audit: convert all sessionid declaration to unsigned int
[deliverable/linux.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <linux/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/err.h>
51 #include <linux/kthread.h>
52 #include <linux/kernel.h>
53 #include <linux/syscalls.h>
54
55 #include <linux/audit.h>
56
57 #include <net/sock.h>
58 #include <net/netlink.h>
59 #include <linux/skbuff.h>
60 #ifdef CONFIG_SECURITY
61 #include <linux/security.h>
62 #endif
63 #include <linux/freezer.h>
64 #include <linux/tty.h>
65 #include <linux/pid_namespace.h>
66 #include <net/netns/generic.h>
67
68 #include "audit.h"
69
70 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
71 * (Initialization happens after skb_init is called.) */
72 #define AUDIT_DISABLED -1
73 #define AUDIT_UNINITIALIZED 0
74 #define AUDIT_INITIALIZED 1
75 static int audit_initialized;
76
77 #define AUDIT_OFF 0
78 #define AUDIT_ON 1
79 #define AUDIT_LOCKED 2
80 int audit_enabled;
81 int audit_ever_enabled;
82
83 EXPORT_SYMBOL_GPL(audit_enabled);
84
85 /* Default state when kernel boots without any parameters. */
86 static int audit_default;
87
88 /* If auditing cannot proceed, audit_failure selects what happens. */
89 static int audit_failure = AUDIT_FAIL_PRINTK;
90
91 /*
92 * If audit records are to be written to the netlink socket, audit_pid
93 * contains the pid of the auditd process and audit_nlk_portid contains
94 * the portid to use to send netlink messages to that process.
95 */
96 int audit_pid;
97 static __u32 audit_nlk_portid;
98
99 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
100 * to that number per second. This prevents DoS attacks, but results in
101 * audit records being dropped. */
102 static int audit_rate_limit;
103
104 /* Number of outstanding audit_buffers allowed.
105 * When set to zero, this means unlimited. */
106 static int audit_backlog_limit = 64;
107 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
108 static int audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
109 static int audit_backlog_wait_overflow = 0;
110
111 /* The identity of the user shutting down the audit system. */
112 kuid_t audit_sig_uid = INVALID_UID;
113 pid_t audit_sig_pid = -1;
114 u32 audit_sig_sid = 0;
115
116 /* Records can be lost in several ways:
117 0) [suppressed in audit_alloc]
118 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
119 2) out of memory in audit_log_move [alloc_skb]
120 3) suppressed due to audit_rate_limit
121 4) suppressed due to audit_backlog_limit
122 */
123 static atomic_t audit_lost = ATOMIC_INIT(0);
124
125 /* The netlink socket. */
126 static struct sock *audit_sock;
127 int audit_net_id;
128
129 /* Hash for inode-based rules */
130 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
131
132 /* The audit_freelist is a list of pre-allocated audit buffers (if more
133 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
134 * being placed on the freelist). */
135 static DEFINE_SPINLOCK(audit_freelist_lock);
136 static int audit_freelist_count;
137 static LIST_HEAD(audit_freelist);
138
139 static struct sk_buff_head audit_skb_queue;
140 /* queue of skbs to send to auditd when/if it comes back */
141 static struct sk_buff_head audit_skb_hold_queue;
142 static struct task_struct *kauditd_task;
143 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
144 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
145
146 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
147 .mask = -1,
148 .features = 0,
149 .lock = 0,};
150
151 static char *audit_feature_names[2] = {
152 "only_unset_loginuid",
153 "loginuid_immutable",
154 };
155
156
157 /* Serialize requests from userspace. */
158 DEFINE_MUTEX(audit_cmd_mutex);
159
160 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
161 * audit records. Since printk uses a 1024 byte buffer, this buffer
162 * should be at least that large. */
163 #define AUDIT_BUFSIZ 1024
164
165 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
166 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
167 #define AUDIT_MAXFREE (2*NR_CPUS)
168
169 /* The audit_buffer is used when formatting an audit record. The caller
170 * locks briefly to get the record off the freelist or to allocate the
171 * buffer, and locks briefly to send the buffer to the netlink layer or
172 * to place it on a transmit queue. Multiple audit_buffers can be in
173 * use simultaneously. */
174 struct audit_buffer {
175 struct list_head list;
176 struct sk_buff *skb; /* formatted skb ready to send */
177 struct audit_context *ctx; /* NULL or associated context */
178 gfp_t gfp_mask;
179 };
180
181 struct audit_reply {
182 __u32 portid;
183 pid_t pid;
184 struct sk_buff *skb;
185 };
186
187 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
188 {
189 if (ab) {
190 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
191 nlh->nlmsg_pid = portid;
192 }
193 }
194
195 void audit_panic(const char *message)
196 {
197 switch (audit_failure)
198 {
199 case AUDIT_FAIL_SILENT:
200 break;
201 case AUDIT_FAIL_PRINTK:
202 if (printk_ratelimit())
203 printk(KERN_ERR "audit: %s\n", message);
204 break;
205 case AUDIT_FAIL_PANIC:
206 /* test audit_pid since printk is always losey, why bother? */
207 if (audit_pid)
208 panic("audit: %s\n", message);
209 break;
210 }
211 }
212
213 static inline int audit_rate_check(void)
214 {
215 static unsigned long last_check = 0;
216 static int messages = 0;
217 static DEFINE_SPINLOCK(lock);
218 unsigned long flags;
219 unsigned long now;
220 unsigned long elapsed;
221 int retval = 0;
222
223 if (!audit_rate_limit) return 1;
224
225 spin_lock_irqsave(&lock, flags);
226 if (++messages < audit_rate_limit) {
227 retval = 1;
228 } else {
229 now = jiffies;
230 elapsed = now - last_check;
231 if (elapsed > HZ) {
232 last_check = now;
233 messages = 0;
234 retval = 1;
235 }
236 }
237 spin_unlock_irqrestore(&lock, flags);
238
239 return retval;
240 }
241
242 /**
243 * audit_log_lost - conditionally log lost audit message event
244 * @message: the message stating reason for lost audit message
245 *
246 * Emit at least 1 message per second, even if audit_rate_check is
247 * throttling.
248 * Always increment the lost messages counter.
249 */
250 void audit_log_lost(const char *message)
251 {
252 static unsigned long last_msg = 0;
253 static DEFINE_SPINLOCK(lock);
254 unsigned long flags;
255 unsigned long now;
256 int print;
257
258 atomic_inc(&audit_lost);
259
260 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
261
262 if (!print) {
263 spin_lock_irqsave(&lock, flags);
264 now = jiffies;
265 if (now - last_msg > HZ) {
266 print = 1;
267 last_msg = now;
268 }
269 spin_unlock_irqrestore(&lock, flags);
270 }
271
272 if (print) {
273 if (printk_ratelimit())
274 printk(KERN_WARNING
275 "audit: audit_lost=%d audit_rate_limit=%d "
276 "audit_backlog_limit=%d\n",
277 atomic_read(&audit_lost),
278 audit_rate_limit,
279 audit_backlog_limit);
280 audit_panic(message);
281 }
282 }
283
284 static int audit_log_config_change(char *function_name, int new, int old,
285 int allow_changes)
286 {
287 struct audit_buffer *ab;
288 int rc = 0;
289
290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
291 if (unlikely(!ab))
292 return rc;
293 audit_log_format(ab, "%s=%d old=%d", function_name, new, old);
294 audit_log_session_info(ab);
295 rc = audit_log_task_context(ab);
296 if (rc)
297 allow_changes = 0; /* Something weird, deny request */
298 audit_log_format(ab, " res=%d", allow_changes);
299 audit_log_end(ab);
300 return rc;
301 }
302
303 static int audit_do_config_change(char *function_name, int *to_change, int new)
304 {
305 int allow_changes, rc = 0, old = *to_change;
306
307 /* check if we are locked */
308 if (audit_enabled == AUDIT_LOCKED)
309 allow_changes = 0;
310 else
311 allow_changes = 1;
312
313 if (audit_enabled != AUDIT_OFF) {
314 rc = audit_log_config_change(function_name, new, old, allow_changes);
315 if (rc)
316 allow_changes = 0;
317 }
318
319 /* If we are allowed, make the change */
320 if (allow_changes == 1)
321 *to_change = new;
322 /* Not allowed, update reason */
323 else if (rc == 0)
324 rc = -EPERM;
325 return rc;
326 }
327
328 static int audit_set_rate_limit(int limit)
329 {
330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331 }
332
333 static int audit_set_backlog_limit(int limit)
334 {
335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336 }
337
338 static int audit_set_backlog_wait_time(int timeout)
339 {
340 return audit_do_config_change("audit_backlog_wait_time",
341 &audit_backlog_wait_time, timeout);
342 }
343
344 static int audit_set_enabled(int state)
345 {
346 int rc;
347 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
348 return -EINVAL;
349
350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
351 if (!rc)
352 audit_ever_enabled |= !!state;
353
354 return rc;
355 }
356
357 static int audit_set_failure(int state)
358 {
359 if (state != AUDIT_FAIL_SILENT
360 && state != AUDIT_FAIL_PRINTK
361 && state != AUDIT_FAIL_PANIC)
362 return -EINVAL;
363
364 return audit_do_config_change("audit_failure", &audit_failure, state);
365 }
366
367 /*
368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
369 * already have been sent via prink/syslog and so if these messages are dropped
370 * it is not a huge concern since we already passed the audit_log_lost()
371 * notification and stuff. This is just nice to get audit messages during
372 * boot before auditd is running or messages generated while auditd is stopped.
373 * This only holds messages is audit_default is set, aka booting with audit=1
374 * or building your kernel that way.
375 */
376 static void audit_hold_skb(struct sk_buff *skb)
377 {
378 if (audit_default &&
379 (!audit_backlog_limit ||
380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 skb_queue_tail(&audit_skb_hold_queue, skb);
382 else
383 kfree_skb(skb);
384 }
385
386 /*
387 * For one reason or another this nlh isn't getting delivered to the userspace
388 * audit daemon, just send it to printk.
389 */
390 static void audit_printk_skb(struct sk_buff *skb)
391 {
392 struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 char *data = nlmsg_data(nlh);
394
395 if (nlh->nlmsg_type != AUDIT_EOE) {
396 if (printk_ratelimit())
397 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
398 else
399 audit_log_lost("printk limit exceeded\n");
400 }
401
402 audit_hold_skb(skb);
403 }
404
405 static void kauditd_send_skb(struct sk_buff *skb)
406 {
407 int err;
408 /* take a reference in case we can't send it and we want to hold it */
409 skb_get(skb);
410 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
411 if (err < 0) {
412 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
413 if (audit_pid) {
414 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
415 audit_log_lost("auditd disappeared\n");
416 audit_pid = 0;
417 audit_sock = NULL;
418 }
419 /* we might get lucky and get this in the next auditd */
420 audit_hold_skb(skb);
421 } else
422 /* drop the extra reference if sent ok */
423 consume_skb(skb);
424 }
425
426 /*
427 * flush_hold_queue - empty the hold queue if auditd appears
428 *
429 * If auditd just started, drain the queue of messages already
430 * sent to syslog/printk. Remember loss here is ok. We already
431 * called audit_log_lost() if it didn't go out normally. so the
432 * race between the skb_dequeue and the next check for audit_pid
433 * doesn't matter.
434 *
435 * If you ever find kauditd to be too slow we can get a perf win
436 * by doing our own locking and keeping better track if there
437 * are messages in this queue. I don't see the need now, but
438 * in 5 years when I want to play with this again I'll see this
439 * note and still have no friggin idea what i'm thinking today.
440 */
441 static void flush_hold_queue(void)
442 {
443 struct sk_buff *skb;
444
445 if (!audit_default || !audit_pid)
446 return;
447
448 skb = skb_dequeue(&audit_skb_hold_queue);
449 if (likely(!skb))
450 return;
451
452 while (skb && audit_pid) {
453 kauditd_send_skb(skb);
454 skb = skb_dequeue(&audit_skb_hold_queue);
455 }
456
457 /*
458 * if auditd just disappeared but we
459 * dequeued an skb we need to drop ref
460 */
461 if (skb)
462 consume_skb(skb);
463 }
464
465 static int kauditd_thread(void *dummy)
466 {
467 set_freezable();
468 while (!kthread_should_stop()) {
469 struct sk_buff *skb;
470 DECLARE_WAITQUEUE(wait, current);
471
472 flush_hold_queue();
473
474 skb = skb_dequeue(&audit_skb_queue);
475
476 if (skb) {
477 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
478 wake_up(&audit_backlog_wait);
479 if (audit_pid)
480 kauditd_send_skb(skb);
481 else
482 audit_printk_skb(skb);
483 continue;
484 }
485 set_current_state(TASK_INTERRUPTIBLE);
486 add_wait_queue(&kauditd_wait, &wait);
487
488 if (!skb_queue_len(&audit_skb_queue)) {
489 try_to_freeze();
490 schedule();
491 }
492
493 __set_current_state(TASK_RUNNING);
494 remove_wait_queue(&kauditd_wait, &wait);
495 }
496 return 0;
497 }
498
499 int audit_send_list(void *_dest)
500 {
501 struct audit_netlink_list *dest = _dest;
502 struct sk_buff *skb;
503 struct net *net = get_net_ns_by_pid(dest->pid);
504 struct audit_net *aunet = net_generic(net, audit_net_id);
505
506 /* wait for parent to finish and send an ACK */
507 mutex_lock(&audit_cmd_mutex);
508 mutex_unlock(&audit_cmd_mutex);
509
510 while ((skb = __skb_dequeue(&dest->q)) != NULL)
511 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
512
513 kfree(dest);
514
515 return 0;
516 }
517
518 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
519 int multi, const void *payload, int size)
520 {
521 struct sk_buff *skb;
522 struct nlmsghdr *nlh;
523 void *data;
524 int flags = multi ? NLM_F_MULTI : 0;
525 int t = done ? NLMSG_DONE : type;
526
527 skb = nlmsg_new(size, GFP_KERNEL);
528 if (!skb)
529 return NULL;
530
531 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
532 if (!nlh)
533 goto out_kfree_skb;
534 data = nlmsg_data(nlh);
535 memcpy(data, payload, size);
536 return skb;
537
538 out_kfree_skb:
539 kfree_skb(skb);
540 return NULL;
541 }
542
543 static int audit_send_reply_thread(void *arg)
544 {
545 struct audit_reply *reply = (struct audit_reply *)arg;
546 struct net *net = get_net_ns_by_pid(reply->pid);
547 struct audit_net *aunet = net_generic(net, audit_net_id);
548
549 mutex_lock(&audit_cmd_mutex);
550 mutex_unlock(&audit_cmd_mutex);
551
552 /* Ignore failure. It'll only happen if the sender goes away,
553 because our timeout is set to infinite. */
554 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
555 kfree(reply);
556 return 0;
557 }
558 /**
559 * audit_send_reply - send an audit reply message via netlink
560 * @portid: netlink port to which to send reply
561 * @seq: sequence number
562 * @type: audit message type
563 * @done: done (last) flag
564 * @multi: multi-part message flag
565 * @payload: payload data
566 * @size: payload size
567 *
568 * Allocates an skb, builds the netlink message, and sends it to the port id.
569 * No failure notifications.
570 */
571 static void audit_send_reply(__u32 portid, int seq, int type, int done,
572 int multi, const void *payload, int size)
573 {
574 struct sk_buff *skb;
575 struct task_struct *tsk;
576 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
577 GFP_KERNEL);
578
579 if (!reply)
580 return;
581
582 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
583 if (!skb)
584 goto out;
585
586 reply->portid = portid;
587 reply->pid = task_pid_vnr(current);
588 reply->skb = skb;
589
590 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
591 if (!IS_ERR(tsk))
592 return;
593 kfree_skb(skb);
594 out:
595 kfree(reply);
596 }
597
598 /*
599 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
600 * control messages.
601 */
602 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
603 {
604 int err = 0;
605
606 /* Only support the initial namespaces for now. */
607 if ((current_user_ns() != &init_user_ns) ||
608 (task_active_pid_ns(current) != &init_pid_ns))
609 return -EPERM;
610
611 switch (msg_type) {
612 case AUDIT_LIST:
613 case AUDIT_ADD:
614 case AUDIT_DEL:
615 return -EOPNOTSUPP;
616 case AUDIT_GET:
617 case AUDIT_SET:
618 case AUDIT_GET_FEATURE:
619 case AUDIT_SET_FEATURE:
620 case AUDIT_LIST_RULES:
621 case AUDIT_ADD_RULE:
622 case AUDIT_DEL_RULE:
623 case AUDIT_SIGNAL_INFO:
624 case AUDIT_TTY_GET:
625 case AUDIT_TTY_SET:
626 case AUDIT_TRIM:
627 case AUDIT_MAKE_EQUIV:
628 if (!capable(CAP_AUDIT_CONTROL))
629 err = -EPERM;
630 break;
631 case AUDIT_USER:
632 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
633 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
634 if (!capable(CAP_AUDIT_WRITE))
635 err = -EPERM;
636 break;
637 default: /* bad msg */
638 err = -EINVAL;
639 }
640
641 return err;
642 }
643
644 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
645 {
646 int rc = 0;
647 uid_t uid = from_kuid(&init_user_ns, current_uid());
648
649 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
650 *ab = NULL;
651 return rc;
652 }
653
654 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
655 if (unlikely(!*ab))
656 return rc;
657 audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid);
658 audit_log_session_info(*ab);
659 audit_log_task_context(*ab);
660
661 return rc;
662 }
663
664 int is_audit_feature_set(int i)
665 {
666 return af.features & AUDIT_FEATURE_TO_MASK(i);
667 }
668
669
670 static int audit_get_feature(struct sk_buff *skb)
671 {
672 u32 seq;
673
674 seq = nlmsg_hdr(skb)->nlmsg_seq;
675
676 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
677 &af, sizeof(af));
678
679 return 0;
680 }
681
682 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
683 u32 old_lock, u32 new_lock, int res)
684 {
685 struct audit_buffer *ab;
686
687 if (audit_enabled == AUDIT_OFF)
688 return;
689
690 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
691 audit_log_format(ab, "feature=%s old=%d new=%d old_lock=%d new_lock=%d res=%d",
692 audit_feature_names[which], !!old_feature, !!new_feature,
693 !!old_lock, !!new_lock, res);
694 audit_log_end(ab);
695 }
696
697 static int audit_set_feature(struct sk_buff *skb)
698 {
699 struct audit_features *uaf;
700 int i;
701
702 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
703 uaf = nlmsg_data(nlmsg_hdr(skb));
704
705 /* if there is ever a version 2 we should handle that here */
706
707 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
708 u32 feature = AUDIT_FEATURE_TO_MASK(i);
709 u32 old_feature, new_feature, old_lock, new_lock;
710
711 /* if we are not changing this feature, move along */
712 if (!(feature & uaf->mask))
713 continue;
714
715 old_feature = af.features & feature;
716 new_feature = uaf->features & feature;
717 new_lock = (uaf->lock | af.lock) & feature;
718 old_lock = af.lock & feature;
719
720 /* are we changing a locked feature? */
721 if (old_lock && (new_feature != old_feature)) {
722 audit_log_feature_change(i, old_feature, new_feature,
723 old_lock, new_lock, 0);
724 return -EPERM;
725 }
726 }
727 /* nothing invalid, do the changes */
728 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
729 u32 feature = AUDIT_FEATURE_TO_MASK(i);
730 u32 old_feature, new_feature, old_lock, new_lock;
731
732 /* if we are not changing this feature, move along */
733 if (!(feature & uaf->mask))
734 continue;
735
736 old_feature = af.features & feature;
737 new_feature = uaf->features & feature;
738 old_lock = af.lock & feature;
739 new_lock = (uaf->lock | af.lock) & feature;
740
741 if (new_feature != old_feature)
742 audit_log_feature_change(i, old_feature, new_feature,
743 old_lock, new_lock, 1);
744
745 if (new_feature)
746 af.features |= feature;
747 else
748 af.features &= ~feature;
749 af.lock |= new_lock;
750 }
751
752 return 0;
753 }
754
755 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
756 {
757 u32 seq;
758 void *data;
759 int err;
760 struct audit_buffer *ab;
761 u16 msg_type = nlh->nlmsg_type;
762 struct audit_sig_info *sig_data;
763 char *ctx = NULL;
764 u32 len;
765
766 err = audit_netlink_ok(skb, msg_type);
767 if (err)
768 return err;
769
770 /* As soon as there's any sign of userspace auditd,
771 * start kauditd to talk to it */
772 if (!kauditd_task) {
773 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
774 if (IS_ERR(kauditd_task)) {
775 err = PTR_ERR(kauditd_task);
776 kauditd_task = NULL;
777 return err;
778 }
779 }
780 seq = nlh->nlmsg_seq;
781 data = nlmsg_data(nlh);
782
783 switch (msg_type) {
784 case AUDIT_GET: {
785 struct audit_status s;
786 memset(&s, 0, sizeof(s));
787 s.enabled = audit_enabled;
788 s.failure = audit_failure;
789 s.pid = audit_pid;
790 s.rate_limit = audit_rate_limit;
791 s.backlog_limit = audit_backlog_limit;
792 s.lost = atomic_read(&audit_lost);
793 s.backlog = skb_queue_len(&audit_skb_queue);
794 s.version = 2;
795 s.backlog_wait_time = audit_backlog_wait_time;
796 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
797 &s, sizeof(s));
798 break;
799 }
800 case AUDIT_SET: {
801 struct audit_status s;
802 memset(&s, 0, sizeof(s));
803 /* guard against past and future API changes */
804 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
805 if (s.mask & AUDIT_STATUS_ENABLED) {
806 err = audit_set_enabled(s.enabled);
807 if (err < 0)
808 return err;
809 }
810 if (s.mask & AUDIT_STATUS_FAILURE) {
811 err = audit_set_failure(s.failure);
812 if (err < 0)
813 return err;
814 }
815 if (s.mask & AUDIT_STATUS_PID) {
816 int new_pid = s.pid;
817
818 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
819 return -EACCES;
820 if (audit_enabled != AUDIT_OFF)
821 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
822 audit_pid = new_pid;
823 audit_nlk_portid = NETLINK_CB(skb).portid;
824 audit_sock = NETLINK_CB(skb).sk;
825 }
826 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
827 err = audit_set_rate_limit(s.rate_limit);
828 if (err < 0)
829 return err;
830 }
831 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
832 err = audit_set_backlog_limit(s.backlog_limit);
833 if (err < 0)
834 return err;
835 }
836 switch (s.version) {
837 /* add future vers # cases immediately below and allow
838 * to fall through */
839 case 2:
840 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
841 if (sizeof(s) > (size_t)nlh->nlmsg_len)
842 return -EINVAL;
843 if (s.backlog_wait_time < 0 ||
844 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
845 return -EINVAL;
846 err = audit_set_backlog_wait_time(s.backlog_wait_time);
847 if (err < 0)
848 return err;
849 }
850 default:
851 break;
852 }
853 break;
854 }
855 case AUDIT_GET_FEATURE:
856 err = audit_get_feature(skb);
857 if (err)
858 return err;
859 break;
860 case AUDIT_SET_FEATURE:
861 err = audit_set_feature(skb);
862 if (err)
863 return err;
864 break;
865 case AUDIT_USER:
866 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
867 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
868 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
869 return 0;
870
871 err = audit_filter_user(msg_type);
872 if (err == 1) {
873 err = 0;
874 if (msg_type == AUDIT_USER_TTY) {
875 err = tty_audit_push_current();
876 if (err)
877 break;
878 }
879 audit_log_common_recv_msg(&ab, msg_type);
880 if (msg_type != AUDIT_USER_TTY)
881 audit_log_format(ab, " msg='%.*s'",
882 AUDIT_MESSAGE_TEXT_MAX,
883 (char *)data);
884 else {
885 int size;
886
887 audit_log_format(ab, " data=");
888 size = nlmsg_len(nlh);
889 if (size > 0 &&
890 ((unsigned char *)data)[size - 1] == '\0')
891 size--;
892 audit_log_n_untrustedstring(ab, data, size);
893 }
894 audit_set_portid(ab, NETLINK_CB(skb).portid);
895 audit_log_end(ab);
896 }
897 break;
898 case AUDIT_ADD_RULE:
899 case AUDIT_DEL_RULE:
900 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
901 return -EINVAL;
902 if (audit_enabled == AUDIT_LOCKED) {
903 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
904 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
905 audit_log_end(ab);
906 return -EPERM;
907 }
908 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
909 seq, data, nlmsg_len(nlh));
910 break;
911 case AUDIT_LIST_RULES:
912 err = audit_list_rules_send(NETLINK_CB(skb).portid, seq);
913 break;
914 case AUDIT_TRIM:
915 audit_trim_trees();
916 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
917 audit_log_format(ab, " op=trim res=1");
918 audit_log_end(ab);
919 break;
920 case AUDIT_MAKE_EQUIV: {
921 void *bufp = data;
922 u32 sizes[2];
923 size_t msglen = nlmsg_len(nlh);
924 char *old, *new;
925
926 err = -EINVAL;
927 if (msglen < 2 * sizeof(u32))
928 break;
929 memcpy(sizes, bufp, 2 * sizeof(u32));
930 bufp += 2 * sizeof(u32);
931 msglen -= 2 * sizeof(u32);
932 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
933 if (IS_ERR(old)) {
934 err = PTR_ERR(old);
935 break;
936 }
937 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
938 if (IS_ERR(new)) {
939 err = PTR_ERR(new);
940 kfree(old);
941 break;
942 }
943 /* OK, here comes... */
944 err = audit_tag_tree(old, new);
945
946 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
947
948 audit_log_format(ab, " op=make_equiv old=");
949 audit_log_untrustedstring(ab, old);
950 audit_log_format(ab, " new=");
951 audit_log_untrustedstring(ab, new);
952 audit_log_format(ab, " res=%d", !err);
953 audit_log_end(ab);
954 kfree(old);
955 kfree(new);
956 break;
957 }
958 case AUDIT_SIGNAL_INFO:
959 len = 0;
960 if (audit_sig_sid) {
961 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
962 if (err)
963 return err;
964 }
965 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
966 if (!sig_data) {
967 if (audit_sig_sid)
968 security_release_secctx(ctx, len);
969 return -ENOMEM;
970 }
971 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
972 sig_data->pid = audit_sig_pid;
973 if (audit_sig_sid) {
974 memcpy(sig_data->ctx, ctx, len);
975 security_release_secctx(ctx, len);
976 }
977 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO,
978 0, 0, sig_data, sizeof(*sig_data) + len);
979 kfree(sig_data);
980 break;
981 case AUDIT_TTY_GET: {
982 struct audit_tty_status s;
983 struct task_struct *tsk = current;
984
985 spin_lock(&tsk->sighand->siglock);
986 s.enabled = tsk->signal->audit_tty;
987 s.log_passwd = tsk->signal->audit_tty_log_passwd;
988 spin_unlock(&tsk->sighand->siglock);
989
990 audit_send_reply(NETLINK_CB(skb).portid, seq,
991 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
992 break;
993 }
994 case AUDIT_TTY_SET: {
995 struct audit_tty_status s, old;
996 struct task_struct *tsk = current;
997 struct audit_buffer *ab;
998 int res = 0;
999
1000 spin_lock(&tsk->sighand->siglock);
1001 old.enabled = tsk->signal->audit_tty;
1002 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1003 spin_unlock(&tsk->sighand->siglock);
1004
1005 memset(&s, 0, sizeof(s));
1006 /* guard against past and future API changes */
1007 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1008 if ((s.enabled == 0 || s.enabled == 1) &&
1009 (s.log_passwd == 0 || s.log_passwd == 1))
1010 res = 1;
1011 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1012 audit_log_format(ab, " op=tty_set"
1013 " old-enabled=%d old-log_passwd=%d"
1014 " new-enabled=%d new-log_passwd=%d"
1015 " res=%d",
1016 old.enabled, old.log_passwd,
1017 s.enabled, s.log_passwd,
1018 res);
1019 audit_log_end(ab);
1020 if (res) {
1021 spin_lock(&tsk->sighand->siglock);
1022 tsk->signal->audit_tty = s.enabled;
1023 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1024 spin_unlock(&tsk->sighand->siglock);
1025 } else
1026 return -EINVAL;
1027 break;
1028 }
1029 default:
1030 err = -EINVAL;
1031 break;
1032 }
1033
1034 return err < 0 ? err : 0;
1035 }
1036
1037 /*
1038 * Get message from skb. Each message is processed by audit_receive_msg.
1039 * Malformed skbs with wrong length are discarded silently.
1040 */
1041 static void audit_receive_skb(struct sk_buff *skb)
1042 {
1043 struct nlmsghdr *nlh;
1044 /*
1045 * len MUST be signed for nlmsg_next to be able to dec it below 0
1046 * if the nlmsg_len was not aligned
1047 */
1048 int len;
1049 int err;
1050
1051 nlh = nlmsg_hdr(skb);
1052 len = skb->len;
1053
1054 while (nlmsg_ok(nlh, len)) {
1055 err = audit_receive_msg(skb, nlh);
1056 /* if err or if this message says it wants a response */
1057 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1058 netlink_ack(skb, nlh, err);
1059
1060 nlh = nlmsg_next(nlh, &len);
1061 }
1062 }
1063
1064 /* Receive messages from netlink socket. */
1065 static void audit_receive(struct sk_buff *skb)
1066 {
1067 mutex_lock(&audit_cmd_mutex);
1068 audit_receive_skb(skb);
1069 mutex_unlock(&audit_cmd_mutex);
1070 }
1071
1072 static int __net_init audit_net_init(struct net *net)
1073 {
1074 struct netlink_kernel_cfg cfg = {
1075 .input = audit_receive,
1076 };
1077
1078 struct audit_net *aunet = net_generic(net, audit_net_id);
1079
1080 pr_info("audit: initializing netlink socket in namespace\n");
1081
1082 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1083 if (aunet->nlsk == NULL)
1084 return -ENOMEM;
1085 if (!aunet->nlsk)
1086 audit_panic("cannot initialize netlink socket in namespace");
1087 else
1088 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1089 return 0;
1090 }
1091
1092 static void __net_exit audit_net_exit(struct net *net)
1093 {
1094 struct audit_net *aunet = net_generic(net, audit_net_id);
1095 struct sock *sock = aunet->nlsk;
1096 if (sock == audit_sock) {
1097 audit_pid = 0;
1098 audit_sock = NULL;
1099 }
1100
1101 rcu_assign_pointer(aunet->nlsk, NULL);
1102 synchronize_net();
1103 netlink_kernel_release(sock);
1104 }
1105
1106 static struct pernet_operations __net_initdata audit_net_ops = {
1107 .init = audit_net_init,
1108 .exit = audit_net_exit,
1109 .id = &audit_net_id,
1110 .size = sizeof(struct audit_net),
1111 };
1112
1113 /* Initialize audit support at boot time. */
1114 static int __init audit_init(void)
1115 {
1116 int i;
1117
1118 if (audit_initialized == AUDIT_DISABLED)
1119 return 0;
1120
1121 pr_info("audit: initializing netlink subsys (%s)\n",
1122 audit_default ? "enabled" : "disabled");
1123 register_pernet_subsys(&audit_net_ops);
1124
1125 skb_queue_head_init(&audit_skb_queue);
1126 skb_queue_head_init(&audit_skb_hold_queue);
1127 audit_initialized = AUDIT_INITIALIZED;
1128 audit_enabled = audit_default;
1129 audit_ever_enabled |= !!audit_default;
1130
1131 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1132
1133 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1134 INIT_LIST_HEAD(&audit_inode_hash[i]);
1135
1136 return 0;
1137 }
1138 __initcall(audit_init);
1139
1140 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1141 static int __init audit_enable(char *str)
1142 {
1143 audit_default = !!simple_strtol(str, NULL, 0);
1144 if (!audit_default)
1145 audit_initialized = AUDIT_DISABLED;
1146
1147 pr_info("audit: %s\n", audit_default ?
1148 "enabled (after initialization)" : "disabled (until reboot)");
1149
1150 return 1;
1151 }
1152 __setup("audit=", audit_enable);
1153
1154 /* Process kernel command-line parameter at boot time.
1155 * audit_backlog_limit=<n> */
1156 static int __init audit_backlog_limit_set(char *str)
1157 {
1158 long int audit_backlog_limit_arg;
1159 pr_info("audit_backlog_limit: ");
1160 if (kstrtol(str, 0, &audit_backlog_limit_arg)) {
1161 printk("using default of %d, unable to parse %s\n",
1162 audit_backlog_limit, str);
1163 return 1;
1164 }
1165 if (audit_backlog_limit_arg >= 0)
1166 audit_backlog_limit = (int)audit_backlog_limit_arg;
1167 printk("%d\n", audit_backlog_limit);
1168
1169 return 1;
1170 }
1171 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1172
1173 static void audit_buffer_free(struct audit_buffer *ab)
1174 {
1175 unsigned long flags;
1176
1177 if (!ab)
1178 return;
1179
1180 if (ab->skb)
1181 kfree_skb(ab->skb);
1182
1183 spin_lock_irqsave(&audit_freelist_lock, flags);
1184 if (audit_freelist_count > AUDIT_MAXFREE)
1185 kfree(ab);
1186 else {
1187 audit_freelist_count++;
1188 list_add(&ab->list, &audit_freelist);
1189 }
1190 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1191 }
1192
1193 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1194 gfp_t gfp_mask, int type)
1195 {
1196 unsigned long flags;
1197 struct audit_buffer *ab = NULL;
1198 struct nlmsghdr *nlh;
1199
1200 spin_lock_irqsave(&audit_freelist_lock, flags);
1201 if (!list_empty(&audit_freelist)) {
1202 ab = list_entry(audit_freelist.next,
1203 struct audit_buffer, list);
1204 list_del(&ab->list);
1205 --audit_freelist_count;
1206 }
1207 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1208
1209 if (!ab) {
1210 ab = kmalloc(sizeof(*ab), gfp_mask);
1211 if (!ab)
1212 goto err;
1213 }
1214
1215 ab->ctx = ctx;
1216 ab->gfp_mask = gfp_mask;
1217
1218 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1219 if (!ab->skb)
1220 goto err;
1221
1222 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1223 if (!nlh)
1224 goto out_kfree_skb;
1225
1226 return ab;
1227
1228 out_kfree_skb:
1229 kfree_skb(ab->skb);
1230 ab->skb = NULL;
1231 err:
1232 audit_buffer_free(ab);
1233 return NULL;
1234 }
1235
1236 /**
1237 * audit_serial - compute a serial number for the audit record
1238 *
1239 * Compute a serial number for the audit record. Audit records are
1240 * written to user-space as soon as they are generated, so a complete
1241 * audit record may be written in several pieces. The timestamp of the
1242 * record and this serial number are used by the user-space tools to
1243 * determine which pieces belong to the same audit record. The
1244 * (timestamp,serial) tuple is unique for each syscall and is live from
1245 * syscall entry to syscall exit.
1246 *
1247 * NOTE: Another possibility is to store the formatted records off the
1248 * audit context (for those records that have a context), and emit them
1249 * all at syscall exit. However, this could delay the reporting of
1250 * significant errors until syscall exit (or never, if the system
1251 * halts).
1252 */
1253 unsigned int audit_serial(void)
1254 {
1255 static DEFINE_SPINLOCK(serial_lock);
1256 static unsigned int serial = 0;
1257
1258 unsigned long flags;
1259 unsigned int ret;
1260
1261 spin_lock_irqsave(&serial_lock, flags);
1262 do {
1263 ret = ++serial;
1264 } while (unlikely(!ret));
1265 spin_unlock_irqrestore(&serial_lock, flags);
1266
1267 return ret;
1268 }
1269
1270 static inline void audit_get_stamp(struct audit_context *ctx,
1271 struct timespec *t, unsigned int *serial)
1272 {
1273 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1274 *t = CURRENT_TIME;
1275 *serial = audit_serial();
1276 }
1277 }
1278
1279 /*
1280 * Wait for auditd to drain the queue a little
1281 */
1282 static unsigned long wait_for_auditd(unsigned long sleep_time)
1283 {
1284 unsigned long timeout = sleep_time;
1285 DECLARE_WAITQUEUE(wait, current);
1286 set_current_state(TASK_UNINTERRUPTIBLE);
1287 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1288
1289 if (audit_backlog_limit &&
1290 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1291 timeout = schedule_timeout(sleep_time);
1292
1293 __set_current_state(TASK_RUNNING);
1294 remove_wait_queue(&audit_backlog_wait, &wait);
1295
1296 return timeout;
1297 }
1298
1299 /**
1300 * audit_log_start - obtain an audit buffer
1301 * @ctx: audit_context (may be NULL)
1302 * @gfp_mask: type of allocation
1303 * @type: audit message type
1304 *
1305 * Returns audit_buffer pointer on success or NULL on error.
1306 *
1307 * Obtain an audit buffer. This routine does locking to obtain the
1308 * audit buffer, but then no locking is required for calls to
1309 * audit_log_*format. If the task (ctx) is a task that is currently in a
1310 * syscall, then the syscall is marked as auditable and an audit record
1311 * will be written at syscall exit. If there is no associated task, then
1312 * task context (ctx) should be NULL.
1313 */
1314 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1315 int type)
1316 {
1317 struct audit_buffer *ab = NULL;
1318 struct timespec t;
1319 unsigned int uninitialized_var(serial);
1320 int reserve;
1321 unsigned long timeout_start = jiffies;
1322
1323 if (audit_initialized != AUDIT_INITIALIZED)
1324 return NULL;
1325
1326 if (unlikely(audit_filter_type(type)))
1327 return NULL;
1328
1329 if (gfp_mask & __GFP_WAIT)
1330 reserve = 0;
1331 else
1332 reserve = 5; /* Allow atomic callers to go up to five
1333 entries over the normal backlog limit */
1334
1335 while (audit_backlog_limit
1336 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1337 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1338 unsigned long sleep_time;
1339
1340 sleep_time = timeout_start + audit_backlog_wait_time -
1341 jiffies;
1342 if ((long)sleep_time > 0) {
1343 sleep_time = wait_for_auditd(sleep_time);
1344 if ((long)sleep_time > 0)
1345 continue;
1346 }
1347 }
1348 if (audit_rate_check() && printk_ratelimit())
1349 printk(KERN_WARNING
1350 "audit: audit_backlog=%d > "
1351 "audit_backlog_limit=%d\n",
1352 skb_queue_len(&audit_skb_queue),
1353 audit_backlog_limit);
1354 audit_log_lost("backlog limit exceeded");
1355 audit_backlog_wait_time = audit_backlog_wait_overflow;
1356 wake_up(&audit_backlog_wait);
1357 return NULL;
1358 }
1359
1360 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1361
1362 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1363 if (!ab) {
1364 audit_log_lost("out of memory in audit_log_start");
1365 return NULL;
1366 }
1367
1368 audit_get_stamp(ab->ctx, &t, &serial);
1369
1370 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1371 t.tv_sec, t.tv_nsec/1000000, serial);
1372 return ab;
1373 }
1374
1375 /**
1376 * audit_expand - expand skb in the audit buffer
1377 * @ab: audit_buffer
1378 * @extra: space to add at tail of the skb
1379 *
1380 * Returns 0 (no space) on failed expansion, or available space if
1381 * successful.
1382 */
1383 static inline int audit_expand(struct audit_buffer *ab, int extra)
1384 {
1385 struct sk_buff *skb = ab->skb;
1386 int oldtail = skb_tailroom(skb);
1387 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1388 int newtail = skb_tailroom(skb);
1389
1390 if (ret < 0) {
1391 audit_log_lost("out of memory in audit_expand");
1392 return 0;
1393 }
1394
1395 skb->truesize += newtail - oldtail;
1396 return newtail;
1397 }
1398
1399 /*
1400 * Format an audit message into the audit buffer. If there isn't enough
1401 * room in the audit buffer, more room will be allocated and vsnprint
1402 * will be called a second time. Currently, we assume that a printk
1403 * can't format message larger than 1024 bytes, so we don't either.
1404 */
1405 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1406 va_list args)
1407 {
1408 int len, avail;
1409 struct sk_buff *skb;
1410 va_list args2;
1411
1412 if (!ab)
1413 return;
1414
1415 BUG_ON(!ab->skb);
1416 skb = ab->skb;
1417 avail = skb_tailroom(skb);
1418 if (avail == 0) {
1419 avail = audit_expand(ab, AUDIT_BUFSIZ);
1420 if (!avail)
1421 goto out;
1422 }
1423 va_copy(args2, args);
1424 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1425 if (len >= avail) {
1426 /* The printk buffer is 1024 bytes long, so if we get
1427 * here and AUDIT_BUFSIZ is at least 1024, then we can
1428 * log everything that printk could have logged. */
1429 avail = audit_expand(ab,
1430 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1431 if (!avail)
1432 goto out_va_end;
1433 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1434 }
1435 if (len > 0)
1436 skb_put(skb, len);
1437 out_va_end:
1438 va_end(args2);
1439 out:
1440 return;
1441 }
1442
1443 /**
1444 * audit_log_format - format a message into the audit buffer.
1445 * @ab: audit_buffer
1446 * @fmt: format string
1447 * @...: optional parameters matching @fmt string
1448 *
1449 * All the work is done in audit_log_vformat.
1450 */
1451 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1452 {
1453 va_list args;
1454
1455 if (!ab)
1456 return;
1457 va_start(args, fmt);
1458 audit_log_vformat(ab, fmt, args);
1459 va_end(args);
1460 }
1461
1462 /**
1463 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1464 * @ab: the audit_buffer
1465 * @buf: buffer to convert to hex
1466 * @len: length of @buf to be converted
1467 *
1468 * No return value; failure to expand is silently ignored.
1469 *
1470 * This function will take the passed buf and convert it into a string of
1471 * ascii hex digits. The new string is placed onto the skb.
1472 */
1473 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1474 size_t len)
1475 {
1476 int i, avail, new_len;
1477 unsigned char *ptr;
1478 struct sk_buff *skb;
1479 static const unsigned char *hex = "0123456789ABCDEF";
1480
1481 if (!ab)
1482 return;
1483
1484 BUG_ON(!ab->skb);
1485 skb = ab->skb;
1486 avail = skb_tailroom(skb);
1487 new_len = len<<1;
1488 if (new_len >= avail) {
1489 /* Round the buffer request up to the next multiple */
1490 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1491 avail = audit_expand(ab, new_len);
1492 if (!avail)
1493 return;
1494 }
1495
1496 ptr = skb_tail_pointer(skb);
1497 for (i=0; i<len; i++) {
1498 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1499 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1500 }
1501 *ptr = 0;
1502 skb_put(skb, len << 1); /* new string is twice the old string */
1503 }
1504
1505 /*
1506 * Format a string of no more than slen characters into the audit buffer,
1507 * enclosed in quote marks.
1508 */
1509 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1510 size_t slen)
1511 {
1512 int avail, new_len;
1513 unsigned char *ptr;
1514 struct sk_buff *skb;
1515
1516 if (!ab)
1517 return;
1518
1519 BUG_ON(!ab->skb);
1520 skb = ab->skb;
1521 avail = skb_tailroom(skb);
1522 new_len = slen + 3; /* enclosing quotes + null terminator */
1523 if (new_len > avail) {
1524 avail = audit_expand(ab, new_len);
1525 if (!avail)
1526 return;
1527 }
1528 ptr = skb_tail_pointer(skb);
1529 *ptr++ = '"';
1530 memcpy(ptr, string, slen);
1531 ptr += slen;
1532 *ptr++ = '"';
1533 *ptr = 0;
1534 skb_put(skb, slen + 2); /* don't include null terminator */
1535 }
1536
1537 /**
1538 * audit_string_contains_control - does a string need to be logged in hex
1539 * @string: string to be checked
1540 * @len: max length of the string to check
1541 */
1542 int audit_string_contains_control(const char *string, size_t len)
1543 {
1544 const unsigned char *p;
1545 for (p = string; p < (const unsigned char *)string + len; p++) {
1546 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1547 return 1;
1548 }
1549 return 0;
1550 }
1551
1552 /**
1553 * audit_log_n_untrustedstring - log a string that may contain random characters
1554 * @ab: audit_buffer
1555 * @len: length of string (not including trailing null)
1556 * @string: string to be logged
1557 *
1558 * This code will escape a string that is passed to it if the string
1559 * contains a control character, unprintable character, double quote mark,
1560 * or a space. Unescaped strings will start and end with a double quote mark.
1561 * Strings that are escaped are printed in hex (2 digits per char).
1562 *
1563 * The caller specifies the number of characters in the string to log, which may
1564 * or may not be the entire string.
1565 */
1566 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1567 size_t len)
1568 {
1569 if (audit_string_contains_control(string, len))
1570 audit_log_n_hex(ab, string, len);
1571 else
1572 audit_log_n_string(ab, string, len);
1573 }
1574
1575 /**
1576 * audit_log_untrustedstring - log a string that may contain random characters
1577 * @ab: audit_buffer
1578 * @string: string to be logged
1579 *
1580 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1581 * determine string length.
1582 */
1583 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1584 {
1585 audit_log_n_untrustedstring(ab, string, strlen(string));
1586 }
1587
1588 /* This is a helper-function to print the escaped d_path */
1589 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1590 const struct path *path)
1591 {
1592 char *p, *pathname;
1593
1594 if (prefix)
1595 audit_log_format(ab, "%s", prefix);
1596
1597 /* We will allow 11 spaces for ' (deleted)' to be appended */
1598 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1599 if (!pathname) {
1600 audit_log_string(ab, "<no_memory>");
1601 return;
1602 }
1603 p = d_path(path, pathname, PATH_MAX+11);
1604 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1605 /* FIXME: can we save some information here? */
1606 audit_log_string(ab, "<too_long>");
1607 } else
1608 audit_log_untrustedstring(ab, p);
1609 kfree(pathname);
1610 }
1611
1612 void audit_log_session_info(struct audit_buffer *ab)
1613 {
1614 unsigned int sessionid = audit_get_sessionid(current);
1615 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1616
1617 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1618 }
1619
1620 void audit_log_key(struct audit_buffer *ab, char *key)
1621 {
1622 audit_log_format(ab, " key=");
1623 if (key)
1624 audit_log_untrustedstring(ab, key);
1625 else
1626 audit_log_format(ab, "(null)");
1627 }
1628
1629 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1630 {
1631 int i;
1632
1633 audit_log_format(ab, " %s=", prefix);
1634 CAP_FOR_EACH_U32(i) {
1635 audit_log_format(ab, "%08x",
1636 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1637 }
1638 }
1639
1640 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1641 {
1642 kernel_cap_t *perm = &name->fcap.permitted;
1643 kernel_cap_t *inh = &name->fcap.inheritable;
1644 int log = 0;
1645
1646 if (!cap_isclear(*perm)) {
1647 audit_log_cap(ab, "cap_fp", perm);
1648 log = 1;
1649 }
1650 if (!cap_isclear(*inh)) {
1651 audit_log_cap(ab, "cap_fi", inh);
1652 log = 1;
1653 }
1654
1655 if (log)
1656 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1657 name->fcap.fE, name->fcap_ver);
1658 }
1659
1660 static inline int audit_copy_fcaps(struct audit_names *name,
1661 const struct dentry *dentry)
1662 {
1663 struct cpu_vfs_cap_data caps;
1664 int rc;
1665
1666 if (!dentry)
1667 return 0;
1668
1669 rc = get_vfs_caps_from_disk(dentry, &caps);
1670 if (rc)
1671 return rc;
1672
1673 name->fcap.permitted = caps.permitted;
1674 name->fcap.inheritable = caps.inheritable;
1675 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1676 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1677 VFS_CAP_REVISION_SHIFT;
1678
1679 return 0;
1680 }
1681
1682 /* Copy inode data into an audit_names. */
1683 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1684 const struct inode *inode)
1685 {
1686 name->ino = inode->i_ino;
1687 name->dev = inode->i_sb->s_dev;
1688 name->mode = inode->i_mode;
1689 name->uid = inode->i_uid;
1690 name->gid = inode->i_gid;
1691 name->rdev = inode->i_rdev;
1692 security_inode_getsecid(inode, &name->osid);
1693 audit_copy_fcaps(name, dentry);
1694 }
1695
1696 /**
1697 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1698 * @context: audit_context for the task
1699 * @n: audit_names structure with reportable details
1700 * @path: optional path to report instead of audit_names->name
1701 * @record_num: record number to report when handling a list of names
1702 * @call_panic: optional pointer to int that will be updated if secid fails
1703 */
1704 void audit_log_name(struct audit_context *context, struct audit_names *n,
1705 struct path *path, int record_num, int *call_panic)
1706 {
1707 struct audit_buffer *ab;
1708 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1709 if (!ab)
1710 return;
1711
1712 audit_log_format(ab, "item=%d", record_num);
1713
1714 if (path)
1715 audit_log_d_path(ab, " name=", path);
1716 else if (n->name) {
1717 switch (n->name_len) {
1718 case AUDIT_NAME_FULL:
1719 /* log the full path */
1720 audit_log_format(ab, " name=");
1721 audit_log_untrustedstring(ab, n->name->name);
1722 break;
1723 case 0:
1724 /* name was specified as a relative path and the
1725 * directory component is the cwd */
1726 audit_log_d_path(ab, " name=", &context->pwd);
1727 break;
1728 default:
1729 /* log the name's directory component */
1730 audit_log_format(ab, " name=");
1731 audit_log_n_untrustedstring(ab, n->name->name,
1732 n->name_len);
1733 }
1734 } else
1735 audit_log_format(ab, " name=(null)");
1736
1737 if (n->ino != (unsigned long)-1) {
1738 audit_log_format(ab, " inode=%lu"
1739 " dev=%02x:%02x mode=%#ho"
1740 " ouid=%u ogid=%u rdev=%02x:%02x",
1741 n->ino,
1742 MAJOR(n->dev),
1743 MINOR(n->dev),
1744 n->mode,
1745 from_kuid(&init_user_ns, n->uid),
1746 from_kgid(&init_user_ns, n->gid),
1747 MAJOR(n->rdev),
1748 MINOR(n->rdev));
1749 }
1750 if (n->osid != 0) {
1751 char *ctx = NULL;
1752 u32 len;
1753 if (security_secid_to_secctx(
1754 n->osid, &ctx, &len)) {
1755 audit_log_format(ab, " osid=%u", n->osid);
1756 if (call_panic)
1757 *call_panic = 2;
1758 } else {
1759 audit_log_format(ab, " obj=%s", ctx);
1760 security_release_secctx(ctx, len);
1761 }
1762 }
1763
1764 /* log the audit_names record type */
1765 audit_log_format(ab, " nametype=");
1766 switch(n->type) {
1767 case AUDIT_TYPE_NORMAL:
1768 audit_log_format(ab, "NORMAL");
1769 break;
1770 case AUDIT_TYPE_PARENT:
1771 audit_log_format(ab, "PARENT");
1772 break;
1773 case AUDIT_TYPE_CHILD_DELETE:
1774 audit_log_format(ab, "DELETE");
1775 break;
1776 case AUDIT_TYPE_CHILD_CREATE:
1777 audit_log_format(ab, "CREATE");
1778 break;
1779 default:
1780 audit_log_format(ab, "UNKNOWN");
1781 break;
1782 }
1783
1784 audit_log_fcaps(ab, n);
1785 audit_log_end(ab);
1786 }
1787
1788 int audit_log_task_context(struct audit_buffer *ab)
1789 {
1790 char *ctx = NULL;
1791 unsigned len;
1792 int error;
1793 u32 sid;
1794
1795 security_task_getsecid(current, &sid);
1796 if (!sid)
1797 return 0;
1798
1799 error = security_secid_to_secctx(sid, &ctx, &len);
1800 if (error) {
1801 if (error != -EINVAL)
1802 goto error_path;
1803 return 0;
1804 }
1805
1806 audit_log_format(ab, " subj=%s", ctx);
1807 security_release_secctx(ctx, len);
1808 return 0;
1809
1810 error_path:
1811 audit_panic("error in audit_log_task_context");
1812 return error;
1813 }
1814 EXPORT_SYMBOL(audit_log_task_context);
1815
1816 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1817 {
1818 const struct cred *cred;
1819 char name[sizeof(tsk->comm)];
1820 struct mm_struct *mm = tsk->mm;
1821 char *tty;
1822
1823 if (!ab)
1824 return;
1825
1826 /* tsk == current */
1827 cred = current_cred();
1828
1829 spin_lock_irq(&tsk->sighand->siglock);
1830 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1831 tty = tsk->signal->tty->name;
1832 else
1833 tty = "(none)";
1834 spin_unlock_irq(&tsk->sighand->siglock);
1835
1836 audit_log_format(ab,
1837 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1838 " euid=%u suid=%u fsuid=%u"
1839 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1840 sys_getppid(),
1841 tsk->pid,
1842 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1843 from_kuid(&init_user_ns, cred->uid),
1844 from_kgid(&init_user_ns, cred->gid),
1845 from_kuid(&init_user_ns, cred->euid),
1846 from_kuid(&init_user_ns, cred->suid),
1847 from_kuid(&init_user_ns, cred->fsuid),
1848 from_kgid(&init_user_ns, cred->egid),
1849 from_kgid(&init_user_ns, cred->sgid),
1850 from_kgid(&init_user_ns, cred->fsgid),
1851 tty, audit_get_sessionid(tsk));
1852
1853 get_task_comm(name, tsk);
1854 audit_log_format(ab, " comm=");
1855 audit_log_untrustedstring(ab, name);
1856
1857 if (mm) {
1858 down_read(&mm->mmap_sem);
1859 if (mm->exe_file)
1860 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1861 up_read(&mm->mmap_sem);
1862 } else
1863 audit_log_format(ab, " exe=(null)");
1864 audit_log_task_context(ab);
1865 }
1866 EXPORT_SYMBOL(audit_log_task_info);
1867
1868 /**
1869 * audit_log_link_denied - report a link restriction denial
1870 * @operation: specific link opreation
1871 * @link: the path that triggered the restriction
1872 */
1873 void audit_log_link_denied(const char *operation, struct path *link)
1874 {
1875 struct audit_buffer *ab;
1876 struct audit_names *name;
1877
1878 name = kzalloc(sizeof(*name), GFP_NOFS);
1879 if (!name)
1880 return;
1881
1882 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1883 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1884 AUDIT_ANOM_LINK);
1885 if (!ab)
1886 goto out;
1887 audit_log_format(ab, "op=%s", operation);
1888 audit_log_task_info(ab, current);
1889 audit_log_format(ab, " res=0");
1890 audit_log_end(ab);
1891
1892 /* Generate AUDIT_PATH record with object. */
1893 name->type = AUDIT_TYPE_NORMAL;
1894 audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1895 audit_log_name(current->audit_context, name, link, 0, NULL);
1896 out:
1897 kfree(name);
1898 }
1899
1900 /**
1901 * audit_log_end - end one audit record
1902 * @ab: the audit_buffer
1903 *
1904 * The netlink_* functions cannot be called inside an irq context, so
1905 * the audit buffer is placed on a queue and a tasklet is scheduled to
1906 * remove them from the queue outside the irq context. May be called in
1907 * any context.
1908 */
1909 void audit_log_end(struct audit_buffer *ab)
1910 {
1911 if (!ab)
1912 return;
1913 if (!audit_rate_check()) {
1914 audit_log_lost("rate limit exceeded");
1915 } else {
1916 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1917 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1918
1919 if (audit_pid) {
1920 skb_queue_tail(&audit_skb_queue, ab->skb);
1921 wake_up_interruptible(&kauditd_wait);
1922 } else {
1923 audit_printk_skb(ab->skb);
1924 }
1925 ab->skb = NULL;
1926 }
1927 audit_buffer_free(ab);
1928 }
1929
1930 /**
1931 * audit_log - Log an audit record
1932 * @ctx: audit context
1933 * @gfp_mask: type of allocation
1934 * @type: audit message type
1935 * @fmt: format string to use
1936 * @...: variable parameters matching the format string
1937 *
1938 * This is a convenience function that calls audit_log_start,
1939 * audit_log_vformat, and audit_log_end. It may be called
1940 * in any context.
1941 */
1942 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1943 const char *fmt, ...)
1944 {
1945 struct audit_buffer *ab;
1946 va_list args;
1947
1948 ab = audit_log_start(ctx, gfp_mask, type);
1949 if (ab) {
1950 va_start(args, fmt);
1951 audit_log_vformat(ab, fmt, args);
1952 va_end(args);
1953 audit_log_end(ab);
1954 }
1955 }
1956
1957 #ifdef CONFIG_SECURITY
1958 /**
1959 * audit_log_secctx - Converts and logs SELinux context
1960 * @ab: audit_buffer
1961 * @secid: security number
1962 *
1963 * This is a helper function that calls security_secid_to_secctx to convert
1964 * secid to secctx and then adds the (converted) SELinux context to the audit
1965 * log by calling audit_log_format, thus also preventing leak of internal secid
1966 * to userspace. If secid cannot be converted audit_panic is called.
1967 */
1968 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1969 {
1970 u32 len;
1971 char *secctx;
1972
1973 if (security_secid_to_secctx(secid, &secctx, &len)) {
1974 audit_panic("Cannot convert secid to context");
1975 } else {
1976 audit_log_format(ab, " obj=%s", secctx);
1977 security_release_secctx(secctx, len);
1978 }
1979 }
1980 EXPORT_SYMBOL(audit_log_secctx);
1981 #endif
1982
1983 EXPORT_SYMBOL(audit_log_start);
1984 EXPORT_SYMBOL(audit_log_end);
1985 EXPORT_SYMBOL(audit_log_format);
1986 EXPORT_SYMBOL(audit_log);
This page took 0.072739 seconds and 5 git commands to generate.