audit: Use struct net not pid_t to remember the network namespce to reply in
[deliverable/linux.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/init.h>
47 #include <asm/types.h>
48 #include <linux/atomic.h>
49 #include <linux/mm.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/err.h>
53 #include <linux/kthread.h>
54 #include <linux/kernel.h>
55 #include <linux/syscalls.h>
56
57 #include <linux/audit.h>
58
59 #include <net/sock.h>
60 #include <net/netlink.h>
61 #include <linux/skbuff.h>
62 #ifdef CONFIG_SECURITY
63 #include <linux/security.h>
64 #endif
65 #include <linux/freezer.h>
66 #include <linux/tty.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
69
70 #include "audit.h"
71
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73 * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED -1
75 #define AUDIT_UNINITIALIZED 0
76 #define AUDIT_INITIALIZED 1
77 static int audit_initialized;
78
79 #define AUDIT_OFF 0
80 #define AUDIT_ON 1
81 #define AUDIT_LOCKED 2
82 u32 audit_enabled;
83 u32 audit_ever_enabled;
84
85 EXPORT_SYMBOL_GPL(audit_enabled);
86
87 /* Default state when kernel boots without any parameters. */
88 static u32 audit_default;
89
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32 audit_failure = AUDIT_FAIL_PRINTK;
92
93 /*
94 * If audit records are to be written to the netlink socket, audit_pid
95 * contains the pid of the auditd process and audit_nlk_portid contains
96 * the portid to use to send netlink messages to that process.
97 */
98 int audit_pid;
99 static __u32 audit_nlk_portid;
100
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102 * to that number per second. This prevents DoS attacks, but results in
103 * audit records being dropped. */
104 static u32 audit_rate_limit;
105
106 /* Number of outstanding audit_buffers allowed.
107 * When set to zero, this means unlimited. */
108 static u32 audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
111 static u32 audit_backlog_wait_overflow = 0;
112
113 /* The identity of the user shutting down the audit system. */
114 kuid_t audit_sig_uid = INVALID_UID;
115 pid_t audit_sig_pid = -1;
116 u32 audit_sig_sid = 0;
117
118 /* Records can be lost in several ways:
119 0) [suppressed in audit_alloc]
120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121 2) out of memory in audit_log_move [alloc_skb]
122 3) suppressed due to audit_rate_limit
123 4) suppressed due to audit_backlog_limit
124 */
125 static atomic_t audit_lost = ATOMIC_INIT(0);
126
127 /* The netlink socket. */
128 static struct sock *audit_sock;
129 int audit_net_id;
130
131 /* Hash for inode-based rules */
132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
133
134 /* The audit_freelist is a list of pre-allocated audit buffers (if more
135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136 * being placed on the freelist). */
137 static DEFINE_SPINLOCK(audit_freelist_lock);
138 static int audit_freelist_count;
139 static LIST_HEAD(audit_freelist);
140
141 static struct sk_buff_head audit_skb_queue;
142 /* queue of skbs to send to auditd when/if it comes back */
143 static struct sk_buff_head audit_skb_hold_queue;
144 static struct task_struct *kauditd_task;
145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
147
148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 .mask = -1,
150 .features = 0,
151 .lock = 0,};
152
153 static char *audit_feature_names[2] = {
154 "only_unset_loginuid",
155 "loginuid_immutable",
156 };
157
158
159 /* Serialize requests from userspace. */
160 DEFINE_MUTEX(audit_cmd_mutex);
161
162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163 * audit records. Since printk uses a 1024 byte buffer, this buffer
164 * should be at least that large. */
165 #define AUDIT_BUFSIZ 1024
166
167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
169 #define AUDIT_MAXFREE (2*NR_CPUS)
170
171 /* The audit_buffer is used when formatting an audit record. The caller
172 * locks briefly to get the record off the freelist or to allocate the
173 * buffer, and locks briefly to send the buffer to the netlink layer or
174 * to place it on a transmit queue. Multiple audit_buffers can be in
175 * use simultaneously. */
176 struct audit_buffer {
177 struct list_head list;
178 struct sk_buff *skb; /* formatted skb ready to send */
179 struct audit_context *ctx; /* NULL or associated context */
180 gfp_t gfp_mask;
181 };
182
183 struct audit_reply {
184 __u32 portid;
185 struct net *net;
186 struct sk_buff *skb;
187 };
188
189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
190 {
191 if (ab) {
192 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 nlh->nlmsg_pid = portid;
194 }
195 }
196
197 void audit_panic(const char *message)
198 {
199 switch (audit_failure) {
200 case AUDIT_FAIL_SILENT:
201 break;
202 case AUDIT_FAIL_PRINTK:
203 if (printk_ratelimit())
204 pr_err("%s\n", message);
205 break;
206 case AUDIT_FAIL_PANIC:
207 /* test audit_pid since printk is always losey, why bother? */
208 if (audit_pid)
209 panic("audit: %s\n", message);
210 break;
211 }
212 }
213
214 static inline int audit_rate_check(void)
215 {
216 static unsigned long last_check = 0;
217 static int messages = 0;
218 static DEFINE_SPINLOCK(lock);
219 unsigned long flags;
220 unsigned long now;
221 unsigned long elapsed;
222 int retval = 0;
223
224 if (!audit_rate_limit) return 1;
225
226 spin_lock_irqsave(&lock, flags);
227 if (++messages < audit_rate_limit) {
228 retval = 1;
229 } else {
230 now = jiffies;
231 elapsed = now - last_check;
232 if (elapsed > HZ) {
233 last_check = now;
234 messages = 0;
235 retval = 1;
236 }
237 }
238 spin_unlock_irqrestore(&lock, flags);
239
240 return retval;
241 }
242
243 /**
244 * audit_log_lost - conditionally log lost audit message event
245 * @message: the message stating reason for lost audit message
246 *
247 * Emit at least 1 message per second, even if audit_rate_check is
248 * throttling.
249 * Always increment the lost messages counter.
250 */
251 void audit_log_lost(const char *message)
252 {
253 static unsigned long last_msg = 0;
254 static DEFINE_SPINLOCK(lock);
255 unsigned long flags;
256 unsigned long now;
257 int print;
258
259 atomic_inc(&audit_lost);
260
261 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262
263 if (!print) {
264 spin_lock_irqsave(&lock, flags);
265 now = jiffies;
266 if (now - last_msg > HZ) {
267 print = 1;
268 last_msg = now;
269 }
270 spin_unlock_irqrestore(&lock, flags);
271 }
272
273 if (print) {
274 if (printk_ratelimit())
275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 atomic_read(&audit_lost),
277 audit_rate_limit,
278 audit_backlog_limit);
279 audit_panic(message);
280 }
281 }
282
283 static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 int allow_changes)
285 {
286 struct audit_buffer *ab;
287 int rc = 0;
288
289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 if (unlikely(!ab))
291 return rc;
292 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 audit_log_session_info(ab);
294 rc = audit_log_task_context(ab);
295 if (rc)
296 allow_changes = 0; /* Something weird, deny request */
297 audit_log_format(ab, " res=%d", allow_changes);
298 audit_log_end(ab);
299 return rc;
300 }
301
302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
303 {
304 int allow_changes, rc = 0;
305 u32 old = *to_change;
306
307 /* check if we are locked */
308 if (audit_enabled == AUDIT_LOCKED)
309 allow_changes = 0;
310 else
311 allow_changes = 1;
312
313 if (audit_enabled != AUDIT_OFF) {
314 rc = audit_log_config_change(function_name, new, old, allow_changes);
315 if (rc)
316 allow_changes = 0;
317 }
318
319 /* If we are allowed, make the change */
320 if (allow_changes == 1)
321 *to_change = new;
322 /* Not allowed, update reason */
323 else if (rc == 0)
324 rc = -EPERM;
325 return rc;
326 }
327
328 static int audit_set_rate_limit(u32 limit)
329 {
330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331 }
332
333 static int audit_set_backlog_limit(u32 limit)
334 {
335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336 }
337
338 static int audit_set_backlog_wait_time(u32 timeout)
339 {
340 return audit_do_config_change("audit_backlog_wait_time",
341 &audit_backlog_wait_time, timeout);
342 }
343
344 static int audit_set_enabled(u32 state)
345 {
346 int rc;
347 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
348 return -EINVAL;
349
350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
351 if (!rc)
352 audit_ever_enabled |= !!state;
353
354 return rc;
355 }
356
357 static int audit_set_failure(u32 state)
358 {
359 if (state != AUDIT_FAIL_SILENT
360 && state != AUDIT_FAIL_PRINTK
361 && state != AUDIT_FAIL_PANIC)
362 return -EINVAL;
363
364 return audit_do_config_change("audit_failure", &audit_failure, state);
365 }
366
367 /*
368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
369 * already have been sent via prink/syslog and so if these messages are dropped
370 * it is not a huge concern since we already passed the audit_log_lost()
371 * notification and stuff. This is just nice to get audit messages during
372 * boot before auditd is running or messages generated while auditd is stopped.
373 * This only holds messages is audit_default is set, aka booting with audit=1
374 * or building your kernel that way.
375 */
376 static void audit_hold_skb(struct sk_buff *skb)
377 {
378 if (audit_default &&
379 (!audit_backlog_limit ||
380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 skb_queue_tail(&audit_skb_hold_queue, skb);
382 else
383 kfree_skb(skb);
384 }
385
386 /*
387 * For one reason or another this nlh isn't getting delivered to the userspace
388 * audit daemon, just send it to printk.
389 */
390 static void audit_printk_skb(struct sk_buff *skb)
391 {
392 struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 char *data = nlmsg_data(nlh);
394
395 if (nlh->nlmsg_type != AUDIT_EOE) {
396 if (printk_ratelimit())
397 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 else
399 audit_log_lost("printk limit exceeded\n");
400 }
401
402 audit_hold_skb(skb);
403 }
404
405 static void kauditd_send_skb(struct sk_buff *skb)
406 {
407 int err;
408 /* take a reference in case we can't send it and we want to hold it */
409 skb_get(skb);
410 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
411 if (err < 0) {
412 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
413 if (audit_pid) {
414 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
415 audit_log_lost("auditd disappeared\n");
416 audit_pid = 0;
417 audit_sock = NULL;
418 }
419 /* we might get lucky and get this in the next auditd */
420 audit_hold_skb(skb);
421 } else
422 /* drop the extra reference if sent ok */
423 consume_skb(skb);
424 }
425
426 /*
427 * flush_hold_queue - empty the hold queue if auditd appears
428 *
429 * If auditd just started, drain the queue of messages already
430 * sent to syslog/printk. Remember loss here is ok. We already
431 * called audit_log_lost() if it didn't go out normally. so the
432 * race between the skb_dequeue and the next check for audit_pid
433 * doesn't matter.
434 *
435 * If you ever find kauditd to be too slow we can get a perf win
436 * by doing our own locking and keeping better track if there
437 * are messages in this queue. I don't see the need now, but
438 * in 5 years when I want to play with this again I'll see this
439 * note and still have no friggin idea what i'm thinking today.
440 */
441 static void flush_hold_queue(void)
442 {
443 struct sk_buff *skb;
444
445 if (!audit_default || !audit_pid)
446 return;
447
448 skb = skb_dequeue(&audit_skb_hold_queue);
449 if (likely(!skb))
450 return;
451
452 while (skb && audit_pid) {
453 kauditd_send_skb(skb);
454 skb = skb_dequeue(&audit_skb_hold_queue);
455 }
456
457 /*
458 * if auditd just disappeared but we
459 * dequeued an skb we need to drop ref
460 */
461 if (skb)
462 consume_skb(skb);
463 }
464
465 static int kauditd_thread(void *dummy)
466 {
467 set_freezable();
468 while (!kthread_should_stop()) {
469 struct sk_buff *skb;
470 DECLARE_WAITQUEUE(wait, current);
471
472 flush_hold_queue();
473
474 skb = skb_dequeue(&audit_skb_queue);
475
476 if (skb) {
477 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
478 wake_up(&audit_backlog_wait);
479 if (audit_pid)
480 kauditd_send_skb(skb);
481 else
482 audit_printk_skb(skb);
483 continue;
484 }
485 set_current_state(TASK_INTERRUPTIBLE);
486 add_wait_queue(&kauditd_wait, &wait);
487
488 if (!skb_queue_len(&audit_skb_queue)) {
489 try_to_freeze();
490 schedule();
491 }
492
493 __set_current_state(TASK_RUNNING);
494 remove_wait_queue(&kauditd_wait, &wait);
495 }
496 return 0;
497 }
498
499 int audit_send_list(void *_dest)
500 {
501 struct audit_netlink_list *dest = _dest;
502 struct sk_buff *skb;
503 struct net *net = dest->net;
504 struct audit_net *aunet = net_generic(net, audit_net_id);
505
506 /* wait for parent to finish and send an ACK */
507 mutex_lock(&audit_cmd_mutex);
508 mutex_unlock(&audit_cmd_mutex);
509
510 while ((skb = __skb_dequeue(&dest->q)) != NULL)
511 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
512
513 put_net(net);
514 kfree(dest);
515
516 return 0;
517 }
518
519 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
520 int multi, const void *payload, int size)
521 {
522 struct sk_buff *skb;
523 struct nlmsghdr *nlh;
524 void *data;
525 int flags = multi ? NLM_F_MULTI : 0;
526 int t = done ? NLMSG_DONE : type;
527
528 skb = nlmsg_new(size, GFP_KERNEL);
529 if (!skb)
530 return NULL;
531
532 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
533 if (!nlh)
534 goto out_kfree_skb;
535 data = nlmsg_data(nlh);
536 memcpy(data, payload, size);
537 return skb;
538
539 out_kfree_skb:
540 kfree_skb(skb);
541 return NULL;
542 }
543
544 static int audit_send_reply_thread(void *arg)
545 {
546 struct audit_reply *reply = (struct audit_reply *)arg;
547 struct net *net = reply->net;
548 struct audit_net *aunet = net_generic(net, audit_net_id);
549
550 mutex_lock(&audit_cmd_mutex);
551 mutex_unlock(&audit_cmd_mutex);
552
553 /* Ignore failure. It'll only happen if the sender goes away,
554 because our timeout is set to infinite. */
555 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
556 put_net(net);
557 kfree(reply);
558 return 0;
559 }
560 /**
561 * audit_send_reply - send an audit reply message via netlink
562 * @portid: netlink port to which to send reply
563 * @seq: sequence number
564 * @type: audit message type
565 * @done: done (last) flag
566 * @multi: multi-part message flag
567 * @payload: payload data
568 * @size: payload size
569 *
570 * Allocates an skb, builds the netlink message, and sends it to the port id.
571 * No failure notifications.
572 */
573 static void audit_send_reply(__u32 portid, int seq, int type, int done,
574 int multi, const void *payload, int size)
575 {
576 struct sk_buff *skb;
577 struct task_struct *tsk;
578 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
579 GFP_KERNEL);
580
581 if (!reply)
582 return;
583
584 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
585 if (!skb)
586 goto out;
587
588 reply->net = get_net(current->nsproxy->net_ns);
589 reply->portid = portid;
590 reply->skb = skb;
591
592 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
593 if (!IS_ERR(tsk))
594 return;
595 kfree_skb(skb);
596 out:
597 kfree(reply);
598 }
599
600 /*
601 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
602 * control messages.
603 */
604 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
605 {
606 int err = 0;
607
608 /* Only support the initial namespaces for now. */
609 if ((current_user_ns() != &init_user_ns) ||
610 (task_active_pid_ns(current) != &init_pid_ns))
611 return -EPERM;
612
613 switch (msg_type) {
614 case AUDIT_LIST:
615 case AUDIT_ADD:
616 case AUDIT_DEL:
617 return -EOPNOTSUPP;
618 case AUDIT_GET:
619 case AUDIT_SET:
620 case AUDIT_GET_FEATURE:
621 case AUDIT_SET_FEATURE:
622 case AUDIT_LIST_RULES:
623 case AUDIT_ADD_RULE:
624 case AUDIT_DEL_RULE:
625 case AUDIT_SIGNAL_INFO:
626 case AUDIT_TTY_GET:
627 case AUDIT_TTY_SET:
628 case AUDIT_TRIM:
629 case AUDIT_MAKE_EQUIV:
630 if (!capable(CAP_AUDIT_CONTROL))
631 err = -EPERM;
632 break;
633 case AUDIT_USER:
634 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
635 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
636 if (!capable(CAP_AUDIT_WRITE))
637 err = -EPERM;
638 break;
639 default: /* bad msg */
640 err = -EINVAL;
641 }
642
643 return err;
644 }
645
646 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
647 {
648 int rc = 0;
649 uid_t uid = from_kuid(&init_user_ns, current_uid());
650
651 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
652 *ab = NULL;
653 return rc;
654 }
655
656 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
657 if (unlikely(!*ab))
658 return rc;
659 audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid);
660 audit_log_session_info(*ab);
661 audit_log_task_context(*ab);
662
663 return rc;
664 }
665
666 int is_audit_feature_set(int i)
667 {
668 return af.features & AUDIT_FEATURE_TO_MASK(i);
669 }
670
671
672 static int audit_get_feature(struct sk_buff *skb)
673 {
674 u32 seq;
675
676 seq = nlmsg_hdr(skb)->nlmsg_seq;
677
678 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
679 &af, sizeof(af));
680
681 return 0;
682 }
683
684 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
685 u32 old_lock, u32 new_lock, int res)
686 {
687 struct audit_buffer *ab;
688
689 if (audit_enabled == AUDIT_OFF)
690 return;
691
692 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
693 audit_log_task_info(ab, current);
694 audit_log_format(ab, "feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
695 audit_feature_names[which], !!old_feature, !!new_feature,
696 !!old_lock, !!new_lock, res);
697 audit_log_end(ab);
698 }
699
700 static int audit_set_feature(struct sk_buff *skb)
701 {
702 struct audit_features *uaf;
703 int i;
704
705 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
706 uaf = nlmsg_data(nlmsg_hdr(skb));
707
708 /* if there is ever a version 2 we should handle that here */
709
710 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
711 u32 feature = AUDIT_FEATURE_TO_MASK(i);
712 u32 old_feature, new_feature, old_lock, new_lock;
713
714 /* if we are not changing this feature, move along */
715 if (!(feature & uaf->mask))
716 continue;
717
718 old_feature = af.features & feature;
719 new_feature = uaf->features & feature;
720 new_lock = (uaf->lock | af.lock) & feature;
721 old_lock = af.lock & feature;
722
723 /* are we changing a locked feature? */
724 if (old_lock && (new_feature != old_feature)) {
725 audit_log_feature_change(i, old_feature, new_feature,
726 old_lock, new_lock, 0);
727 return -EPERM;
728 }
729 }
730 /* nothing invalid, do the changes */
731 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
732 u32 feature = AUDIT_FEATURE_TO_MASK(i);
733 u32 old_feature, new_feature, old_lock, new_lock;
734
735 /* if we are not changing this feature, move along */
736 if (!(feature & uaf->mask))
737 continue;
738
739 old_feature = af.features & feature;
740 new_feature = uaf->features & feature;
741 old_lock = af.lock & feature;
742 new_lock = (uaf->lock | af.lock) & feature;
743
744 if (new_feature != old_feature)
745 audit_log_feature_change(i, old_feature, new_feature,
746 old_lock, new_lock, 1);
747
748 if (new_feature)
749 af.features |= feature;
750 else
751 af.features &= ~feature;
752 af.lock |= new_lock;
753 }
754
755 return 0;
756 }
757
758 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
759 {
760 u32 seq;
761 void *data;
762 int err;
763 struct audit_buffer *ab;
764 u16 msg_type = nlh->nlmsg_type;
765 struct audit_sig_info *sig_data;
766 char *ctx = NULL;
767 u32 len;
768
769 err = audit_netlink_ok(skb, msg_type);
770 if (err)
771 return err;
772
773 /* As soon as there's any sign of userspace auditd,
774 * start kauditd to talk to it */
775 if (!kauditd_task) {
776 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
777 if (IS_ERR(kauditd_task)) {
778 err = PTR_ERR(kauditd_task);
779 kauditd_task = NULL;
780 return err;
781 }
782 }
783 seq = nlh->nlmsg_seq;
784 data = nlmsg_data(nlh);
785
786 switch (msg_type) {
787 case AUDIT_GET: {
788 struct audit_status s;
789 memset(&s, 0, sizeof(s));
790 s.enabled = audit_enabled;
791 s.failure = audit_failure;
792 s.pid = audit_pid;
793 s.rate_limit = audit_rate_limit;
794 s.backlog_limit = audit_backlog_limit;
795 s.lost = atomic_read(&audit_lost);
796 s.backlog = skb_queue_len(&audit_skb_queue);
797 s.version = AUDIT_VERSION_LATEST;
798 s.backlog_wait_time = audit_backlog_wait_time;
799 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
800 &s, sizeof(s));
801 break;
802 }
803 case AUDIT_SET: {
804 struct audit_status s;
805 memset(&s, 0, sizeof(s));
806 /* guard against past and future API changes */
807 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
808 if (s.mask & AUDIT_STATUS_ENABLED) {
809 err = audit_set_enabled(s.enabled);
810 if (err < 0)
811 return err;
812 }
813 if (s.mask & AUDIT_STATUS_FAILURE) {
814 err = audit_set_failure(s.failure);
815 if (err < 0)
816 return err;
817 }
818 if (s.mask & AUDIT_STATUS_PID) {
819 int new_pid = s.pid;
820
821 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
822 return -EACCES;
823 if (audit_enabled != AUDIT_OFF)
824 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
825 audit_pid = new_pid;
826 audit_nlk_portid = NETLINK_CB(skb).portid;
827 audit_sock = skb->sk;
828 }
829 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
830 err = audit_set_rate_limit(s.rate_limit);
831 if (err < 0)
832 return err;
833 }
834 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
835 err = audit_set_backlog_limit(s.backlog_limit);
836 if (err < 0)
837 return err;
838 }
839 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
840 if (sizeof(s) > (size_t)nlh->nlmsg_len)
841 return -EINVAL;
842 if (s.backlog_wait_time < 0 ||
843 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
844 return -EINVAL;
845 err = audit_set_backlog_wait_time(s.backlog_wait_time);
846 if (err < 0)
847 return err;
848 }
849 break;
850 }
851 case AUDIT_GET_FEATURE:
852 err = audit_get_feature(skb);
853 if (err)
854 return err;
855 break;
856 case AUDIT_SET_FEATURE:
857 err = audit_set_feature(skb);
858 if (err)
859 return err;
860 break;
861 case AUDIT_USER:
862 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
863 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
864 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
865 return 0;
866
867 err = audit_filter_user(msg_type);
868 if (err == 1) { /* match or error */
869 err = 0;
870 if (msg_type == AUDIT_USER_TTY) {
871 err = tty_audit_push_current();
872 if (err)
873 break;
874 }
875 mutex_unlock(&audit_cmd_mutex);
876 audit_log_common_recv_msg(&ab, msg_type);
877 if (msg_type != AUDIT_USER_TTY)
878 audit_log_format(ab, " msg='%.*s'",
879 AUDIT_MESSAGE_TEXT_MAX,
880 (char *)data);
881 else {
882 int size;
883
884 audit_log_format(ab, " data=");
885 size = nlmsg_len(nlh);
886 if (size > 0 &&
887 ((unsigned char *)data)[size - 1] == '\0')
888 size--;
889 audit_log_n_untrustedstring(ab, data, size);
890 }
891 audit_set_portid(ab, NETLINK_CB(skb).portid);
892 audit_log_end(ab);
893 mutex_lock(&audit_cmd_mutex);
894 }
895 break;
896 case AUDIT_ADD_RULE:
897 case AUDIT_DEL_RULE:
898 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
899 return -EINVAL;
900 if (audit_enabled == AUDIT_LOCKED) {
901 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
902 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
903 audit_log_end(ab);
904 return -EPERM;
905 }
906 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
907 seq, data, nlmsg_len(nlh));
908 break;
909 case AUDIT_LIST_RULES:
910 err = audit_list_rules_send(NETLINK_CB(skb).portid, seq);
911 break;
912 case AUDIT_TRIM:
913 audit_trim_trees();
914 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
915 audit_log_format(ab, " op=trim res=1");
916 audit_log_end(ab);
917 break;
918 case AUDIT_MAKE_EQUIV: {
919 void *bufp = data;
920 u32 sizes[2];
921 size_t msglen = nlmsg_len(nlh);
922 char *old, *new;
923
924 err = -EINVAL;
925 if (msglen < 2 * sizeof(u32))
926 break;
927 memcpy(sizes, bufp, 2 * sizeof(u32));
928 bufp += 2 * sizeof(u32);
929 msglen -= 2 * sizeof(u32);
930 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
931 if (IS_ERR(old)) {
932 err = PTR_ERR(old);
933 break;
934 }
935 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
936 if (IS_ERR(new)) {
937 err = PTR_ERR(new);
938 kfree(old);
939 break;
940 }
941 /* OK, here comes... */
942 err = audit_tag_tree(old, new);
943
944 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
945
946 audit_log_format(ab, " op=make_equiv old=");
947 audit_log_untrustedstring(ab, old);
948 audit_log_format(ab, " new=");
949 audit_log_untrustedstring(ab, new);
950 audit_log_format(ab, " res=%d", !err);
951 audit_log_end(ab);
952 kfree(old);
953 kfree(new);
954 break;
955 }
956 case AUDIT_SIGNAL_INFO:
957 len = 0;
958 if (audit_sig_sid) {
959 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
960 if (err)
961 return err;
962 }
963 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
964 if (!sig_data) {
965 if (audit_sig_sid)
966 security_release_secctx(ctx, len);
967 return -ENOMEM;
968 }
969 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
970 sig_data->pid = audit_sig_pid;
971 if (audit_sig_sid) {
972 memcpy(sig_data->ctx, ctx, len);
973 security_release_secctx(ctx, len);
974 }
975 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO,
976 0, 0, sig_data, sizeof(*sig_data) + len);
977 kfree(sig_data);
978 break;
979 case AUDIT_TTY_GET: {
980 struct audit_tty_status s;
981 struct task_struct *tsk = current;
982
983 spin_lock(&tsk->sighand->siglock);
984 s.enabled = tsk->signal->audit_tty;
985 s.log_passwd = tsk->signal->audit_tty_log_passwd;
986 spin_unlock(&tsk->sighand->siglock);
987
988 audit_send_reply(NETLINK_CB(skb).portid, seq,
989 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
990 break;
991 }
992 case AUDIT_TTY_SET: {
993 struct audit_tty_status s, old;
994 struct task_struct *tsk = current;
995 struct audit_buffer *ab;
996
997 memset(&s, 0, sizeof(s));
998 /* guard against past and future API changes */
999 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1000 /* check if new data is valid */
1001 if ((s.enabled != 0 && s.enabled != 1) ||
1002 (s.log_passwd != 0 && s.log_passwd != 1))
1003 err = -EINVAL;
1004
1005 spin_lock(&tsk->sighand->siglock);
1006 old.enabled = tsk->signal->audit_tty;
1007 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1008 if (!err) {
1009 tsk->signal->audit_tty = s.enabled;
1010 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1011 }
1012 spin_unlock(&tsk->sighand->siglock);
1013
1014 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1015 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1016 " old-log_passwd=%d new-log_passwd=%d res=%d",
1017 old.enabled, s.enabled, old.log_passwd,
1018 s.log_passwd, !err);
1019 audit_log_end(ab);
1020 break;
1021 }
1022 default:
1023 err = -EINVAL;
1024 break;
1025 }
1026
1027 return err < 0 ? err : 0;
1028 }
1029
1030 /*
1031 * Get message from skb. Each message is processed by audit_receive_msg.
1032 * Malformed skbs with wrong length are discarded silently.
1033 */
1034 static void audit_receive_skb(struct sk_buff *skb)
1035 {
1036 struct nlmsghdr *nlh;
1037 /*
1038 * len MUST be signed for nlmsg_next to be able to dec it below 0
1039 * if the nlmsg_len was not aligned
1040 */
1041 int len;
1042 int err;
1043
1044 nlh = nlmsg_hdr(skb);
1045 len = skb->len;
1046
1047 while (nlmsg_ok(nlh, len)) {
1048 err = audit_receive_msg(skb, nlh);
1049 /* if err or if this message says it wants a response */
1050 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1051 netlink_ack(skb, nlh, err);
1052
1053 nlh = nlmsg_next(nlh, &len);
1054 }
1055 }
1056
1057 /* Receive messages from netlink socket. */
1058 static void audit_receive(struct sk_buff *skb)
1059 {
1060 mutex_lock(&audit_cmd_mutex);
1061 audit_receive_skb(skb);
1062 mutex_unlock(&audit_cmd_mutex);
1063 }
1064
1065 static int __net_init audit_net_init(struct net *net)
1066 {
1067 struct netlink_kernel_cfg cfg = {
1068 .input = audit_receive,
1069 };
1070
1071 struct audit_net *aunet = net_generic(net, audit_net_id);
1072
1073 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1074 if (aunet->nlsk == NULL) {
1075 audit_panic("cannot initialize netlink socket in namespace");
1076 return -ENOMEM;
1077 }
1078 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1079 return 0;
1080 }
1081
1082 static void __net_exit audit_net_exit(struct net *net)
1083 {
1084 struct audit_net *aunet = net_generic(net, audit_net_id);
1085 struct sock *sock = aunet->nlsk;
1086 if (sock == audit_sock) {
1087 audit_pid = 0;
1088 audit_sock = NULL;
1089 }
1090
1091 rcu_assign_pointer(aunet->nlsk, NULL);
1092 synchronize_net();
1093 netlink_kernel_release(sock);
1094 }
1095
1096 static struct pernet_operations audit_net_ops __net_initdata = {
1097 .init = audit_net_init,
1098 .exit = audit_net_exit,
1099 .id = &audit_net_id,
1100 .size = sizeof(struct audit_net),
1101 };
1102
1103 /* Initialize audit support at boot time. */
1104 static int __init audit_init(void)
1105 {
1106 int i;
1107
1108 if (audit_initialized == AUDIT_DISABLED)
1109 return 0;
1110
1111 pr_info("initializing netlink subsys (%s)\n",
1112 audit_default ? "enabled" : "disabled");
1113 register_pernet_subsys(&audit_net_ops);
1114
1115 skb_queue_head_init(&audit_skb_queue);
1116 skb_queue_head_init(&audit_skb_hold_queue);
1117 audit_initialized = AUDIT_INITIALIZED;
1118 audit_enabled = audit_default;
1119 audit_ever_enabled |= !!audit_default;
1120
1121 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1122
1123 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1124 INIT_LIST_HEAD(&audit_inode_hash[i]);
1125
1126 return 0;
1127 }
1128 __initcall(audit_init);
1129
1130 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1131 static int __init audit_enable(char *str)
1132 {
1133 audit_default = !!simple_strtol(str, NULL, 0);
1134 if (!audit_default)
1135 audit_initialized = AUDIT_DISABLED;
1136
1137 pr_info("%s\n", audit_default ?
1138 "enabled (after initialization)" : "disabled (until reboot)");
1139
1140 return 1;
1141 }
1142 __setup("audit=", audit_enable);
1143
1144 /* Process kernel command-line parameter at boot time.
1145 * audit_backlog_limit=<n> */
1146 static int __init audit_backlog_limit_set(char *str)
1147 {
1148 u32 audit_backlog_limit_arg;
1149
1150 pr_info("audit_backlog_limit: ");
1151 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1152 pr_cont("using default of %u, unable to parse %s\n",
1153 audit_backlog_limit, str);
1154 return 1;
1155 }
1156
1157 audit_backlog_limit = audit_backlog_limit_arg;
1158 pr_cont("%d\n", audit_backlog_limit);
1159
1160 return 1;
1161 }
1162 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1163
1164 static void audit_buffer_free(struct audit_buffer *ab)
1165 {
1166 unsigned long flags;
1167
1168 if (!ab)
1169 return;
1170
1171 if (ab->skb)
1172 kfree_skb(ab->skb);
1173
1174 spin_lock_irqsave(&audit_freelist_lock, flags);
1175 if (audit_freelist_count > AUDIT_MAXFREE)
1176 kfree(ab);
1177 else {
1178 audit_freelist_count++;
1179 list_add(&ab->list, &audit_freelist);
1180 }
1181 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1182 }
1183
1184 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1185 gfp_t gfp_mask, int type)
1186 {
1187 unsigned long flags;
1188 struct audit_buffer *ab = NULL;
1189 struct nlmsghdr *nlh;
1190
1191 spin_lock_irqsave(&audit_freelist_lock, flags);
1192 if (!list_empty(&audit_freelist)) {
1193 ab = list_entry(audit_freelist.next,
1194 struct audit_buffer, list);
1195 list_del(&ab->list);
1196 --audit_freelist_count;
1197 }
1198 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1199
1200 if (!ab) {
1201 ab = kmalloc(sizeof(*ab), gfp_mask);
1202 if (!ab)
1203 goto err;
1204 }
1205
1206 ab->ctx = ctx;
1207 ab->gfp_mask = gfp_mask;
1208
1209 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1210 if (!ab->skb)
1211 goto err;
1212
1213 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1214 if (!nlh)
1215 goto out_kfree_skb;
1216
1217 return ab;
1218
1219 out_kfree_skb:
1220 kfree_skb(ab->skb);
1221 ab->skb = NULL;
1222 err:
1223 audit_buffer_free(ab);
1224 return NULL;
1225 }
1226
1227 /**
1228 * audit_serial - compute a serial number for the audit record
1229 *
1230 * Compute a serial number for the audit record. Audit records are
1231 * written to user-space as soon as they are generated, so a complete
1232 * audit record may be written in several pieces. The timestamp of the
1233 * record and this serial number are used by the user-space tools to
1234 * determine which pieces belong to the same audit record. The
1235 * (timestamp,serial) tuple is unique for each syscall and is live from
1236 * syscall entry to syscall exit.
1237 *
1238 * NOTE: Another possibility is to store the formatted records off the
1239 * audit context (for those records that have a context), and emit them
1240 * all at syscall exit. However, this could delay the reporting of
1241 * significant errors until syscall exit (or never, if the system
1242 * halts).
1243 */
1244 unsigned int audit_serial(void)
1245 {
1246 static DEFINE_SPINLOCK(serial_lock);
1247 static unsigned int serial = 0;
1248
1249 unsigned long flags;
1250 unsigned int ret;
1251
1252 spin_lock_irqsave(&serial_lock, flags);
1253 do {
1254 ret = ++serial;
1255 } while (unlikely(!ret));
1256 spin_unlock_irqrestore(&serial_lock, flags);
1257
1258 return ret;
1259 }
1260
1261 static inline void audit_get_stamp(struct audit_context *ctx,
1262 struct timespec *t, unsigned int *serial)
1263 {
1264 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1265 *t = CURRENT_TIME;
1266 *serial = audit_serial();
1267 }
1268 }
1269
1270 /*
1271 * Wait for auditd to drain the queue a little
1272 */
1273 static long wait_for_auditd(long sleep_time)
1274 {
1275 DECLARE_WAITQUEUE(wait, current);
1276 set_current_state(TASK_UNINTERRUPTIBLE);
1277 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1278
1279 if (audit_backlog_limit &&
1280 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1281 sleep_time = schedule_timeout(sleep_time);
1282
1283 __set_current_state(TASK_RUNNING);
1284 remove_wait_queue(&audit_backlog_wait, &wait);
1285
1286 return sleep_time;
1287 }
1288
1289 /**
1290 * audit_log_start - obtain an audit buffer
1291 * @ctx: audit_context (may be NULL)
1292 * @gfp_mask: type of allocation
1293 * @type: audit message type
1294 *
1295 * Returns audit_buffer pointer on success or NULL on error.
1296 *
1297 * Obtain an audit buffer. This routine does locking to obtain the
1298 * audit buffer, but then no locking is required for calls to
1299 * audit_log_*format. If the task (ctx) is a task that is currently in a
1300 * syscall, then the syscall is marked as auditable and an audit record
1301 * will be written at syscall exit. If there is no associated task, then
1302 * task context (ctx) should be NULL.
1303 */
1304 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1305 int type)
1306 {
1307 struct audit_buffer *ab = NULL;
1308 struct timespec t;
1309 unsigned int uninitialized_var(serial);
1310 int reserve = 5; /* Allow atomic callers to go up to five
1311 entries over the normal backlog limit */
1312 unsigned long timeout_start = jiffies;
1313
1314 if (audit_initialized != AUDIT_INITIALIZED)
1315 return NULL;
1316
1317 if (unlikely(audit_filter_type(type)))
1318 return NULL;
1319
1320 if (gfp_mask & __GFP_WAIT) {
1321 if (audit_pid && audit_pid == current->pid)
1322 gfp_mask &= ~__GFP_WAIT;
1323 else
1324 reserve = 0;
1325 }
1326
1327 while (audit_backlog_limit
1328 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1329 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1330 long sleep_time;
1331
1332 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1333 if (sleep_time > 0) {
1334 sleep_time = wait_for_auditd(sleep_time);
1335 if (sleep_time > 0)
1336 continue;
1337 }
1338 }
1339 if (audit_rate_check() && printk_ratelimit())
1340 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1341 skb_queue_len(&audit_skb_queue),
1342 audit_backlog_limit);
1343 audit_log_lost("backlog limit exceeded");
1344 audit_backlog_wait_time = audit_backlog_wait_overflow;
1345 wake_up(&audit_backlog_wait);
1346 return NULL;
1347 }
1348
1349 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1350
1351 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1352 if (!ab) {
1353 audit_log_lost("out of memory in audit_log_start");
1354 return NULL;
1355 }
1356
1357 audit_get_stamp(ab->ctx, &t, &serial);
1358
1359 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1360 t.tv_sec, t.tv_nsec/1000000, serial);
1361 return ab;
1362 }
1363
1364 /**
1365 * audit_expand - expand skb in the audit buffer
1366 * @ab: audit_buffer
1367 * @extra: space to add at tail of the skb
1368 *
1369 * Returns 0 (no space) on failed expansion, or available space if
1370 * successful.
1371 */
1372 static inline int audit_expand(struct audit_buffer *ab, int extra)
1373 {
1374 struct sk_buff *skb = ab->skb;
1375 int oldtail = skb_tailroom(skb);
1376 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1377 int newtail = skb_tailroom(skb);
1378
1379 if (ret < 0) {
1380 audit_log_lost("out of memory in audit_expand");
1381 return 0;
1382 }
1383
1384 skb->truesize += newtail - oldtail;
1385 return newtail;
1386 }
1387
1388 /*
1389 * Format an audit message into the audit buffer. If there isn't enough
1390 * room in the audit buffer, more room will be allocated and vsnprint
1391 * will be called a second time. Currently, we assume that a printk
1392 * can't format message larger than 1024 bytes, so we don't either.
1393 */
1394 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1395 va_list args)
1396 {
1397 int len, avail;
1398 struct sk_buff *skb;
1399 va_list args2;
1400
1401 if (!ab)
1402 return;
1403
1404 BUG_ON(!ab->skb);
1405 skb = ab->skb;
1406 avail = skb_tailroom(skb);
1407 if (avail == 0) {
1408 avail = audit_expand(ab, AUDIT_BUFSIZ);
1409 if (!avail)
1410 goto out;
1411 }
1412 va_copy(args2, args);
1413 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1414 if (len >= avail) {
1415 /* The printk buffer is 1024 bytes long, so if we get
1416 * here and AUDIT_BUFSIZ is at least 1024, then we can
1417 * log everything that printk could have logged. */
1418 avail = audit_expand(ab,
1419 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1420 if (!avail)
1421 goto out_va_end;
1422 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1423 }
1424 if (len > 0)
1425 skb_put(skb, len);
1426 out_va_end:
1427 va_end(args2);
1428 out:
1429 return;
1430 }
1431
1432 /**
1433 * audit_log_format - format a message into the audit buffer.
1434 * @ab: audit_buffer
1435 * @fmt: format string
1436 * @...: optional parameters matching @fmt string
1437 *
1438 * All the work is done in audit_log_vformat.
1439 */
1440 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1441 {
1442 va_list args;
1443
1444 if (!ab)
1445 return;
1446 va_start(args, fmt);
1447 audit_log_vformat(ab, fmt, args);
1448 va_end(args);
1449 }
1450
1451 /**
1452 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1453 * @ab: the audit_buffer
1454 * @buf: buffer to convert to hex
1455 * @len: length of @buf to be converted
1456 *
1457 * No return value; failure to expand is silently ignored.
1458 *
1459 * This function will take the passed buf and convert it into a string of
1460 * ascii hex digits. The new string is placed onto the skb.
1461 */
1462 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1463 size_t len)
1464 {
1465 int i, avail, new_len;
1466 unsigned char *ptr;
1467 struct sk_buff *skb;
1468
1469 if (!ab)
1470 return;
1471
1472 BUG_ON(!ab->skb);
1473 skb = ab->skb;
1474 avail = skb_tailroom(skb);
1475 new_len = len<<1;
1476 if (new_len >= avail) {
1477 /* Round the buffer request up to the next multiple */
1478 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1479 avail = audit_expand(ab, new_len);
1480 if (!avail)
1481 return;
1482 }
1483
1484 ptr = skb_tail_pointer(skb);
1485 for (i = 0; i < len; i++)
1486 ptr = hex_byte_pack_upper(ptr, buf[i]);
1487 *ptr = 0;
1488 skb_put(skb, len << 1); /* new string is twice the old string */
1489 }
1490
1491 /*
1492 * Format a string of no more than slen characters into the audit buffer,
1493 * enclosed in quote marks.
1494 */
1495 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1496 size_t slen)
1497 {
1498 int avail, new_len;
1499 unsigned char *ptr;
1500 struct sk_buff *skb;
1501
1502 if (!ab)
1503 return;
1504
1505 BUG_ON(!ab->skb);
1506 skb = ab->skb;
1507 avail = skb_tailroom(skb);
1508 new_len = slen + 3; /* enclosing quotes + null terminator */
1509 if (new_len > avail) {
1510 avail = audit_expand(ab, new_len);
1511 if (!avail)
1512 return;
1513 }
1514 ptr = skb_tail_pointer(skb);
1515 *ptr++ = '"';
1516 memcpy(ptr, string, slen);
1517 ptr += slen;
1518 *ptr++ = '"';
1519 *ptr = 0;
1520 skb_put(skb, slen + 2); /* don't include null terminator */
1521 }
1522
1523 /**
1524 * audit_string_contains_control - does a string need to be logged in hex
1525 * @string: string to be checked
1526 * @len: max length of the string to check
1527 */
1528 int audit_string_contains_control(const char *string, size_t len)
1529 {
1530 const unsigned char *p;
1531 for (p = string; p < (const unsigned char *)string + len; p++) {
1532 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1533 return 1;
1534 }
1535 return 0;
1536 }
1537
1538 /**
1539 * audit_log_n_untrustedstring - log a string that may contain random characters
1540 * @ab: audit_buffer
1541 * @len: length of string (not including trailing null)
1542 * @string: string to be logged
1543 *
1544 * This code will escape a string that is passed to it if the string
1545 * contains a control character, unprintable character, double quote mark,
1546 * or a space. Unescaped strings will start and end with a double quote mark.
1547 * Strings that are escaped are printed in hex (2 digits per char).
1548 *
1549 * The caller specifies the number of characters in the string to log, which may
1550 * or may not be the entire string.
1551 */
1552 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1553 size_t len)
1554 {
1555 if (audit_string_contains_control(string, len))
1556 audit_log_n_hex(ab, string, len);
1557 else
1558 audit_log_n_string(ab, string, len);
1559 }
1560
1561 /**
1562 * audit_log_untrustedstring - log a string that may contain random characters
1563 * @ab: audit_buffer
1564 * @string: string to be logged
1565 *
1566 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1567 * determine string length.
1568 */
1569 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1570 {
1571 audit_log_n_untrustedstring(ab, string, strlen(string));
1572 }
1573
1574 /* This is a helper-function to print the escaped d_path */
1575 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1576 const struct path *path)
1577 {
1578 char *p, *pathname;
1579
1580 if (prefix)
1581 audit_log_format(ab, "%s", prefix);
1582
1583 /* We will allow 11 spaces for ' (deleted)' to be appended */
1584 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1585 if (!pathname) {
1586 audit_log_string(ab, "<no_memory>");
1587 return;
1588 }
1589 p = d_path(path, pathname, PATH_MAX+11);
1590 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1591 /* FIXME: can we save some information here? */
1592 audit_log_string(ab, "<too_long>");
1593 } else
1594 audit_log_untrustedstring(ab, p);
1595 kfree(pathname);
1596 }
1597
1598 void audit_log_session_info(struct audit_buffer *ab)
1599 {
1600 unsigned int sessionid = audit_get_sessionid(current);
1601 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1602
1603 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1604 }
1605
1606 void audit_log_key(struct audit_buffer *ab, char *key)
1607 {
1608 audit_log_format(ab, " key=");
1609 if (key)
1610 audit_log_untrustedstring(ab, key);
1611 else
1612 audit_log_format(ab, "(null)");
1613 }
1614
1615 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1616 {
1617 int i;
1618
1619 audit_log_format(ab, " %s=", prefix);
1620 CAP_FOR_EACH_U32(i) {
1621 audit_log_format(ab, "%08x",
1622 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1623 }
1624 }
1625
1626 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1627 {
1628 kernel_cap_t *perm = &name->fcap.permitted;
1629 kernel_cap_t *inh = &name->fcap.inheritable;
1630 int log = 0;
1631
1632 if (!cap_isclear(*perm)) {
1633 audit_log_cap(ab, "cap_fp", perm);
1634 log = 1;
1635 }
1636 if (!cap_isclear(*inh)) {
1637 audit_log_cap(ab, "cap_fi", inh);
1638 log = 1;
1639 }
1640
1641 if (log)
1642 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1643 name->fcap.fE, name->fcap_ver);
1644 }
1645
1646 static inline int audit_copy_fcaps(struct audit_names *name,
1647 const struct dentry *dentry)
1648 {
1649 struct cpu_vfs_cap_data caps;
1650 int rc;
1651
1652 if (!dentry)
1653 return 0;
1654
1655 rc = get_vfs_caps_from_disk(dentry, &caps);
1656 if (rc)
1657 return rc;
1658
1659 name->fcap.permitted = caps.permitted;
1660 name->fcap.inheritable = caps.inheritable;
1661 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1662 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1663 VFS_CAP_REVISION_SHIFT;
1664
1665 return 0;
1666 }
1667
1668 /* Copy inode data into an audit_names. */
1669 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1670 const struct inode *inode)
1671 {
1672 name->ino = inode->i_ino;
1673 name->dev = inode->i_sb->s_dev;
1674 name->mode = inode->i_mode;
1675 name->uid = inode->i_uid;
1676 name->gid = inode->i_gid;
1677 name->rdev = inode->i_rdev;
1678 security_inode_getsecid(inode, &name->osid);
1679 audit_copy_fcaps(name, dentry);
1680 }
1681
1682 /**
1683 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1684 * @context: audit_context for the task
1685 * @n: audit_names structure with reportable details
1686 * @path: optional path to report instead of audit_names->name
1687 * @record_num: record number to report when handling a list of names
1688 * @call_panic: optional pointer to int that will be updated if secid fails
1689 */
1690 void audit_log_name(struct audit_context *context, struct audit_names *n,
1691 struct path *path, int record_num, int *call_panic)
1692 {
1693 struct audit_buffer *ab;
1694 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1695 if (!ab)
1696 return;
1697
1698 audit_log_format(ab, "item=%d", record_num);
1699
1700 if (path)
1701 audit_log_d_path(ab, " name=", path);
1702 else if (n->name) {
1703 switch (n->name_len) {
1704 case AUDIT_NAME_FULL:
1705 /* log the full path */
1706 audit_log_format(ab, " name=");
1707 audit_log_untrustedstring(ab, n->name->name);
1708 break;
1709 case 0:
1710 /* name was specified as a relative path and the
1711 * directory component is the cwd */
1712 audit_log_d_path(ab, " name=", &context->pwd);
1713 break;
1714 default:
1715 /* log the name's directory component */
1716 audit_log_format(ab, " name=");
1717 audit_log_n_untrustedstring(ab, n->name->name,
1718 n->name_len);
1719 }
1720 } else
1721 audit_log_format(ab, " name=(null)");
1722
1723 if (n->ino != (unsigned long)-1) {
1724 audit_log_format(ab, " inode=%lu"
1725 " dev=%02x:%02x mode=%#ho"
1726 " ouid=%u ogid=%u rdev=%02x:%02x",
1727 n->ino,
1728 MAJOR(n->dev),
1729 MINOR(n->dev),
1730 n->mode,
1731 from_kuid(&init_user_ns, n->uid),
1732 from_kgid(&init_user_ns, n->gid),
1733 MAJOR(n->rdev),
1734 MINOR(n->rdev));
1735 }
1736 if (n->osid != 0) {
1737 char *ctx = NULL;
1738 u32 len;
1739 if (security_secid_to_secctx(
1740 n->osid, &ctx, &len)) {
1741 audit_log_format(ab, " osid=%u", n->osid);
1742 if (call_panic)
1743 *call_panic = 2;
1744 } else {
1745 audit_log_format(ab, " obj=%s", ctx);
1746 security_release_secctx(ctx, len);
1747 }
1748 }
1749
1750 /* log the audit_names record type */
1751 audit_log_format(ab, " nametype=");
1752 switch(n->type) {
1753 case AUDIT_TYPE_NORMAL:
1754 audit_log_format(ab, "NORMAL");
1755 break;
1756 case AUDIT_TYPE_PARENT:
1757 audit_log_format(ab, "PARENT");
1758 break;
1759 case AUDIT_TYPE_CHILD_DELETE:
1760 audit_log_format(ab, "DELETE");
1761 break;
1762 case AUDIT_TYPE_CHILD_CREATE:
1763 audit_log_format(ab, "CREATE");
1764 break;
1765 default:
1766 audit_log_format(ab, "UNKNOWN");
1767 break;
1768 }
1769
1770 audit_log_fcaps(ab, n);
1771 audit_log_end(ab);
1772 }
1773
1774 int audit_log_task_context(struct audit_buffer *ab)
1775 {
1776 char *ctx = NULL;
1777 unsigned len;
1778 int error;
1779 u32 sid;
1780
1781 security_task_getsecid(current, &sid);
1782 if (!sid)
1783 return 0;
1784
1785 error = security_secid_to_secctx(sid, &ctx, &len);
1786 if (error) {
1787 if (error != -EINVAL)
1788 goto error_path;
1789 return 0;
1790 }
1791
1792 audit_log_format(ab, " subj=%s", ctx);
1793 security_release_secctx(ctx, len);
1794 return 0;
1795
1796 error_path:
1797 audit_panic("error in audit_log_task_context");
1798 return error;
1799 }
1800 EXPORT_SYMBOL(audit_log_task_context);
1801
1802 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1803 {
1804 const struct cred *cred;
1805 char name[sizeof(tsk->comm)];
1806 struct mm_struct *mm = tsk->mm;
1807 char *tty;
1808
1809 if (!ab)
1810 return;
1811
1812 /* tsk == current */
1813 cred = current_cred();
1814
1815 spin_lock_irq(&tsk->sighand->siglock);
1816 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1817 tty = tsk->signal->tty->name;
1818 else
1819 tty = "(none)";
1820 spin_unlock_irq(&tsk->sighand->siglock);
1821
1822 audit_log_format(ab,
1823 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1824 " euid=%u suid=%u fsuid=%u"
1825 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1826 sys_getppid(),
1827 tsk->pid,
1828 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1829 from_kuid(&init_user_ns, cred->uid),
1830 from_kgid(&init_user_ns, cred->gid),
1831 from_kuid(&init_user_ns, cred->euid),
1832 from_kuid(&init_user_ns, cred->suid),
1833 from_kuid(&init_user_ns, cred->fsuid),
1834 from_kgid(&init_user_ns, cred->egid),
1835 from_kgid(&init_user_ns, cred->sgid),
1836 from_kgid(&init_user_ns, cred->fsgid),
1837 tty, audit_get_sessionid(tsk));
1838
1839 get_task_comm(name, tsk);
1840 audit_log_format(ab, " comm=");
1841 audit_log_untrustedstring(ab, name);
1842
1843 if (mm) {
1844 down_read(&mm->mmap_sem);
1845 if (mm->exe_file)
1846 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1847 up_read(&mm->mmap_sem);
1848 } else
1849 audit_log_format(ab, " exe=(null)");
1850 audit_log_task_context(ab);
1851 }
1852 EXPORT_SYMBOL(audit_log_task_info);
1853
1854 /**
1855 * audit_log_link_denied - report a link restriction denial
1856 * @operation: specific link opreation
1857 * @link: the path that triggered the restriction
1858 */
1859 void audit_log_link_denied(const char *operation, struct path *link)
1860 {
1861 struct audit_buffer *ab;
1862 struct audit_names *name;
1863
1864 name = kzalloc(sizeof(*name), GFP_NOFS);
1865 if (!name)
1866 return;
1867
1868 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1869 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1870 AUDIT_ANOM_LINK);
1871 if (!ab)
1872 goto out;
1873 audit_log_format(ab, "op=%s", operation);
1874 audit_log_task_info(ab, current);
1875 audit_log_format(ab, " res=0");
1876 audit_log_end(ab);
1877
1878 /* Generate AUDIT_PATH record with object. */
1879 name->type = AUDIT_TYPE_NORMAL;
1880 audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1881 audit_log_name(current->audit_context, name, link, 0, NULL);
1882 out:
1883 kfree(name);
1884 }
1885
1886 /**
1887 * audit_log_end - end one audit record
1888 * @ab: the audit_buffer
1889 *
1890 * The netlink_* functions cannot be called inside an irq context, so
1891 * the audit buffer is placed on a queue and a tasklet is scheduled to
1892 * remove them from the queue outside the irq context. May be called in
1893 * any context.
1894 */
1895 void audit_log_end(struct audit_buffer *ab)
1896 {
1897 if (!ab)
1898 return;
1899 if (!audit_rate_check()) {
1900 audit_log_lost("rate limit exceeded");
1901 } else {
1902 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1903 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1904
1905 if (audit_pid) {
1906 skb_queue_tail(&audit_skb_queue, ab->skb);
1907 wake_up_interruptible(&kauditd_wait);
1908 } else {
1909 audit_printk_skb(ab->skb);
1910 }
1911 ab->skb = NULL;
1912 }
1913 audit_buffer_free(ab);
1914 }
1915
1916 /**
1917 * audit_log - Log an audit record
1918 * @ctx: audit context
1919 * @gfp_mask: type of allocation
1920 * @type: audit message type
1921 * @fmt: format string to use
1922 * @...: variable parameters matching the format string
1923 *
1924 * This is a convenience function that calls audit_log_start,
1925 * audit_log_vformat, and audit_log_end. It may be called
1926 * in any context.
1927 */
1928 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1929 const char *fmt, ...)
1930 {
1931 struct audit_buffer *ab;
1932 va_list args;
1933
1934 ab = audit_log_start(ctx, gfp_mask, type);
1935 if (ab) {
1936 va_start(args, fmt);
1937 audit_log_vformat(ab, fmt, args);
1938 va_end(args);
1939 audit_log_end(ab);
1940 }
1941 }
1942
1943 #ifdef CONFIG_SECURITY
1944 /**
1945 * audit_log_secctx - Converts and logs SELinux context
1946 * @ab: audit_buffer
1947 * @secid: security number
1948 *
1949 * This is a helper function that calls security_secid_to_secctx to convert
1950 * secid to secctx and then adds the (converted) SELinux context to the audit
1951 * log by calling audit_log_format, thus also preventing leak of internal secid
1952 * to userspace. If secid cannot be converted audit_panic is called.
1953 */
1954 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1955 {
1956 u32 len;
1957 char *secctx;
1958
1959 if (security_secid_to_secctx(secid, &secctx, &len)) {
1960 audit_panic("Cannot convert secid to context");
1961 } else {
1962 audit_log_format(ab, " obj=%s", secctx);
1963 security_release_secctx(secctx, len);
1964 }
1965 }
1966 EXPORT_SYMBOL(audit_log_secctx);
1967 #endif
1968
1969 EXPORT_SYMBOL(audit_log_start);
1970 EXPORT_SYMBOL(audit_log_end);
1971 EXPORT_SYMBOL(audit_log_format);
1972 EXPORT_SYMBOL(audit_log);
This page took 0.075879 seconds and 6 git commands to generate.