audit: implement audit by executable
[deliverable/linux.git] / kernel / audit_tree.c
1 #include "audit.h"
2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
7
8 struct audit_tree;
9 struct audit_chunk;
10
11 struct audit_tree {
12 atomic_t count;
13 int goner;
14 struct audit_chunk *root;
15 struct list_head chunks;
16 struct list_head rules;
17 struct list_head list;
18 struct list_head same_root;
19 struct rcu_head head;
20 char pathname[];
21 };
22
23 struct audit_chunk {
24 struct list_head hash;
25 struct fsnotify_mark mark;
26 struct list_head trees; /* with root here */
27 int dead;
28 int count;
29 atomic_long_t refs;
30 struct rcu_head head;
31 struct node {
32 struct list_head list;
33 struct audit_tree *owner;
34 unsigned index; /* index; upper bit indicates 'will prune' */
35 } owners[];
36 };
37
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
40
41 /*
42 * One struct chunk is attached to each inode of interest.
43 * We replace struct chunk on tagging/untagging.
44 * Rules have pointer to struct audit_tree.
45 * Rules have struct list_head rlist forming a list of rules over
46 * the same tree.
47 * References to struct chunk are collected at audit_inode{,_child}()
48 * time and used in AUDIT_TREE rule matching.
49 * These references are dropped at the same time we are calling
50 * audit_free_names(), etc.
51 *
52 * Cyclic lists galore:
53 * tree.chunks anchors chunk.owners[].list hash_lock
54 * tree.rules anchors rule.rlist audit_filter_mutex
55 * chunk.trees anchors tree.same_root hash_lock
56 * chunk.hash is a hash with middle bits of watch.inode as
57 * a hash function. RCU, hash_lock
58 *
59 * tree is refcounted; one reference for "some rules on rules_list refer to
60 * it", one for each chunk with pointer to it.
61 *
62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
63 * of watch contributes 1 to .refs).
64 *
65 * node.index allows to get from node.list to containing chunk.
66 * MSB of that sucker is stolen to mark taggings that we might have to
67 * revert - several operations have very unpleasant cleanup logics and
68 * that makes a difference. Some.
69 */
70
71 static struct fsnotify_group *audit_tree_group;
72
73 static struct audit_tree *alloc_tree(const char *s)
74 {
75 struct audit_tree *tree;
76
77 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
78 if (tree) {
79 atomic_set(&tree->count, 1);
80 tree->goner = 0;
81 INIT_LIST_HEAD(&tree->chunks);
82 INIT_LIST_HEAD(&tree->rules);
83 INIT_LIST_HEAD(&tree->list);
84 INIT_LIST_HEAD(&tree->same_root);
85 tree->root = NULL;
86 strcpy(tree->pathname, s);
87 }
88 return tree;
89 }
90
91 static inline void get_tree(struct audit_tree *tree)
92 {
93 atomic_inc(&tree->count);
94 }
95
96 static inline void put_tree(struct audit_tree *tree)
97 {
98 if (atomic_dec_and_test(&tree->count))
99 kfree_rcu(tree, head);
100 }
101
102 /* to avoid bringing the entire thing in audit.h */
103 const char *audit_tree_path(struct audit_tree *tree)
104 {
105 return tree->pathname;
106 }
107
108 static void free_chunk(struct audit_chunk *chunk)
109 {
110 int i;
111
112 for (i = 0; i < chunk->count; i++) {
113 if (chunk->owners[i].owner)
114 put_tree(chunk->owners[i].owner);
115 }
116 kfree(chunk);
117 }
118
119 void audit_put_chunk(struct audit_chunk *chunk)
120 {
121 if (atomic_long_dec_and_test(&chunk->refs))
122 free_chunk(chunk);
123 }
124
125 static void __put_chunk(struct rcu_head *rcu)
126 {
127 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
128 audit_put_chunk(chunk);
129 }
130
131 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
132 {
133 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
134 call_rcu(&chunk->head, __put_chunk);
135 }
136
137 static struct audit_chunk *alloc_chunk(int count)
138 {
139 struct audit_chunk *chunk;
140 size_t size;
141 int i;
142
143 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
144 chunk = kzalloc(size, GFP_KERNEL);
145 if (!chunk)
146 return NULL;
147
148 INIT_LIST_HEAD(&chunk->hash);
149 INIT_LIST_HEAD(&chunk->trees);
150 chunk->count = count;
151 atomic_long_set(&chunk->refs, 1);
152 for (i = 0; i < count; i++) {
153 INIT_LIST_HEAD(&chunk->owners[i].list);
154 chunk->owners[i].index = i;
155 }
156 fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
157 chunk->mark.mask = FS_IN_IGNORED;
158 return chunk;
159 }
160
161 enum {HASH_SIZE = 128};
162 static struct list_head chunk_hash_heads[HASH_SIZE];
163 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
164
165 static inline struct list_head *chunk_hash(const struct inode *inode)
166 {
167 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
168 return chunk_hash_heads + n % HASH_SIZE;
169 }
170
171 /* hash_lock & entry->lock is held by caller */
172 static void insert_hash(struct audit_chunk *chunk)
173 {
174 struct fsnotify_mark *entry = &chunk->mark;
175 struct list_head *list;
176
177 if (!entry->inode)
178 return;
179 list = chunk_hash(entry->inode);
180 list_add_rcu(&chunk->hash, list);
181 }
182
183 /* called under rcu_read_lock */
184 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
185 {
186 struct list_head *list = chunk_hash(inode);
187 struct audit_chunk *p;
188
189 list_for_each_entry_rcu(p, list, hash) {
190 /* mark.inode may have gone NULL, but who cares? */
191 if (p->mark.inode == inode) {
192 atomic_long_inc(&p->refs);
193 return p;
194 }
195 }
196 return NULL;
197 }
198
199 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
200 {
201 int n;
202 for (n = 0; n < chunk->count; n++)
203 if (chunk->owners[n].owner == tree)
204 return 1;
205 return 0;
206 }
207
208 /* tagging and untagging inodes with trees */
209
210 static struct audit_chunk *find_chunk(struct node *p)
211 {
212 int index = p->index & ~(1U<<31);
213 p -= index;
214 return container_of(p, struct audit_chunk, owners[0]);
215 }
216
217 static void untag_chunk(struct node *p)
218 {
219 struct audit_chunk *chunk = find_chunk(p);
220 struct fsnotify_mark *entry = &chunk->mark;
221 struct audit_chunk *new = NULL;
222 struct audit_tree *owner;
223 int size = chunk->count - 1;
224 int i, j;
225
226 fsnotify_get_mark(entry);
227
228 spin_unlock(&hash_lock);
229
230 if (size)
231 new = alloc_chunk(size);
232
233 spin_lock(&entry->lock);
234 if (chunk->dead || !entry->inode) {
235 spin_unlock(&entry->lock);
236 if (new)
237 free_chunk(new);
238 goto out;
239 }
240
241 owner = p->owner;
242
243 if (!size) {
244 chunk->dead = 1;
245 spin_lock(&hash_lock);
246 list_del_init(&chunk->trees);
247 if (owner->root == chunk)
248 owner->root = NULL;
249 list_del_init(&p->list);
250 list_del_rcu(&chunk->hash);
251 spin_unlock(&hash_lock);
252 spin_unlock(&entry->lock);
253 fsnotify_destroy_mark(entry, audit_tree_group);
254 goto out;
255 }
256
257 if (!new)
258 goto Fallback;
259
260 fsnotify_duplicate_mark(&new->mark, entry);
261 if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.inode, NULL, 1)) {
262 fsnotify_put_mark(&new->mark);
263 goto Fallback;
264 }
265
266 chunk->dead = 1;
267 spin_lock(&hash_lock);
268 list_replace_init(&chunk->trees, &new->trees);
269 if (owner->root == chunk) {
270 list_del_init(&owner->same_root);
271 owner->root = NULL;
272 }
273
274 for (i = j = 0; j <= size; i++, j++) {
275 struct audit_tree *s;
276 if (&chunk->owners[j] == p) {
277 list_del_init(&p->list);
278 i--;
279 continue;
280 }
281 s = chunk->owners[j].owner;
282 new->owners[i].owner = s;
283 new->owners[i].index = chunk->owners[j].index - j + i;
284 if (!s) /* result of earlier fallback */
285 continue;
286 get_tree(s);
287 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
288 }
289
290 list_replace_rcu(&chunk->hash, &new->hash);
291 list_for_each_entry(owner, &new->trees, same_root)
292 owner->root = new;
293 spin_unlock(&hash_lock);
294 spin_unlock(&entry->lock);
295 fsnotify_destroy_mark(entry, audit_tree_group);
296 fsnotify_put_mark(&new->mark); /* drop initial reference */
297 goto out;
298
299 Fallback:
300 // do the best we can
301 spin_lock(&hash_lock);
302 if (owner->root == chunk) {
303 list_del_init(&owner->same_root);
304 owner->root = NULL;
305 }
306 list_del_init(&p->list);
307 p->owner = NULL;
308 put_tree(owner);
309 spin_unlock(&hash_lock);
310 spin_unlock(&entry->lock);
311 out:
312 fsnotify_put_mark(entry);
313 spin_lock(&hash_lock);
314 }
315
316 static int create_chunk(struct inode *inode, struct audit_tree *tree)
317 {
318 struct fsnotify_mark *entry;
319 struct audit_chunk *chunk = alloc_chunk(1);
320 if (!chunk)
321 return -ENOMEM;
322
323 entry = &chunk->mark;
324 if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
325 fsnotify_put_mark(entry);
326 return -ENOSPC;
327 }
328
329 spin_lock(&entry->lock);
330 spin_lock(&hash_lock);
331 if (tree->goner) {
332 spin_unlock(&hash_lock);
333 chunk->dead = 1;
334 spin_unlock(&entry->lock);
335 fsnotify_destroy_mark(entry, audit_tree_group);
336 fsnotify_put_mark(entry);
337 return 0;
338 }
339 chunk->owners[0].index = (1U << 31);
340 chunk->owners[0].owner = tree;
341 get_tree(tree);
342 list_add(&chunk->owners[0].list, &tree->chunks);
343 if (!tree->root) {
344 tree->root = chunk;
345 list_add(&tree->same_root, &chunk->trees);
346 }
347 insert_hash(chunk);
348 spin_unlock(&hash_lock);
349 spin_unlock(&entry->lock);
350 fsnotify_put_mark(entry); /* drop initial reference */
351 return 0;
352 }
353
354 /* the first tagged inode becomes root of tree */
355 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
356 {
357 struct fsnotify_mark *old_entry, *chunk_entry;
358 struct audit_tree *owner;
359 struct audit_chunk *chunk, *old;
360 struct node *p;
361 int n;
362
363 old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
364 if (!old_entry)
365 return create_chunk(inode, tree);
366
367 old = container_of(old_entry, struct audit_chunk, mark);
368
369 /* are we already there? */
370 spin_lock(&hash_lock);
371 for (n = 0; n < old->count; n++) {
372 if (old->owners[n].owner == tree) {
373 spin_unlock(&hash_lock);
374 fsnotify_put_mark(old_entry);
375 return 0;
376 }
377 }
378 spin_unlock(&hash_lock);
379
380 chunk = alloc_chunk(old->count + 1);
381 if (!chunk) {
382 fsnotify_put_mark(old_entry);
383 return -ENOMEM;
384 }
385
386 chunk_entry = &chunk->mark;
387
388 spin_lock(&old_entry->lock);
389 if (!old_entry->inode) {
390 /* old_entry is being shot, lets just lie */
391 spin_unlock(&old_entry->lock);
392 fsnotify_put_mark(old_entry);
393 free_chunk(chunk);
394 return -ENOENT;
395 }
396
397 fsnotify_duplicate_mark(chunk_entry, old_entry);
398 if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->inode, NULL, 1)) {
399 spin_unlock(&old_entry->lock);
400 fsnotify_put_mark(chunk_entry);
401 fsnotify_put_mark(old_entry);
402 return -ENOSPC;
403 }
404
405 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
406 spin_lock(&chunk_entry->lock);
407 spin_lock(&hash_lock);
408
409 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
410 if (tree->goner) {
411 spin_unlock(&hash_lock);
412 chunk->dead = 1;
413 spin_unlock(&chunk_entry->lock);
414 spin_unlock(&old_entry->lock);
415
416 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
417
418 fsnotify_put_mark(chunk_entry);
419 fsnotify_put_mark(old_entry);
420 return 0;
421 }
422 list_replace_init(&old->trees, &chunk->trees);
423 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
424 struct audit_tree *s = old->owners[n].owner;
425 p->owner = s;
426 p->index = old->owners[n].index;
427 if (!s) /* result of fallback in untag */
428 continue;
429 get_tree(s);
430 list_replace_init(&old->owners[n].list, &p->list);
431 }
432 p->index = (chunk->count - 1) | (1U<<31);
433 p->owner = tree;
434 get_tree(tree);
435 list_add(&p->list, &tree->chunks);
436 list_replace_rcu(&old->hash, &chunk->hash);
437 list_for_each_entry(owner, &chunk->trees, same_root)
438 owner->root = chunk;
439 old->dead = 1;
440 if (!tree->root) {
441 tree->root = chunk;
442 list_add(&tree->same_root, &chunk->trees);
443 }
444 spin_unlock(&hash_lock);
445 spin_unlock(&chunk_entry->lock);
446 spin_unlock(&old_entry->lock);
447 fsnotify_destroy_mark(old_entry, audit_tree_group);
448 fsnotify_put_mark(chunk_entry); /* drop initial reference */
449 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
450 return 0;
451 }
452
453 static void audit_tree_log_remove_rule(struct audit_krule *rule)
454 {
455 struct audit_buffer *ab;
456
457 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
458 if (unlikely(!ab))
459 return;
460 audit_log_format(ab, "op=");
461 audit_log_string(ab, "remove_rule");
462 audit_log_format(ab, " dir=");
463 audit_log_untrustedstring(ab, rule->tree->pathname);
464 audit_log_key(ab, rule->filterkey);
465 audit_log_format(ab, " list=%d res=1", rule->listnr);
466 audit_log_end(ab);
467 }
468
469 static void kill_rules(struct audit_tree *tree)
470 {
471 struct audit_krule *rule, *next;
472 struct audit_entry *entry;
473
474 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
475 entry = container_of(rule, struct audit_entry, rule);
476
477 list_del_init(&rule->rlist);
478 if (rule->tree) {
479 /* not a half-baked one */
480 audit_tree_log_remove_rule(rule);
481 if (entry->rule.exe)
482 audit_remove_mark(entry->rule.exe);
483 rule->tree = NULL;
484 list_del_rcu(&entry->list);
485 list_del(&entry->rule.list);
486 call_rcu(&entry->rcu, audit_free_rule_rcu);
487 }
488 }
489 }
490
491 /*
492 * finish killing struct audit_tree
493 */
494 static void prune_one(struct audit_tree *victim)
495 {
496 spin_lock(&hash_lock);
497 while (!list_empty(&victim->chunks)) {
498 struct node *p;
499
500 p = list_entry(victim->chunks.next, struct node, list);
501
502 untag_chunk(p);
503 }
504 spin_unlock(&hash_lock);
505 put_tree(victim);
506 }
507
508 /* trim the uncommitted chunks from tree */
509
510 static void trim_marked(struct audit_tree *tree)
511 {
512 struct list_head *p, *q;
513 spin_lock(&hash_lock);
514 if (tree->goner) {
515 spin_unlock(&hash_lock);
516 return;
517 }
518 /* reorder */
519 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
520 struct node *node = list_entry(p, struct node, list);
521 q = p->next;
522 if (node->index & (1U<<31)) {
523 list_del_init(p);
524 list_add(p, &tree->chunks);
525 }
526 }
527
528 while (!list_empty(&tree->chunks)) {
529 struct node *node;
530
531 node = list_entry(tree->chunks.next, struct node, list);
532
533 /* have we run out of marked? */
534 if (!(node->index & (1U<<31)))
535 break;
536
537 untag_chunk(node);
538 }
539 if (!tree->root && !tree->goner) {
540 tree->goner = 1;
541 spin_unlock(&hash_lock);
542 mutex_lock(&audit_filter_mutex);
543 kill_rules(tree);
544 list_del_init(&tree->list);
545 mutex_unlock(&audit_filter_mutex);
546 prune_one(tree);
547 } else {
548 spin_unlock(&hash_lock);
549 }
550 }
551
552 static void audit_schedule_prune(void);
553
554 /* called with audit_filter_mutex */
555 int audit_remove_tree_rule(struct audit_krule *rule)
556 {
557 struct audit_tree *tree;
558 tree = rule->tree;
559 if (tree) {
560 spin_lock(&hash_lock);
561 list_del_init(&rule->rlist);
562 if (list_empty(&tree->rules) && !tree->goner) {
563 tree->root = NULL;
564 list_del_init(&tree->same_root);
565 tree->goner = 1;
566 list_move(&tree->list, &prune_list);
567 rule->tree = NULL;
568 spin_unlock(&hash_lock);
569 audit_schedule_prune();
570 return 1;
571 }
572 rule->tree = NULL;
573 spin_unlock(&hash_lock);
574 return 1;
575 }
576 return 0;
577 }
578
579 static int compare_root(struct vfsmount *mnt, void *arg)
580 {
581 return mnt->mnt_root->d_inode == arg;
582 }
583
584 void audit_trim_trees(void)
585 {
586 struct list_head cursor;
587
588 mutex_lock(&audit_filter_mutex);
589 list_add(&cursor, &tree_list);
590 while (cursor.next != &tree_list) {
591 struct audit_tree *tree;
592 struct path path;
593 struct vfsmount *root_mnt;
594 struct node *node;
595 int err;
596
597 tree = container_of(cursor.next, struct audit_tree, list);
598 get_tree(tree);
599 list_del(&cursor);
600 list_add(&cursor, &tree->list);
601 mutex_unlock(&audit_filter_mutex);
602
603 err = kern_path(tree->pathname, 0, &path);
604 if (err)
605 goto skip_it;
606
607 root_mnt = collect_mounts(&path);
608 path_put(&path);
609 if (IS_ERR(root_mnt))
610 goto skip_it;
611
612 spin_lock(&hash_lock);
613 list_for_each_entry(node, &tree->chunks, list) {
614 struct audit_chunk *chunk = find_chunk(node);
615 /* this could be NULL if the watch is dying else where... */
616 struct inode *inode = chunk->mark.inode;
617 node->index |= 1U<<31;
618 if (iterate_mounts(compare_root, inode, root_mnt))
619 node->index &= ~(1U<<31);
620 }
621 spin_unlock(&hash_lock);
622 trim_marked(tree);
623 drop_collected_mounts(root_mnt);
624 skip_it:
625 put_tree(tree);
626 mutex_lock(&audit_filter_mutex);
627 }
628 list_del(&cursor);
629 mutex_unlock(&audit_filter_mutex);
630 }
631
632 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
633 {
634
635 if (pathname[0] != '/' ||
636 rule->listnr != AUDIT_FILTER_EXIT ||
637 op != Audit_equal ||
638 rule->inode_f || rule->watch || rule->tree)
639 return -EINVAL;
640 rule->tree = alloc_tree(pathname);
641 if (!rule->tree)
642 return -ENOMEM;
643 return 0;
644 }
645
646 void audit_put_tree(struct audit_tree *tree)
647 {
648 put_tree(tree);
649 }
650
651 static int tag_mount(struct vfsmount *mnt, void *arg)
652 {
653 return tag_chunk(mnt->mnt_root->d_inode, arg);
654 }
655
656 /* called with audit_filter_mutex */
657 int audit_add_tree_rule(struct audit_krule *rule)
658 {
659 struct audit_tree *seed = rule->tree, *tree;
660 struct path path;
661 struct vfsmount *mnt;
662 int err;
663
664 rule->tree = NULL;
665 list_for_each_entry(tree, &tree_list, list) {
666 if (!strcmp(seed->pathname, tree->pathname)) {
667 put_tree(seed);
668 rule->tree = tree;
669 list_add(&rule->rlist, &tree->rules);
670 return 0;
671 }
672 }
673 tree = seed;
674 list_add(&tree->list, &tree_list);
675 list_add(&rule->rlist, &tree->rules);
676 /* do not set rule->tree yet */
677 mutex_unlock(&audit_filter_mutex);
678
679 err = kern_path(tree->pathname, 0, &path);
680 if (err)
681 goto Err;
682 mnt = collect_mounts(&path);
683 path_put(&path);
684 if (IS_ERR(mnt)) {
685 err = PTR_ERR(mnt);
686 goto Err;
687 }
688
689 get_tree(tree);
690 err = iterate_mounts(tag_mount, tree, mnt);
691 drop_collected_mounts(mnt);
692
693 if (!err) {
694 struct node *node;
695 spin_lock(&hash_lock);
696 list_for_each_entry(node, &tree->chunks, list)
697 node->index &= ~(1U<<31);
698 spin_unlock(&hash_lock);
699 } else {
700 trim_marked(tree);
701 goto Err;
702 }
703
704 mutex_lock(&audit_filter_mutex);
705 if (list_empty(&rule->rlist)) {
706 put_tree(tree);
707 return -ENOENT;
708 }
709 rule->tree = tree;
710 put_tree(tree);
711
712 return 0;
713 Err:
714 mutex_lock(&audit_filter_mutex);
715 list_del_init(&tree->list);
716 list_del_init(&tree->rules);
717 put_tree(tree);
718 return err;
719 }
720
721 int audit_tag_tree(char *old, char *new)
722 {
723 struct list_head cursor, barrier;
724 int failed = 0;
725 struct path path1, path2;
726 struct vfsmount *tagged;
727 int err;
728
729 err = kern_path(new, 0, &path2);
730 if (err)
731 return err;
732 tagged = collect_mounts(&path2);
733 path_put(&path2);
734 if (IS_ERR(tagged))
735 return PTR_ERR(tagged);
736
737 err = kern_path(old, 0, &path1);
738 if (err) {
739 drop_collected_mounts(tagged);
740 return err;
741 }
742
743 mutex_lock(&audit_filter_mutex);
744 list_add(&barrier, &tree_list);
745 list_add(&cursor, &barrier);
746
747 while (cursor.next != &tree_list) {
748 struct audit_tree *tree;
749 int good_one = 0;
750
751 tree = container_of(cursor.next, struct audit_tree, list);
752 get_tree(tree);
753 list_del(&cursor);
754 list_add(&cursor, &tree->list);
755 mutex_unlock(&audit_filter_mutex);
756
757 err = kern_path(tree->pathname, 0, &path2);
758 if (!err) {
759 good_one = path_is_under(&path1, &path2);
760 path_put(&path2);
761 }
762
763 if (!good_one) {
764 put_tree(tree);
765 mutex_lock(&audit_filter_mutex);
766 continue;
767 }
768
769 failed = iterate_mounts(tag_mount, tree, tagged);
770 if (failed) {
771 put_tree(tree);
772 mutex_lock(&audit_filter_mutex);
773 break;
774 }
775
776 mutex_lock(&audit_filter_mutex);
777 spin_lock(&hash_lock);
778 if (!tree->goner) {
779 list_del(&tree->list);
780 list_add(&tree->list, &tree_list);
781 }
782 spin_unlock(&hash_lock);
783 put_tree(tree);
784 }
785
786 while (barrier.prev != &tree_list) {
787 struct audit_tree *tree;
788
789 tree = container_of(barrier.prev, struct audit_tree, list);
790 get_tree(tree);
791 list_del(&tree->list);
792 list_add(&tree->list, &barrier);
793 mutex_unlock(&audit_filter_mutex);
794
795 if (!failed) {
796 struct node *node;
797 spin_lock(&hash_lock);
798 list_for_each_entry(node, &tree->chunks, list)
799 node->index &= ~(1U<<31);
800 spin_unlock(&hash_lock);
801 } else {
802 trim_marked(tree);
803 }
804
805 put_tree(tree);
806 mutex_lock(&audit_filter_mutex);
807 }
808 list_del(&barrier);
809 list_del(&cursor);
810 mutex_unlock(&audit_filter_mutex);
811 path_put(&path1);
812 drop_collected_mounts(tagged);
813 return failed;
814 }
815
816 /*
817 * That gets run when evict_chunk() ends up needing to kill audit_tree.
818 * Runs from a separate thread.
819 */
820 static int prune_tree_thread(void *unused)
821 {
822 mutex_lock(&audit_cmd_mutex);
823 mutex_lock(&audit_filter_mutex);
824
825 while (!list_empty(&prune_list)) {
826 struct audit_tree *victim;
827
828 victim = list_entry(prune_list.next, struct audit_tree, list);
829 list_del_init(&victim->list);
830
831 mutex_unlock(&audit_filter_mutex);
832
833 prune_one(victim);
834
835 mutex_lock(&audit_filter_mutex);
836 }
837
838 mutex_unlock(&audit_filter_mutex);
839 mutex_unlock(&audit_cmd_mutex);
840 return 0;
841 }
842
843 static void audit_schedule_prune(void)
844 {
845 kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
846 }
847
848 /*
849 * ... and that one is done if evict_chunk() decides to delay until the end
850 * of syscall. Runs synchronously.
851 */
852 void audit_kill_trees(struct list_head *list)
853 {
854 mutex_lock(&audit_cmd_mutex);
855 mutex_lock(&audit_filter_mutex);
856
857 while (!list_empty(list)) {
858 struct audit_tree *victim;
859
860 victim = list_entry(list->next, struct audit_tree, list);
861 kill_rules(victim);
862 list_del_init(&victim->list);
863
864 mutex_unlock(&audit_filter_mutex);
865
866 prune_one(victim);
867
868 mutex_lock(&audit_filter_mutex);
869 }
870
871 mutex_unlock(&audit_filter_mutex);
872 mutex_unlock(&audit_cmd_mutex);
873 }
874
875 /*
876 * Here comes the stuff asynchronous to auditctl operations
877 */
878
879 static void evict_chunk(struct audit_chunk *chunk)
880 {
881 struct audit_tree *owner;
882 struct list_head *postponed = audit_killed_trees();
883 int need_prune = 0;
884 int n;
885
886 if (chunk->dead)
887 return;
888
889 chunk->dead = 1;
890 mutex_lock(&audit_filter_mutex);
891 spin_lock(&hash_lock);
892 while (!list_empty(&chunk->trees)) {
893 owner = list_entry(chunk->trees.next,
894 struct audit_tree, same_root);
895 owner->goner = 1;
896 owner->root = NULL;
897 list_del_init(&owner->same_root);
898 spin_unlock(&hash_lock);
899 if (!postponed) {
900 kill_rules(owner);
901 list_move(&owner->list, &prune_list);
902 need_prune = 1;
903 } else {
904 list_move(&owner->list, postponed);
905 }
906 spin_lock(&hash_lock);
907 }
908 list_del_rcu(&chunk->hash);
909 for (n = 0; n < chunk->count; n++)
910 list_del_init(&chunk->owners[n].list);
911 spin_unlock(&hash_lock);
912 if (need_prune)
913 audit_schedule_prune();
914 mutex_unlock(&audit_filter_mutex);
915 }
916
917 static int audit_tree_handle_event(struct fsnotify_group *group,
918 struct inode *to_tell,
919 struct fsnotify_mark *inode_mark,
920 struct fsnotify_mark *vfsmount_mark,
921 u32 mask, void *data, int data_type,
922 const unsigned char *file_name, u32 cookie)
923 {
924 return 0;
925 }
926
927 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
928 {
929 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
930
931 evict_chunk(chunk);
932
933 /*
934 * We are guaranteed to have at least one reference to the mark from
935 * either the inode or the caller of fsnotify_destroy_mark().
936 */
937 BUG_ON(atomic_read(&entry->refcnt) < 1);
938 }
939
940 static const struct fsnotify_ops audit_tree_ops = {
941 .handle_event = audit_tree_handle_event,
942 .freeing_mark = audit_tree_freeing_mark,
943 };
944
945 static int __init audit_tree_init(void)
946 {
947 int i;
948
949 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
950 if (IS_ERR(audit_tree_group))
951 audit_panic("cannot initialize fsnotify group for rectree watches");
952
953 for (i = 0; i < HASH_SIZE; i++)
954 INIT_LIST_HEAD(&chunk_hash_heads[i]);
955
956 return 0;
957 }
958 __initcall(audit_tree_init);
This page took 0.052258 seconds and 6 git commands to generate.