audit: include auditd's threads in audit_log_start() wait exception
[deliverable/linux.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57
58 #include <linux/audit.h>
59
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/tty.h>
68 #include <linux/pid_namespace.h>
69 #include <net/netns/generic.h>
70
71 #include "audit.h"
72
73 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74 * (Initialization happens after skb_init is called.) */
75 #define AUDIT_DISABLED -1
76 #define AUDIT_UNINITIALIZED 0
77 #define AUDIT_INITIALIZED 1
78 static int audit_initialized;
79
80 #define AUDIT_OFF 0
81 #define AUDIT_ON 1
82 #define AUDIT_LOCKED 2
83 u32 audit_enabled;
84 u32 audit_ever_enabled;
85
86 EXPORT_SYMBOL_GPL(audit_enabled);
87
88 /* Default state when kernel boots without any parameters. */
89 static u32 audit_default;
90
91 /* If auditing cannot proceed, audit_failure selects what happens. */
92 static u32 audit_failure = AUDIT_FAIL_PRINTK;
93
94 /*
95 * If audit records are to be written to the netlink socket, audit_pid
96 * contains the pid of the auditd process and audit_nlk_portid contains
97 * the portid to use to send netlink messages to that process.
98 */
99 int audit_pid;
100 static __u32 audit_nlk_portid;
101
102 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
103 * to that number per second. This prevents DoS attacks, but results in
104 * audit records being dropped. */
105 static u32 audit_rate_limit;
106
107 /* Number of outstanding audit_buffers allowed.
108 * When set to zero, this means unlimited. */
109 static u32 audit_backlog_limit = 64;
110 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113
114 /* The identity of the user shutting down the audit system. */
115 kuid_t audit_sig_uid = INVALID_UID;
116 pid_t audit_sig_pid = -1;
117 u32 audit_sig_sid = 0;
118
119 /* Records can be lost in several ways:
120 0) [suppressed in audit_alloc]
121 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
122 2) out of memory in audit_log_move [alloc_skb]
123 3) suppressed due to audit_rate_limit
124 4) suppressed due to audit_backlog_limit
125 */
126 static atomic_t audit_lost = ATOMIC_INIT(0);
127
128 /* The netlink socket. */
129 static struct sock *audit_sock;
130 static int audit_net_id;
131
132 /* Hash for inode-based rules */
133 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
134
135 /* The audit_freelist is a list of pre-allocated audit buffers (if more
136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
137 * being placed on the freelist). */
138 static DEFINE_SPINLOCK(audit_freelist_lock);
139 static int audit_freelist_count;
140 static LIST_HEAD(audit_freelist);
141
142 static struct sk_buff_head audit_skb_queue;
143 /* queue of skbs to send to auditd when/if it comes back */
144 static struct sk_buff_head audit_skb_hold_queue;
145 static struct task_struct *kauditd_task;
146 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
147 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
148
149 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
150 .mask = -1,
151 .features = 0,
152 .lock = 0,};
153
154 static char *audit_feature_names[2] = {
155 "only_unset_loginuid",
156 "loginuid_immutable",
157 };
158
159
160 /* Serialize requests from userspace. */
161 DEFINE_MUTEX(audit_cmd_mutex);
162
163 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
164 * audit records. Since printk uses a 1024 byte buffer, this buffer
165 * should be at least that large. */
166 #define AUDIT_BUFSIZ 1024
167
168 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
169 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
170 #define AUDIT_MAXFREE (2*NR_CPUS)
171
172 /* The audit_buffer is used when formatting an audit record. The caller
173 * locks briefly to get the record off the freelist or to allocate the
174 * buffer, and locks briefly to send the buffer to the netlink layer or
175 * to place it on a transmit queue. Multiple audit_buffers can be in
176 * use simultaneously. */
177 struct audit_buffer {
178 struct list_head list;
179 struct sk_buff *skb; /* formatted skb ready to send */
180 struct audit_context *ctx; /* NULL or associated context */
181 gfp_t gfp_mask;
182 };
183
184 struct audit_reply {
185 __u32 portid;
186 struct net *net;
187 struct sk_buff *skb;
188 };
189
190 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
191 {
192 if (ab) {
193 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
194 nlh->nlmsg_pid = portid;
195 }
196 }
197
198 void audit_panic(const char *message)
199 {
200 switch (audit_failure) {
201 case AUDIT_FAIL_SILENT:
202 break;
203 case AUDIT_FAIL_PRINTK:
204 if (printk_ratelimit())
205 pr_err("%s\n", message);
206 break;
207 case AUDIT_FAIL_PANIC:
208 /* test audit_pid since printk is always losey, why bother? */
209 if (audit_pid)
210 panic("audit: %s\n", message);
211 break;
212 }
213 }
214
215 static inline int audit_rate_check(void)
216 {
217 static unsigned long last_check = 0;
218 static int messages = 0;
219 static DEFINE_SPINLOCK(lock);
220 unsigned long flags;
221 unsigned long now;
222 unsigned long elapsed;
223 int retval = 0;
224
225 if (!audit_rate_limit) return 1;
226
227 spin_lock_irqsave(&lock, flags);
228 if (++messages < audit_rate_limit) {
229 retval = 1;
230 } else {
231 now = jiffies;
232 elapsed = now - last_check;
233 if (elapsed > HZ) {
234 last_check = now;
235 messages = 0;
236 retval = 1;
237 }
238 }
239 spin_unlock_irqrestore(&lock, flags);
240
241 return retval;
242 }
243
244 /**
245 * audit_log_lost - conditionally log lost audit message event
246 * @message: the message stating reason for lost audit message
247 *
248 * Emit at least 1 message per second, even if audit_rate_check is
249 * throttling.
250 * Always increment the lost messages counter.
251 */
252 void audit_log_lost(const char *message)
253 {
254 static unsigned long last_msg = 0;
255 static DEFINE_SPINLOCK(lock);
256 unsigned long flags;
257 unsigned long now;
258 int print;
259
260 atomic_inc(&audit_lost);
261
262 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
263
264 if (!print) {
265 spin_lock_irqsave(&lock, flags);
266 now = jiffies;
267 if (now - last_msg > HZ) {
268 print = 1;
269 last_msg = now;
270 }
271 spin_unlock_irqrestore(&lock, flags);
272 }
273
274 if (print) {
275 if (printk_ratelimit())
276 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
277 atomic_read(&audit_lost),
278 audit_rate_limit,
279 audit_backlog_limit);
280 audit_panic(message);
281 }
282 }
283
284 static int audit_log_config_change(char *function_name, u32 new, u32 old,
285 int allow_changes)
286 {
287 struct audit_buffer *ab;
288 int rc = 0;
289
290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
291 if (unlikely(!ab))
292 return rc;
293 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
294 audit_log_session_info(ab);
295 rc = audit_log_task_context(ab);
296 if (rc)
297 allow_changes = 0; /* Something weird, deny request */
298 audit_log_format(ab, " res=%d", allow_changes);
299 audit_log_end(ab);
300 return rc;
301 }
302
303 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
304 {
305 int allow_changes, rc = 0;
306 u32 old = *to_change;
307
308 /* check if we are locked */
309 if (audit_enabled == AUDIT_LOCKED)
310 allow_changes = 0;
311 else
312 allow_changes = 1;
313
314 if (audit_enabled != AUDIT_OFF) {
315 rc = audit_log_config_change(function_name, new, old, allow_changes);
316 if (rc)
317 allow_changes = 0;
318 }
319
320 /* If we are allowed, make the change */
321 if (allow_changes == 1)
322 *to_change = new;
323 /* Not allowed, update reason */
324 else if (rc == 0)
325 rc = -EPERM;
326 return rc;
327 }
328
329 static int audit_set_rate_limit(u32 limit)
330 {
331 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
332 }
333
334 static int audit_set_backlog_limit(u32 limit)
335 {
336 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
337 }
338
339 static int audit_set_backlog_wait_time(u32 timeout)
340 {
341 return audit_do_config_change("audit_backlog_wait_time",
342 &audit_backlog_wait_time_master, timeout);
343 }
344
345 static int audit_set_enabled(u32 state)
346 {
347 int rc;
348 if (state > AUDIT_LOCKED)
349 return -EINVAL;
350
351 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
352 if (!rc)
353 audit_ever_enabled |= !!state;
354
355 return rc;
356 }
357
358 static int audit_set_failure(u32 state)
359 {
360 if (state != AUDIT_FAIL_SILENT
361 && state != AUDIT_FAIL_PRINTK
362 && state != AUDIT_FAIL_PANIC)
363 return -EINVAL;
364
365 return audit_do_config_change("audit_failure", &audit_failure, state);
366 }
367
368 /*
369 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
370 * already have been sent via prink/syslog and so if these messages are dropped
371 * it is not a huge concern since we already passed the audit_log_lost()
372 * notification and stuff. This is just nice to get audit messages during
373 * boot before auditd is running or messages generated while auditd is stopped.
374 * This only holds messages is audit_default is set, aka booting with audit=1
375 * or building your kernel that way.
376 */
377 static void audit_hold_skb(struct sk_buff *skb)
378 {
379 if (audit_default &&
380 (!audit_backlog_limit ||
381 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
382 skb_queue_tail(&audit_skb_hold_queue, skb);
383 else
384 kfree_skb(skb);
385 }
386
387 /*
388 * For one reason or another this nlh isn't getting delivered to the userspace
389 * audit daemon, just send it to printk.
390 */
391 static void audit_printk_skb(struct sk_buff *skb)
392 {
393 struct nlmsghdr *nlh = nlmsg_hdr(skb);
394 char *data = nlmsg_data(nlh);
395
396 if (nlh->nlmsg_type != AUDIT_EOE) {
397 if (printk_ratelimit())
398 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
399 else
400 audit_log_lost("printk limit exceeded");
401 }
402
403 audit_hold_skb(skb);
404 }
405
406 static void kauditd_send_skb(struct sk_buff *skb)
407 {
408 int err;
409 int attempts = 0;
410 #define AUDITD_RETRIES 5
411
412 restart:
413 /* take a reference in case we can't send it and we want to hold it */
414 skb_get(skb);
415 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
416 if (err < 0) {
417 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
418 audit_pid, err);
419 if (audit_pid) {
420 if (err == -ECONNREFUSED || err == -EPERM
421 || ++attempts >= AUDITD_RETRIES) {
422 char s[32];
423
424 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
425 audit_log_lost(s);
426 audit_pid = 0;
427 audit_sock = NULL;
428 } else {
429 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
430 attempts, audit_pid);
431 set_current_state(TASK_INTERRUPTIBLE);
432 schedule();
433 __set_current_state(TASK_RUNNING);
434 goto restart;
435 }
436 }
437 /* we might get lucky and get this in the next auditd */
438 audit_hold_skb(skb);
439 } else
440 /* drop the extra reference if sent ok */
441 consume_skb(skb);
442 }
443
444 /*
445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
446 *
447 * This function doesn't consume an skb as might be expected since it has to
448 * copy it anyways.
449 */
450 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
451 {
452 struct sk_buff *copy;
453 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
454 struct sock *sock = aunet->nlsk;
455
456 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
457 return;
458
459 /*
460 * The seemingly wasteful skb_copy() rather than bumping the refcount
461 * using skb_get() is necessary because non-standard mods are made to
462 * the skb by the original kaudit unicast socket send routine. The
463 * existing auditd daemon assumes this breakage. Fixing this would
464 * require co-ordinating a change in the established protocol between
465 * the kaudit kernel subsystem and the auditd userspace code. There is
466 * no reason for new multicast clients to continue with this
467 * non-compliance.
468 */
469 copy = skb_copy(skb, gfp_mask);
470 if (!copy)
471 return;
472
473 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
474 }
475
476 /*
477 * flush_hold_queue - empty the hold queue if auditd appears
478 *
479 * If auditd just started, drain the queue of messages already
480 * sent to syslog/printk. Remember loss here is ok. We already
481 * called audit_log_lost() if it didn't go out normally. so the
482 * race between the skb_dequeue and the next check for audit_pid
483 * doesn't matter.
484 *
485 * If you ever find kauditd to be too slow we can get a perf win
486 * by doing our own locking and keeping better track if there
487 * are messages in this queue. I don't see the need now, but
488 * in 5 years when I want to play with this again I'll see this
489 * note and still have no friggin idea what i'm thinking today.
490 */
491 static void flush_hold_queue(void)
492 {
493 struct sk_buff *skb;
494
495 if (!audit_default || !audit_pid)
496 return;
497
498 skb = skb_dequeue(&audit_skb_hold_queue);
499 if (likely(!skb))
500 return;
501
502 while (skb && audit_pid) {
503 kauditd_send_skb(skb);
504 skb = skb_dequeue(&audit_skb_hold_queue);
505 }
506
507 /*
508 * if auditd just disappeared but we
509 * dequeued an skb we need to drop ref
510 */
511 if (skb)
512 consume_skb(skb);
513 }
514
515 static int kauditd_thread(void *dummy)
516 {
517 set_freezable();
518 while (!kthread_should_stop()) {
519 struct sk_buff *skb;
520
521 flush_hold_queue();
522
523 skb = skb_dequeue(&audit_skb_queue);
524
525 if (skb) {
526 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
527 wake_up(&audit_backlog_wait);
528 if (audit_pid)
529 kauditd_send_skb(skb);
530 else
531 audit_printk_skb(skb);
532 continue;
533 }
534
535 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
536 }
537 return 0;
538 }
539
540 int audit_send_list(void *_dest)
541 {
542 struct audit_netlink_list *dest = _dest;
543 struct sk_buff *skb;
544 struct net *net = dest->net;
545 struct audit_net *aunet = net_generic(net, audit_net_id);
546
547 /* wait for parent to finish and send an ACK */
548 mutex_lock(&audit_cmd_mutex);
549 mutex_unlock(&audit_cmd_mutex);
550
551 while ((skb = __skb_dequeue(&dest->q)) != NULL)
552 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
553
554 put_net(net);
555 kfree(dest);
556
557 return 0;
558 }
559
560 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
561 int multi, const void *payload, int size)
562 {
563 struct sk_buff *skb;
564 struct nlmsghdr *nlh;
565 void *data;
566 int flags = multi ? NLM_F_MULTI : 0;
567 int t = done ? NLMSG_DONE : type;
568
569 skb = nlmsg_new(size, GFP_KERNEL);
570 if (!skb)
571 return NULL;
572
573 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
574 if (!nlh)
575 goto out_kfree_skb;
576 data = nlmsg_data(nlh);
577 memcpy(data, payload, size);
578 return skb;
579
580 out_kfree_skb:
581 kfree_skb(skb);
582 return NULL;
583 }
584
585 static int audit_send_reply_thread(void *arg)
586 {
587 struct audit_reply *reply = (struct audit_reply *)arg;
588 struct net *net = reply->net;
589 struct audit_net *aunet = net_generic(net, audit_net_id);
590
591 mutex_lock(&audit_cmd_mutex);
592 mutex_unlock(&audit_cmd_mutex);
593
594 /* Ignore failure. It'll only happen if the sender goes away,
595 because our timeout is set to infinite. */
596 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
597 put_net(net);
598 kfree(reply);
599 return 0;
600 }
601 /**
602 * audit_send_reply - send an audit reply message via netlink
603 * @request_skb: skb of request we are replying to (used to target the reply)
604 * @seq: sequence number
605 * @type: audit message type
606 * @done: done (last) flag
607 * @multi: multi-part message flag
608 * @payload: payload data
609 * @size: payload size
610 *
611 * Allocates an skb, builds the netlink message, and sends it to the port id.
612 * No failure notifications.
613 */
614 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
615 int multi, const void *payload, int size)
616 {
617 u32 portid = NETLINK_CB(request_skb).portid;
618 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
619 struct sk_buff *skb;
620 struct task_struct *tsk;
621 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
622 GFP_KERNEL);
623
624 if (!reply)
625 return;
626
627 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
628 if (!skb)
629 goto out;
630
631 reply->net = get_net(net);
632 reply->portid = portid;
633 reply->skb = skb;
634
635 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
636 if (!IS_ERR(tsk))
637 return;
638 kfree_skb(skb);
639 out:
640 kfree(reply);
641 }
642
643 /*
644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
645 * control messages.
646 */
647 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
648 {
649 int err = 0;
650
651 /* Only support initial user namespace for now. */
652 /*
653 * We return ECONNREFUSED because it tricks userspace into thinking
654 * that audit was not configured into the kernel. Lots of users
655 * configure their PAM stack (because that's what the distro does)
656 * to reject login if unable to send messages to audit. If we return
657 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
658 * configured in and will let login proceed. If we return EPERM
659 * userspace will reject all logins. This should be removed when we
660 * support non init namespaces!!
661 */
662 if (current_user_ns() != &init_user_ns)
663 return -ECONNREFUSED;
664
665 switch (msg_type) {
666 case AUDIT_LIST:
667 case AUDIT_ADD:
668 case AUDIT_DEL:
669 return -EOPNOTSUPP;
670 case AUDIT_GET:
671 case AUDIT_SET:
672 case AUDIT_GET_FEATURE:
673 case AUDIT_SET_FEATURE:
674 case AUDIT_LIST_RULES:
675 case AUDIT_ADD_RULE:
676 case AUDIT_DEL_RULE:
677 case AUDIT_SIGNAL_INFO:
678 case AUDIT_TTY_GET:
679 case AUDIT_TTY_SET:
680 case AUDIT_TRIM:
681 case AUDIT_MAKE_EQUIV:
682 /* Only support auditd and auditctl in initial pid namespace
683 * for now. */
684 if (task_active_pid_ns(current) != &init_pid_ns)
685 return -EPERM;
686
687 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
688 err = -EPERM;
689 break;
690 case AUDIT_USER:
691 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
692 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
693 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
694 err = -EPERM;
695 break;
696 default: /* bad msg */
697 err = -EINVAL;
698 }
699
700 return err;
701 }
702
703 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
704 {
705 uid_t uid = from_kuid(&init_user_ns, current_uid());
706 pid_t pid = task_tgid_nr(current);
707
708 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
709 *ab = NULL;
710 return;
711 }
712
713 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
714 if (unlikely(!*ab))
715 return;
716 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
717 audit_log_session_info(*ab);
718 audit_log_task_context(*ab);
719 }
720
721 int is_audit_feature_set(int i)
722 {
723 return af.features & AUDIT_FEATURE_TO_MASK(i);
724 }
725
726
727 static int audit_get_feature(struct sk_buff *skb)
728 {
729 u32 seq;
730
731 seq = nlmsg_hdr(skb)->nlmsg_seq;
732
733 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
734
735 return 0;
736 }
737
738 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
739 u32 old_lock, u32 new_lock, int res)
740 {
741 struct audit_buffer *ab;
742
743 if (audit_enabled == AUDIT_OFF)
744 return;
745
746 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
747 audit_log_task_info(ab, current);
748 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
749 audit_feature_names[which], !!old_feature, !!new_feature,
750 !!old_lock, !!new_lock, res);
751 audit_log_end(ab);
752 }
753
754 static int audit_set_feature(struct sk_buff *skb)
755 {
756 struct audit_features *uaf;
757 int i;
758
759 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
760 uaf = nlmsg_data(nlmsg_hdr(skb));
761
762 /* if there is ever a version 2 we should handle that here */
763
764 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
765 u32 feature = AUDIT_FEATURE_TO_MASK(i);
766 u32 old_feature, new_feature, old_lock, new_lock;
767
768 /* if we are not changing this feature, move along */
769 if (!(feature & uaf->mask))
770 continue;
771
772 old_feature = af.features & feature;
773 new_feature = uaf->features & feature;
774 new_lock = (uaf->lock | af.lock) & feature;
775 old_lock = af.lock & feature;
776
777 /* are we changing a locked feature? */
778 if (old_lock && (new_feature != old_feature)) {
779 audit_log_feature_change(i, old_feature, new_feature,
780 old_lock, new_lock, 0);
781 return -EPERM;
782 }
783 }
784 /* nothing invalid, do the changes */
785 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
786 u32 feature = AUDIT_FEATURE_TO_MASK(i);
787 u32 old_feature, new_feature, old_lock, new_lock;
788
789 /* if we are not changing this feature, move along */
790 if (!(feature & uaf->mask))
791 continue;
792
793 old_feature = af.features & feature;
794 new_feature = uaf->features & feature;
795 old_lock = af.lock & feature;
796 new_lock = (uaf->lock | af.lock) & feature;
797
798 if (new_feature != old_feature)
799 audit_log_feature_change(i, old_feature, new_feature,
800 old_lock, new_lock, 1);
801
802 if (new_feature)
803 af.features |= feature;
804 else
805 af.features &= ~feature;
806 af.lock |= new_lock;
807 }
808
809 return 0;
810 }
811
812 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
813 {
814 u32 seq;
815 void *data;
816 int err;
817 struct audit_buffer *ab;
818 u16 msg_type = nlh->nlmsg_type;
819 struct audit_sig_info *sig_data;
820 char *ctx = NULL;
821 u32 len;
822
823 err = audit_netlink_ok(skb, msg_type);
824 if (err)
825 return err;
826
827 /* As soon as there's any sign of userspace auditd,
828 * start kauditd to talk to it */
829 if (!kauditd_task) {
830 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
831 if (IS_ERR(kauditd_task)) {
832 err = PTR_ERR(kauditd_task);
833 kauditd_task = NULL;
834 return err;
835 }
836 }
837 seq = nlh->nlmsg_seq;
838 data = nlmsg_data(nlh);
839
840 switch (msg_type) {
841 case AUDIT_GET: {
842 struct audit_status s;
843 memset(&s, 0, sizeof(s));
844 s.enabled = audit_enabled;
845 s.failure = audit_failure;
846 s.pid = audit_pid;
847 s.rate_limit = audit_rate_limit;
848 s.backlog_limit = audit_backlog_limit;
849 s.lost = atomic_read(&audit_lost);
850 s.backlog = skb_queue_len(&audit_skb_queue);
851 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
852 s.backlog_wait_time = audit_backlog_wait_time_master;
853 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
854 break;
855 }
856 case AUDIT_SET: {
857 struct audit_status s;
858 memset(&s, 0, sizeof(s));
859 /* guard against past and future API changes */
860 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
861 if (s.mask & AUDIT_STATUS_ENABLED) {
862 err = audit_set_enabled(s.enabled);
863 if (err < 0)
864 return err;
865 }
866 if (s.mask & AUDIT_STATUS_FAILURE) {
867 err = audit_set_failure(s.failure);
868 if (err < 0)
869 return err;
870 }
871 if (s.mask & AUDIT_STATUS_PID) {
872 int new_pid = s.pid;
873
874 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
875 return -EACCES;
876 if (audit_enabled != AUDIT_OFF)
877 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
878 audit_pid = new_pid;
879 audit_nlk_portid = NETLINK_CB(skb).portid;
880 audit_sock = skb->sk;
881 }
882 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
883 err = audit_set_rate_limit(s.rate_limit);
884 if (err < 0)
885 return err;
886 }
887 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
888 err = audit_set_backlog_limit(s.backlog_limit);
889 if (err < 0)
890 return err;
891 }
892 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
893 if (sizeof(s) > (size_t)nlh->nlmsg_len)
894 return -EINVAL;
895 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
896 return -EINVAL;
897 err = audit_set_backlog_wait_time(s.backlog_wait_time);
898 if (err < 0)
899 return err;
900 }
901 break;
902 }
903 case AUDIT_GET_FEATURE:
904 err = audit_get_feature(skb);
905 if (err)
906 return err;
907 break;
908 case AUDIT_SET_FEATURE:
909 err = audit_set_feature(skb);
910 if (err)
911 return err;
912 break;
913 case AUDIT_USER:
914 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
915 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
916 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
917 return 0;
918
919 err = audit_filter_user(msg_type);
920 if (err == 1) { /* match or error */
921 err = 0;
922 if (msg_type == AUDIT_USER_TTY) {
923 err = tty_audit_push_current();
924 if (err)
925 break;
926 }
927 mutex_unlock(&audit_cmd_mutex);
928 audit_log_common_recv_msg(&ab, msg_type);
929 if (msg_type != AUDIT_USER_TTY)
930 audit_log_format(ab, " msg='%.*s'",
931 AUDIT_MESSAGE_TEXT_MAX,
932 (char *)data);
933 else {
934 int size;
935
936 audit_log_format(ab, " data=");
937 size = nlmsg_len(nlh);
938 if (size > 0 &&
939 ((unsigned char *)data)[size - 1] == '\0')
940 size--;
941 audit_log_n_untrustedstring(ab, data, size);
942 }
943 audit_set_portid(ab, NETLINK_CB(skb).portid);
944 audit_log_end(ab);
945 mutex_lock(&audit_cmd_mutex);
946 }
947 break;
948 case AUDIT_ADD_RULE:
949 case AUDIT_DEL_RULE:
950 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
951 return -EINVAL;
952 if (audit_enabled == AUDIT_LOCKED) {
953 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
954 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
955 audit_log_end(ab);
956 return -EPERM;
957 }
958 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
959 seq, data, nlmsg_len(nlh));
960 break;
961 case AUDIT_LIST_RULES:
962 err = audit_list_rules_send(skb, seq);
963 break;
964 case AUDIT_TRIM:
965 audit_trim_trees();
966 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
967 audit_log_format(ab, " op=trim res=1");
968 audit_log_end(ab);
969 break;
970 case AUDIT_MAKE_EQUIV: {
971 void *bufp = data;
972 u32 sizes[2];
973 size_t msglen = nlmsg_len(nlh);
974 char *old, *new;
975
976 err = -EINVAL;
977 if (msglen < 2 * sizeof(u32))
978 break;
979 memcpy(sizes, bufp, 2 * sizeof(u32));
980 bufp += 2 * sizeof(u32);
981 msglen -= 2 * sizeof(u32);
982 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
983 if (IS_ERR(old)) {
984 err = PTR_ERR(old);
985 break;
986 }
987 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
988 if (IS_ERR(new)) {
989 err = PTR_ERR(new);
990 kfree(old);
991 break;
992 }
993 /* OK, here comes... */
994 err = audit_tag_tree(old, new);
995
996 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
997
998 audit_log_format(ab, " op=make_equiv old=");
999 audit_log_untrustedstring(ab, old);
1000 audit_log_format(ab, " new=");
1001 audit_log_untrustedstring(ab, new);
1002 audit_log_format(ab, " res=%d", !err);
1003 audit_log_end(ab);
1004 kfree(old);
1005 kfree(new);
1006 break;
1007 }
1008 case AUDIT_SIGNAL_INFO:
1009 len = 0;
1010 if (audit_sig_sid) {
1011 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1012 if (err)
1013 return err;
1014 }
1015 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1016 if (!sig_data) {
1017 if (audit_sig_sid)
1018 security_release_secctx(ctx, len);
1019 return -ENOMEM;
1020 }
1021 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1022 sig_data->pid = audit_sig_pid;
1023 if (audit_sig_sid) {
1024 memcpy(sig_data->ctx, ctx, len);
1025 security_release_secctx(ctx, len);
1026 }
1027 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1028 sig_data, sizeof(*sig_data) + len);
1029 kfree(sig_data);
1030 break;
1031 case AUDIT_TTY_GET: {
1032 struct audit_tty_status s;
1033 struct task_struct *tsk = current;
1034
1035 spin_lock(&tsk->sighand->siglock);
1036 s.enabled = tsk->signal->audit_tty;
1037 s.log_passwd = tsk->signal->audit_tty_log_passwd;
1038 spin_unlock(&tsk->sighand->siglock);
1039
1040 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1041 break;
1042 }
1043 case AUDIT_TTY_SET: {
1044 struct audit_tty_status s, old;
1045 struct task_struct *tsk = current;
1046 struct audit_buffer *ab;
1047
1048 memset(&s, 0, sizeof(s));
1049 /* guard against past and future API changes */
1050 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1051 /* check if new data is valid */
1052 if ((s.enabled != 0 && s.enabled != 1) ||
1053 (s.log_passwd != 0 && s.log_passwd != 1))
1054 err = -EINVAL;
1055
1056 spin_lock(&tsk->sighand->siglock);
1057 old.enabled = tsk->signal->audit_tty;
1058 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1059 if (!err) {
1060 tsk->signal->audit_tty = s.enabled;
1061 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1062 }
1063 spin_unlock(&tsk->sighand->siglock);
1064
1065 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1066 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1067 " old-log_passwd=%d new-log_passwd=%d res=%d",
1068 old.enabled, s.enabled, old.log_passwd,
1069 s.log_passwd, !err);
1070 audit_log_end(ab);
1071 break;
1072 }
1073 default:
1074 err = -EINVAL;
1075 break;
1076 }
1077
1078 return err < 0 ? err : 0;
1079 }
1080
1081 /*
1082 * Get message from skb. Each message is processed by audit_receive_msg.
1083 * Malformed skbs with wrong length are discarded silently.
1084 */
1085 static void audit_receive_skb(struct sk_buff *skb)
1086 {
1087 struct nlmsghdr *nlh;
1088 /*
1089 * len MUST be signed for nlmsg_next to be able to dec it below 0
1090 * if the nlmsg_len was not aligned
1091 */
1092 int len;
1093 int err;
1094
1095 nlh = nlmsg_hdr(skb);
1096 len = skb->len;
1097
1098 while (nlmsg_ok(nlh, len)) {
1099 err = audit_receive_msg(skb, nlh);
1100 /* if err or if this message says it wants a response */
1101 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1102 netlink_ack(skb, nlh, err);
1103
1104 nlh = nlmsg_next(nlh, &len);
1105 }
1106 }
1107
1108 /* Receive messages from netlink socket. */
1109 static void audit_receive(struct sk_buff *skb)
1110 {
1111 mutex_lock(&audit_cmd_mutex);
1112 audit_receive_skb(skb);
1113 mutex_unlock(&audit_cmd_mutex);
1114 }
1115
1116 /* Run custom bind function on netlink socket group connect or bind requests. */
1117 static int audit_bind(struct net *net, int group)
1118 {
1119 if (!capable(CAP_AUDIT_READ))
1120 return -EPERM;
1121
1122 return 0;
1123 }
1124
1125 static int __net_init audit_net_init(struct net *net)
1126 {
1127 struct netlink_kernel_cfg cfg = {
1128 .input = audit_receive,
1129 .bind = audit_bind,
1130 .flags = NL_CFG_F_NONROOT_RECV,
1131 .groups = AUDIT_NLGRP_MAX,
1132 };
1133
1134 struct audit_net *aunet = net_generic(net, audit_net_id);
1135
1136 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1137 if (aunet->nlsk == NULL) {
1138 audit_panic("cannot initialize netlink socket in namespace");
1139 return -ENOMEM;
1140 }
1141 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1142 return 0;
1143 }
1144
1145 static void __net_exit audit_net_exit(struct net *net)
1146 {
1147 struct audit_net *aunet = net_generic(net, audit_net_id);
1148 struct sock *sock = aunet->nlsk;
1149 if (sock == audit_sock) {
1150 audit_pid = 0;
1151 audit_sock = NULL;
1152 }
1153
1154 RCU_INIT_POINTER(aunet->nlsk, NULL);
1155 synchronize_net();
1156 netlink_kernel_release(sock);
1157 }
1158
1159 static struct pernet_operations audit_net_ops __net_initdata = {
1160 .init = audit_net_init,
1161 .exit = audit_net_exit,
1162 .id = &audit_net_id,
1163 .size = sizeof(struct audit_net),
1164 };
1165
1166 /* Initialize audit support at boot time. */
1167 static int __init audit_init(void)
1168 {
1169 int i;
1170
1171 if (audit_initialized == AUDIT_DISABLED)
1172 return 0;
1173
1174 pr_info("initializing netlink subsys (%s)\n",
1175 audit_default ? "enabled" : "disabled");
1176 register_pernet_subsys(&audit_net_ops);
1177
1178 skb_queue_head_init(&audit_skb_queue);
1179 skb_queue_head_init(&audit_skb_hold_queue);
1180 audit_initialized = AUDIT_INITIALIZED;
1181 audit_enabled = audit_default;
1182 audit_ever_enabled |= !!audit_default;
1183
1184 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1185
1186 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1187 INIT_LIST_HEAD(&audit_inode_hash[i]);
1188
1189 return 0;
1190 }
1191 __initcall(audit_init);
1192
1193 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1194 static int __init audit_enable(char *str)
1195 {
1196 audit_default = !!simple_strtol(str, NULL, 0);
1197 if (!audit_default)
1198 audit_initialized = AUDIT_DISABLED;
1199
1200 pr_info("%s\n", audit_default ?
1201 "enabled (after initialization)" : "disabled (until reboot)");
1202
1203 return 1;
1204 }
1205 __setup("audit=", audit_enable);
1206
1207 /* Process kernel command-line parameter at boot time.
1208 * audit_backlog_limit=<n> */
1209 static int __init audit_backlog_limit_set(char *str)
1210 {
1211 u32 audit_backlog_limit_arg;
1212
1213 pr_info("audit_backlog_limit: ");
1214 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1215 pr_cont("using default of %u, unable to parse %s\n",
1216 audit_backlog_limit, str);
1217 return 1;
1218 }
1219
1220 audit_backlog_limit = audit_backlog_limit_arg;
1221 pr_cont("%d\n", audit_backlog_limit);
1222
1223 return 1;
1224 }
1225 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1226
1227 static void audit_buffer_free(struct audit_buffer *ab)
1228 {
1229 unsigned long flags;
1230
1231 if (!ab)
1232 return;
1233
1234 if (ab->skb)
1235 kfree_skb(ab->skb);
1236
1237 spin_lock_irqsave(&audit_freelist_lock, flags);
1238 if (audit_freelist_count > AUDIT_MAXFREE)
1239 kfree(ab);
1240 else {
1241 audit_freelist_count++;
1242 list_add(&ab->list, &audit_freelist);
1243 }
1244 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1245 }
1246
1247 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1248 gfp_t gfp_mask, int type)
1249 {
1250 unsigned long flags;
1251 struct audit_buffer *ab = NULL;
1252 struct nlmsghdr *nlh;
1253
1254 spin_lock_irqsave(&audit_freelist_lock, flags);
1255 if (!list_empty(&audit_freelist)) {
1256 ab = list_entry(audit_freelist.next,
1257 struct audit_buffer, list);
1258 list_del(&ab->list);
1259 --audit_freelist_count;
1260 }
1261 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1262
1263 if (!ab) {
1264 ab = kmalloc(sizeof(*ab), gfp_mask);
1265 if (!ab)
1266 goto err;
1267 }
1268
1269 ab->ctx = ctx;
1270 ab->gfp_mask = gfp_mask;
1271
1272 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1273 if (!ab->skb)
1274 goto err;
1275
1276 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1277 if (!nlh)
1278 goto out_kfree_skb;
1279
1280 return ab;
1281
1282 out_kfree_skb:
1283 kfree_skb(ab->skb);
1284 ab->skb = NULL;
1285 err:
1286 audit_buffer_free(ab);
1287 return NULL;
1288 }
1289
1290 /**
1291 * audit_serial - compute a serial number for the audit record
1292 *
1293 * Compute a serial number for the audit record. Audit records are
1294 * written to user-space as soon as they are generated, so a complete
1295 * audit record may be written in several pieces. The timestamp of the
1296 * record and this serial number are used by the user-space tools to
1297 * determine which pieces belong to the same audit record. The
1298 * (timestamp,serial) tuple is unique for each syscall and is live from
1299 * syscall entry to syscall exit.
1300 *
1301 * NOTE: Another possibility is to store the formatted records off the
1302 * audit context (for those records that have a context), and emit them
1303 * all at syscall exit. However, this could delay the reporting of
1304 * significant errors until syscall exit (or never, if the system
1305 * halts).
1306 */
1307 unsigned int audit_serial(void)
1308 {
1309 static atomic_t serial = ATOMIC_INIT(0);
1310
1311 return atomic_add_return(1, &serial);
1312 }
1313
1314 static inline void audit_get_stamp(struct audit_context *ctx,
1315 struct timespec *t, unsigned int *serial)
1316 {
1317 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1318 *t = CURRENT_TIME;
1319 *serial = audit_serial();
1320 }
1321 }
1322
1323 /*
1324 * Wait for auditd to drain the queue a little
1325 */
1326 static long wait_for_auditd(long sleep_time)
1327 {
1328 DECLARE_WAITQUEUE(wait, current);
1329 set_current_state(TASK_UNINTERRUPTIBLE);
1330 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1331
1332 if (audit_backlog_limit &&
1333 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1334 sleep_time = schedule_timeout(sleep_time);
1335
1336 __set_current_state(TASK_RUNNING);
1337 remove_wait_queue(&audit_backlog_wait, &wait);
1338
1339 return sleep_time;
1340 }
1341
1342 /**
1343 * audit_log_start - obtain an audit buffer
1344 * @ctx: audit_context (may be NULL)
1345 * @gfp_mask: type of allocation
1346 * @type: audit message type
1347 *
1348 * Returns audit_buffer pointer on success or NULL on error.
1349 *
1350 * Obtain an audit buffer. This routine does locking to obtain the
1351 * audit buffer, but then no locking is required for calls to
1352 * audit_log_*format. If the task (ctx) is a task that is currently in a
1353 * syscall, then the syscall is marked as auditable and an audit record
1354 * will be written at syscall exit. If there is no associated task, then
1355 * task context (ctx) should be NULL.
1356 */
1357 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1358 int type)
1359 {
1360 struct audit_buffer *ab = NULL;
1361 struct timespec t;
1362 unsigned int uninitialized_var(serial);
1363 int reserve = 5; /* Allow atomic callers to go up to five
1364 entries over the normal backlog limit */
1365 unsigned long timeout_start = jiffies;
1366
1367 if (audit_initialized != AUDIT_INITIALIZED)
1368 return NULL;
1369
1370 if (unlikely(audit_filter_type(type)))
1371 return NULL;
1372
1373 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1374 if (audit_pid && audit_pid == current->tgid)
1375 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1376 else
1377 reserve = 0;
1378 }
1379
1380 while (audit_backlog_limit
1381 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1382 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1383 long sleep_time;
1384
1385 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1386 if (sleep_time > 0) {
1387 sleep_time = wait_for_auditd(sleep_time);
1388 if (sleep_time > 0)
1389 continue;
1390 }
1391 }
1392 if (audit_rate_check() && printk_ratelimit())
1393 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1394 skb_queue_len(&audit_skb_queue),
1395 audit_backlog_limit);
1396 audit_log_lost("backlog limit exceeded");
1397 audit_backlog_wait_time = 0;
1398 wake_up(&audit_backlog_wait);
1399 return NULL;
1400 }
1401
1402 if (!reserve && !audit_backlog_wait_time)
1403 audit_backlog_wait_time = audit_backlog_wait_time_master;
1404
1405 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1406 if (!ab) {
1407 audit_log_lost("out of memory in audit_log_start");
1408 return NULL;
1409 }
1410
1411 audit_get_stamp(ab->ctx, &t, &serial);
1412
1413 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1414 t.tv_sec, t.tv_nsec/1000000, serial);
1415 return ab;
1416 }
1417
1418 /**
1419 * audit_expand - expand skb in the audit buffer
1420 * @ab: audit_buffer
1421 * @extra: space to add at tail of the skb
1422 *
1423 * Returns 0 (no space) on failed expansion, or available space if
1424 * successful.
1425 */
1426 static inline int audit_expand(struct audit_buffer *ab, int extra)
1427 {
1428 struct sk_buff *skb = ab->skb;
1429 int oldtail = skb_tailroom(skb);
1430 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1431 int newtail = skb_tailroom(skb);
1432
1433 if (ret < 0) {
1434 audit_log_lost("out of memory in audit_expand");
1435 return 0;
1436 }
1437
1438 skb->truesize += newtail - oldtail;
1439 return newtail;
1440 }
1441
1442 /*
1443 * Format an audit message into the audit buffer. If there isn't enough
1444 * room in the audit buffer, more room will be allocated and vsnprint
1445 * will be called a second time. Currently, we assume that a printk
1446 * can't format message larger than 1024 bytes, so we don't either.
1447 */
1448 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1449 va_list args)
1450 {
1451 int len, avail;
1452 struct sk_buff *skb;
1453 va_list args2;
1454
1455 if (!ab)
1456 return;
1457
1458 BUG_ON(!ab->skb);
1459 skb = ab->skb;
1460 avail = skb_tailroom(skb);
1461 if (avail == 0) {
1462 avail = audit_expand(ab, AUDIT_BUFSIZ);
1463 if (!avail)
1464 goto out;
1465 }
1466 va_copy(args2, args);
1467 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1468 if (len >= avail) {
1469 /* The printk buffer is 1024 bytes long, so if we get
1470 * here and AUDIT_BUFSIZ is at least 1024, then we can
1471 * log everything that printk could have logged. */
1472 avail = audit_expand(ab,
1473 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1474 if (!avail)
1475 goto out_va_end;
1476 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1477 }
1478 if (len > 0)
1479 skb_put(skb, len);
1480 out_va_end:
1481 va_end(args2);
1482 out:
1483 return;
1484 }
1485
1486 /**
1487 * audit_log_format - format a message into the audit buffer.
1488 * @ab: audit_buffer
1489 * @fmt: format string
1490 * @...: optional parameters matching @fmt string
1491 *
1492 * All the work is done in audit_log_vformat.
1493 */
1494 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1495 {
1496 va_list args;
1497
1498 if (!ab)
1499 return;
1500 va_start(args, fmt);
1501 audit_log_vformat(ab, fmt, args);
1502 va_end(args);
1503 }
1504
1505 /**
1506 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1507 * @ab: the audit_buffer
1508 * @buf: buffer to convert to hex
1509 * @len: length of @buf to be converted
1510 *
1511 * No return value; failure to expand is silently ignored.
1512 *
1513 * This function will take the passed buf and convert it into a string of
1514 * ascii hex digits. The new string is placed onto the skb.
1515 */
1516 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1517 size_t len)
1518 {
1519 int i, avail, new_len;
1520 unsigned char *ptr;
1521 struct sk_buff *skb;
1522
1523 if (!ab)
1524 return;
1525
1526 BUG_ON(!ab->skb);
1527 skb = ab->skb;
1528 avail = skb_tailroom(skb);
1529 new_len = len<<1;
1530 if (new_len >= avail) {
1531 /* Round the buffer request up to the next multiple */
1532 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1533 avail = audit_expand(ab, new_len);
1534 if (!avail)
1535 return;
1536 }
1537
1538 ptr = skb_tail_pointer(skb);
1539 for (i = 0; i < len; i++)
1540 ptr = hex_byte_pack_upper(ptr, buf[i]);
1541 *ptr = 0;
1542 skb_put(skb, len << 1); /* new string is twice the old string */
1543 }
1544
1545 /*
1546 * Format a string of no more than slen characters into the audit buffer,
1547 * enclosed in quote marks.
1548 */
1549 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1550 size_t slen)
1551 {
1552 int avail, new_len;
1553 unsigned char *ptr;
1554 struct sk_buff *skb;
1555
1556 if (!ab)
1557 return;
1558
1559 BUG_ON(!ab->skb);
1560 skb = ab->skb;
1561 avail = skb_tailroom(skb);
1562 new_len = slen + 3; /* enclosing quotes + null terminator */
1563 if (new_len > avail) {
1564 avail = audit_expand(ab, new_len);
1565 if (!avail)
1566 return;
1567 }
1568 ptr = skb_tail_pointer(skb);
1569 *ptr++ = '"';
1570 memcpy(ptr, string, slen);
1571 ptr += slen;
1572 *ptr++ = '"';
1573 *ptr = 0;
1574 skb_put(skb, slen + 2); /* don't include null terminator */
1575 }
1576
1577 /**
1578 * audit_string_contains_control - does a string need to be logged in hex
1579 * @string: string to be checked
1580 * @len: max length of the string to check
1581 */
1582 bool audit_string_contains_control(const char *string, size_t len)
1583 {
1584 const unsigned char *p;
1585 for (p = string; p < (const unsigned char *)string + len; p++) {
1586 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1587 return true;
1588 }
1589 return false;
1590 }
1591
1592 /**
1593 * audit_log_n_untrustedstring - log a string that may contain random characters
1594 * @ab: audit_buffer
1595 * @len: length of string (not including trailing null)
1596 * @string: string to be logged
1597 *
1598 * This code will escape a string that is passed to it if the string
1599 * contains a control character, unprintable character, double quote mark,
1600 * or a space. Unescaped strings will start and end with a double quote mark.
1601 * Strings that are escaped are printed in hex (2 digits per char).
1602 *
1603 * The caller specifies the number of characters in the string to log, which may
1604 * or may not be the entire string.
1605 */
1606 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1607 size_t len)
1608 {
1609 if (audit_string_contains_control(string, len))
1610 audit_log_n_hex(ab, string, len);
1611 else
1612 audit_log_n_string(ab, string, len);
1613 }
1614
1615 /**
1616 * audit_log_untrustedstring - log a string that may contain random characters
1617 * @ab: audit_buffer
1618 * @string: string to be logged
1619 *
1620 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1621 * determine string length.
1622 */
1623 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1624 {
1625 audit_log_n_untrustedstring(ab, string, strlen(string));
1626 }
1627
1628 /* This is a helper-function to print the escaped d_path */
1629 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1630 const struct path *path)
1631 {
1632 char *p, *pathname;
1633
1634 if (prefix)
1635 audit_log_format(ab, "%s", prefix);
1636
1637 /* We will allow 11 spaces for ' (deleted)' to be appended */
1638 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1639 if (!pathname) {
1640 audit_log_string(ab, "<no_memory>");
1641 return;
1642 }
1643 p = d_path(path, pathname, PATH_MAX+11);
1644 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1645 /* FIXME: can we save some information here? */
1646 audit_log_string(ab, "<too_long>");
1647 } else
1648 audit_log_untrustedstring(ab, p);
1649 kfree(pathname);
1650 }
1651
1652 void audit_log_session_info(struct audit_buffer *ab)
1653 {
1654 unsigned int sessionid = audit_get_sessionid(current);
1655 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1656
1657 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1658 }
1659
1660 void audit_log_key(struct audit_buffer *ab, char *key)
1661 {
1662 audit_log_format(ab, " key=");
1663 if (key)
1664 audit_log_untrustedstring(ab, key);
1665 else
1666 audit_log_format(ab, "(null)");
1667 }
1668
1669 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1670 {
1671 int i;
1672
1673 audit_log_format(ab, " %s=", prefix);
1674 CAP_FOR_EACH_U32(i) {
1675 audit_log_format(ab, "%08x",
1676 cap->cap[CAP_LAST_U32 - i]);
1677 }
1678 }
1679
1680 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1681 {
1682 kernel_cap_t *perm = &name->fcap.permitted;
1683 kernel_cap_t *inh = &name->fcap.inheritable;
1684 int log = 0;
1685
1686 if (!cap_isclear(*perm)) {
1687 audit_log_cap(ab, "cap_fp", perm);
1688 log = 1;
1689 }
1690 if (!cap_isclear(*inh)) {
1691 audit_log_cap(ab, "cap_fi", inh);
1692 log = 1;
1693 }
1694
1695 if (log)
1696 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1697 name->fcap.fE, name->fcap_ver);
1698 }
1699
1700 static inline int audit_copy_fcaps(struct audit_names *name,
1701 const struct dentry *dentry)
1702 {
1703 struct cpu_vfs_cap_data caps;
1704 int rc;
1705
1706 if (!dentry)
1707 return 0;
1708
1709 rc = get_vfs_caps_from_disk(dentry, &caps);
1710 if (rc)
1711 return rc;
1712
1713 name->fcap.permitted = caps.permitted;
1714 name->fcap.inheritable = caps.inheritable;
1715 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1716 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1717 VFS_CAP_REVISION_SHIFT;
1718
1719 return 0;
1720 }
1721
1722 /* Copy inode data into an audit_names. */
1723 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1724 const struct inode *inode)
1725 {
1726 name->ino = inode->i_ino;
1727 name->dev = inode->i_sb->s_dev;
1728 name->mode = inode->i_mode;
1729 name->uid = inode->i_uid;
1730 name->gid = inode->i_gid;
1731 name->rdev = inode->i_rdev;
1732 security_inode_getsecid(inode, &name->osid);
1733 audit_copy_fcaps(name, dentry);
1734 }
1735
1736 /**
1737 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1738 * @context: audit_context for the task
1739 * @n: audit_names structure with reportable details
1740 * @path: optional path to report instead of audit_names->name
1741 * @record_num: record number to report when handling a list of names
1742 * @call_panic: optional pointer to int that will be updated if secid fails
1743 */
1744 void audit_log_name(struct audit_context *context, struct audit_names *n,
1745 struct path *path, int record_num, int *call_panic)
1746 {
1747 struct audit_buffer *ab;
1748 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1749 if (!ab)
1750 return;
1751
1752 audit_log_format(ab, "item=%d", record_num);
1753
1754 if (path)
1755 audit_log_d_path(ab, " name=", path);
1756 else if (n->name) {
1757 switch (n->name_len) {
1758 case AUDIT_NAME_FULL:
1759 /* log the full path */
1760 audit_log_format(ab, " name=");
1761 audit_log_untrustedstring(ab, n->name->name);
1762 break;
1763 case 0:
1764 /* name was specified as a relative path and the
1765 * directory component is the cwd */
1766 audit_log_d_path(ab, " name=", &context->pwd);
1767 break;
1768 default:
1769 /* log the name's directory component */
1770 audit_log_format(ab, " name=");
1771 audit_log_n_untrustedstring(ab, n->name->name,
1772 n->name_len);
1773 }
1774 } else
1775 audit_log_format(ab, " name=(null)");
1776
1777 if (n->ino != AUDIT_INO_UNSET)
1778 audit_log_format(ab, " inode=%lu"
1779 " dev=%02x:%02x mode=%#ho"
1780 " ouid=%u ogid=%u rdev=%02x:%02x",
1781 n->ino,
1782 MAJOR(n->dev),
1783 MINOR(n->dev),
1784 n->mode,
1785 from_kuid(&init_user_ns, n->uid),
1786 from_kgid(&init_user_ns, n->gid),
1787 MAJOR(n->rdev),
1788 MINOR(n->rdev));
1789 if (n->osid != 0) {
1790 char *ctx = NULL;
1791 u32 len;
1792 if (security_secid_to_secctx(
1793 n->osid, &ctx, &len)) {
1794 audit_log_format(ab, " osid=%u", n->osid);
1795 if (call_panic)
1796 *call_panic = 2;
1797 } else {
1798 audit_log_format(ab, " obj=%s", ctx);
1799 security_release_secctx(ctx, len);
1800 }
1801 }
1802
1803 /* log the audit_names record type */
1804 audit_log_format(ab, " nametype=");
1805 switch(n->type) {
1806 case AUDIT_TYPE_NORMAL:
1807 audit_log_format(ab, "NORMAL");
1808 break;
1809 case AUDIT_TYPE_PARENT:
1810 audit_log_format(ab, "PARENT");
1811 break;
1812 case AUDIT_TYPE_CHILD_DELETE:
1813 audit_log_format(ab, "DELETE");
1814 break;
1815 case AUDIT_TYPE_CHILD_CREATE:
1816 audit_log_format(ab, "CREATE");
1817 break;
1818 default:
1819 audit_log_format(ab, "UNKNOWN");
1820 break;
1821 }
1822
1823 audit_log_fcaps(ab, n);
1824 audit_log_end(ab);
1825 }
1826
1827 int audit_log_task_context(struct audit_buffer *ab)
1828 {
1829 char *ctx = NULL;
1830 unsigned len;
1831 int error;
1832 u32 sid;
1833
1834 security_task_getsecid(current, &sid);
1835 if (!sid)
1836 return 0;
1837
1838 error = security_secid_to_secctx(sid, &ctx, &len);
1839 if (error) {
1840 if (error != -EINVAL)
1841 goto error_path;
1842 return 0;
1843 }
1844
1845 audit_log_format(ab, " subj=%s", ctx);
1846 security_release_secctx(ctx, len);
1847 return 0;
1848
1849 error_path:
1850 audit_panic("error in audit_log_task_context");
1851 return error;
1852 }
1853 EXPORT_SYMBOL(audit_log_task_context);
1854
1855 void audit_log_d_path_exe(struct audit_buffer *ab,
1856 struct mm_struct *mm)
1857 {
1858 struct file *exe_file;
1859
1860 if (!mm)
1861 goto out_null;
1862
1863 exe_file = get_mm_exe_file(mm);
1864 if (!exe_file)
1865 goto out_null;
1866
1867 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1868 fput(exe_file);
1869 return;
1870 out_null:
1871 audit_log_format(ab, " exe=(null)");
1872 }
1873
1874 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1875 {
1876 const struct cred *cred;
1877 char comm[sizeof(tsk->comm)];
1878 char *tty;
1879
1880 if (!ab)
1881 return;
1882
1883 /* tsk == current */
1884 cred = current_cred();
1885
1886 spin_lock_irq(&tsk->sighand->siglock);
1887 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1888 tty = tsk->signal->tty->name;
1889 else
1890 tty = "(none)";
1891 spin_unlock_irq(&tsk->sighand->siglock);
1892
1893 audit_log_format(ab,
1894 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1895 " euid=%u suid=%u fsuid=%u"
1896 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1897 task_ppid_nr(tsk),
1898 task_pid_nr(tsk),
1899 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1900 from_kuid(&init_user_ns, cred->uid),
1901 from_kgid(&init_user_ns, cred->gid),
1902 from_kuid(&init_user_ns, cred->euid),
1903 from_kuid(&init_user_ns, cred->suid),
1904 from_kuid(&init_user_ns, cred->fsuid),
1905 from_kgid(&init_user_ns, cred->egid),
1906 from_kgid(&init_user_ns, cred->sgid),
1907 from_kgid(&init_user_ns, cred->fsgid),
1908 tty, audit_get_sessionid(tsk));
1909
1910 audit_log_format(ab, " comm=");
1911 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1912
1913 audit_log_d_path_exe(ab, tsk->mm);
1914 audit_log_task_context(ab);
1915 }
1916 EXPORT_SYMBOL(audit_log_task_info);
1917
1918 /**
1919 * audit_log_link_denied - report a link restriction denial
1920 * @operation: specific link operation
1921 * @link: the path that triggered the restriction
1922 */
1923 void audit_log_link_denied(const char *operation, struct path *link)
1924 {
1925 struct audit_buffer *ab;
1926 struct audit_names *name;
1927
1928 name = kzalloc(sizeof(*name), GFP_NOFS);
1929 if (!name)
1930 return;
1931
1932 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1933 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1934 AUDIT_ANOM_LINK);
1935 if (!ab)
1936 goto out;
1937 audit_log_format(ab, "op=%s", operation);
1938 audit_log_task_info(ab, current);
1939 audit_log_format(ab, " res=0");
1940 audit_log_end(ab);
1941
1942 /* Generate AUDIT_PATH record with object. */
1943 name->type = AUDIT_TYPE_NORMAL;
1944 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1945 audit_log_name(current->audit_context, name, link, 0, NULL);
1946 out:
1947 kfree(name);
1948 }
1949
1950 /**
1951 * audit_log_end - end one audit record
1952 * @ab: the audit_buffer
1953 *
1954 * netlink_unicast() cannot be called inside an irq context because it blocks
1955 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1956 * on a queue and a tasklet is scheduled to remove them from the queue outside
1957 * the irq context. May be called in any context.
1958 */
1959 void audit_log_end(struct audit_buffer *ab)
1960 {
1961 if (!ab)
1962 return;
1963 if (!audit_rate_check()) {
1964 audit_log_lost("rate limit exceeded");
1965 } else {
1966 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1967
1968 nlh->nlmsg_len = ab->skb->len;
1969 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1970
1971 /*
1972 * The original kaudit unicast socket sends up messages with
1973 * nlmsg_len set to the payload length rather than the entire
1974 * message length. This breaks the standard set by netlink.
1975 * The existing auditd daemon assumes this breakage. Fixing
1976 * this would require co-ordinating a change in the established
1977 * protocol between the kaudit kernel subsystem and the auditd
1978 * userspace code.
1979 */
1980 nlh->nlmsg_len -= NLMSG_HDRLEN;
1981
1982 if (audit_pid) {
1983 skb_queue_tail(&audit_skb_queue, ab->skb);
1984 wake_up_interruptible(&kauditd_wait);
1985 } else {
1986 audit_printk_skb(ab->skb);
1987 }
1988 ab->skb = NULL;
1989 }
1990 audit_buffer_free(ab);
1991 }
1992
1993 /**
1994 * audit_log - Log an audit record
1995 * @ctx: audit context
1996 * @gfp_mask: type of allocation
1997 * @type: audit message type
1998 * @fmt: format string to use
1999 * @...: variable parameters matching the format string
2000 *
2001 * This is a convenience function that calls audit_log_start,
2002 * audit_log_vformat, and audit_log_end. It may be called
2003 * in any context.
2004 */
2005 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2006 const char *fmt, ...)
2007 {
2008 struct audit_buffer *ab;
2009 va_list args;
2010
2011 ab = audit_log_start(ctx, gfp_mask, type);
2012 if (ab) {
2013 va_start(args, fmt);
2014 audit_log_vformat(ab, fmt, args);
2015 va_end(args);
2016 audit_log_end(ab);
2017 }
2018 }
2019
2020 #ifdef CONFIG_SECURITY
2021 /**
2022 * audit_log_secctx - Converts and logs SELinux context
2023 * @ab: audit_buffer
2024 * @secid: security number
2025 *
2026 * This is a helper function that calls security_secid_to_secctx to convert
2027 * secid to secctx and then adds the (converted) SELinux context to the audit
2028 * log by calling audit_log_format, thus also preventing leak of internal secid
2029 * to userspace. If secid cannot be converted audit_panic is called.
2030 */
2031 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2032 {
2033 u32 len;
2034 char *secctx;
2035
2036 if (security_secid_to_secctx(secid, &secctx, &len)) {
2037 audit_panic("Cannot convert secid to context");
2038 } else {
2039 audit_log_format(ab, " obj=%s", secctx);
2040 security_release_secctx(secctx, len);
2041 }
2042 }
2043 EXPORT_SYMBOL(audit_log_secctx);
2044 #endif
2045
2046 EXPORT_SYMBOL(audit_log_start);
2047 EXPORT_SYMBOL(audit_log_end);
2048 EXPORT_SYMBOL(audit_log_format);
2049 EXPORT_SYMBOL(audit_log);
This page took 0.075256 seconds and 6 git commands to generate.