audit: we don't need to __set_current_state(TASK_RUNNING)
[deliverable/linux.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57
58 #include <linux/audit.h>
59
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/tty.h>
68 #include <linux/pid_namespace.h>
69 #include <net/netns/generic.h>
70
71 #include "audit.h"
72
73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74 * (Initialization happens after skb_init is called.) */
75 #define AUDIT_DISABLED -1
76 #define AUDIT_UNINITIALIZED 0
77 #define AUDIT_INITIALIZED 1
78 static int audit_initialized;
79
80 #define AUDIT_OFF 0
81 #define AUDIT_ON 1
82 #define AUDIT_LOCKED 2
83 u32 audit_enabled;
84 u32 audit_ever_enabled;
85
86 EXPORT_SYMBOL_GPL(audit_enabled);
87
88 /* Default state when kernel boots without any parameters. */
89 static u32 audit_default;
90
91 /* If auditing cannot proceed, audit_failure selects what happens. */
92 static u32 audit_failure = AUDIT_FAIL_PRINTK;
93
94 /*
95 * If audit records are to be written to the netlink socket, audit_pid
96 * contains the pid of the auditd process and audit_nlk_portid contains
97 * the portid to use to send netlink messages to that process.
98 */
99 int audit_pid;
100 static __u32 audit_nlk_portid;
101
102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
103 * to that number per second. This prevents DoS attacks, but results in
104 * audit records being dropped. */
105 static u32 audit_rate_limit;
106
107 /* Number of outstanding audit_buffers allowed.
108 * When set to zero, this means unlimited. */
109 static u32 audit_backlog_limit = 64;
110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113
114 /* The identity of the user shutting down the audit system. */
115 kuid_t audit_sig_uid = INVALID_UID;
116 pid_t audit_sig_pid = -1;
117 u32 audit_sig_sid = 0;
118
119 /* Records can be lost in several ways:
120 0) [suppressed in audit_alloc]
121 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
122 2) out of memory in audit_log_move [alloc_skb]
123 3) suppressed due to audit_rate_limit
124 4) suppressed due to audit_backlog_limit
125 */
126 static atomic_t audit_lost = ATOMIC_INIT(0);
127
128 /* The netlink socket. */
129 static struct sock *audit_sock;
130 static int audit_net_id;
131
132 /* Hash for inode-based rules */
133 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
134
135 /* The audit_freelist is a list of pre-allocated audit buffers (if more
136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
137 * being placed on the freelist). */
138 static DEFINE_SPINLOCK(audit_freelist_lock);
139 static int audit_freelist_count;
140 static LIST_HEAD(audit_freelist);
141
142 static struct sk_buff_head audit_skb_queue;
143 /* queue of skbs to send to auditd when/if it comes back */
144 static struct sk_buff_head audit_skb_hold_queue;
145 static struct task_struct *kauditd_task;
146 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
147 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
148
149 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
150 .mask = -1,
151 .features = 0,
152 .lock = 0,};
153
154 static char *audit_feature_names[2] = {
155 "only_unset_loginuid",
156 "loginuid_immutable",
157 };
158
159
160 /* Serialize requests from userspace. */
161 DEFINE_MUTEX(audit_cmd_mutex);
162
163 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
164 * audit records. Since printk uses a 1024 byte buffer, this buffer
165 * should be at least that large. */
166 #define AUDIT_BUFSIZ 1024
167
168 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
169 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
170 #define AUDIT_MAXFREE (2*NR_CPUS)
171
172 /* The audit_buffer is used when formatting an audit record. The caller
173 * locks briefly to get the record off the freelist or to allocate the
174 * buffer, and locks briefly to send the buffer to the netlink layer or
175 * to place it on a transmit queue. Multiple audit_buffers can be in
176 * use simultaneously. */
177 struct audit_buffer {
178 struct list_head list;
179 struct sk_buff *skb; /* formatted skb ready to send */
180 struct audit_context *ctx; /* NULL or associated context */
181 gfp_t gfp_mask;
182 };
183
184 struct audit_reply {
185 __u32 portid;
186 struct net *net;
187 struct sk_buff *skb;
188 };
189
190 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
191 {
192 if (ab) {
193 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
194 nlh->nlmsg_pid = portid;
195 }
196 }
197
198 void audit_panic(const char *message)
199 {
200 switch (audit_failure) {
201 case AUDIT_FAIL_SILENT:
202 break;
203 case AUDIT_FAIL_PRINTK:
204 if (printk_ratelimit())
205 pr_err("%s\n", message);
206 break;
207 case AUDIT_FAIL_PANIC:
208 /* test audit_pid since printk is always losey, why bother? */
209 if (audit_pid)
210 panic("audit: %s\n", message);
211 break;
212 }
213 }
214
215 static inline int audit_rate_check(void)
216 {
217 static unsigned long last_check = 0;
218 static int messages = 0;
219 static DEFINE_SPINLOCK(lock);
220 unsigned long flags;
221 unsigned long now;
222 unsigned long elapsed;
223 int retval = 0;
224
225 if (!audit_rate_limit) return 1;
226
227 spin_lock_irqsave(&lock, flags);
228 if (++messages < audit_rate_limit) {
229 retval = 1;
230 } else {
231 now = jiffies;
232 elapsed = now - last_check;
233 if (elapsed > HZ) {
234 last_check = now;
235 messages = 0;
236 retval = 1;
237 }
238 }
239 spin_unlock_irqrestore(&lock, flags);
240
241 return retval;
242 }
243
244 /**
245 * audit_log_lost - conditionally log lost audit message event
246 * @message: the message stating reason for lost audit message
247 *
248 * Emit at least 1 message per second, even if audit_rate_check is
249 * throttling.
250 * Always increment the lost messages counter.
251 */
252 void audit_log_lost(const char *message)
253 {
254 static unsigned long last_msg = 0;
255 static DEFINE_SPINLOCK(lock);
256 unsigned long flags;
257 unsigned long now;
258 int print;
259
260 atomic_inc(&audit_lost);
261
262 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
263
264 if (!print) {
265 spin_lock_irqsave(&lock, flags);
266 now = jiffies;
267 if (now - last_msg > HZ) {
268 print = 1;
269 last_msg = now;
270 }
271 spin_unlock_irqrestore(&lock, flags);
272 }
273
274 if (print) {
275 if (printk_ratelimit())
276 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
277 atomic_read(&audit_lost),
278 audit_rate_limit,
279 audit_backlog_limit);
280 audit_panic(message);
281 }
282 }
283
284 static int audit_log_config_change(char *function_name, u32 new, u32 old,
285 int allow_changes)
286 {
287 struct audit_buffer *ab;
288 int rc = 0;
289
290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
291 if (unlikely(!ab))
292 return rc;
293 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
294 audit_log_session_info(ab);
295 rc = audit_log_task_context(ab);
296 if (rc)
297 allow_changes = 0; /* Something weird, deny request */
298 audit_log_format(ab, " res=%d", allow_changes);
299 audit_log_end(ab);
300 return rc;
301 }
302
303 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
304 {
305 int allow_changes, rc = 0;
306 u32 old = *to_change;
307
308 /* check if we are locked */
309 if (audit_enabled == AUDIT_LOCKED)
310 allow_changes = 0;
311 else
312 allow_changes = 1;
313
314 if (audit_enabled != AUDIT_OFF) {
315 rc = audit_log_config_change(function_name, new, old, allow_changes);
316 if (rc)
317 allow_changes = 0;
318 }
319
320 /* If we are allowed, make the change */
321 if (allow_changes == 1)
322 *to_change = new;
323 /* Not allowed, update reason */
324 else if (rc == 0)
325 rc = -EPERM;
326 return rc;
327 }
328
329 static int audit_set_rate_limit(u32 limit)
330 {
331 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
332 }
333
334 static int audit_set_backlog_limit(u32 limit)
335 {
336 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
337 }
338
339 static int audit_set_backlog_wait_time(u32 timeout)
340 {
341 return audit_do_config_change("audit_backlog_wait_time",
342 &audit_backlog_wait_time_master, timeout);
343 }
344
345 static int audit_set_enabled(u32 state)
346 {
347 int rc;
348 if (state > AUDIT_LOCKED)
349 return -EINVAL;
350
351 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
352 if (!rc)
353 audit_ever_enabled |= !!state;
354
355 return rc;
356 }
357
358 static int audit_set_failure(u32 state)
359 {
360 if (state != AUDIT_FAIL_SILENT
361 && state != AUDIT_FAIL_PRINTK
362 && state != AUDIT_FAIL_PANIC)
363 return -EINVAL;
364
365 return audit_do_config_change("audit_failure", &audit_failure, state);
366 }
367
368 /*
369 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
370 * already have been sent via prink/syslog and so if these messages are dropped
371 * it is not a huge concern since we already passed the audit_log_lost()
372 * notification and stuff. This is just nice to get audit messages during
373 * boot before auditd is running or messages generated while auditd is stopped.
374 * This only holds messages is audit_default is set, aka booting with audit=1
375 * or building your kernel that way.
376 */
377 static void audit_hold_skb(struct sk_buff *skb)
378 {
379 if (audit_default &&
380 (!audit_backlog_limit ||
381 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
382 skb_queue_tail(&audit_skb_hold_queue, skb);
383 else
384 kfree_skb(skb);
385 }
386
387 /*
388 * For one reason or another this nlh isn't getting delivered to the userspace
389 * audit daemon, just send it to printk.
390 */
391 static void audit_printk_skb(struct sk_buff *skb)
392 {
393 struct nlmsghdr *nlh = nlmsg_hdr(skb);
394 char *data = nlmsg_data(nlh);
395
396 if (nlh->nlmsg_type != AUDIT_EOE) {
397 if (printk_ratelimit())
398 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
399 else
400 audit_log_lost("printk limit exceeded");
401 }
402
403 audit_hold_skb(skb);
404 }
405
406 static void kauditd_send_skb(struct sk_buff *skb)
407 {
408 int err;
409 int attempts = 0;
410 #define AUDITD_RETRIES 5
411
412 restart:
413 /* take a reference in case we can't send it and we want to hold it */
414 skb_get(skb);
415 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
416 if (err < 0) {
417 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
418 audit_pid, err);
419 if (audit_pid) {
420 if (err == -ECONNREFUSED || err == -EPERM
421 || ++attempts >= AUDITD_RETRIES) {
422 char s[32];
423
424 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
425 audit_log_lost(s);
426 audit_pid = 0;
427 audit_sock = NULL;
428 } else {
429 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
430 attempts, audit_pid);
431 set_current_state(TASK_INTERRUPTIBLE);
432 schedule();
433 goto restart;
434 }
435 }
436 /* we might get lucky and get this in the next auditd */
437 audit_hold_skb(skb);
438 } else
439 /* drop the extra reference if sent ok */
440 consume_skb(skb);
441 }
442
443 /*
444 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
445 *
446 * This function doesn't consume an skb as might be expected since it has to
447 * copy it anyways.
448 */
449 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
450 {
451 struct sk_buff *copy;
452 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
453 struct sock *sock = aunet->nlsk;
454
455 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
456 return;
457
458 /*
459 * The seemingly wasteful skb_copy() rather than bumping the refcount
460 * using skb_get() is necessary because non-standard mods are made to
461 * the skb by the original kaudit unicast socket send routine. The
462 * existing auditd daemon assumes this breakage. Fixing this would
463 * require co-ordinating a change in the established protocol between
464 * the kaudit kernel subsystem and the auditd userspace code. There is
465 * no reason for new multicast clients to continue with this
466 * non-compliance.
467 */
468 copy = skb_copy(skb, gfp_mask);
469 if (!copy)
470 return;
471
472 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
473 }
474
475 /*
476 * flush_hold_queue - empty the hold queue if auditd appears
477 *
478 * If auditd just started, drain the queue of messages already
479 * sent to syslog/printk. Remember loss here is ok. We already
480 * called audit_log_lost() if it didn't go out normally. so the
481 * race between the skb_dequeue and the next check for audit_pid
482 * doesn't matter.
483 *
484 * If you ever find kauditd to be too slow we can get a perf win
485 * by doing our own locking and keeping better track if there
486 * are messages in this queue. I don't see the need now, but
487 * in 5 years when I want to play with this again I'll see this
488 * note and still have no friggin idea what i'm thinking today.
489 */
490 static void flush_hold_queue(void)
491 {
492 struct sk_buff *skb;
493
494 if (!audit_default || !audit_pid)
495 return;
496
497 skb = skb_dequeue(&audit_skb_hold_queue);
498 if (likely(!skb))
499 return;
500
501 while (skb && audit_pid) {
502 kauditd_send_skb(skb);
503 skb = skb_dequeue(&audit_skb_hold_queue);
504 }
505
506 /*
507 * if auditd just disappeared but we
508 * dequeued an skb we need to drop ref
509 */
510 consume_skb(skb);
511 }
512
513 static int kauditd_thread(void *dummy)
514 {
515 set_freezable();
516 while (!kthread_should_stop()) {
517 struct sk_buff *skb;
518
519 flush_hold_queue();
520
521 skb = skb_dequeue(&audit_skb_queue);
522
523 if (skb) {
524 if (!audit_backlog_limit ||
525 (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
526 wake_up(&audit_backlog_wait);
527 if (audit_pid)
528 kauditd_send_skb(skb);
529 else
530 audit_printk_skb(skb);
531 continue;
532 }
533
534 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
535 }
536 return 0;
537 }
538
539 int audit_send_list(void *_dest)
540 {
541 struct audit_netlink_list *dest = _dest;
542 struct sk_buff *skb;
543 struct net *net = dest->net;
544 struct audit_net *aunet = net_generic(net, audit_net_id);
545
546 /* wait for parent to finish and send an ACK */
547 mutex_lock(&audit_cmd_mutex);
548 mutex_unlock(&audit_cmd_mutex);
549
550 while ((skb = __skb_dequeue(&dest->q)) != NULL)
551 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
552
553 put_net(net);
554 kfree(dest);
555
556 return 0;
557 }
558
559 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
560 int multi, const void *payload, int size)
561 {
562 struct sk_buff *skb;
563 struct nlmsghdr *nlh;
564 void *data;
565 int flags = multi ? NLM_F_MULTI : 0;
566 int t = done ? NLMSG_DONE : type;
567
568 skb = nlmsg_new(size, GFP_KERNEL);
569 if (!skb)
570 return NULL;
571
572 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
573 if (!nlh)
574 goto out_kfree_skb;
575 data = nlmsg_data(nlh);
576 memcpy(data, payload, size);
577 return skb;
578
579 out_kfree_skb:
580 kfree_skb(skb);
581 return NULL;
582 }
583
584 static int audit_send_reply_thread(void *arg)
585 {
586 struct audit_reply *reply = (struct audit_reply *)arg;
587 struct net *net = reply->net;
588 struct audit_net *aunet = net_generic(net, audit_net_id);
589
590 mutex_lock(&audit_cmd_mutex);
591 mutex_unlock(&audit_cmd_mutex);
592
593 /* Ignore failure. It'll only happen if the sender goes away,
594 because our timeout is set to infinite. */
595 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
596 put_net(net);
597 kfree(reply);
598 return 0;
599 }
600 /**
601 * audit_send_reply - send an audit reply message via netlink
602 * @request_skb: skb of request we are replying to (used to target the reply)
603 * @seq: sequence number
604 * @type: audit message type
605 * @done: done (last) flag
606 * @multi: multi-part message flag
607 * @payload: payload data
608 * @size: payload size
609 *
610 * Allocates an skb, builds the netlink message, and sends it to the port id.
611 * No failure notifications.
612 */
613 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
614 int multi, const void *payload, int size)
615 {
616 u32 portid = NETLINK_CB(request_skb).portid;
617 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
618 struct sk_buff *skb;
619 struct task_struct *tsk;
620 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
621 GFP_KERNEL);
622
623 if (!reply)
624 return;
625
626 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
627 if (!skb)
628 goto out;
629
630 reply->net = get_net(net);
631 reply->portid = portid;
632 reply->skb = skb;
633
634 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
635 if (!IS_ERR(tsk))
636 return;
637 kfree_skb(skb);
638 out:
639 kfree(reply);
640 }
641
642 /*
643 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
644 * control messages.
645 */
646 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
647 {
648 int err = 0;
649
650 /* Only support initial user namespace for now. */
651 /*
652 * We return ECONNREFUSED because it tricks userspace into thinking
653 * that audit was not configured into the kernel. Lots of users
654 * configure their PAM stack (because that's what the distro does)
655 * to reject login if unable to send messages to audit. If we return
656 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
657 * configured in and will let login proceed. If we return EPERM
658 * userspace will reject all logins. This should be removed when we
659 * support non init namespaces!!
660 */
661 if (current_user_ns() != &init_user_ns)
662 return -ECONNREFUSED;
663
664 switch (msg_type) {
665 case AUDIT_LIST:
666 case AUDIT_ADD:
667 case AUDIT_DEL:
668 return -EOPNOTSUPP;
669 case AUDIT_GET:
670 case AUDIT_SET:
671 case AUDIT_GET_FEATURE:
672 case AUDIT_SET_FEATURE:
673 case AUDIT_LIST_RULES:
674 case AUDIT_ADD_RULE:
675 case AUDIT_DEL_RULE:
676 case AUDIT_SIGNAL_INFO:
677 case AUDIT_TTY_GET:
678 case AUDIT_TTY_SET:
679 case AUDIT_TRIM:
680 case AUDIT_MAKE_EQUIV:
681 /* Only support auditd and auditctl in initial pid namespace
682 * for now. */
683 if (task_active_pid_ns(current) != &init_pid_ns)
684 return -EPERM;
685
686 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
687 err = -EPERM;
688 break;
689 case AUDIT_USER:
690 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
691 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
692 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
693 err = -EPERM;
694 break;
695 default: /* bad msg */
696 err = -EINVAL;
697 }
698
699 return err;
700 }
701
702 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
703 {
704 uid_t uid = from_kuid(&init_user_ns, current_uid());
705 pid_t pid = task_tgid_nr(current);
706
707 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
708 *ab = NULL;
709 return;
710 }
711
712 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
713 if (unlikely(!*ab))
714 return;
715 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
716 audit_log_session_info(*ab);
717 audit_log_task_context(*ab);
718 }
719
720 int is_audit_feature_set(int i)
721 {
722 return af.features & AUDIT_FEATURE_TO_MASK(i);
723 }
724
725
726 static int audit_get_feature(struct sk_buff *skb)
727 {
728 u32 seq;
729
730 seq = nlmsg_hdr(skb)->nlmsg_seq;
731
732 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
733
734 return 0;
735 }
736
737 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
738 u32 old_lock, u32 new_lock, int res)
739 {
740 struct audit_buffer *ab;
741
742 if (audit_enabled == AUDIT_OFF)
743 return;
744
745 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
746 audit_log_task_info(ab, current);
747 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
748 audit_feature_names[which], !!old_feature, !!new_feature,
749 !!old_lock, !!new_lock, res);
750 audit_log_end(ab);
751 }
752
753 static int audit_set_feature(struct sk_buff *skb)
754 {
755 struct audit_features *uaf;
756 int i;
757
758 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
759 uaf = nlmsg_data(nlmsg_hdr(skb));
760
761 /* if there is ever a version 2 we should handle that here */
762
763 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
764 u32 feature = AUDIT_FEATURE_TO_MASK(i);
765 u32 old_feature, new_feature, old_lock, new_lock;
766
767 /* if we are not changing this feature, move along */
768 if (!(feature & uaf->mask))
769 continue;
770
771 old_feature = af.features & feature;
772 new_feature = uaf->features & feature;
773 new_lock = (uaf->lock | af.lock) & feature;
774 old_lock = af.lock & feature;
775
776 /* are we changing a locked feature? */
777 if (old_lock && (new_feature != old_feature)) {
778 audit_log_feature_change(i, old_feature, new_feature,
779 old_lock, new_lock, 0);
780 return -EPERM;
781 }
782 }
783 /* nothing invalid, do the changes */
784 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
785 u32 feature = AUDIT_FEATURE_TO_MASK(i);
786 u32 old_feature, new_feature, old_lock, new_lock;
787
788 /* if we are not changing this feature, move along */
789 if (!(feature & uaf->mask))
790 continue;
791
792 old_feature = af.features & feature;
793 new_feature = uaf->features & feature;
794 old_lock = af.lock & feature;
795 new_lock = (uaf->lock | af.lock) & feature;
796
797 if (new_feature != old_feature)
798 audit_log_feature_change(i, old_feature, new_feature,
799 old_lock, new_lock, 1);
800
801 if (new_feature)
802 af.features |= feature;
803 else
804 af.features &= ~feature;
805 af.lock |= new_lock;
806 }
807
808 return 0;
809 }
810
811 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
812 {
813 u32 seq;
814 void *data;
815 int err;
816 struct audit_buffer *ab;
817 u16 msg_type = nlh->nlmsg_type;
818 struct audit_sig_info *sig_data;
819 char *ctx = NULL;
820 u32 len;
821
822 err = audit_netlink_ok(skb, msg_type);
823 if (err)
824 return err;
825
826 /* As soon as there's any sign of userspace auditd,
827 * start kauditd to talk to it */
828 if (!kauditd_task) {
829 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
830 if (IS_ERR(kauditd_task)) {
831 err = PTR_ERR(kauditd_task);
832 kauditd_task = NULL;
833 return err;
834 }
835 }
836 seq = nlh->nlmsg_seq;
837 data = nlmsg_data(nlh);
838
839 switch (msg_type) {
840 case AUDIT_GET: {
841 struct audit_status s;
842 memset(&s, 0, sizeof(s));
843 s.enabled = audit_enabled;
844 s.failure = audit_failure;
845 s.pid = audit_pid;
846 s.rate_limit = audit_rate_limit;
847 s.backlog_limit = audit_backlog_limit;
848 s.lost = atomic_read(&audit_lost);
849 s.backlog = skb_queue_len(&audit_skb_queue);
850 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
851 s.backlog_wait_time = audit_backlog_wait_time_master;
852 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
853 break;
854 }
855 case AUDIT_SET: {
856 struct audit_status s;
857 memset(&s, 0, sizeof(s));
858 /* guard against past and future API changes */
859 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
860 if (s.mask & AUDIT_STATUS_ENABLED) {
861 err = audit_set_enabled(s.enabled);
862 if (err < 0)
863 return err;
864 }
865 if (s.mask & AUDIT_STATUS_FAILURE) {
866 err = audit_set_failure(s.failure);
867 if (err < 0)
868 return err;
869 }
870 if (s.mask & AUDIT_STATUS_PID) {
871 int new_pid = s.pid;
872
873 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
874 return -EACCES;
875 if (audit_enabled != AUDIT_OFF)
876 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
877 audit_pid = new_pid;
878 audit_nlk_portid = NETLINK_CB(skb).portid;
879 audit_sock = skb->sk;
880 }
881 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
882 err = audit_set_rate_limit(s.rate_limit);
883 if (err < 0)
884 return err;
885 }
886 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
887 err = audit_set_backlog_limit(s.backlog_limit);
888 if (err < 0)
889 return err;
890 }
891 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
892 if (sizeof(s) > (size_t)nlh->nlmsg_len)
893 return -EINVAL;
894 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
895 return -EINVAL;
896 err = audit_set_backlog_wait_time(s.backlog_wait_time);
897 if (err < 0)
898 return err;
899 }
900 break;
901 }
902 case AUDIT_GET_FEATURE:
903 err = audit_get_feature(skb);
904 if (err)
905 return err;
906 break;
907 case AUDIT_SET_FEATURE:
908 err = audit_set_feature(skb);
909 if (err)
910 return err;
911 break;
912 case AUDIT_USER:
913 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
914 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
915 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
916 return 0;
917
918 err = audit_filter_user(msg_type);
919 if (err == 1) { /* match or error */
920 err = 0;
921 if (msg_type == AUDIT_USER_TTY) {
922 err = tty_audit_push_current();
923 if (err)
924 break;
925 }
926 mutex_unlock(&audit_cmd_mutex);
927 audit_log_common_recv_msg(&ab, msg_type);
928 if (msg_type != AUDIT_USER_TTY)
929 audit_log_format(ab, " msg='%.*s'",
930 AUDIT_MESSAGE_TEXT_MAX,
931 (char *)data);
932 else {
933 int size;
934
935 audit_log_format(ab, " data=");
936 size = nlmsg_len(nlh);
937 if (size > 0 &&
938 ((unsigned char *)data)[size - 1] == '\0')
939 size--;
940 audit_log_n_untrustedstring(ab, data, size);
941 }
942 audit_set_portid(ab, NETLINK_CB(skb).portid);
943 audit_log_end(ab);
944 mutex_lock(&audit_cmd_mutex);
945 }
946 break;
947 case AUDIT_ADD_RULE:
948 case AUDIT_DEL_RULE:
949 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
950 return -EINVAL;
951 if (audit_enabled == AUDIT_LOCKED) {
952 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
953 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
954 audit_log_end(ab);
955 return -EPERM;
956 }
957 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
958 seq, data, nlmsg_len(nlh));
959 break;
960 case AUDIT_LIST_RULES:
961 err = audit_list_rules_send(skb, seq);
962 break;
963 case AUDIT_TRIM:
964 audit_trim_trees();
965 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
966 audit_log_format(ab, " op=trim res=1");
967 audit_log_end(ab);
968 break;
969 case AUDIT_MAKE_EQUIV: {
970 void *bufp = data;
971 u32 sizes[2];
972 size_t msglen = nlmsg_len(nlh);
973 char *old, *new;
974
975 err = -EINVAL;
976 if (msglen < 2 * sizeof(u32))
977 break;
978 memcpy(sizes, bufp, 2 * sizeof(u32));
979 bufp += 2 * sizeof(u32);
980 msglen -= 2 * sizeof(u32);
981 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
982 if (IS_ERR(old)) {
983 err = PTR_ERR(old);
984 break;
985 }
986 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
987 if (IS_ERR(new)) {
988 err = PTR_ERR(new);
989 kfree(old);
990 break;
991 }
992 /* OK, here comes... */
993 err = audit_tag_tree(old, new);
994
995 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
996
997 audit_log_format(ab, " op=make_equiv old=");
998 audit_log_untrustedstring(ab, old);
999 audit_log_format(ab, " new=");
1000 audit_log_untrustedstring(ab, new);
1001 audit_log_format(ab, " res=%d", !err);
1002 audit_log_end(ab);
1003 kfree(old);
1004 kfree(new);
1005 break;
1006 }
1007 case AUDIT_SIGNAL_INFO:
1008 len = 0;
1009 if (audit_sig_sid) {
1010 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1011 if (err)
1012 return err;
1013 }
1014 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1015 if (!sig_data) {
1016 if (audit_sig_sid)
1017 security_release_secctx(ctx, len);
1018 return -ENOMEM;
1019 }
1020 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1021 sig_data->pid = audit_sig_pid;
1022 if (audit_sig_sid) {
1023 memcpy(sig_data->ctx, ctx, len);
1024 security_release_secctx(ctx, len);
1025 }
1026 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1027 sig_data, sizeof(*sig_data) + len);
1028 kfree(sig_data);
1029 break;
1030 case AUDIT_TTY_GET: {
1031 struct audit_tty_status s;
1032 struct task_struct *tsk = current;
1033
1034 spin_lock(&tsk->sighand->siglock);
1035 s.enabled = tsk->signal->audit_tty;
1036 s.log_passwd = tsk->signal->audit_tty_log_passwd;
1037 spin_unlock(&tsk->sighand->siglock);
1038
1039 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1040 break;
1041 }
1042 case AUDIT_TTY_SET: {
1043 struct audit_tty_status s, old;
1044 struct task_struct *tsk = current;
1045 struct audit_buffer *ab;
1046
1047 memset(&s, 0, sizeof(s));
1048 /* guard against past and future API changes */
1049 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1050 /* check if new data is valid */
1051 if ((s.enabled != 0 && s.enabled != 1) ||
1052 (s.log_passwd != 0 && s.log_passwd != 1))
1053 err = -EINVAL;
1054
1055 spin_lock(&tsk->sighand->siglock);
1056 old.enabled = tsk->signal->audit_tty;
1057 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1058 if (!err) {
1059 tsk->signal->audit_tty = s.enabled;
1060 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1061 }
1062 spin_unlock(&tsk->sighand->siglock);
1063
1064 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1065 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1066 " old-log_passwd=%d new-log_passwd=%d res=%d",
1067 old.enabled, s.enabled, old.log_passwd,
1068 s.log_passwd, !err);
1069 audit_log_end(ab);
1070 break;
1071 }
1072 default:
1073 err = -EINVAL;
1074 break;
1075 }
1076
1077 return err < 0 ? err : 0;
1078 }
1079
1080 /*
1081 * Get message from skb. Each message is processed by audit_receive_msg.
1082 * Malformed skbs with wrong length are discarded silently.
1083 */
1084 static void audit_receive_skb(struct sk_buff *skb)
1085 {
1086 struct nlmsghdr *nlh;
1087 /*
1088 * len MUST be signed for nlmsg_next to be able to dec it below 0
1089 * if the nlmsg_len was not aligned
1090 */
1091 int len;
1092 int err;
1093
1094 nlh = nlmsg_hdr(skb);
1095 len = skb->len;
1096
1097 while (nlmsg_ok(nlh, len)) {
1098 err = audit_receive_msg(skb, nlh);
1099 /* if err or if this message says it wants a response */
1100 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1101 netlink_ack(skb, nlh, err);
1102
1103 nlh = nlmsg_next(nlh, &len);
1104 }
1105 }
1106
1107 /* Receive messages from netlink socket. */
1108 static void audit_receive(struct sk_buff *skb)
1109 {
1110 mutex_lock(&audit_cmd_mutex);
1111 audit_receive_skb(skb);
1112 mutex_unlock(&audit_cmd_mutex);
1113 }
1114
1115 /* Run custom bind function on netlink socket group connect or bind requests. */
1116 static int audit_bind(struct net *net, int group)
1117 {
1118 if (!capable(CAP_AUDIT_READ))
1119 return -EPERM;
1120
1121 return 0;
1122 }
1123
1124 static int __net_init audit_net_init(struct net *net)
1125 {
1126 struct netlink_kernel_cfg cfg = {
1127 .input = audit_receive,
1128 .bind = audit_bind,
1129 .flags = NL_CFG_F_NONROOT_RECV,
1130 .groups = AUDIT_NLGRP_MAX,
1131 };
1132
1133 struct audit_net *aunet = net_generic(net, audit_net_id);
1134
1135 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1136 if (aunet->nlsk == NULL) {
1137 audit_panic("cannot initialize netlink socket in namespace");
1138 return -ENOMEM;
1139 }
1140 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1141 return 0;
1142 }
1143
1144 static void __net_exit audit_net_exit(struct net *net)
1145 {
1146 struct audit_net *aunet = net_generic(net, audit_net_id);
1147 struct sock *sock = aunet->nlsk;
1148 if (sock == audit_sock) {
1149 audit_pid = 0;
1150 audit_sock = NULL;
1151 }
1152
1153 RCU_INIT_POINTER(aunet->nlsk, NULL);
1154 synchronize_net();
1155 netlink_kernel_release(sock);
1156 }
1157
1158 static struct pernet_operations audit_net_ops __net_initdata = {
1159 .init = audit_net_init,
1160 .exit = audit_net_exit,
1161 .id = &audit_net_id,
1162 .size = sizeof(struct audit_net),
1163 };
1164
1165 /* Initialize audit support at boot time. */
1166 static int __init audit_init(void)
1167 {
1168 int i;
1169
1170 if (audit_initialized == AUDIT_DISABLED)
1171 return 0;
1172
1173 pr_info("initializing netlink subsys (%s)\n",
1174 audit_default ? "enabled" : "disabled");
1175 register_pernet_subsys(&audit_net_ops);
1176
1177 skb_queue_head_init(&audit_skb_queue);
1178 skb_queue_head_init(&audit_skb_hold_queue);
1179 audit_initialized = AUDIT_INITIALIZED;
1180 audit_enabled = audit_default;
1181 audit_ever_enabled |= !!audit_default;
1182
1183 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1184
1185 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1186 INIT_LIST_HEAD(&audit_inode_hash[i]);
1187
1188 return 0;
1189 }
1190 __initcall(audit_init);
1191
1192 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1193 static int __init audit_enable(char *str)
1194 {
1195 audit_default = !!simple_strtol(str, NULL, 0);
1196 if (!audit_default)
1197 audit_initialized = AUDIT_DISABLED;
1198
1199 pr_info("%s\n", audit_default ?
1200 "enabled (after initialization)" : "disabled (until reboot)");
1201
1202 return 1;
1203 }
1204 __setup("audit=", audit_enable);
1205
1206 /* Process kernel command-line parameter at boot time.
1207 * audit_backlog_limit=<n> */
1208 static int __init audit_backlog_limit_set(char *str)
1209 {
1210 u32 audit_backlog_limit_arg;
1211
1212 pr_info("audit_backlog_limit: ");
1213 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1214 pr_cont("using default of %u, unable to parse %s\n",
1215 audit_backlog_limit, str);
1216 return 1;
1217 }
1218
1219 audit_backlog_limit = audit_backlog_limit_arg;
1220 pr_cont("%d\n", audit_backlog_limit);
1221
1222 return 1;
1223 }
1224 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1225
1226 static void audit_buffer_free(struct audit_buffer *ab)
1227 {
1228 unsigned long flags;
1229
1230 if (!ab)
1231 return;
1232
1233 kfree_skb(ab->skb);
1234 spin_lock_irqsave(&audit_freelist_lock, flags);
1235 if (audit_freelist_count > AUDIT_MAXFREE)
1236 kfree(ab);
1237 else {
1238 audit_freelist_count++;
1239 list_add(&ab->list, &audit_freelist);
1240 }
1241 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1242 }
1243
1244 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1245 gfp_t gfp_mask, int type)
1246 {
1247 unsigned long flags;
1248 struct audit_buffer *ab = NULL;
1249 struct nlmsghdr *nlh;
1250
1251 spin_lock_irqsave(&audit_freelist_lock, flags);
1252 if (!list_empty(&audit_freelist)) {
1253 ab = list_entry(audit_freelist.next,
1254 struct audit_buffer, list);
1255 list_del(&ab->list);
1256 --audit_freelist_count;
1257 }
1258 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1259
1260 if (!ab) {
1261 ab = kmalloc(sizeof(*ab), gfp_mask);
1262 if (!ab)
1263 goto err;
1264 }
1265
1266 ab->ctx = ctx;
1267 ab->gfp_mask = gfp_mask;
1268
1269 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1270 if (!ab->skb)
1271 goto err;
1272
1273 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1274 if (!nlh)
1275 goto out_kfree_skb;
1276
1277 return ab;
1278
1279 out_kfree_skb:
1280 kfree_skb(ab->skb);
1281 ab->skb = NULL;
1282 err:
1283 audit_buffer_free(ab);
1284 return NULL;
1285 }
1286
1287 /**
1288 * audit_serial - compute a serial number for the audit record
1289 *
1290 * Compute a serial number for the audit record. Audit records are
1291 * written to user-space as soon as they are generated, so a complete
1292 * audit record may be written in several pieces. The timestamp of the
1293 * record and this serial number are used by the user-space tools to
1294 * determine which pieces belong to the same audit record. The
1295 * (timestamp,serial) tuple is unique for each syscall and is live from
1296 * syscall entry to syscall exit.
1297 *
1298 * NOTE: Another possibility is to store the formatted records off the
1299 * audit context (for those records that have a context), and emit them
1300 * all at syscall exit. However, this could delay the reporting of
1301 * significant errors until syscall exit (or never, if the system
1302 * halts).
1303 */
1304 unsigned int audit_serial(void)
1305 {
1306 static atomic_t serial = ATOMIC_INIT(0);
1307
1308 return atomic_add_return(1, &serial);
1309 }
1310
1311 static inline void audit_get_stamp(struct audit_context *ctx,
1312 struct timespec *t, unsigned int *serial)
1313 {
1314 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1315 *t = CURRENT_TIME;
1316 *serial = audit_serial();
1317 }
1318 }
1319
1320 /*
1321 * Wait for auditd to drain the queue a little
1322 */
1323 static long wait_for_auditd(long sleep_time)
1324 {
1325 DECLARE_WAITQUEUE(wait, current);
1326
1327 if (audit_backlog_limit &&
1328 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) {
1329 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1330 set_current_state(TASK_UNINTERRUPTIBLE);
1331 sleep_time = schedule_timeout(sleep_time);
1332 remove_wait_queue(&audit_backlog_wait, &wait);
1333 }
1334
1335 return sleep_time;
1336 }
1337
1338 /**
1339 * audit_log_start - obtain an audit buffer
1340 * @ctx: audit_context (may be NULL)
1341 * @gfp_mask: type of allocation
1342 * @type: audit message type
1343 *
1344 * Returns audit_buffer pointer on success or NULL on error.
1345 *
1346 * Obtain an audit buffer. This routine does locking to obtain the
1347 * audit buffer, but then no locking is required for calls to
1348 * audit_log_*format. If the task (ctx) is a task that is currently in a
1349 * syscall, then the syscall is marked as auditable and an audit record
1350 * will be written at syscall exit. If there is no associated task, then
1351 * task context (ctx) should be NULL.
1352 */
1353 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1354 int type)
1355 {
1356 struct audit_buffer *ab = NULL;
1357 struct timespec t;
1358 unsigned int uninitialized_var(serial);
1359 int reserve = 5; /* Allow atomic callers to go up to five
1360 entries over the normal backlog limit */
1361 unsigned long timeout_start = jiffies;
1362
1363 if (audit_initialized != AUDIT_INITIALIZED)
1364 return NULL;
1365
1366 if (unlikely(audit_filter_type(type)))
1367 return NULL;
1368
1369 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1370 if (audit_pid && audit_pid == current->tgid)
1371 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1372 else
1373 reserve = 0;
1374 }
1375
1376 while (audit_backlog_limit
1377 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1378 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1379 long sleep_time;
1380
1381 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1382 if (sleep_time > 0) {
1383 sleep_time = wait_for_auditd(sleep_time);
1384 if (sleep_time > 0)
1385 continue;
1386 }
1387 }
1388 if (audit_rate_check() && printk_ratelimit())
1389 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1390 skb_queue_len(&audit_skb_queue),
1391 audit_backlog_limit);
1392 audit_log_lost("backlog limit exceeded");
1393 audit_backlog_wait_time = 0;
1394 wake_up(&audit_backlog_wait);
1395 return NULL;
1396 }
1397
1398 if (!reserve && !audit_backlog_wait_time)
1399 audit_backlog_wait_time = audit_backlog_wait_time_master;
1400
1401 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1402 if (!ab) {
1403 audit_log_lost("out of memory in audit_log_start");
1404 return NULL;
1405 }
1406
1407 audit_get_stamp(ab->ctx, &t, &serial);
1408
1409 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1410 t.tv_sec, t.tv_nsec/1000000, serial);
1411 return ab;
1412 }
1413
1414 /**
1415 * audit_expand - expand skb in the audit buffer
1416 * @ab: audit_buffer
1417 * @extra: space to add at tail of the skb
1418 *
1419 * Returns 0 (no space) on failed expansion, or available space if
1420 * successful.
1421 */
1422 static inline int audit_expand(struct audit_buffer *ab, int extra)
1423 {
1424 struct sk_buff *skb = ab->skb;
1425 int oldtail = skb_tailroom(skb);
1426 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1427 int newtail = skb_tailroom(skb);
1428
1429 if (ret < 0) {
1430 audit_log_lost("out of memory in audit_expand");
1431 return 0;
1432 }
1433
1434 skb->truesize += newtail - oldtail;
1435 return newtail;
1436 }
1437
1438 /*
1439 * Format an audit message into the audit buffer. If there isn't enough
1440 * room in the audit buffer, more room will be allocated and vsnprint
1441 * will be called a second time. Currently, we assume that a printk
1442 * can't format message larger than 1024 bytes, so we don't either.
1443 */
1444 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1445 va_list args)
1446 {
1447 int len, avail;
1448 struct sk_buff *skb;
1449 va_list args2;
1450
1451 if (!ab)
1452 return;
1453
1454 BUG_ON(!ab->skb);
1455 skb = ab->skb;
1456 avail = skb_tailroom(skb);
1457 if (avail == 0) {
1458 avail = audit_expand(ab, AUDIT_BUFSIZ);
1459 if (!avail)
1460 goto out;
1461 }
1462 va_copy(args2, args);
1463 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1464 if (len >= avail) {
1465 /* The printk buffer is 1024 bytes long, so if we get
1466 * here and AUDIT_BUFSIZ is at least 1024, then we can
1467 * log everything that printk could have logged. */
1468 avail = audit_expand(ab,
1469 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1470 if (!avail)
1471 goto out_va_end;
1472 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1473 }
1474 if (len > 0)
1475 skb_put(skb, len);
1476 out_va_end:
1477 va_end(args2);
1478 out:
1479 return;
1480 }
1481
1482 /**
1483 * audit_log_format - format a message into the audit buffer.
1484 * @ab: audit_buffer
1485 * @fmt: format string
1486 * @...: optional parameters matching @fmt string
1487 *
1488 * All the work is done in audit_log_vformat.
1489 */
1490 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1491 {
1492 va_list args;
1493
1494 if (!ab)
1495 return;
1496 va_start(args, fmt);
1497 audit_log_vformat(ab, fmt, args);
1498 va_end(args);
1499 }
1500
1501 /**
1502 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1503 * @ab: the audit_buffer
1504 * @buf: buffer to convert to hex
1505 * @len: length of @buf to be converted
1506 *
1507 * No return value; failure to expand is silently ignored.
1508 *
1509 * This function will take the passed buf and convert it into a string of
1510 * ascii hex digits. The new string is placed onto the skb.
1511 */
1512 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1513 size_t len)
1514 {
1515 int i, avail, new_len;
1516 unsigned char *ptr;
1517 struct sk_buff *skb;
1518
1519 if (!ab)
1520 return;
1521
1522 BUG_ON(!ab->skb);
1523 skb = ab->skb;
1524 avail = skb_tailroom(skb);
1525 new_len = len<<1;
1526 if (new_len >= avail) {
1527 /* Round the buffer request up to the next multiple */
1528 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1529 avail = audit_expand(ab, new_len);
1530 if (!avail)
1531 return;
1532 }
1533
1534 ptr = skb_tail_pointer(skb);
1535 for (i = 0; i < len; i++)
1536 ptr = hex_byte_pack_upper(ptr, buf[i]);
1537 *ptr = 0;
1538 skb_put(skb, len << 1); /* new string is twice the old string */
1539 }
1540
1541 /*
1542 * Format a string of no more than slen characters into the audit buffer,
1543 * enclosed in quote marks.
1544 */
1545 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1546 size_t slen)
1547 {
1548 int avail, new_len;
1549 unsigned char *ptr;
1550 struct sk_buff *skb;
1551
1552 if (!ab)
1553 return;
1554
1555 BUG_ON(!ab->skb);
1556 skb = ab->skb;
1557 avail = skb_tailroom(skb);
1558 new_len = slen + 3; /* enclosing quotes + null terminator */
1559 if (new_len > avail) {
1560 avail = audit_expand(ab, new_len);
1561 if (!avail)
1562 return;
1563 }
1564 ptr = skb_tail_pointer(skb);
1565 *ptr++ = '"';
1566 memcpy(ptr, string, slen);
1567 ptr += slen;
1568 *ptr++ = '"';
1569 *ptr = 0;
1570 skb_put(skb, slen + 2); /* don't include null terminator */
1571 }
1572
1573 /**
1574 * audit_string_contains_control - does a string need to be logged in hex
1575 * @string: string to be checked
1576 * @len: max length of the string to check
1577 */
1578 bool audit_string_contains_control(const char *string, size_t len)
1579 {
1580 const unsigned char *p;
1581 for (p = string; p < (const unsigned char *)string + len; p++) {
1582 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1583 return true;
1584 }
1585 return false;
1586 }
1587
1588 /**
1589 * audit_log_n_untrustedstring - log a string that may contain random characters
1590 * @ab: audit_buffer
1591 * @len: length of string (not including trailing null)
1592 * @string: string to be logged
1593 *
1594 * This code will escape a string that is passed to it if the string
1595 * contains a control character, unprintable character, double quote mark,
1596 * or a space. Unescaped strings will start and end with a double quote mark.
1597 * Strings that are escaped are printed in hex (2 digits per char).
1598 *
1599 * The caller specifies the number of characters in the string to log, which may
1600 * or may not be the entire string.
1601 */
1602 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1603 size_t len)
1604 {
1605 if (audit_string_contains_control(string, len))
1606 audit_log_n_hex(ab, string, len);
1607 else
1608 audit_log_n_string(ab, string, len);
1609 }
1610
1611 /**
1612 * audit_log_untrustedstring - log a string that may contain random characters
1613 * @ab: audit_buffer
1614 * @string: string to be logged
1615 *
1616 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1617 * determine string length.
1618 */
1619 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1620 {
1621 audit_log_n_untrustedstring(ab, string, strlen(string));
1622 }
1623
1624 /* This is a helper-function to print the escaped d_path */
1625 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1626 const struct path *path)
1627 {
1628 char *p, *pathname;
1629
1630 if (prefix)
1631 audit_log_format(ab, "%s", prefix);
1632
1633 /* We will allow 11 spaces for ' (deleted)' to be appended */
1634 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1635 if (!pathname) {
1636 audit_log_string(ab, "<no_memory>");
1637 return;
1638 }
1639 p = d_path(path, pathname, PATH_MAX+11);
1640 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1641 /* FIXME: can we save some information here? */
1642 audit_log_string(ab, "<too_long>");
1643 } else
1644 audit_log_untrustedstring(ab, p);
1645 kfree(pathname);
1646 }
1647
1648 void audit_log_session_info(struct audit_buffer *ab)
1649 {
1650 unsigned int sessionid = audit_get_sessionid(current);
1651 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1652
1653 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1654 }
1655
1656 void audit_log_key(struct audit_buffer *ab, char *key)
1657 {
1658 audit_log_format(ab, " key=");
1659 if (key)
1660 audit_log_untrustedstring(ab, key);
1661 else
1662 audit_log_format(ab, "(null)");
1663 }
1664
1665 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1666 {
1667 int i;
1668
1669 audit_log_format(ab, " %s=", prefix);
1670 CAP_FOR_EACH_U32(i) {
1671 audit_log_format(ab, "%08x",
1672 cap->cap[CAP_LAST_U32 - i]);
1673 }
1674 }
1675
1676 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1677 {
1678 kernel_cap_t *perm = &name->fcap.permitted;
1679 kernel_cap_t *inh = &name->fcap.inheritable;
1680 int log = 0;
1681
1682 if (!cap_isclear(*perm)) {
1683 audit_log_cap(ab, "cap_fp", perm);
1684 log = 1;
1685 }
1686 if (!cap_isclear(*inh)) {
1687 audit_log_cap(ab, "cap_fi", inh);
1688 log = 1;
1689 }
1690
1691 if (log)
1692 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1693 name->fcap.fE, name->fcap_ver);
1694 }
1695
1696 static inline int audit_copy_fcaps(struct audit_names *name,
1697 const struct dentry *dentry)
1698 {
1699 struct cpu_vfs_cap_data caps;
1700 int rc;
1701
1702 if (!dentry)
1703 return 0;
1704
1705 rc = get_vfs_caps_from_disk(dentry, &caps);
1706 if (rc)
1707 return rc;
1708
1709 name->fcap.permitted = caps.permitted;
1710 name->fcap.inheritable = caps.inheritable;
1711 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1712 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1713 VFS_CAP_REVISION_SHIFT;
1714
1715 return 0;
1716 }
1717
1718 /* Copy inode data into an audit_names. */
1719 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1720 struct inode *inode)
1721 {
1722 name->ino = inode->i_ino;
1723 name->dev = inode->i_sb->s_dev;
1724 name->mode = inode->i_mode;
1725 name->uid = inode->i_uid;
1726 name->gid = inode->i_gid;
1727 name->rdev = inode->i_rdev;
1728 security_inode_getsecid(inode, &name->osid);
1729 audit_copy_fcaps(name, dentry);
1730 }
1731
1732 /**
1733 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1734 * @context: audit_context for the task
1735 * @n: audit_names structure with reportable details
1736 * @path: optional path to report instead of audit_names->name
1737 * @record_num: record number to report when handling a list of names
1738 * @call_panic: optional pointer to int that will be updated if secid fails
1739 */
1740 void audit_log_name(struct audit_context *context, struct audit_names *n,
1741 struct path *path, int record_num, int *call_panic)
1742 {
1743 struct audit_buffer *ab;
1744 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1745 if (!ab)
1746 return;
1747
1748 audit_log_format(ab, "item=%d", record_num);
1749
1750 if (path)
1751 audit_log_d_path(ab, " name=", path);
1752 else if (n->name) {
1753 switch (n->name_len) {
1754 case AUDIT_NAME_FULL:
1755 /* log the full path */
1756 audit_log_format(ab, " name=");
1757 audit_log_untrustedstring(ab, n->name->name);
1758 break;
1759 case 0:
1760 /* name was specified as a relative path and the
1761 * directory component is the cwd */
1762 audit_log_d_path(ab, " name=", &context->pwd);
1763 break;
1764 default:
1765 /* log the name's directory component */
1766 audit_log_format(ab, " name=");
1767 audit_log_n_untrustedstring(ab, n->name->name,
1768 n->name_len);
1769 }
1770 } else
1771 audit_log_format(ab, " name=(null)");
1772
1773 if (n->ino != AUDIT_INO_UNSET)
1774 audit_log_format(ab, " inode=%lu"
1775 " dev=%02x:%02x mode=%#ho"
1776 " ouid=%u ogid=%u rdev=%02x:%02x",
1777 n->ino,
1778 MAJOR(n->dev),
1779 MINOR(n->dev),
1780 n->mode,
1781 from_kuid(&init_user_ns, n->uid),
1782 from_kgid(&init_user_ns, n->gid),
1783 MAJOR(n->rdev),
1784 MINOR(n->rdev));
1785 if (n->osid != 0) {
1786 char *ctx = NULL;
1787 u32 len;
1788 if (security_secid_to_secctx(
1789 n->osid, &ctx, &len)) {
1790 audit_log_format(ab, " osid=%u", n->osid);
1791 if (call_panic)
1792 *call_panic = 2;
1793 } else {
1794 audit_log_format(ab, " obj=%s", ctx);
1795 security_release_secctx(ctx, len);
1796 }
1797 }
1798
1799 /* log the audit_names record type */
1800 audit_log_format(ab, " nametype=");
1801 switch(n->type) {
1802 case AUDIT_TYPE_NORMAL:
1803 audit_log_format(ab, "NORMAL");
1804 break;
1805 case AUDIT_TYPE_PARENT:
1806 audit_log_format(ab, "PARENT");
1807 break;
1808 case AUDIT_TYPE_CHILD_DELETE:
1809 audit_log_format(ab, "DELETE");
1810 break;
1811 case AUDIT_TYPE_CHILD_CREATE:
1812 audit_log_format(ab, "CREATE");
1813 break;
1814 default:
1815 audit_log_format(ab, "UNKNOWN");
1816 break;
1817 }
1818
1819 audit_log_fcaps(ab, n);
1820 audit_log_end(ab);
1821 }
1822
1823 int audit_log_task_context(struct audit_buffer *ab)
1824 {
1825 char *ctx = NULL;
1826 unsigned len;
1827 int error;
1828 u32 sid;
1829
1830 security_task_getsecid(current, &sid);
1831 if (!sid)
1832 return 0;
1833
1834 error = security_secid_to_secctx(sid, &ctx, &len);
1835 if (error) {
1836 if (error != -EINVAL)
1837 goto error_path;
1838 return 0;
1839 }
1840
1841 audit_log_format(ab, " subj=%s", ctx);
1842 security_release_secctx(ctx, len);
1843 return 0;
1844
1845 error_path:
1846 audit_panic("error in audit_log_task_context");
1847 return error;
1848 }
1849 EXPORT_SYMBOL(audit_log_task_context);
1850
1851 void audit_log_d_path_exe(struct audit_buffer *ab,
1852 struct mm_struct *mm)
1853 {
1854 struct file *exe_file;
1855
1856 if (!mm)
1857 goto out_null;
1858
1859 exe_file = get_mm_exe_file(mm);
1860 if (!exe_file)
1861 goto out_null;
1862
1863 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1864 fput(exe_file);
1865 return;
1866 out_null:
1867 audit_log_format(ab, " exe=(null)");
1868 }
1869
1870 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1871 {
1872 const struct cred *cred;
1873 char comm[sizeof(tsk->comm)];
1874 char *tty;
1875
1876 if (!ab)
1877 return;
1878
1879 /* tsk == current */
1880 cred = current_cred();
1881
1882 spin_lock_irq(&tsk->sighand->siglock);
1883 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1884 tty = tsk->signal->tty->name;
1885 else
1886 tty = "(none)";
1887 spin_unlock_irq(&tsk->sighand->siglock);
1888
1889 audit_log_format(ab,
1890 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1891 " euid=%u suid=%u fsuid=%u"
1892 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1893 task_ppid_nr(tsk),
1894 task_pid_nr(tsk),
1895 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1896 from_kuid(&init_user_ns, cred->uid),
1897 from_kgid(&init_user_ns, cred->gid),
1898 from_kuid(&init_user_ns, cred->euid),
1899 from_kuid(&init_user_ns, cred->suid),
1900 from_kuid(&init_user_ns, cred->fsuid),
1901 from_kgid(&init_user_ns, cred->egid),
1902 from_kgid(&init_user_ns, cred->sgid),
1903 from_kgid(&init_user_ns, cred->fsgid),
1904 tty, audit_get_sessionid(tsk));
1905
1906 audit_log_format(ab, " comm=");
1907 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1908
1909 audit_log_d_path_exe(ab, tsk->mm);
1910 audit_log_task_context(ab);
1911 }
1912 EXPORT_SYMBOL(audit_log_task_info);
1913
1914 /**
1915 * audit_log_link_denied - report a link restriction denial
1916 * @operation: specific link operation
1917 * @link: the path that triggered the restriction
1918 */
1919 void audit_log_link_denied(const char *operation, struct path *link)
1920 {
1921 struct audit_buffer *ab;
1922 struct audit_names *name;
1923
1924 name = kzalloc(sizeof(*name), GFP_NOFS);
1925 if (!name)
1926 return;
1927
1928 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1929 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1930 AUDIT_ANOM_LINK);
1931 if (!ab)
1932 goto out;
1933 audit_log_format(ab, "op=%s", operation);
1934 audit_log_task_info(ab, current);
1935 audit_log_format(ab, " res=0");
1936 audit_log_end(ab);
1937
1938 /* Generate AUDIT_PATH record with object. */
1939 name->type = AUDIT_TYPE_NORMAL;
1940 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1941 audit_log_name(current->audit_context, name, link, 0, NULL);
1942 out:
1943 kfree(name);
1944 }
1945
1946 /**
1947 * audit_log_end - end one audit record
1948 * @ab: the audit_buffer
1949 *
1950 * netlink_unicast() cannot be called inside an irq context because it blocks
1951 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1952 * on a queue and a tasklet is scheduled to remove them from the queue outside
1953 * the irq context. May be called in any context.
1954 */
1955 void audit_log_end(struct audit_buffer *ab)
1956 {
1957 if (!ab)
1958 return;
1959 if (!audit_rate_check()) {
1960 audit_log_lost("rate limit exceeded");
1961 } else {
1962 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1963
1964 nlh->nlmsg_len = ab->skb->len;
1965 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1966
1967 /*
1968 * The original kaudit unicast socket sends up messages with
1969 * nlmsg_len set to the payload length rather than the entire
1970 * message length. This breaks the standard set by netlink.
1971 * The existing auditd daemon assumes this breakage. Fixing
1972 * this would require co-ordinating a change in the established
1973 * protocol between the kaudit kernel subsystem and the auditd
1974 * userspace code.
1975 */
1976 nlh->nlmsg_len -= NLMSG_HDRLEN;
1977
1978 if (audit_pid) {
1979 skb_queue_tail(&audit_skb_queue, ab->skb);
1980 wake_up_interruptible(&kauditd_wait);
1981 } else {
1982 audit_printk_skb(ab->skb);
1983 }
1984 ab->skb = NULL;
1985 }
1986 audit_buffer_free(ab);
1987 }
1988
1989 /**
1990 * audit_log - Log an audit record
1991 * @ctx: audit context
1992 * @gfp_mask: type of allocation
1993 * @type: audit message type
1994 * @fmt: format string to use
1995 * @...: variable parameters matching the format string
1996 *
1997 * This is a convenience function that calls audit_log_start,
1998 * audit_log_vformat, and audit_log_end. It may be called
1999 * in any context.
2000 */
2001 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2002 const char *fmt, ...)
2003 {
2004 struct audit_buffer *ab;
2005 va_list args;
2006
2007 ab = audit_log_start(ctx, gfp_mask, type);
2008 if (ab) {
2009 va_start(args, fmt);
2010 audit_log_vformat(ab, fmt, args);
2011 va_end(args);
2012 audit_log_end(ab);
2013 }
2014 }
2015
2016 #ifdef CONFIG_SECURITY
2017 /**
2018 * audit_log_secctx - Converts and logs SELinux context
2019 * @ab: audit_buffer
2020 * @secid: security number
2021 *
2022 * This is a helper function that calls security_secid_to_secctx to convert
2023 * secid to secctx and then adds the (converted) SELinux context to the audit
2024 * log by calling audit_log_format, thus also preventing leak of internal secid
2025 * to userspace. If secid cannot be converted audit_panic is called.
2026 */
2027 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2028 {
2029 u32 len;
2030 char *secctx;
2031
2032 if (security_secid_to_secctx(secid, &secctx, &len)) {
2033 audit_panic("Cannot convert secid to context");
2034 } else {
2035 audit_log_format(ab, " obj=%s", secctx);
2036 security_release_secctx(secctx, len);
2037 }
2038 }
2039 EXPORT_SYMBOL(audit_log_secctx);
2040 #endif
2041
2042 EXPORT_SYMBOL(audit_log_start);
2043 EXPORT_SYMBOL(audit_log_end);
2044 EXPORT_SYMBOL(audit_log_format);
2045 EXPORT_SYMBOL(audit_log);
This page took 0.070013 seconds and 6 git commands to generate.