782 uid, loginuid, sessionid, sid);
783
784 audit_log_format(ab, " audit_enabled=%d res=0",
785 audit_enabled);
786 audit_log_end(ab);
787 return -EPERM;
788 }
789 /* fallthrough */
790 case AUDIT_LIST:
791 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
792 uid, seq, data, nlmsg_len(nlh),
793 loginuid, sessionid, sid);
794 break;
795 case AUDIT_ADD_RULE:
796 case AUDIT_DEL_RULE:
797 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
798 return -EINVAL;
799 if (audit_enabled == AUDIT_LOCKED) {
800 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
801 uid, loginuid, sessionid, sid);
802
803 audit_log_format(ab, " audit_enabled=%d res=0",
804 audit_enabled);
805 audit_log_end(ab);
806 return -EPERM;
807 }
808 /* fallthrough */
809 case AUDIT_LIST_RULES:
810 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
811 uid, seq, data, nlmsg_len(nlh),
812 loginuid, sessionid, sid);
813 break;
814 case AUDIT_TRIM:
815 audit_trim_trees();
816
817 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
818 uid, loginuid, sessionid, sid);
819
820 audit_log_format(ab, " op=trim res=1");
821 audit_log_end(ab);
822 break;
823 case AUDIT_MAKE_EQUIV: {
824 void *bufp = data;
825 u32 sizes[2];
826 size_t msglen = nlmsg_len(nlh);
827 char *old, *new;
828
829 err = -EINVAL;
830 if (msglen < 2 * sizeof(u32))
831 break;
832 memcpy(sizes, bufp, 2 * sizeof(u32));
833 bufp += 2 * sizeof(u32);
834 msglen -= 2 * sizeof(u32);
835 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
836 if (IS_ERR(old)) {
837 err = PTR_ERR(old);
838 break;
839 }
840 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
841 if (IS_ERR(new)) {
842 err = PTR_ERR(new);
843 kfree(old);
844 break;
845 }
846 /* OK, here comes... */
847 err = audit_tag_tree(old, new);
848
849 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
850 uid, loginuid, sessionid, sid);
851
852 audit_log_format(ab, " op=make_equiv old=");
853 audit_log_untrustedstring(ab, old);
854 audit_log_format(ab, " new=");
855 audit_log_untrustedstring(ab, new);
856 audit_log_format(ab, " res=%d", !err);
857 audit_log_end(ab);
858 kfree(old);
859 kfree(new);
860 break;
861 }
862 case AUDIT_SIGNAL_INFO:
863 len = 0;
864 if (audit_sig_sid) {
865 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
866 if (err)
867 return err;
868 }
869 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
870 if (!sig_data) {
871 if (audit_sig_sid)
872 security_release_secctx(ctx, len);
873 return -ENOMEM;
874 }
875 sig_data->uid = audit_sig_uid;
876 sig_data->pid = audit_sig_pid;
877 if (audit_sig_sid) {
878 memcpy(sig_data->ctx, ctx, len);
879 security_release_secctx(ctx, len);
880 }
881 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
882 0, 0, sig_data, sizeof(*sig_data) + len);
883 kfree(sig_data);
884 break;
885 case AUDIT_TTY_GET: {
886 struct audit_tty_status s;
887 struct task_struct *tsk;
888 unsigned long flags;
889
890 rcu_read_lock();
891 tsk = find_task_by_vpid(pid);
892 if (tsk && lock_task_sighand(tsk, &flags)) {
893 s.enabled = tsk->signal->audit_tty != 0;
894 unlock_task_sighand(tsk, &flags);
895 } else
896 err = -ESRCH;
897 rcu_read_unlock();
898
899 if (!err)
900 audit_send_reply(NETLINK_CB(skb).pid, seq,
901 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
902 break;
903 }
904 case AUDIT_TTY_SET: {
905 struct audit_tty_status *s;
906 struct task_struct *tsk;
907 unsigned long flags;
908
909 if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
910 return -EINVAL;
911 s = data;
912 if (s->enabled != 0 && s->enabled != 1)
913 return -EINVAL;
914 rcu_read_lock();
915 tsk = find_task_by_vpid(pid);
916 if (tsk && lock_task_sighand(tsk, &flags)) {
917 tsk->signal->audit_tty = s->enabled != 0;
918 unlock_task_sighand(tsk, &flags);
919 } else
920 err = -ESRCH;
921 rcu_read_unlock();
922 break;
923 }
924 default:
925 err = -EINVAL;
926 break;
927 }
928
929 return err < 0 ? err : 0;
930 }
931
932 /*
933 * Get message from skb. Each message is processed by audit_receive_msg.
934 * Malformed skbs with wrong length are discarded silently.
935 */
936 static void audit_receive_skb(struct sk_buff *skb)
937 {
938 struct nlmsghdr *nlh;
939 /*
940 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0
941 * if the nlmsg_len was not aligned
942 */
943 int len;
944 int err;
945
946 nlh = nlmsg_hdr(skb);
947 len = skb->len;
948
949 while (NLMSG_OK(nlh, len)) {
950 err = audit_receive_msg(skb, nlh);
951 /* if err or if this message says it wants a response */
952 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
953 netlink_ack(skb, nlh, err);
954
955 nlh = NLMSG_NEXT(nlh, len);
956 }
957 }
958
959 /* Receive messages from netlink socket. */
960 static void audit_receive(struct sk_buff *skb)
961 {
962 mutex_lock(&audit_cmd_mutex);
963 audit_receive_skb(skb);
964 mutex_unlock(&audit_cmd_mutex);
965 }
966
967 /* Initialize audit support at boot time. */
968 static int __init audit_init(void)
969 {
970 int i;
971 struct netlink_kernel_cfg cfg = {
972 .input = audit_receive,
973 };
974
975 if (audit_initialized == AUDIT_DISABLED)
976 return 0;
977
978 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
979 audit_default ? "enabled" : "disabled");
980 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT,
981 THIS_MODULE, &cfg);
982 if (!audit_sock)
983 audit_panic("cannot initialize netlink socket");
984 else
985 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
986
987 skb_queue_head_init(&audit_skb_queue);
988 skb_queue_head_init(&audit_skb_hold_queue);
989 audit_initialized = AUDIT_INITIALIZED;
990 audit_enabled = audit_default;
991 audit_ever_enabled |= !!audit_default;
992
993 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
994
995 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
996 INIT_LIST_HEAD(&audit_inode_hash[i]);
997
998 return 0;
999 }
1000 __initcall(audit_init);
1001
1002 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1003 static int __init audit_enable(char *str)
1004 {
1005 audit_default = !!simple_strtol(str, NULL, 0);
1006 if (!audit_default)
1007 audit_initialized = AUDIT_DISABLED;
1008
1009 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
1010
1011 if (audit_initialized == AUDIT_INITIALIZED) {
1012 audit_enabled = audit_default;
1013 audit_ever_enabled |= !!audit_default;
1014 } else if (audit_initialized == AUDIT_UNINITIALIZED) {
1015 printk(" (after initialization)");
1016 } else {
1017 printk(" (until reboot)");
1018 }
1019 printk("\n");
1020
1021 return 1;
1022 }
1023
1024 __setup("audit=", audit_enable);
1025
1026 static void audit_buffer_free(struct audit_buffer *ab)
1027 {
1028 unsigned long flags;
1029
1030 if (!ab)
1031 return;
1032
1033 if (ab->skb)
1034 kfree_skb(ab->skb);
1035
1036 spin_lock_irqsave(&audit_freelist_lock, flags);
1037 if (audit_freelist_count > AUDIT_MAXFREE)
1038 kfree(ab);
1039 else {
1040 audit_freelist_count++;
1041 list_add(&ab->list, &audit_freelist);
1042 }
1043 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1044 }
1045
1046 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1047 gfp_t gfp_mask, int type)
1048 {
1049 unsigned long flags;
1050 struct audit_buffer *ab = NULL;
1051 struct nlmsghdr *nlh;
1052
1053 spin_lock_irqsave(&audit_freelist_lock, flags);
1054 if (!list_empty(&audit_freelist)) {
1055 ab = list_entry(audit_freelist.next,
1056 struct audit_buffer, list);
1057 list_del(&ab->list);
1058 --audit_freelist_count;
1059 }
1060 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1061
1062 if (!ab) {
1063 ab = kmalloc(sizeof(*ab), gfp_mask);
1064 if (!ab)
1065 goto err;
1066 }
1067
1068 ab->ctx = ctx;
1069 ab->gfp_mask = gfp_mask;
1070
1071 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1072 if (!ab->skb)
1073 goto err;
1074
1075 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1076 if (!nlh)
1077 goto out_kfree_skb;
1078
1079 return ab;
1080
1081 out_kfree_skb:
1082 kfree_skb(ab->skb);
1083 ab->skb = NULL;
1084 err:
1085 audit_buffer_free(ab);
1086 return NULL;
1087 }
1088
1089 /**
1090 * audit_serial - compute a serial number for the audit record
1091 *
1092 * Compute a serial number for the audit record. Audit records are
1093 * written to user-space as soon as they are generated, so a complete
1094 * audit record may be written in several pieces. The timestamp of the
1095 * record and this serial number are used by the user-space tools to
1096 * determine which pieces belong to the same audit record. The
1097 * (timestamp,serial) tuple is unique for each syscall and is live from
1098 * syscall entry to syscall exit.
1099 *
1100 * NOTE: Another possibility is to store the formatted records off the
1101 * audit context (for those records that have a context), and emit them
1102 * all at syscall exit. However, this could delay the reporting of
1103 * significant errors until syscall exit (or never, if the system
1104 * halts).
1105 */
1106 unsigned int audit_serial(void)
1107 {
1108 static DEFINE_SPINLOCK(serial_lock);
1109 static unsigned int serial = 0;
1110
1111 unsigned long flags;
1112 unsigned int ret;
1113
1114 spin_lock_irqsave(&serial_lock, flags);
1115 do {
1116 ret = ++serial;
1117 } while (unlikely(!ret));
1118 spin_unlock_irqrestore(&serial_lock, flags);
1119
1120 return ret;
1121 }
1122
1123 static inline void audit_get_stamp(struct audit_context *ctx,
1124 struct timespec *t, unsigned int *serial)
1125 {
1126 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1127 *t = CURRENT_TIME;
1128 *serial = audit_serial();
1129 }
1130 }
1131
1132 /* Obtain an audit buffer. This routine does locking to obtain the
1133 * audit buffer, but then no locking is required for calls to
1134 * audit_log_*format. If the tsk is a task that is currently in a
1135 * syscall, then the syscall is marked as auditable and an audit record
1136 * will be written at syscall exit. If there is no associated task, tsk
1137 * should be NULL. */
1138
1139 /**
1140 * audit_log_start - obtain an audit buffer
1141 * @ctx: audit_context (may be NULL)
1142 * @gfp_mask: type of allocation
1143 * @type: audit message type
1144 *
1145 * Returns audit_buffer pointer on success or NULL on error.
1146 *
1147 * Obtain an audit buffer. This routine does locking to obtain the
1148 * audit buffer, but then no locking is required for calls to
1149 * audit_log_*format. If the task (ctx) is a task that is currently in a
1150 * syscall, then the syscall is marked as auditable and an audit record
1151 * will be written at syscall exit. If there is no associated task, then
1152 * task context (ctx) should be NULL.
1153 */
1154 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1155 int type)
1156 {
1157 struct audit_buffer *ab = NULL;
1158 struct timespec t;
1159 unsigned int uninitialized_var(serial);
1160 int reserve;
1161 unsigned long timeout_start = jiffies;
1162
1163 if (audit_initialized != AUDIT_INITIALIZED)
1164 return NULL;
1165
1166 if (unlikely(audit_filter_type(type)))
1167 return NULL;
1168
1169 if (gfp_mask & __GFP_WAIT)
1170 reserve = 0;
1171 else
1172 reserve = 5; /* Allow atomic callers to go up to five
1173 entries over the normal backlog limit */
1174
1175 while (audit_backlog_limit
1176 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1177 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
1178 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
1179
1180 /* Wait for auditd to drain the queue a little */
1181 DECLARE_WAITQUEUE(wait, current);
1182 set_current_state(TASK_INTERRUPTIBLE);
1183 add_wait_queue(&audit_backlog_wait, &wait);
1184
1185 if (audit_backlog_limit &&
1186 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1187 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
1188
1189 __set_current_state(TASK_RUNNING);
1190 remove_wait_queue(&audit_backlog_wait, &wait);
1191 continue;
1192 }
1193 if (audit_rate_check() && printk_ratelimit())
1194 printk(KERN_WARNING
1195 "audit: audit_backlog=%d > "
1196 "audit_backlog_limit=%d\n",
1197 skb_queue_len(&audit_skb_queue),
1198 audit_backlog_limit);
1199 audit_log_lost("backlog limit exceeded");
1200 audit_backlog_wait_time = audit_backlog_wait_overflow;
1201 wake_up(&audit_backlog_wait);
1202 return NULL;
1203 }
1204
1205 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1206 if (!ab) {
1207 audit_log_lost("out of memory in audit_log_start");
1208 return NULL;
1209 }
1210
1211 audit_get_stamp(ab->ctx, &t, &serial);
1212
1213 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1214 t.tv_sec, t.tv_nsec/1000000, serial);
1215 return ab;
1216 }
1217
1218 /**
1219 * audit_expand - expand skb in the audit buffer
1220 * @ab: audit_buffer
1221 * @extra: space to add at tail of the skb
1222 *
1223 * Returns 0 (no space) on failed expansion, or available space if
1224 * successful.
1225 */
1226 static inline int audit_expand(struct audit_buffer *ab, int extra)
1227 {
1228 struct sk_buff *skb = ab->skb;
1229 int oldtail = skb_tailroom(skb);
1230 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1231 int newtail = skb_tailroom(skb);
1232
1233 if (ret < 0) {
1234 audit_log_lost("out of memory in audit_expand");
1235 return 0;
1236 }
1237
1238 skb->truesize += newtail - oldtail;
1239 return newtail;
1240 }
1241
1242 /*
1243 * Format an audit message into the audit buffer. If there isn't enough
1244 * room in the audit buffer, more room will be allocated and vsnprint
1245 * will be called a second time. Currently, we assume that a printk
1246 * can't format message larger than 1024 bytes, so we don't either.
1247 */
1248 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1249 va_list args)
1250 {
1251 int len, avail;
1252 struct sk_buff *skb;
1253 va_list args2;
1254
1255 if (!ab)
1256 return;
1257
1258 BUG_ON(!ab->skb);
1259 skb = ab->skb;
1260 avail = skb_tailroom(skb);
1261 if (avail == 0) {
1262 avail = audit_expand(ab, AUDIT_BUFSIZ);
1263 if (!avail)
1264 goto out;
1265 }
1266 va_copy(args2, args);
1267 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1268 if (len >= avail) {
1269 /* The printk buffer is 1024 bytes long, so if we get
1270 * here and AUDIT_BUFSIZ is at least 1024, then we can
1271 * log everything that printk could have logged. */
1272 avail = audit_expand(ab,
1273 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1274 if (!avail)
1275 goto out_va_end;
1276 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1277 }
1278 if (len > 0)
1279 skb_put(skb, len);
1280 out_va_end:
1281 va_end(args2);
1282 out:
1283 return;
1284 }
1285
1286 /**
1287 * audit_log_format - format a message into the audit buffer.
1288 * @ab: audit_buffer
1289 * @fmt: format string
1290 * @...: optional parameters matching @fmt string
1291 *
1292 * All the work is done in audit_log_vformat.
1293 */
1294 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1295 {
1296 va_list args;
1297
1298 if (!ab)
1299 return;
1300 va_start(args, fmt);
1301 audit_log_vformat(ab, fmt, args);
1302 va_end(args);
1303 }
1304
1305 /**
1306 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1307 * @ab: the audit_buffer
1308 * @buf: buffer to convert to hex
1309 * @len: length of @buf to be converted
1310 *
1311 * No return value; failure to expand is silently ignored.
1312 *
1313 * This function will take the passed buf and convert it into a string of
1314 * ascii hex digits. The new string is placed onto the skb.
1315 */
1316 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1317 size_t len)
1318 {
1319 int i, avail, new_len;
1320 unsigned char *ptr;
1321 struct sk_buff *skb;
1322 static const unsigned char *hex = "0123456789ABCDEF";
1323
1324 if (!ab)
1325 return;
1326
1327 BUG_ON(!ab->skb);
1328 skb = ab->skb;
1329 avail = skb_tailroom(skb);
1330 new_len = len<<1;
1331 if (new_len >= avail) {
1332 /* Round the buffer request up to the next multiple */
1333 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1334 avail = audit_expand(ab, new_len);
1335 if (!avail)
1336 return;
1337 }
1338
1339 ptr = skb_tail_pointer(skb);
1340 for (i=0; i<len; i++) {
1341 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1342 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1343 }
1344 *ptr = 0;
1345 skb_put(skb, len << 1); /* new string is twice the old string */
1346 }
1347
1348 /*
1349 * Format a string of no more than slen characters into the audit buffer,
1350 * enclosed in quote marks.
1351 */
1352 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1353 size_t slen)
1354 {
1355 int avail, new_len;
1356 unsigned char *ptr;
1357 struct sk_buff *skb;
1358
1359 if (!ab)
1360 return;
1361
1362 BUG_ON(!ab->skb);
1363 skb = ab->skb;
1364 avail = skb_tailroom(skb);
1365 new_len = slen + 3; /* enclosing quotes + null terminator */
1366 if (new_len > avail) {
1367 avail = audit_expand(ab, new_len);
1368 if (!avail)
1369 return;
1370 }
1371 ptr = skb_tail_pointer(skb);
1372 *ptr++ = '"';
1373 memcpy(ptr, string, slen);
1374 ptr += slen;
1375 *ptr++ = '"';
1376 *ptr = 0;
1377 skb_put(skb, slen + 2); /* don't include null terminator */
1378 }
1379
1380 /**
1381 * audit_string_contains_control - does a string need to be logged in hex
1382 * @string: string to be checked
1383 * @len: max length of the string to check
1384 */
1385 int audit_string_contains_control(const char *string, size_t len)
1386 {
1387 const unsigned char *p;
1388 for (p = string; p < (const unsigned char *)string + len; p++) {
1389 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1390 return 1;
1391 }
1392 return 0;
1393 }
1394
1395 /**
1396 * audit_log_n_untrustedstring - log a string that may contain random characters
1397 * @ab: audit_buffer
1398 * @len: length of string (not including trailing null)
1399 * @string: string to be logged
1400 *
1401 * This code will escape a string that is passed to it if the string
1402 * contains a control character, unprintable character, double quote mark,
1403 * or a space. Unescaped strings will start and end with a double quote mark.
1404 * Strings that are escaped are printed in hex (2 digits per char).
1405 *
1406 * The caller specifies the number of characters in the string to log, which may
1407 * or may not be the entire string.
1408 */
1409 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1410 size_t len)
1411 {
1412 if (audit_string_contains_control(string, len))
1413 audit_log_n_hex(ab, string, len);
1414 else
1415 audit_log_n_string(ab, string, len);
1416 }
1417
1418 /**
1419 * audit_log_untrustedstring - log a string that may contain random characters
1420 * @ab: audit_buffer
1421 * @string: string to be logged
1422 *
1423 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1424 * determine string length.
1425 */
1426 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1427 {
1428 audit_log_n_untrustedstring(ab, string, strlen(string));
1429 }
1430
1431 /* This is a helper-function to print the escaped d_path */
1432 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1433 const struct path *path)
1434 {
1435 char *p, *pathname;
1436
1437 if (prefix)
1438 audit_log_format(ab, "%s", prefix);
1439
1440 /* We will allow 11 spaces for ' (deleted)' to be appended */
1441 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1442 if (!pathname) {
1443 audit_log_string(ab, "<no_memory>");
1444 return;
1445 }
1446 p = d_path(path, pathname, PATH_MAX+11);
1447 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1448 /* FIXME: can we save some information here? */
1449 audit_log_string(ab, "<too_long>");
1450 } else
1451 audit_log_untrustedstring(ab, p);
1452 kfree(pathname);
1453 }
1454
1455 void audit_log_key(struct audit_buffer *ab, char *key)
1456 {
1457 audit_log_format(ab, " key=");
1458 if (key)
1459 audit_log_untrustedstring(ab, key);
1460 else
1461 audit_log_format(ab, "(null)");
1462 }
1463
1464 /**
1465 * audit_log_link_denied - report a link restriction denial
1466 * @operation: specific link opreation
1467 * @link: the path that triggered the restriction
1468 */
1469 void audit_log_link_denied(const char *operation, struct path *link)
1470 {
1471 struct audit_buffer *ab;
1472
1473 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1474 AUDIT_ANOM_LINK);
1475 audit_log_format(ab, "op=%s action=denied", operation);
1476 audit_log_format(ab, " pid=%d comm=", current->pid);
1477 audit_log_untrustedstring(ab, current->comm);
1478 audit_log_d_path(ab, " path=", link);
1479 audit_log_format(ab, " dev=");
1480 audit_log_untrustedstring(ab, link->dentry->d_inode->i_sb->s_id);
1481 audit_log_format(ab, " ino=%lu", link->dentry->d_inode->i_ino);
1482 audit_log_end(ab);
1483 }
1484
1485 /**
1486 * audit_log_end - end one audit record
1487 * @ab: the audit_buffer
1488 *
1489 * The netlink_* functions cannot be called inside an irq context, so
1490 * the audit buffer is placed on a queue and a tasklet is scheduled to
1491 * remove them from the queue outside the irq context. May be called in
1492 * any context.
1493 */
1494 void audit_log_end(struct audit_buffer *ab)
1495 {
1496 if (!ab)
1497 return;
1498 if (!audit_rate_check()) {
1499 audit_log_lost("rate limit exceeded");
1500 } else {
1501 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1502 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1503
1504 if (audit_pid) {
1505 skb_queue_tail(&audit_skb_queue, ab->skb);
1506 wake_up_interruptible(&kauditd_wait);
1507 } else {
1508 audit_printk_skb(ab->skb);
1509 }
1510 ab->skb = NULL;
1511 }
1512 audit_buffer_free(ab);
1513 }
1514
1515 /**
1516 * audit_log - Log an audit record
1517 * @ctx: audit context
1518 * @gfp_mask: type of allocation
1519 * @type: audit message type
1520 * @fmt: format string to use
1521 * @...: variable parameters matching the format string
1522 *
1523 * This is a convenience function that calls audit_log_start,
1524 * audit_log_vformat, and audit_log_end. It may be called
1525 * in any context.
1526 */
1527 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1528 const char *fmt, ...)
1529 {
1530 struct audit_buffer *ab;
1531 va_list args;
1532
1533 ab = audit_log_start(ctx, gfp_mask, type);
1534 if (ab) {
1535 va_start(args, fmt);
1536 audit_log_vformat(ab, fmt, args);
1537 va_end(args);
1538 audit_log_end(ab);
1539 }
1540 }
1541
1542 #ifdef CONFIG_SECURITY
1543 /**
1544 * audit_log_secctx - Converts and logs SELinux context
1545 * @ab: audit_buffer
1546 * @secid: security number
1547 *
1548 * This is a helper function that calls security_secid_to_secctx to convert
1549 * secid to secctx and then adds the (converted) SELinux context to the audit
1550 * log by calling audit_log_format, thus also preventing leak of internal secid
1551 * to userspace. If secid cannot be converted audit_panic is called.
1552 */
1553 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1554 {
1555 u32 len;
1556 char *secctx;
1557
1558 if (security_secid_to_secctx(secid, &secctx, &len)) {
1559 audit_panic("Cannot convert secid to context");
1560 } else {
1561 audit_log_format(ab, " obj=%s", secctx);
1562 security_release_secctx(secctx, len);
1563 }
1564 }
1565 EXPORT_SYMBOL(audit_log_secctx);
1566 #endif
1567
1568 EXPORT_SYMBOL(audit_log_start);
1569 EXPORT_SYMBOL(audit_log_end);
1570 EXPORT_SYMBOL(audit_log_format);
1571 EXPORT_SYMBOL(audit_log);
This page took 0.084405 seconds and 5 git commands to generate.