[PATCH] Define new range of userspace messages.
[deliverable/linux.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with SELinux.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <asm/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/module.h>
49 #include <linux/err.h>
50 #include <linux/kthread.h>
51
52 #include <linux/audit.h>
53
54 #include <net/sock.h>
55 #include <linux/skbuff.h>
56 #include <linux/netlink.h>
57
58 /* No auditing will take place until audit_initialized != 0.
59 * (Initialization happens after skb_init is called.) */
60 static int audit_initialized;
61
62 /* No syscall auditing will take place unless audit_enabled != 0. */
63 int audit_enabled;
64
65 /* Default state when kernel boots without any parameters. */
66 static int audit_default;
67
68 /* If auditing cannot proceed, audit_failure selects what happens. */
69 static int audit_failure = AUDIT_FAIL_PRINTK;
70
71 /* If audit records are to be written to the netlink socket, audit_pid
72 * contains the (non-zero) pid. */
73 int audit_pid;
74
75 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
76 * to that number per second. This prevents DoS attacks, but results in
77 * audit records being dropped. */
78 static int audit_rate_limit;
79
80 /* Number of outstanding audit_buffers allowed. */
81 static int audit_backlog_limit = 64;
82 static int audit_backlog_wait_time = 60 * HZ;
83 static int audit_backlog_wait_overflow = 0;
84
85 /* The identity of the user shutting down the audit system. */
86 uid_t audit_sig_uid = -1;
87 pid_t audit_sig_pid = -1;
88
89 /* Records can be lost in several ways:
90 0) [suppressed in audit_alloc]
91 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
92 2) out of memory in audit_log_move [alloc_skb]
93 3) suppressed due to audit_rate_limit
94 4) suppressed due to audit_backlog_limit
95 */
96 static atomic_t audit_lost = ATOMIC_INIT(0);
97
98 /* The netlink socket. */
99 static struct sock *audit_sock;
100
101 /* The audit_freelist is a list of pre-allocated audit buffers (if more
102 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
103 * being placed on the freelist). */
104 static DEFINE_SPINLOCK(audit_freelist_lock);
105 static int audit_freelist_count;
106 static LIST_HEAD(audit_freelist);
107
108 static struct sk_buff_head audit_skb_queue;
109 static struct task_struct *kauditd_task;
110 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
111 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
112
113 /* The netlink socket is only to be read by 1 CPU, which lets us assume
114 * that list additions and deletions never happen simultaneously in
115 * auditsc.c */
116 DECLARE_MUTEX(audit_netlink_sem);
117
118 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
119 * audit records. Since printk uses a 1024 byte buffer, this buffer
120 * should be at least that large. */
121 #define AUDIT_BUFSIZ 1024
122
123 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
124 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
125 #define AUDIT_MAXFREE (2*NR_CPUS)
126
127 /* The audit_buffer is used when formatting an audit record. The caller
128 * locks briefly to get the record off the freelist or to allocate the
129 * buffer, and locks briefly to send the buffer to the netlink layer or
130 * to place it on a transmit queue. Multiple audit_buffers can be in
131 * use simultaneously. */
132 struct audit_buffer {
133 struct list_head list;
134 struct sk_buff *skb; /* formatted skb ready to send */
135 struct audit_context *ctx; /* NULL or associated context */
136 gfp_t gfp_mask;
137 };
138
139 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
140 {
141 struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
142 nlh->nlmsg_pid = pid;
143 }
144
145 static void audit_panic(const char *message)
146 {
147 switch (audit_failure)
148 {
149 case AUDIT_FAIL_SILENT:
150 break;
151 case AUDIT_FAIL_PRINTK:
152 printk(KERN_ERR "audit: %s\n", message);
153 break;
154 case AUDIT_FAIL_PANIC:
155 panic("audit: %s\n", message);
156 break;
157 }
158 }
159
160 static inline int audit_rate_check(void)
161 {
162 static unsigned long last_check = 0;
163 static int messages = 0;
164 static DEFINE_SPINLOCK(lock);
165 unsigned long flags;
166 unsigned long now;
167 unsigned long elapsed;
168 int retval = 0;
169
170 if (!audit_rate_limit) return 1;
171
172 spin_lock_irqsave(&lock, flags);
173 if (++messages < audit_rate_limit) {
174 retval = 1;
175 } else {
176 now = jiffies;
177 elapsed = now - last_check;
178 if (elapsed > HZ) {
179 last_check = now;
180 messages = 0;
181 retval = 1;
182 }
183 }
184 spin_unlock_irqrestore(&lock, flags);
185
186 return retval;
187 }
188
189 /**
190 * audit_log_lost - conditionally log lost audit message event
191 * @message: the message stating reason for lost audit message
192 *
193 * Emit at least 1 message per second, even if audit_rate_check is
194 * throttling.
195 * Always increment the lost messages counter.
196 */
197 void audit_log_lost(const char *message)
198 {
199 static unsigned long last_msg = 0;
200 static DEFINE_SPINLOCK(lock);
201 unsigned long flags;
202 unsigned long now;
203 int print;
204
205 atomic_inc(&audit_lost);
206
207 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
208
209 if (!print) {
210 spin_lock_irqsave(&lock, flags);
211 now = jiffies;
212 if (now - last_msg > HZ) {
213 print = 1;
214 last_msg = now;
215 }
216 spin_unlock_irqrestore(&lock, flags);
217 }
218
219 if (print) {
220 printk(KERN_WARNING
221 "audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n",
222 atomic_read(&audit_lost),
223 audit_rate_limit,
224 audit_backlog_limit);
225 audit_panic(message);
226 }
227 }
228
229 static int audit_set_rate_limit(int limit, uid_t loginuid)
230 {
231 int old = audit_rate_limit;
232 audit_rate_limit = limit;
233 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
234 "audit_rate_limit=%d old=%d by auid=%u",
235 audit_rate_limit, old, loginuid);
236 return old;
237 }
238
239 static int audit_set_backlog_limit(int limit, uid_t loginuid)
240 {
241 int old = audit_backlog_limit;
242 audit_backlog_limit = limit;
243 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
244 "audit_backlog_limit=%d old=%d by auid=%u",
245 audit_backlog_limit, old, loginuid);
246 return old;
247 }
248
249 static int audit_set_enabled(int state, uid_t loginuid)
250 {
251 int old = audit_enabled;
252 if (state != 0 && state != 1)
253 return -EINVAL;
254 audit_enabled = state;
255 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
256 "audit_enabled=%d old=%d by auid=%u",
257 audit_enabled, old, loginuid);
258 return old;
259 }
260
261 static int audit_set_failure(int state, uid_t loginuid)
262 {
263 int old = audit_failure;
264 if (state != AUDIT_FAIL_SILENT
265 && state != AUDIT_FAIL_PRINTK
266 && state != AUDIT_FAIL_PANIC)
267 return -EINVAL;
268 audit_failure = state;
269 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
270 "audit_failure=%d old=%d by auid=%u",
271 audit_failure, old, loginuid);
272 return old;
273 }
274
275 static int kauditd_thread(void *dummy)
276 {
277 struct sk_buff *skb;
278
279 while (1) {
280 skb = skb_dequeue(&audit_skb_queue);
281 wake_up(&audit_backlog_wait);
282 if (skb) {
283 if (audit_pid) {
284 int err = netlink_unicast(audit_sock, skb, audit_pid, 0);
285 if (err < 0) {
286 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
287 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
288 audit_pid = 0;
289 }
290 } else {
291 printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
292 kfree_skb(skb);
293 }
294 } else {
295 DECLARE_WAITQUEUE(wait, current);
296 set_current_state(TASK_INTERRUPTIBLE);
297 add_wait_queue(&kauditd_wait, &wait);
298
299 if (!skb_queue_len(&audit_skb_queue)) {
300 try_to_freeze();
301 schedule();
302 }
303
304 __set_current_state(TASK_RUNNING);
305 remove_wait_queue(&kauditd_wait, &wait);
306 }
307 }
308 }
309
310 /**
311 * audit_send_reply - send an audit reply message via netlink
312 * @pid: process id to send reply to
313 * @seq: sequence number
314 * @type: audit message type
315 * @done: done (last) flag
316 * @multi: multi-part message flag
317 * @payload: payload data
318 * @size: payload size
319 *
320 * Allocates an skb, builds the netlink message, and sends it to the pid.
321 * No failure notifications.
322 */
323 void audit_send_reply(int pid, int seq, int type, int done, int multi,
324 void *payload, int size)
325 {
326 struct sk_buff *skb;
327 struct nlmsghdr *nlh;
328 int len = NLMSG_SPACE(size);
329 void *data;
330 int flags = multi ? NLM_F_MULTI : 0;
331 int t = done ? NLMSG_DONE : type;
332
333 skb = alloc_skb(len, GFP_KERNEL);
334 if (!skb)
335 return;
336
337 nlh = NLMSG_PUT(skb, pid, seq, t, size);
338 nlh->nlmsg_flags = flags;
339 data = NLMSG_DATA(nlh);
340 memcpy(data, payload, size);
341
342 /* Ignore failure. It'll only happen if the sender goes away,
343 because our timeout is set to infinite. */
344 netlink_unicast(audit_sock, skb, pid, 0);
345 return;
346
347 nlmsg_failure: /* Used by NLMSG_PUT */
348 if (skb)
349 kfree_skb(skb);
350 }
351
352 /*
353 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
354 * control messages.
355 */
356 static int audit_netlink_ok(kernel_cap_t eff_cap, u16 msg_type)
357 {
358 int err = 0;
359
360 switch (msg_type) {
361 case AUDIT_GET:
362 case AUDIT_LIST:
363 case AUDIT_SET:
364 case AUDIT_ADD:
365 case AUDIT_DEL:
366 case AUDIT_SIGNAL_INFO:
367 if (!cap_raised(eff_cap, CAP_AUDIT_CONTROL))
368 err = -EPERM;
369 break;
370 case AUDIT_USER:
371 case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
372 case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2:
373 if (!cap_raised(eff_cap, CAP_AUDIT_WRITE))
374 err = -EPERM;
375 break;
376 default: /* bad msg */
377 err = -EINVAL;
378 }
379
380 return err;
381 }
382
383 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
384 {
385 u32 uid, pid, seq;
386 void *data;
387 struct audit_status *status_get, status_set;
388 int err;
389 struct audit_buffer *ab;
390 u16 msg_type = nlh->nlmsg_type;
391 uid_t loginuid; /* loginuid of sender */
392 struct audit_sig_info sig_data;
393
394 err = audit_netlink_ok(NETLINK_CB(skb).eff_cap, msg_type);
395 if (err)
396 return err;
397
398 /* As soon as there's any sign of userspace auditd,
399 * start kauditd to talk to it */
400 if (!kauditd_task)
401 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
402 if (IS_ERR(kauditd_task)) {
403 err = PTR_ERR(kauditd_task);
404 kauditd_task = NULL;
405 return err;
406 }
407
408 pid = NETLINK_CREDS(skb)->pid;
409 uid = NETLINK_CREDS(skb)->uid;
410 loginuid = NETLINK_CB(skb).loginuid;
411 seq = nlh->nlmsg_seq;
412 data = NLMSG_DATA(nlh);
413
414 switch (msg_type) {
415 case AUDIT_GET:
416 status_set.enabled = audit_enabled;
417 status_set.failure = audit_failure;
418 status_set.pid = audit_pid;
419 status_set.rate_limit = audit_rate_limit;
420 status_set.backlog_limit = audit_backlog_limit;
421 status_set.lost = atomic_read(&audit_lost);
422 status_set.backlog = skb_queue_len(&audit_skb_queue);
423 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
424 &status_set, sizeof(status_set));
425 break;
426 case AUDIT_SET:
427 if (nlh->nlmsg_len < sizeof(struct audit_status))
428 return -EINVAL;
429 status_get = (struct audit_status *)data;
430 if (status_get->mask & AUDIT_STATUS_ENABLED) {
431 err = audit_set_enabled(status_get->enabled, loginuid);
432 if (err < 0) return err;
433 }
434 if (status_get->mask & AUDIT_STATUS_FAILURE) {
435 err = audit_set_failure(status_get->failure, loginuid);
436 if (err < 0) return err;
437 }
438 if (status_get->mask & AUDIT_STATUS_PID) {
439 int old = audit_pid;
440 audit_pid = status_get->pid;
441 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
442 "audit_pid=%d old=%d by auid=%u",
443 audit_pid, old, loginuid);
444 }
445 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
446 audit_set_rate_limit(status_get->rate_limit, loginuid);
447 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
448 audit_set_backlog_limit(status_get->backlog_limit,
449 loginuid);
450 break;
451 case AUDIT_USER:
452 case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
453 case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2:
454 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
455 return 0;
456
457 err = audit_filter_user(&NETLINK_CB(skb), msg_type);
458 if (err == 1) {
459 err = 0;
460 ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
461 if (ab) {
462 audit_log_format(ab,
463 "user pid=%d uid=%u auid=%u msg='%.1024s'",
464 pid, uid, loginuid, (char *)data);
465 audit_set_pid(ab, pid);
466 audit_log_end(ab);
467 }
468 }
469 break;
470 case AUDIT_ADD:
471 case AUDIT_DEL:
472 if (nlh->nlmsg_len < sizeof(struct audit_rule))
473 return -EINVAL;
474 /* fallthrough */
475 case AUDIT_LIST:
476 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
477 uid, seq, data, loginuid);
478 break;
479 case AUDIT_SIGNAL_INFO:
480 sig_data.uid = audit_sig_uid;
481 sig_data.pid = audit_sig_pid;
482 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
483 0, 0, &sig_data, sizeof(sig_data));
484 break;
485 default:
486 err = -EINVAL;
487 break;
488 }
489
490 return err < 0 ? err : 0;
491 }
492
493 /*
494 * Get message from skb (based on rtnetlink_rcv_skb). Each message is
495 * processed by audit_receive_msg. Malformed skbs with wrong length are
496 * discarded silently.
497 */
498 static void audit_receive_skb(struct sk_buff *skb)
499 {
500 int err;
501 struct nlmsghdr *nlh;
502 u32 rlen;
503
504 while (skb->len >= NLMSG_SPACE(0)) {
505 nlh = (struct nlmsghdr *)skb->data;
506 if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
507 return;
508 rlen = NLMSG_ALIGN(nlh->nlmsg_len);
509 if (rlen > skb->len)
510 rlen = skb->len;
511 if ((err = audit_receive_msg(skb, nlh))) {
512 netlink_ack(skb, nlh, err);
513 } else if (nlh->nlmsg_flags & NLM_F_ACK)
514 netlink_ack(skb, nlh, 0);
515 skb_pull(skb, rlen);
516 }
517 }
518
519 /* Receive messages from netlink socket. */
520 static void audit_receive(struct sock *sk, int length)
521 {
522 struct sk_buff *skb;
523 unsigned int qlen;
524
525 down(&audit_netlink_sem);
526
527 for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) {
528 skb = skb_dequeue(&sk->sk_receive_queue);
529 audit_receive_skb(skb);
530 kfree_skb(skb);
531 }
532 up(&audit_netlink_sem);
533 }
534
535
536 /* Initialize audit support at boot time. */
537 static int __init audit_init(void)
538 {
539 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
540 audit_default ? "enabled" : "disabled");
541 audit_sock = netlink_kernel_create(NETLINK_AUDIT, 0, audit_receive,
542 THIS_MODULE);
543 if (!audit_sock)
544 audit_panic("cannot initialize netlink socket");
545
546 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
547 skb_queue_head_init(&audit_skb_queue);
548 audit_initialized = 1;
549 audit_enabled = audit_default;
550 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
551 return 0;
552 }
553 __initcall(audit_init);
554
555 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
556 static int __init audit_enable(char *str)
557 {
558 audit_default = !!simple_strtol(str, NULL, 0);
559 printk(KERN_INFO "audit: %s%s\n",
560 audit_default ? "enabled" : "disabled",
561 audit_initialized ? "" : " (after initialization)");
562 if (audit_initialized)
563 audit_enabled = audit_default;
564 return 0;
565 }
566
567 __setup("audit=", audit_enable);
568
569 static void audit_buffer_free(struct audit_buffer *ab)
570 {
571 unsigned long flags;
572
573 if (!ab)
574 return;
575
576 if (ab->skb)
577 kfree_skb(ab->skb);
578
579 spin_lock_irqsave(&audit_freelist_lock, flags);
580 if (++audit_freelist_count > AUDIT_MAXFREE)
581 kfree(ab);
582 else
583 list_add(&ab->list, &audit_freelist);
584 spin_unlock_irqrestore(&audit_freelist_lock, flags);
585 }
586
587 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
588 gfp_t gfp_mask, int type)
589 {
590 unsigned long flags;
591 struct audit_buffer *ab = NULL;
592 struct nlmsghdr *nlh;
593
594 spin_lock_irqsave(&audit_freelist_lock, flags);
595 if (!list_empty(&audit_freelist)) {
596 ab = list_entry(audit_freelist.next,
597 struct audit_buffer, list);
598 list_del(&ab->list);
599 --audit_freelist_count;
600 }
601 spin_unlock_irqrestore(&audit_freelist_lock, flags);
602
603 if (!ab) {
604 ab = kmalloc(sizeof(*ab), gfp_mask);
605 if (!ab)
606 goto err;
607 }
608
609 ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
610 if (!ab->skb)
611 goto err;
612
613 ab->ctx = ctx;
614 ab->gfp_mask = gfp_mask;
615 nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
616 nlh->nlmsg_type = type;
617 nlh->nlmsg_flags = 0;
618 nlh->nlmsg_pid = 0;
619 nlh->nlmsg_seq = 0;
620 return ab;
621 err:
622 audit_buffer_free(ab);
623 return NULL;
624 }
625
626 /**
627 * audit_serial - compute a serial number for the audit record
628 *
629 * Compute a serial number for the audit record. Audit records are
630 * written to user-space as soon as they are generated, so a complete
631 * audit record may be written in several pieces. The timestamp of the
632 * record and this serial number are used by the user-space tools to
633 * determine which pieces belong to the same audit record. The
634 * (timestamp,serial) tuple is unique for each syscall and is live from
635 * syscall entry to syscall exit.
636 *
637 * NOTE: Another possibility is to store the formatted records off the
638 * audit context (for those records that have a context), and emit them
639 * all at syscall exit. However, this could delay the reporting of
640 * significant errors until syscall exit (or never, if the system
641 * halts).
642 */
643 unsigned int audit_serial(void)
644 {
645 static spinlock_t serial_lock = SPIN_LOCK_UNLOCKED;
646 static unsigned int serial = 0;
647
648 unsigned long flags;
649 unsigned int ret;
650
651 spin_lock_irqsave(&serial_lock, flags);
652 do {
653 ret = ++serial;
654 } while (unlikely(!ret));
655 spin_unlock_irqrestore(&serial_lock, flags);
656
657 return ret;
658 }
659
660 static inline void audit_get_stamp(struct audit_context *ctx,
661 struct timespec *t, unsigned int *serial)
662 {
663 if (ctx)
664 auditsc_get_stamp(ctx, t, serial);
665 else {
666 *t = CURRENT_TIME;
667 *serial = audit_serial();
668 }
669 }
670
671 /* Obtain an audit buffer. This routine does locking to obtain the
672 * audit buffer, but then no locking is required for calls to
673 * audit_log_*format. If the tsk is a task that is currently in a
674 * syscall, then the syscall is marked as auditable and an audit record
675 * will be written at syscall exit. If there is no associated task, tsk
676 * should be NULL. */
677
678 /**
679 * audit_log_start - obtain an audit buffer
680 * @ctx: audit_context (may be NULL)
681 * @gfp_mask: type of allocation
682 * @type: audit message type
683 *
684 * Returns audit_buffer pointer on success or NULL on error.
685 *
686 * Obtain an audit buffer. This routine does locking to obtain the
687 * audit buffer, but then no locking is required for calls to
688 * audit_log_*format. If the task (ctx) is a task that is currently in a
689 * syscall, then the syscall is marked as auditable and an audit record
690 * will be written at syscall exit. If there is no associated task, then
691 * task context (ctx) should be NULL.
692 */
693 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
694 int type)
695 {
696 struct audit_buffer *ab = NULL;
697 struct timespec t;
698 unsigned int serial;
699 int reserve;
700 unsigned long timeout_start = jiffies;
701
702 if (!audit_initialized)
703 return NULL;
704
705 if (gfp_mask & __GFP_WAIT)
706 reserve = 0;
707 else
708 reserve = 5; /* Allow atomic callers to go up to five
709 entries over the normal backlog limit */
710
711 while (audit_backlog_limit
712 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
713 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
714 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
715
716 /* Wait for auditd to drain the queue a little */
717 DECLARE_WAITQUEUE(wait, current);
718 set_current_state(TASK_INTERRUPTIBLE);
719 add_wait_queue(&audit_backlog_wait, &wait);
720
721 if (audit_backlog_limit &&
722 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
723 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
724
725 __set_current_state(TASK_RUNNING);
726 remove_wait_queue(&audit_backlog_wait, &wait);
727 continue;
728 }
729 if (audit_rate_check())
730 printk(KERN_WARNING
731 "audit: audit_backlog=%d > "
732 "audit_backlog_limit=%d\n",
733 skb_queue_len(&audit_skb_queue),
734 audit_backlog_limit);
735 audit_log_lost("backlog limit exceeded");
736 audit_backlog_wait_time = audit_backlog_wait_overflow;
737 wake_up(&audit_backlog_wait);
738 return NULL;
739 }
740
741 ab = audit_buffer_alloc(ctx, gfp_mask, type);
742 if (!ab) {
743 audit_log_lost("out of memory in audit_log_start");
744 return NULL;
745 }
746
747 audit_get_stamp(ab->ctx, &t, &serial);
748
749 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
750 t.tv_sec, t.tv_nsec/1000000, serial);
751 return ab;
752 }
753
754 /**
755 * audit_expand - expand skb in the audit buffer
756 * @ab: audit_buffer
757 * @extra: space to add at tail of the skb
758 *
759 * Returns 0 (no space) on failed expansion, or available space if
760 * successful.
761 */
762 static inline int audit_expand(struct audit_buffer *ab, int extra)
763 {
764 struct sk_buff *skb = ab->skb;
765 int ret = pskb_expand_head(skb, skb_headroom(skb), extra,
766 ab->gfp_mask);
767 if (ret < 0) {
768 audit_log_lost("out of memory in audit_expand");
769 return 0;
770 }
771 return skb_tailroom(skb);
772 }
773
774 /*
775 * Format an audit message into the audit buffer. If there isn't enough
776 * room in the audit buffer, more room will be allocated and vsnprint
777 * will be called a second time. Currently, we assume that a printk
778 * can't format message larger than 1024 bytes, so we don't either.
779 */
780 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
781 va_list args)
782 {
783 int len, avail;
784 struct sk_buff *skb;
785 va_list args2;
786
787 if (!ab)
788 return;
789
790 BUG_ON(!ab->skb);
791 skb = ab->skb;
792 avail = skb_tailroom(skb);
793 if (avail == 0) {
794 avail = audit_expand(ab, AUDIT_BUFSIZ);
795 if (!avail)
796 goto out;
797 }
798 va_copy(args2, args);
799 len = vsnprintf(skb->tail, avail, fmt, args);
800 if (len >= avail) {
801 /* The printk buffer is 1024 bytes long, so if we get
802 * here and AUDIT_BUFSIZ is at least 1024, then we can
803 * log everything that printk could have logged. */
804 avail = audit_expand(ab,
805 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
806 if (!avail)
807 goto out;
808 len = vsnprintf(skb->tail, avail, fmt, args2);
809 }
810 if (len > 0)
811 skb_put(skb, len);
812 out:
813 return;
814 }
815
816 /**
817 * audit_log_format - format a message into the audit buffer.
818 * @ab: audit_buffer
819 * @fmt: format string
820 * @...: optional parameters matching @fmt string
821 *
822 * All the work is done in audit_log_vformat.
823 */
824 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
825 {
826 va_list args;
827
828 if (!ab)
829 return;
830 va_start(args, fmt);
831 audit_log_vformat(ab, fmt, args);
832 va_end(args);
833 }
834
835 /**
836 * audit_log_hex - convert a buffer to hex and append it to the audit skb
837 * @ab: the audit_buffer
838 * @buf: buffer to convert to hex
839 * @len: length of @buf to be converted
840 *
841 * No return value; failure to expand is silently ignored.
842 *
843 * This function will take the passed buf and convert it into a string of
844 * ascii hex digits. The new string is placed onto the skb.
845 */
846 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf,
847 size_t len)
848 {
849 int i, avail, new_len;
850 unsigned char *ptr;
851 struct sk_buff *skb;
852 static const unsigned char *hex = "0123456789ABCDEF";
853
854 BUG_ON(!ab->skb);
855 skb = ab->skb;
856 avail = skb_tailroom(skb);
857 new_len = len<<1;
858 if (new_len >= avail) {
859 /* Round the buffer request up to the next multiple */
860 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
861 avail = audit_expand(ab, new_len);
862 if (!avail)
863 return;
864 }
865
866 ptr = skb->tail;
867 for (i=0; i<len; i++) {
868 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
869 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
870 }
871 *ptr = 0;
872 skb_put(skb, len << 1); /* new string is twice the old string */
873 }
874
875 /**
876 * audit_log_unstrustedstring - log a string that may contain random characters
877 * @ab: audit_buffer
878 * @string: string to be logged
879 *
880 * This code will escape a string that is passed to it if the string
881 * contains a control character, unprintable character, double quote mark,
882 * or a space. Unescaped strings will start and end with a double quote mark.
883 * Strings that are escaped are printed in hex (2 digits per char).
884 */
885 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
886 {
887 const unsigned char *p = string;
888
889 while (*p) {
890 if (*p == '"' || *p < 0x21 || *p > 0x7f) {
891 audit_log_hex(ab, string, strlen(string));
892 return;
893 }
894 p++;
895 }
896 audit_log_format(ab, "\"%s\"", string);
897 }
898
899 /* This is a helper-function to print the escaped d_path */
900 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
901 struct dentry *dentry, struct vfsmount *vfsmnt)
902 {
903 char *p, *path;
904
905 if (prefix)
906 audit_log_format(ab, " %s", prefix);
907
908 /* We will allow 11 spaces for ' (deleted)' to be appended */
909 path = kmalloc(PATH_MAX+11, ab->gfp_mask);
910 if (!path) {
911 audit_log_format(ab, "<no memory>");
912 return;
913 }
914 p = d_path(dentry, vfsmnt, path, PATH_MAX+11);
915 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
916 /* FIXME: can we save some information here? */
917 audit_log_format(ab, "<too long>");
918 } else
919 audit_log_untrustedstring(ab, p);
920 kfree(path);
921 }
922
923 /**
924 * audit_log_end - end one audit record
925 * @ab: the audit_buffer
926 *
927 * The netlink_* functions cannot be called inside an irq context, so
928 * the audit buffer is placed on a queue and a tasklet is scheduled to
929 * remove them from the queue outside the irq context. May be called in
930 * any context.
931 */
932 void audit_log_end(struct audit_buffer *ab)
933 {
934 if (!ab)
935 return;
936 if (!audit_rate_check()) {
937 audit_log_lost("rate limit exceeded");
938 } else {
939 if (audit_pid) {
940 struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
941 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
942 skb_queue_tail(&audit_skb_queue, ab->skb);
943 ab->skb = NULL;
944 wake_up_interruptible(&kauditd_wait);
945 } else {
946 printk(KERN_NOTICE "%s\n", ab->skb->data + NLMSG_SPACE(0));
947 }
948 }
949 audit_buffer_free(ab);
950 }
951
952 /**
953 * audit_log - Log an audit record
954 * @ctx: audit context
955 * @gfp_mask: type of allocation
956 * @type: audit message type
957 * @fmt: format string to use
958 * @...: variable parameters matching the format string
959 *
960 * This is a convenience function that calls audit_log_start,
961 * audit_log_vformat, and audit_log_end. It may be called
962 * in any context.
963 */
964 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
965 const char *fmt, ...)
966 {
967 struct audit_buffer *ab;
968 va_list args;
969
970 ab = audit_log_start(ctx, gfp_mask, type);
971 if (ab) {
972 va_start(args, fmt);
973 audit_log_vformat(ab, fmt, args);
974 va_end(args);
975 audit_log_end(ab);
976 }
977 }
This page took 0.078614 seconds and 6 git commands to generate.