audit: efficiency fix 2: request exclusive wait since all need same resource
[deliverable/linux.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <linux/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/err.h>
51 #include <linux/kthread.h>
52 #include <linux/kernel.h>
53 #include <linux/syscalls.h>
54
55 #include <linux/audit.h>
56
57 #include <net/sock.h>
58 #include <net/netlink.h>
59 #include <linux/skbuff.h>
60 #ifdef CONFIG_SECURITY
61 #include <linux/security.h>
62 #endif
63 #include <linux/freezer.h>
64 #include <linux/tty.h>
65 #include <linux/pid_namespace.h>
66 #include <net/netns/generic.h>
67
68 #include "audit.h"
69
70 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
71 * (Initialization happens after skb_init is called.) */
72 #define AUDIT_DISABLED -1
73 #define AUDIT_UNINITIALIZED 0
74 #define AUDIT_INITIALIZED 1
75 static int audit_initialized;
76
77 #define AUDIT_OFF 0
78 #define AUDIT_ON 1
79 #define AUDIT_LOCKED 2
80 int audit_enabled;
81 int audit_ever_enabled;
82
83 EXPORT_SYMBOL_GPL(audit_enabled);
84
85 /* Default state when kernel boots without any parameters. */
86 static int audit_default;
87
88 /* If auditing cannot proceed, audit_failure selects what happens. */
89 static int audit_failure = AUDIT_FAIL_PRINTK;
90
91 /*
92 * If audit records are to be written to the netlink socket, audit_pid
93 * contains the pid of the auditd process and audit_nlk_portid contains
94 * the portid to use to send netlink messages to that process.
95 */
96 int audit_pid;
97 static __u32 audit_nlk_portid;
98
99 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
100 * to that number per second. This prevents DoS attacks, but results in
101 * audit records being dropped. */
102 static int audit_rate_limit;
103
104 /* Number of outstanding audit_buffers allowed. */
105 static int audit_backlog_limit = 64;
106 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
107 static int audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
108 static int audit_backlog_wait_overflow = 0;
109
110 /* The identity of the user shutting down the audit system. */
111 kuid_t audit_sig_uid = INVALID_UID;
112 pid_t audit_sig_pid = -1;
113 u32 audit_sig_sid = 0;
114
115 /* Records can be lost in several ways:
116 0) [suppressed in audit_alloc]
117 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
118 2) out of memory in audit_log_move [alloc_skb]
119 3) suppressed due to audit_rate_limit
120 4) suppressed due to audit_backlog_limit
121 */
122 static atomic_t audit_lost = ATOMIC_INIT(0);
123
124 /* The netlink socket. */
125 static struct sock *audit_sock;
126 int audit_net_id;
127
128 /* Hash for inode-based rules */
129 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
130
131 /* The audit_freelist is a list of pre-allocated audit buffers (if more
132 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
133 * being placed on the freelist). */
134 static DEFINE_SPINLOCK(audit_freelist_lock);
135 static int audit_freelist_count;
136 static LIST_HEAD(audit_freelist);
137
138 static struct sk_buff_head audit_skb_queue;
139 /* queue of skbs to send to auditd when/if it comes back */
140 static struct sk_buff_head audit_skb_hold_queue;
141 static struct task_struct *kauditd_task;
142 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
143 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
144
145 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
146 .mask = -1,
147 .features = 0,
148 .lock = 0,};
149
150 static char *audit_feature_names[2] = {
151 "only_unset_loginuid",
152 "loginuid_immutable",
153 };
154
155
156 /* Serialize requests from userspace. */
157 DEFINE_MUTEX(audit_cmd_mutex);
158
159 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
160 * audit records. Since printk uses a 1024 byte buffer, this buffer
161 * should be at least that large. */
162 #define AUDIT_BUFSIZ 1024
163
164 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
165 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
166 #define AUDIT_MAXFREE (2*NR_CPUS)
167
168 /* The audit_buffer is used when formatting an audit record. The caller
169 * locks briefly to get the record off the freelist or to allocate the
170 * buffer, and locks briefly to send the buffer to the netlink layer or
171 * to place it on a transmit queue. Multiple audit_buffers can be in
172 * use simultaneously. */
173 struct audit_buffer {
174 struct list_head list;
175 struct sk_buff *skb; /* formatted skb ready to send */
176 struct audit_context *ctx; /* NULL or associated context */
177 gfp_t gfp_mask;
178 };
179
180 struct audit_reply {
181 __u32 portid;
182 pid_t pid;
183 struct sk_buff *skb;
184 };
185
186 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
187 {
188 if (ab) {
189 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
190 nlh->nlmsg_pid = portid;
191 }
192 }
193
194 void audit_panic(const char *message)
195 {
196 switch (audit_failure)
197 {
198 case AUDIT_FAIL_SILENT:
199 break;
200 case AUDIT_FAIL_PRINTK:
201 if (printk_ratelimit())
202 printk(KERN_ERR "audit: %s\n", message);
203 break;
204 case AUDIT_FAIL_PANIC:
205 /* test audit_pid since printk is always losey, why bother? */
206 if (audit_pid)
207 panic("audit: %s\n", message);
208 break;
209 }
210 }
211
212 static inline int audit_rate_check(void)
213 {
214 static unsigned long last_check = 0;
215 static int messages = 0;
216 static DEFINE_SPINLOCK(lock);
217 unsigned long flags;
218 unsigned long now;
219 unsigned long elapsed;
220 int retval = 0;
221
222 if (!audit_rate_limit) return 1;
223
224 spin_lock_irqsave(&lock, flags);
225 if (++messages < audit_rate_limit) {
226 retval = 1;
227 } else {
228 now = jiffies;
229 elapsed = now - last_check;
230 if (elapsed > HZ) {
231 last_check = now;
232 messages = 0;
233 retval = 1;
234 }
235 }
236 spin_unlock_irqrestore(&lock, flags);
237
238 return retval;
239 }
240
241 /**
242 * audit_log_lost - conditionally log lost audit message event
243 * @message: the message stating reason for lost audit message
244 *
245 * Emit at least 1 message per second, even if audit_rate_check is
246 * throttling.
247 * Always increment the lost messages counter.
248 */
249 void audit_log_lost(const char *message)
250 {
251 static unsigned long last_msg = 0;
252 static DEFINE_SPINLOCK(lock);
253 unsigned long flags;
254 unsigned long now;
255 int print;
256
257 atomic_inc(&audit_lost);
258
259 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
260
261 if (!print) {
262 spin_lock_irqsave(&lock, flags);
263 now = jiffies;
264 if (now - last_msg > HZ) {
265 print = 1;
266 last_msg = now;
267 }
268 spin_unlock_irqrestore(&lock, flags);
269 }
270
271 if (print) {
272 if (printk_ratelimit())
273 printk(KERN_WARNING
274 "audit: audit_lost=%d audit_rate_limit=%d "
275 "audit_backlog_limit=%d\n",
276 atomic_read(&audit_lost),
277 audit_rate_limit,
278 audit_backlog_limit);
279 audit_panic(message);
280 }
281 }
282
283 static int audit_log_config_change(char *function_name, int new, int old,
284 int allow_changes)
285 {
286 struct audit_buffer *ab;
287 int rc = 0;
288
289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 if (unlikely(!ab))
291 return rc;
292 audit_log_format(ab, "%s=%d old=%d", function_name, new, old);
293 audit_log_session_info(ab);
294 rc = audit_log_task_context(ab);
295 if (rc)
296 allow_changes = 0; /* Something weird, deny request */
297 audit_log_format(ab, " res=%d", allow_changes);
298 audit_log_end(ab);
299 return rc;
300 }
301
302 static int audit_do_config_change(char *function_name, int *to_change, int new)
303 {
304 int allow_changes, rc = 0, old = *to_change;
305
306 /* check if we are locked */
307 if (audit_enabled == AUDIT_LOCKED)
308 allow_changes = 0;
309 else
310 allow_changes = 1;
311
312 if (audit_enabled != AUDIT_OFF) {
313 rc = audit_log_config_change(function_name, new, old, allow_changes);
314 if (rc)
315 allow_changes = 0;
316 }
317
318 /* If we are allowed, make the change */
319 if (allow_changes == 1)
320 *to_change = new;
321 /* Not allowed, update reason */
322 else if (rc == 0)
323 rc = -EPERM;
324 return rc;
325 }
326
327 static int audit_set_rate_limit(int limit)
328 {
329 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
330 }
331
332 static int audit_set_backlog_limit(int limit)
333 {
334 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
335 }
336
337 static int audit_set_enabled(int state)
338 {
339 int rc;
340 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
341 return -EINVAL;
342
343 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
344 if (!rc)
345 audit_ever_enabled |= !!state;
346
347 return rc;
348 }
349
350 static int audit_set_failure(int state)
351 {
352 if (state != AUDIT_FAIL_SILENT
353 && state != AUDIT_FAIL_PRINTK
354 && state != AUDIT_FAIL_PANIC)
355 return -EINVAL;
356
357 return audit_do_config_change("audit_failure", &audit_failure, state);
358 }
359
360 /*
361 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
362 * already have been sent via prink/syslog and so if these messages are dropped
363 * it is not a huge concern since we already passed the audit_log_lost()
364 * notification and stuff. This is just nice to get audit messages during
365 * boot before auditd is running or messages generated while auditd is stopped.
366 * This only holds messages is audit_default is set, aka booting with audit=1
367 * or building your kernel that way.
368 */
369 static void audit_hold_skb(struct sk_buff *skb)
370 {
371 if (audit_default &&
372 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
373 skb_queue_tail(&audit_skb_hold_queue, skb);
374 else
375 kfree_skb(skb);
376 }
377
378 /*
379 * For one reason or another this nlh isn't getting delivered to the userspace
380 * audit daemon, just send it to printk.
381 */
382 static void audit_printk_skb(struct sk_buff *skb)
383 {
384 struct nlmsghdr *nlh = nlmsg_hdr(skb);
385 char *data = nlmsg_data(nlh);
386
387 if (nlh->nlmsg_type != AUDIT_EOE) {
388 if (printk_ratelimit())
389 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
390 else
391 audit_log_lost("printk limit exceeded\n");
392 }
393
394 audit_hold_skb(skb);
395 }
396
397 static void kauditd_send_skb(struct sk_buff *skb)
398 {
399 int err;
400 /* take a reference in case we can't send it and we want to hold it */
401 skb_get(skb);
402 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
403 if (err < 0) {
404 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
405 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
406 audit_log_lost("auditd disappeared\n");
407 audit_pid = 0;
408 audit_sock = NULL;
409 /* we might get lucky and get this in the next auditd */
410 audit_hold_skb(skb);
411 } else
412 /* drop the extra reference if sent ok */
413 consume_skb(skb);
414 }
415
416 /*
417 * flush_hold_queue - empty the hold queue if auditd appears
418 *
419 * If auditd just started, drain the queue of messages already
420 * sent to syslog/printk. Remember loss here is ok. We already
421 * called audit_log_lost() if it didn't go out normally. so the
422 * race between the skb_dequeue and the next check for audit_pid
423 * doesn't matter.
424 *
425 * If you ever find kauditd to be too slow we can get a perf win
426 * by doing our own locking and keeping better track if there
427 * are messages in this queue. I don't see the need now, but
428 * in 5 years when I want to play with this again I'll see this
429 * note and still have no friggin idea what i'm thinking today.
430 */
431 static void flush_hold_queue(void)
432 {
433 struct sk_buff *skb;
434
435 if (!audit_default || !audit_pid)
436 return;
437
438 skb = skb_dequeue(&audit_skb_hold_queue);
439 if (likely(!skb))
440 return;
441
442 while (skb && audit_pid) {
443 kauditd_send_skb(skb);
444 skb = skb_dequeue(&audit_skb_hold_queue);
445 }
446
447 /*
448 * if auditd just disappeared but we
449 * dequeued an skb we need to drop ref
450 */
451 if (skb)
452 consume_skb(skb);
453 }
454
455 static int kauditd_thread(void *dummy)
456 {
457 set_freezable();
458 while (!kthread_should_stop()) {
459 struct sk_buff *skb;
460 DECLARE_WAITQUEUE(wait, current);
461
462 flush_hold_queue();
463
464 skb = skb_dequeue(&audit_skb_queue);
465
466 if (skb) {
467 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
468 wake_up(&audit_backlog_wait);
469 if (audit_pid)
470 kauditd_send_skb(skb);
471 else
472 audit_printk_skb(skb);
473 continue;
474 }
475 set_current_state(TASK_INTERRUPTIBLE);
476 add_wait_queue(&kauditd_wait, &wait);
477
478 if (!skb_queue_len(&audit_skb_queue)) {
479 try_to_freeze();
480 schedule();
481 }
482
483 __set_current_state(TASK_RUNNING);
484 remove_wait_queue(&kauditd_wait, &wait);
485 }
486 return 0;
487 }
488
489 int audit_send_list(void *_dest)
490 {
491 struct audit_netlink_list *dest = _dest;
492 struct sk_buff *skb;
493 struct net *net = get_net_ns_by_pid(dest->pid);
494 struct audit_net *aunet = net_generic(net, audit_net_id);
495
496 /* wait for parent to finish and send an ACK */
497 mutex_lock(&audit_cmd_mutex);
498 mutex_unlock(&audit_cmd_mutex);
499
500 while ((skb = __skb_dequeue(&dest->q)) != NULL)
501 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
502
503 kfree(dest);
504
505 return 0;
506 }
507
508 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
509 int multi, const void *payload, int size)
510 {
511 struct sk_buff *skb;
512 struct nlmsghdr *nlh;
513 void *data;
514 int flags = multi ? NLM_F_MULTI : 0;
515 int t = done ? NLMSG_DONE : type;
516
517 skb = nlmsg_new(size, GFP_KERNEL);
518 if (!skb)
519 return NULL;
520
521 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
522 if (!nlh)
523 goto out_kfree_skb;
524 data = nlmsg_data(nlh);
525 memcpy(data, payload, size);
526 return skb;
527
528 out_kfree_skb:
529 kfree_skb(skb);
530 return NULL;
531 }
532
533 static int audit_send_reply_thread(void *arg)
534 {
535 struct audit_reply *reply = (struct audit_reply *)arg;
536 struct net *net = get_net_ns_by_pid(reply->pid);
537 struct audit_net *aunet = net_generic(net, audit_net_id);
538
539 mutex_lock(&audit_cmd_mutex);
540 mutex_unlock(&audit_cmd_mutex);
541
542 /* Ignore failure. It'll only happen if the sender goes away,
543 because our timeout is set to infinite. */
544 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
545 kfree(reply);
546 return 0;
547 }
548 /**
549 * audit_send_reply - send an audit reply message via netlink
550 * @portid: netlink port to which to send reply
551 * @seq: sequence number
552 * @type: audit message type
553 * @done: done (last) flag
554 * @multi: multi-part message flag
555 * @payload: payload data
556 * @size: payload size
557 *
558 * Allocates an skb, builds the netlink message, and sends it to the port id.
559 * No failure notifications.
560 */
561 static void audit_send_reply(__u32 portid, int seq, int type, int done,
562 int multi, const void *payload, int size)
563 {
564 struct sk_buff *skb;
565 struct task_struct *tsk;
566 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
567 GFP_KERNEL);
568
569 if (!reply)
570 return;
571
572 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
573 if (!skb)
574 goto out;
575
576 reply->portid = portid;
577 reply->pid = task_pid_vnr(current);
578 reply->skb = skb;
579
580 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
581 if (!IS_ERR(tsk))
582 return;
583 kfree_skb(skb);
584 out:
585 kfree(reply);
586 }
587
588 /*
589 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
590 * control messages.
591 */
592 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
593 {
594 int err = 0;
595
596 /* Only support the initial namespaces for now. */
597 if ((current_user_ns() != &init_user_ns) ||
598 (task_active_pid_ns(current) != &init_pid_ns))
599 return -EPERM;
600
601 switch (msg_type) {
602 case AUDIT_LIST:
603 case AUDIT_ADD:
604 case AUDIT_DEL:
605 return -EOPNOTSUPP;
606 case AUDIT_GET:
607 case AUDIT_SET:
608 case AUDIT_GET_FEATURE:
609 case AUDIT_SET_FEATURE:
610 case AUDIT_LIST_RULES:
611 case AUDIT_ADD_RULE:
612 case AUDIT_DEL_RULE:
613 case AUDIT_SIGNAL_INFO:
614 case AUDIT_TTY_GET:
615 case AUDIT_TTY_SET:
616 case AUDIT_TRIM:
617 case AUDIT_MAKE_EQUIV:
618 if (!capable(CAP_AUDIT_CONTROL))
619 err = -EPERM;
620 break;
621 case AUDIT_USER:
622 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
623 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
624 if (!capable(CAP_AUDIT_WRITE))
625 err = -EPERM;
626 break;
627 default: /* bad msg */
628 err = -EINVAL;
629 }
630
631 return err;
632 }
633
634 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
635 {
636 int rc = 0;
637 uid_t uid = from_kuid(&init_user_ns, current_uid());
638
639 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
640 *ab = NULL;
641 return rc;
642 }
643
644 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
645 if (unlikely(!*ab))
646 return rc;
647 audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid);
648 audit_log_session_info(*ab);
649 audit_log_task_context(*ab);
650
651 return rc;
652 }
653
654 int is_audit_feature_set(int i)
655 {
656 return af.features & AUDIT_FEATURE_TO_MASK(i);
657 }
658
659
660 static int audit_get_feature(struct sk_buff *skb)
661 {
662 u32 seq;
663
664 seq = nlmsg_hdr(skb)->nlmsg_seq;
665
666 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
667 &af, sizeof(af));
668
669 return 0;
670 }
671
672 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
673 u32 old_lock, u32 new_lock, int res)
674 {
675 struct audit_buffer *ab;
676
677 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
678 audit_log_format(ab, "feature=%s new=%d old=%d old_lock=%d new_lock=%d res=%d",
679 audit_feature_names[which], !!old_feature, !!new_feature,
680 !!old_lock, !!new_lock, res);
681 audit_log_end(ab);
682 }
683
684 static int audit_set_feature(struct sk_buff *skb)
685 {
686 struct audit_features *uaf;
687 int i;
688
689 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
690 uaf = nlmsg_data(nlmsg_hdr(skb));
691
692 /* if there is ever a version 2 we should handle that here */
693
694 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
695 u32 feature = AUDIT_FEATURE_TO_MASK(i);
696 u32 old_feature, new_feature, old_lock, new_lock;
697
698 /* if we are not changing this feature, move along */
699 if (!(feature & uaf->mask))
700 continue;
701
702 old_feature = af.features & feature;
703 new_feature = uaf->features & feature;
704 new_lock = (uaf->lock | af.lock) & feature;
705 old_lock = af.lock & feature;
706
707 /* are we changing a locked feature? */
708 if ((af.lock & feature) && (new_feature != old_feature)) {
709 audit_log_feature_change(i, old_feature, new_feature,
710 old_lock, new_lock, 0);
711 return -EPERM;
712 }
713 }
714 /* nothing invalid, do the changes */
715 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
716 u32 feature = AUDIT_FEATURE_TO_MASK(i);
717 u32 old_feature, new_feature, old_lock, new_lock;
718
719 /* if we are not changing this feature, move along */
720 if (!(feature & uaf->mask))
721 continue;
722
723 old_feature = af.features & feature;
724 new_feature = uaf->features & feature;
725 old_lock = af.lock & feature;
726 new_lock = (uaf->lock | af.lock) & feature;
727
728 if (new_feature != old_feature)
729 audit_log_feature_change(i, old_feature, new_feature,
730 old_lock, new_lock, 1);
731
732 if (new_feature)
733 af.features |= feature;
734 else
735 af.features &= ~feature;
736 af.lock |= new_lock;
737 }
738
739 return 0;
740 }
741
742 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
743 {
744 u32 seq;
745 void *data;
746 struct audit_status *status_get, status_set;
747 int err;
748 struct audit_buffer *ab;
749 u16 msg_type = nlh->nlmsg_type;
750 struct audit_sig_info *sig_data;
751 char *ctx = NULL;
752 u32 len;
753
754 err = audit_netlink_ok(skb, msg_type);
755 if (err)
756 return err;
757
758 /* As soon as there's any sign of userspace auditd,
759 * start kauditd to talk to it */
760 if (!kauditd_task) {
761 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
762 if (IS_ERR(kauditd_task)) {
763 err = PTR_ERR(kauditd_task);
764 kauditd_task = NULL;
765 return err;
766 }
767 }
768 seq = nlh->nlmsg_seq;
769 data = nlmsg_data(nlh);
770
771 switch (msg_type) {
772 case AUDIT_GET:
773 memset(&status_set, 0, sizeof(status_set));
774 status_set.enabled = audit_enabled;
775 status_set.failure = audit_failure;
776 status_set.pid = audit_pid;
777 status_set.rate_limit = audit_rate_limit;
778 status_set.backlog_limit = audit_backlog_limit;
779 status_set.lost = atomic_read(&audit_lost);
780 status_set.backlog = skb_queue_len(&audit_skb_queue);
781 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
782 &status_set, sizeof(status_set));
783 break;
784 case AUDIT_SET:
785 if (nlmsg_len(nlh) < sizeof(struct audit_status))
786 return -EINVAL;
787 status_get = (struct audit_status *)data;
788 if (status_get->mask & AUDIT_STATUS_ENABLED) {
789 err = audit_set_enabled(status_get->enabled);
790 if (err < 0)
791 return err;
792 }
793 if (status_get->mask & AUDIT_STATUS_FAILURE) {
794 err = audit_set_failure(status_get->failure);
795 if (err < 0)
796 return err;
797 }
798 if (status_get->mask & AUDIT_STATUS_PID) {
799 int new_pid = status_get->pid;
800
801 if (audit_enabled != AUDIT_OFF)
802 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
803 audit_pid = new_pid;
804 audit_nlk_portid = NETLINK_CB(skb).portid;
805 audit_sock = NETLINK_CB(skb).sk;
806 }
807 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
808 err = audit_set_rate_limit(status_get->rate_limit);
809 if (err < 0)
810 return err;
811 }
812 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
813 err = audit_set_backlog_limit(status_get->backlog_limit);
814 break;
815 case AUDIT_GET_FEATURE:
816 err = audit_get_feature(skb);
817 if (err)
818 return err;
819 break;
820 case AUDIT_SET_FEATURE:
821 err = audit_set_feature(skb);
822 if (err)
823 return err;
824 break;
825 case AUDIT_USER:
826 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
827 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
828 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
829 return 0;
830
831 err = audit_filter_user(msg_type);
832 if (err == 1) {
833 err = 0;
834 if (msg_type == AUDIT_USER_TTY) {
835 err = tty_audit_push_current();
836 if (err)
837 break;
838 }
839 audit_log_common_recv_msg(&ab, msg_type);
840 if (msg_type != AUDIT_USER_TTY)
841 audit_log_format(ab, " msg='%.*s'",
842 AUDIT_MESSAGE_TEXT_MAX,
843 (char *)data);
844 else {
845 int size;
846
847 audit_log_format(ab, " data=");
848 size = nlmsg_len(nlh);
849 if (size > 0 &&
850 ((unsigned char *)data)[size - 1] == '\0')
851 size--;
852 audit_log_n_untrustedstring(ab, data, size);
853 }
854 audit_set_portid(ab, NETLINK_CB(skb).portid);
855 audit_log_end(ab);
856 }
857 break;
858 case AUDIT_ADD_RULE:
859 case AUDIT_DEL_RULE:
860 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
861 return -EINVAL;
862 if (audit_enabled == AUDIT_LOCKED) {
863 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
864 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
865 audit_log_end(ab);
866 return -EPERM;
867 }
868 /* fallthrough */
869 case AUDIT_LIST_RULES:
870 err = audit_receive_filter(msg_type, NETLINK_CB(skb).portid,
871 seq, data, nlmsg_len(nlh));
872 break;
873 case AUDIT_TRIM:
874 audit_trim_trees();
875 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
876 audit_log_format(ab, " op=trim res=1");
877 audit_log_end(ab);
878 break;
879 case AUDIT_MAKE_EQUIV: {
880 void *bufp = data;
881 u32 sizes[2];
882 size_t msglen = nlmsg_len(nlh);
883 char *old, *new;
884
885 err = -EINVAL;
886 if (msglen < 2 * sizeof(u32))
887 break;
888 memcpy(sizes, bufp, 2 * sizeof(u32));
889 bufp += 2 * sizeof(u32);
890 msglen -= 2 * sizeof(u32);
891 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
892 if (IS_ERR(old)) {
893 err = PTR_ERR(old);
894 break;
895 }
896 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
897 if (IS_ERR(new)) {
898 err = PTR_ERR(new);
899 kfree(old);
900 break;
901 }
902 /* OK, here comes... */
903 err = audit_tag_tree(old, new);
904
905 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
906
907 audit_log_format(ab, " op=make_equiv old=");
908 audit_log_untrustedstring(ab, old);
909 audit_log_format(ab, " new=");
910 audit_log_untrustedstring(ab, new);
911 audit_log_format(ab, " res=%d", !err);
912 audit_log_end(ab);
913 kfree(old);
914 kfree(new);
915 break;
916 }
917 case AUDIT_SIGNAL_INFO:
918 len = 0;
919 if (audit_sig_sid) {
920 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
921 if (err)
922 return err;
923 }
924 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
925 if (!sig_data) {
926 if (audit_sig_sid)
927 security_release_secctx(ctx, len);
928 return -ENOMEM;
929 }
930 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
931 sig_data->pid = audit_sig_pid;
932 if (audit_sig_sid) {
933 memcpy(sig_data->ctx, ctx, len);
934 security_release_secctx(ctx, len);
935 }
936 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO,
937 0, 0, sig_data, sizeof(*sig_data) + len);
938 kfree(sig_data);
939 break;
940 case AUDIT_TTY_GET: {
941 struct audit_tty_status s;
942 struct task_struct *tsk = current;
943
944 spin_lock(&tsk->sighand->siglock);
945 s.enabled = tsk->signal->audit_tty;
946 s.log_passwd = tsk->signal->audit_tty_log_passwd;
947 spin_unlock(&tsk->sighand->siglock);
948
949 audit_send_reply(NETLINK_CB(skb).portid, seq,
950 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
951 break;
952 }
953 case AUDIT_TTY_SET: {
954 struct audit_tty_status s;
955 struct task_struct *tsk = current;
956
957 memset(&s, 0, sizeof(s));
958 /* guard against past and future API changes */
959 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
960 if ((s.enabled != 0 && s.enabled != 1) ||
961 (s.log_passwd != 0 && s.log_passwd != 1))
962 return -EINVAL;
963
964 spin_lock(&tsk->sighand->siglock);
965 tsk->signal->audit_tty = s.enabled;
966 tsk->signal->audit_tty_log_passwd = s.log_passwd;
967 spin_unlock(&tsk->sighand->siglock);
968 break;
969 }
970 default:
971 err = -EINVAL;
972 break;
973 }
974
975 return err < 0 ? err : 0;
976 }
977
978 /*
979 * Get message from skb. Each message is processed by audit_receive_msg.
980 * Malformed skbs with wrong length are discarded silently.
981 */
982 static void audit_receive_skb(struct sk_buff *skb)
983 {
984 struct nlmsghdr *nlh;
985 /*
986 * len MUST be signed for nlmsg_next to be able to dec it below 0
987 * if the nlmsg_len was not aligned
988 */
989 int len;
990 int err;
991
992 nlh = nlmsg_hdr(skb);
993 len = skb->len;
994
995 while (nlmsg_ok(nlh, len)) {
996 err = audit_receive_msg(skb, nlh);
997 /* if err or if this message says it wants a response */
998 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
999 netlink_ack(skb, nlh, err);
1000
1001 nlh = nlmsg_next(nlh, &len);
1002 }
1003 }
1004
1005 /* Receive messages from netlink socket. */
1006 static void audit_receive(struct sk_buff *skb)
1007 {
1008 mutex_lock(&audit_cmd_mutex);
1009 audit_receive_skb(skb);
1010 mutex_unlock(&audit_cmd_mutex);
1011 }
1012
1013 static int __net_init audit_net_init(struct net *net)
1014 {
1015 struct netlink_kernel_cfg cfg = {
1016 .input = audit_receive,
1017 };
1018
1019 struct audit_net *aunet = net_generic(net, audit_net_id);
1020
1021 pr_info("audit: initializing netlink socket in namespace\n");
1022
1023 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1024 if (aunet->nlsk == NULL)
1025 return -ENOMEM;
1026 if (!aunet->nlsk)
1027 audit_panic("cannot initialize netlink socket in namespace");
1028 else
1029 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1030 return 0;
1031 }
1032
1033 static void __net_exit audit_net_exit(struct net *net)
1034 {
1035 struct audit_net *aunet = net_generic(net, audit_net_id);
1036 struct sock *sock = aunet->nlsk;
1037 if (sock == audit_sock) {
1038 audit_pid = 0;
1039 audit_sock = NULL;
1040 }
1041
1042 rcu_assign_pointer(aunet->nlsk, NULL);
1043 synchronize_net();
1044 netlink_kernel_release(sock);
1045 }
1046
1047 static struct pernet_operations __net_initdata audit_net_ops = {
1048 .init = audit_net_init,
1049 .exit = audit_net_exit,
1050 .id = &audit_net_id,
1051 .size = sizeof(struct audit_net),
1052 };
1053
1054 /* Initialize audit support at boot time. */
1055 static int __init audit_init(void)
1056 {
1057 int i;
1058
1059 if (audit_initialized == AUDIT_DISABLED)
1060 return 0;
1061
1062 pr_info("audit: initializing netlink subsys (%s)\n",
1063 audit_default ? "enabled" : "disabled");
1064 register_pernet_subsys(&audit_net_ops);
1065
1066 skb_queue_head_init(&audit_skb_queue);
1067 skb_queue_head_init(&audit_skb_hold_queue);
1068 audit_initialized = AUDIT_INITIALIZED;
1069 audit_enabled = audit_default;
1070 audit_ever_enabled |= !!audit_default;
1071
1072 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1073
1074 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1075 INIT_LIST_HEAD(&audit_inode_hash[i]);
1076
1077 return 0;
1078 }
1079 __initcall(audit_init);
1080
1081 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1082 static int __init audit_enable(char *str)
1083 {
1084 audit_default = !!simple_strtol(str, NULL, 0);
1085 if (!audit_default)
1086 audit_initialized = AUDIT_DISABLED;
1087
1088 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
1089
1090 if (audit_initialized == AUDIT_INITIALIZED) {
1091 audit_enabled = audit_default;
1092 audit_ever_enabled |= !!audit_default;
1093 } else if (audit_initialized == AUDIT_UNINITIALIZED) {
1094 printk(" (after initialization)");
1095 } else {
1096 printk(" (until reboot)");
1097 }
1098 printk("\n");
1099
1100 return 1;
1101 }
1102
1103 __setup("audit=", audit_enable);
1104
1105 static void audit_buffer_free(struct audit_buffer *ab)
1106 {
1107 unsigned long flags;
1108
1109 if (!ab)
1110 return;
1111
1112 if (ab->skb)
1113 kfree_skb(ab->skb);
1114
1115 spin_lock_irqsave(&audit_freelist_lock, flags);
1116 if (audit_freelist_count > AUDIT_MAXFREE)
1117 kfree(ab);
1118 else {
1119 audit_freelist_count++;
1120 list_add(&ab->list, &audit_freelist);
1121 }
1122 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1123 }
1124
1125 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1126 gfp_t gfp_mask, int type)
1127 {
1128 unsigned long flags;
1129 struct audit_buffer *ab = NULL;
1130 struct nlmsghdr *nlh;
1131
1132 spin_lock_irqsave(&audit_freelist_lock, flags);
1133 if (!list_empty(&audit_freelist)) {
1134 ab = list_entry(audit_freelist.next,
1135 struct audit_buffer, list);
1136 list_del(&ab->list);
1137 --audit_freelist_count;
1138 }
1139 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1140
1141 if (!ab) {
1142 ab = kmalloc(sizeof(*ab), gfp_mask);
1143 if (!ab)
1144 goto err;
1145 }
1146
1147 ab->ctx = ctx;
1148 ab->gfp_mask = gfp_mask;
1149
1150 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1151 if (!ab->skb)
1152 goto err;
1153
1154 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1155 if (!nlh)
1156 goto out_kfree_skb;
1157
1158 return ab;
1159
1160 out_kfree_skb:
1161 kfree_skb(ab->skb);
1162 ab->skb = NULL;
1163 err:
1164 audit_buffer_free(ab);
1165 return NULL;
1166 }
1167
1168 /**
1169 * audit_serial - compute a serial number for the audit record
1170 *
1171 * Compute a serial number for the audit record. Audit records are
1172 * written to user-space as soon as they are generated, so a complete
1173 * audit record may be written in several pieces. The timestamp of the
1174 * record and this serial number are used by the user-space tools to
1175 * determine which pieces belong to the same audit record. The
1176 * (timestamp,serial) tuple is unique for each syscall and is live from
1177 * syscall entry to syscall exit.
1178 *
1179 * NOTE: Another possibility is to store the formatted records off the
1180 * audit context (for those records that have a context), and emit them
1181 * all at syscall exit. However, this could delay the reporting of
1182 * significant errors until syscall exit (or never, if the system
1183 * halts).
1184 */
1185 unsigned int audit_serial(void)
1186 {
1187 static DEFINE_SPINLOCK(serial_lock);
1188 static unsigned int serial = 0;
1189
1190 unsigned long flags;
1191 unsigned int ret;
1192
1193 spin_lock_irqsave(&serial_lock, flags);
1194 do {
1195 ret = ++serial;
1196 } while (unlikely(!ret));
1197 spin_unlock_irqrestore(&serial_lock, flags);
1198
1199 return ret;
1200 }
1201
1202 static inline void audit_get_stamp(struct audit_context *ctx,
1203 struct timespec *t, unsigned int *serial)
1204 {
1205 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1206 *t = CURRENT_TIME;
1207 *serial = audit_serial();
1208 }
1209 }
1210
1211 /*
1212 * Wait for auditd to drain the queue a little
1213 */
1214 static unsigned long wait_for_auditd(unsigned long sleep_time)
1215 {
1216 unsigned long timeout = sleep_time;
1217 DECLARE_WAITQUEUE(wait, current);
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1220
1221 if (audit_backlog_limit &&
1222 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1223 timeout = schedule_timeout(sleep_time);
1224
1225 __set_current_state(TASK_RUNNING);
1226 remove_wait_queue(&audit_backlog_wait, &wait);
1227
1228 return timeout;
1229 }
1230
1231 /**
1232 * audit_log_start - obtain an audit buffer
1233 * @ctx: audit_context (may be NULL)
1234 * @gfp_mask: type of allocation
1235 * @type: audit message type
1236 *
1237 * Returns audit_buffer pointer on success or NULL on error.
1238 *
1239 * Obtain an audit buffer. This routine does locking to obtain the
1240 * audit buffer, but then no locking is required for calls to
1241 * audit_log_*format. If the task (ctx) is a task that is currently in a
1242 * syscall, then the syscall is marked as auditable and an audit record
1243 * will be written at syscall exit. If there is no associated task, then
1244 * task context (ctx) should be NULL.
1245 */
1246 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1247 int type)
1248 {
1249 struct audit_buffer *ab = NULL;
1250 struct timespec t;
1251 unsigned int uninitialized_var(serial);
1252 int reserve;
1253 unsigned long timeout_start = jiffies;
1254
1255 if (audit_initialized != AUDIT_INITIALIZED)
1256 return NULL;
1257
1258 if (unlikely(audit_filter_type(type)))
1259 return NULL;
1260
1261 if (gfp_mask & __GFP_WAIT)
1262 reserve = 0;
1263 else
1264 reserve = 5; /* Allow atomic callers to go up to five
1265 entries over the normal backlog limit */
1266
1267 while (audit_backlog_limit
1268 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1269 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1270 unsigned long sleep_time;
1271
1272 sleep_time = timeout_start + audit_backlog_wait_time -
1273 jiffies;
1274 if ((long)sleep_time > 0) {
1275 sleep_time = wait_for_auditd(sleep_time);
1276 if ((long)sleep_time > 0)
1277 continue;
1278 }
1279 }
1280 if (audit_rate_check() && printk_ratelimit())
1281 printk(KERN_WARNING
1282 "audit: audit_backlog=%d > "
1283 "audit_backlog_limit=%d\n",
1284 skb_queue_len(&audit_skb_queue),
1285 audit_backlog_limit);
1286 audit_log_lost("backlog limit exceeded");
1287 audit_backlog_wait_time = audit_backlog_wait_overflow;
1288 wake_up(&audit_backlog_wait);
1289 return NULL;
1290 }
1291
1292 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1293
1294 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1295 if (!ab) {
1296 audit_log_lost("out of memory in audit_log_start");
1297 return NULL;
1298 }
1299
1300 audit_get_stamp(ab->ctx, &t, &serial);
1301
1302 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1303 t.tv_sec, t.tv_nsec/1000000, serial);
1304 return ab;
1305 }
1306
1307 /**
1308 * audit_expand - expand skb in the audit buffer
1309 * @ab: audit_buffer
1310 * @extra: space to add at tail of the skb
1311 *
1312 * Returns 0 (no space) on failed expansion, or available space if
1313 * successful.
1314 */
1315 static inline int audit_expand(struct audit_buffer *ab, int extra)
1316 {
1317 struct sk_buff *skb = ab->skb;
1318 int oldtail = skb_tailroom(skb);
1319 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1320 int newtail = skb_tailroom(skb);
1321
1322 if (ret < 0) {
1323 audit_log_lost("out of memory in audit_expand");
1324 return 0;
1325 }
1326
1327 skb->truesize += newtail - oldtail;
1328 return newtail;
1329 }
1330
1331 /*
1332 * Format an audit message into the audit buffer. If there isn't enough
1333 * room in the audit buffer, more room will be allocated and vsnprint
1334 * will be called a second time. Currently, we assume that a printk
1335 * can't format message larger than 1024 bytes, so we don't either.
1336 */
1337 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1338 va_list args)
1339 {
1340 int len, avail;
1341 struct sk_buff *skb;
1342 va_list args2;
1343
1344 if (!ab)
1345 return;
1346
1347 BUG_ON(!ab->skb);
1348 skb = ab->skb;
1349 avail = skb_tailroom(skb);
1350 if (avail == 0) {
1351 avail = audit_expand(ab, AUDIT_BUFSIZ);
1352 if (!avail)
1353 goto out;
1354 }
1355 va_copy(args2, args);
1356 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1357 if (len >= avail) {
1358 /* The printk buffer is 1024 bytes long, so if we get
1359 * here and AUDIT_BUFSIZ is at least 1024, then we can
1360 * log everything that printk could have logged. */
1361 avail = audit_expand(ab,
1362 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1363 if (!avail)
1364 goto out_va_end;
1365 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1366 }
1367 if (len > 0)
1368 skb_put(skb, len);
1369 out_va_end:
1370 va_end(args2);
1371 out:
1372 return;
1373 }
1374
1375 /**
1376 * audit_log_format - format a message into the audit buffer.
1377 * @ab: audit_buffer
1378 * @fmt: format string
1379 * @...: optional parameters matching @fmt string
1380 *
1381 * All the work is done in audit_log_vformat.
1382 */
1383 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1384 {
1385 va_list args;
1386
1387 if (!ab)
1388 return;
1389 va_start(args, fmt);
1390 audit_log_vformat(ab, fmt, args);
1391 va_end(args);
1392 }
1393
1394 /**
1395 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1396 * @ab: the audit_buffer
1397 * @buf: buffer to convert to hex
1398 * @len: length of @buf to be converted
1399 *
1400 * No return value; failure to expand is silently ignored.
1401 *
1402 * This function will take the passed buf and convert it into a string of
1403 * ascii hex digits. The new string is placed onto the skb.
1404 */
1405 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1406 size_t len)
1407 {
1408 int i, avail, new_len;
1409 unsigned char *ptr;
1410 struct sk_buff *skb;
1411 static const unsigned char *hex = "0123456789ABCDEF";
1412
1413 if (!ab)
1414 return;
1415
1416 BUG_ON(!ab->skb);
1417 skb = ab->skb;
1418 avail = skb_tailroom(skb);
1419 new_len = len<<1;
1420 if (new_len >= avail) {
1421 /* Round the buffer request up to the next multiple */
1422 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1423 avail = audit_expand(ab, new_len);
1424 if (!avail)
1425 return;
1426 }
1427
1428 ptr = skb_tail_pointer(skb);
1429 for (i=0; i<len; i++) {
1430 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1431 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1432 }
1433 *ptr = 0;
1434 skb_put(skb, len << 1); /* new string is twice the old string */
1435 }
1436
1437 /*
1438 * Format a string of no more than slen characters into the audit buffer,
1439 * enclosed in quote marks.
1440 */
1441 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1442 size_t slen)
1443 {
1444 int avail, new_len;
1445 unsigned char *ptr;
1446 struct sk_buff *skb;
1447
1448 if (!ab)
1449 return;
1450
1451 BUG_ON(!ab->skb);
1452 skb = ab->skb;
1453 avail = skb_tailroom(skb);
1454 new_len = slen + 3; /* enclosing quotes + null terminator */
1455 if (new_len > avail) {
1456 avail = audit_expand(ab, new_len);
1457 if (!avail)
1458 return;
1459 }
1460 ptr = skb_tail_pointer(skb);
1461 *ptr++ = '"';
1462 memcpy(ptr, string, slen);
1463 ptr += slen;
1464 *ptr++ = '"';
1465 *ptr = 0;
1466 skb_put(skb, slen + 2); /* don't include null terminator */
1467 }
1468
1469 /**
1470 * audit_string_contains_control - does a string need to be logged in hex
1471 * @string: string to be checked
1472 * @len: max length of the string to check
1473 */
1474 int audit_string_contains_control(const char *string, size_t len)
1475 {
1476 const unsigned char *p;
1477 for (p = string; p < (const unsigned char *)string + len; p++) {
1478 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1479 return 1;
1480 }
1481 return 0;
1482 }
1483
1484 /**
1485 * audit_log_n_untrustedstring - log a string that may contain random characters
1486 * @ab: audit_buffer
1487 * @len: length of string (not including trailing null)
1488 * @string: string to be logged
1489 *
1490 * This code will escape a string that is passed to it if the string
1491 * contains a control character, unprintable character, double quote mark,
1492 * or a space. Unescaped strings will start and end with a double quote mark.
1493 * Strings that are escaped are printed in hex (2 digits per char).
1494 *
1495 * The caller specifies the number of characters in the string to log, which may
1496 * or may not be the entire string.
1497 */
1498 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1499 size_t len)
1500 {
1501 if (audit_string_contains_control(string, len))
1502 audit_log_n_hex(ab, string, len);
1503 else
1504 audit_log_n_string(ab, string, len);
1505 }
1506
1507 /**
1508 * audit_log_untrustedstring - log a string that may contain random characters
1509 * @ab: audit_buffer
1510 * @string: string to be logged
1511 *
1512 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1513 * determine string length.
1514 */
1515 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1516 {
1517 audit_log_n_untrustedstring(ab, string, strlen(string));
1518 }
1519
1520 /* This is a helper-function to print the escaped d_path */
1521 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1522 const struct path *path)
1523 {
1524 char *p, *pathname;
1525
1526 if (prefix)
1527 audit_log_format(ab, "%s", prefix);
1528
1529 /* We will allow 11 spaces for ' (deleted)' to be appended */
1530 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1531 if (!pathname) {
1532 audit_log_string(ab, "<no_memory>");
1533 return;
1534 }
1535 p = d_path(path, pathname, PATH_MAX+11);
1536 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1537 /* FIXME: can we save some information here? */
1538 audit_log_string(ab, "<too_long>");
1539 } else
1540 audit_log_untrustedstring(ab, p);
1541 kfree(pathname);
1542 }
1543
1544 void audit_log_session_info(struct audit_buffer *ab)
1545 {
1546 u32 sessionid = audit_get_sessionid(current);
1547 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1548
1549 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1550 }
1551
1552 void audit_log_key(struct audit_buffer *ab, char *key)
1553 {
1554 audit_log_format(ab, " key=");
1555 if (key)
1556 audit_log_untrustedstring(ab, key);
1557 else
1558 audit_log_format(ab, "(null)");
1559 }
1560
1561 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1562 {
1563 int i;
1564
1565 audit_log_format(ab, " %s=", prefix);
1566 CAP_FOR_EACH_U32(i) {
1567 audit_log_format(ab, "%08x",
1568 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1569 }
1570 }
1571
1572 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1573 {
1574 kernel_cap_t *perm = &name->fcap.permitted;
1575 kernel_cap_t *inh = &name->fcap.inheritable;
1576 int log = 0;
1577
1578 if (!cap_isclear(*perm)) {
1579 audit_log_cap(ab, "cap_fp", perm);
1580 log = 1;
1581 }
1582 if (!cap_isclear(*inh)) {
1583 audit_log_cap(ab, "cap_fi", inh);
1584 log = 1;
1585 }
1586
1587 if (log)
1588 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1589 name->fcap.fE, name->fcap_ver);
1590 }
1591
1592 static inline int audit_copy_fcaps(struct audit_names *name,
1593 const struct dentry *dentry)
1594 {
1595 struct cpu_vfs_cap_data caps;
1596 int rc;
1597
1598 if (!dentry)
1599 return 0;
1600
1601 rc = get_vfs_caps_from_disk(dentry, &caps);
1602 if (rc)
1603 return rc;
1604
1605 name->fcap.permitted = caps.permitted;
1606 name->fcap.inheritable = caps.inheritable;
1607 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1608 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1609 VFS_CAP_REVISION_SHIFT;
1610
1611 return 0;
1612 }
1613
1614 /* Copy inode data into an audit_names. */
1615 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1616 const struct inode *inode)
1617 {
1618 name->ino = inode->i_ino;
1619 name->dev = inode->i_sb->s_dev;
1620 name->mode = inode->i_mode;
1621 name->uid = inode->i_uid;
1622 name->gid = inode->i_gid;
1623 name->rdev = inode->i_rdev;
1624 security_inode_getsecid(inode, &name->osid);
1625 audit_copy_fcaps(name, dentry);
1626 }
1627
1628 /**
1629 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1630 * @context: audit_context for the task
1631 * @n: audit_names structure with reportable details
1632 * @path: optional path to report instead of audit_names->name
1633 * @record_num: record number to report when handling a list of names
1634 * @call_panic: optional pointer to int that will be updated if secid fails
1635 */
1636 void audit_log_name(struct audit_context *context, struct audit_names *n,
1637 struct path *path, int record_num, int *call_panic)
1638 {
1639 struct audit_buffer *ab;
1640 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1641 if (!ab)
1642 return;
1643
1644 audit_log_format(ab, "item=%d", record_num);
1645
1646 if (path)
1647 audit_log_d_path(ab, " name=", path);
1648 else if (n->name) {
1649 switch (n->name_len) {
1650 case AUDIT_NAME_FULL:
1651 /* log the full path */
1652 audit_log_format(ab, " name=");
1653 audit_log_untrustedstring(ab, n->name->name);
1654 break;
1655 case 0:
1656 /* name was specified as a relative path and the
1657 * directory component is the cwd */
1658 audit_log_d_path(ab, " name=", &context->pwd);
1659 break;
1660 default:
1661 /* log the name's directory component */
1662 audit_log_format(ab, " name=");
1663 audit_log_n_untrustedstring(ab, n->name->name,
1664 n->name_len);
1665 }
1666 } else
1667 audit_log_format(ab, " name=(null)");
1668
1669 if (n->ino != (unsigned long)-1) {
1670 audit_log_format(ab, " inode=%lu"
1671 " dev=%02x:%02x mode=%#ho"
1672 " ouid=%u ogid=%u rdev=%02x:%02x",
1673 n->ino,
1674 MAJOR(n->dev),
1675 MINOR(n->dev),
1676 n->mode,
1677 from_kuid(&init_user_ns, n->uid),
1678 from_kgid(&init_user_ns, n->gid),
1679 MAJOR(n->rdev),
1680 MINOR(n->rdev));
1681 }
1682 if (n->osid != 0) {
1683 char *ctx = NULL;
1684 u32 len;
1685 if (security_secid_to_secctx(
1686 n->osid, &ctx, &len)) {
1687 audit_log_format(ab, " osid=%u", n->osid);
1688 if (call_panic)
1689 *call_panic = 2;
1690 } else {
1691 audit_log_format(ab, " obj=%s", ctx);
1692 security_release_secctx(ctx, len);
1693 }
1694 }
1695
1696 /* log the audit_names record type */
1697 audit_log_format(ab, " nametype=");
1698 switch(n->type) {
1699 case AUDIT_TYPE_NORMAL:
1700 audit_log_format(ab, "NORMAL");
1701 break;
1702 case AUDIT_TYPE_PARENT:
1703 audit_log_format(ab, "PARENT");
1704 break;
1705 case AUDIT_TYPE_CHILD_DELETE:
1706 audit_log_format(ab, "DELETE");
1707 break;
1708 case AUDIT_TYPE_CHILD_CREATE:
1709 audit_log_format(ab, "CREATE");
1710 break;
1711 default:
1712 audit_log_format(ab, "UNKNOWN");
1713 break;
1714 }
1715
1716 audit_log_fcaps(ab, n);
1717 audit_log_end(ab);
1718 }
1719
1720 int audit_log_task_context(struct audit_buffer *ab)
1721 {
1722 char *ctx = NULL;
1723 unsigned len;
1724 int error;
1725 u32 sid;
1726
1727 security_task_getsecid(current, &sid);
1728 if (!sid)
1729 return 0;
1730
1731 error = security_secid_to_secctx(sid, &ctx, &len);
1732 if (error) {
1733 if (error != -EINVAL)
1734 goto error_path;
1735 return 0;
1736 }
1737
1738 audit_log_format(ab, " subj=%s", ctx);
1739 security_release_secctx(ctx, len);
1740 return 0;
1741
1742 error_path:
1743 audit_panic("error in audit_log_task_context");
1744 return error;
1745 }
1746 EXPORT_SYMBOL(audit_log_task_context);
1747
1748 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1749 {
1750 const struct cred *cred;
1751 char name[sizeof(tsk->comm)];
1752 struct mm_struct *mm = tsk->mm;
1753 char *tty;
1754
1755 if (!ab)
1756 return;
1757
1758 /* tsk == current */
1759 cred = current_cred();
1760
1761 spin_lock_irq(&tsk->sighand->siglock);
1762 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1763 tty = tsk->signal->tty->name;
1764 else
1765 tty = "(none)";
1766 spin_unlock_irq(&tsk->sighand->siglock);
1767
1768 audit_log_format(ab,
1769 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1770 " euid=%u suid=%u fsuid=%u"
1771 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1772 sys_getppid(),
1773 tsk->pid,
1774 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1775 from_kuid(&init_user_ns, cred->uid),
1776 from_kgid(&init_user_ns, cred->gid),
1777 from_kuid(&init_user_ns, cred->euid),
1778 from_kuid(&init_user_ns, cred->suid),
1779 from_kuid(&init_user_ns, cred->fsuid),
1780 from_kgid(&init_user_ns, cred->egid),
1781 from_kgid(&init_user_ns, cred->sgid),
1782 from_kgid(&init_user_ns, cred->fsgid),
1783 tty, audit_get_sessionid(tsk));
1784
1785 get_task_comm(name, tsk);
1786 audit_log_format(ab, " comm=");
1787 audit_log_untrustedstring(ab, name);
1788
1789 if (mm) {
1790 down_read(&mm->mmap_sem);
1791 if (mm->exe_file)
1792 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1793 up_read(&mm->mmap_sem);
1794 }
1795 audit_log_task_context(ab);
1796 }
1797 EXPORT_SYMBOL(audit_log_task_info);
1798
1799 /**
1800 * audit_log_link_denied - report a link restriction denial
1801 * @operation: specific link opreation
1802 * @link: the path that triggered the restriction
1803 */
1804 void audit_log_link_denied(const char *operation, struct path *link)
1805 {
1806 struct audit_buffer *ab;
1807 struct audit_names *name;
1808
1809 name = kzalloc(sizeof(*name), GFP_NOFS);
1810 if (!name)
1811 return;
1812
1813 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1814 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1815 AUDIT_ANOM_LINK);
1816 if (!ab)
1817 goto out;
1818 audit_log_format(ab, "op=%s", operation);
1819 audit_log_task_info(ab, current);
1820 audit_log_format(ab, " res=0");
1821 audit_log_end(ab);
1822
1823 /* Generate AUDIT_PATH record with object. */
1824 name->type = AUDIT_TYPE_NORMAL;
1825 audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1826 audit_log_name(current->audit_context, name, link, 0, NULL);
1827 out:
1828 kfree(name);
1829 }
1830
1831 /**
1832 * audit_log_end - end one audit record
1833 * @ab: the audit_buffer
1834 *
1835 * The netlink_* functions cannot be called inside an irq context, so
1836 * the audit buffer is placed on a queue and a tasklet is scheduled to
1837 * remove them from the queue outside the irq context. May be called in
1838 * any context.
1839 */
1840 void audit_log_end(struct audit_buffer *ab)
1841 {
1842 if (!ab)
1843 return;
1844 if (!audit_rate_check()) {
1845 audit_log_lost("rate limit exceeded");
1846 } else {
1847 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1848 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1849
1850 if (audit_pid) {
1851 skb_queue_tail(&audit_skb_queue, ab->skb);
1852 wake_up_interruptible(&kauditd_wait);
1853 } else {
1854 audit_printk_skb(ab->skb);
1855 }
1856 ab->skb = NULL;
1857 }
1858 audit_buffer_free(ab);
1859 }
1860
1861 /**
1862 * audit_log - Log an audit record
1863 * @ctx: audit context
1864 * @gfp_mask: type of allocation
1865 * @type: audit message type
1866 * @fmt: format string to use
1867 * @...: variable parameters matching the format string
1868 *
1869 * This is a convenience function that calls audit_log_start,
1870 * audit_log_vformat, and audit_log_end. It may be called
1871 * in any context.
1872 */
1873 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1874 const char *fmt, ...)
1875 {
1876 struct audit_buffer *ab;
1877 va_list args;
1878
1879 ab = audit_log_start(ctx, gfp_mask, type);
1880 if (ab) {
1881 va_start(args, fmt);
1882 audit_log_vformat(ab, fmt, args);
1883 va_end(args);
1884 audit_log_end(ab);
1885 }
1886 }
1887
1888 #ifdef CONFIG_SECURITY
1889 /**
1890 * audit_log_secctx - Converts and logs SELinux context
1891 * @ab: audit_buffer
1892 * @secid: security number
1893 *
1894 * This is a helper function that calls security_secid_to_secctx to convert
1895 * secid to secctx and then adds the (converted) SELinux context to the audit
1896 * log by calling audit_log_format, thus also preventing leak of internal secid
1897 * to userspace. If secid cannot be converted audit_panic is called.
1898 */
1899 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1900 {
1901 u32 len;
1902 char *secctx;
1903
1904 if (security_secid_to_secctx(secid, &secctx, &len)) {
1905 audit_panic("Cannot convert secid to context");
1906 } else {
1907 audit_log_format(ab, " obj=%s", secctx);
1908 security_release_secctx(secctx, len);
1909 }
1910 }
1911 EXPORT_SYMBOL(audit_log_secctx);
1912 #endif
1913
1914 EXPORT_SYMBOL(audit_log_start);
1915 EXPORT_SYMBOL(audit_log_end);
1916 EXPORT_SYMBOL(audit_log_format);
1917 EXPORT_SYMBOL(audit_log);
This page took 0.115008 seconds and 5 git commands to generate.