audit: use a consistent audit helper to log lsm information
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
71
72 #include "audit.h"
73
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
78
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82 #define AUDIT_NAMES 5
83
84 /* no execve audit message should be longer than this (userspace limits) */
85 #define MAX_EXECVE_AUDIT_LEN 7500
86
87 /* number of audit rules */
88 int audit_n_rules;
89
90 /* determines whether we collect data for signals sent */
91 int audit_signals;
92
93 struct audit_cap_data {
94 kernel_cap_t permitted;
95 kernel_cap_t inheritable;
96 union {
97 unsigned int fE; /* effective bit of a file capability */
98 kernel_cap_t effective; /* effective set of a process */
99 };
100 };
101
102 /* When fs/namei.c:getname() is called, we store the pointer in name and
103 * we don't let putname() free it (instead we free all of the saved
104 * pointers at syscall exit time).
105 *
106 * Further, in fs/namei.c:path_lookup() we store the inode and device.
107 */
108 struct audit_names {
109 struct list_head list; /* audit_context->names_list */
110 struct filename *name;
111 unsigned long ino;
112 dev_t dev;
113 umode_t mode;
114 kuid_t uid;
115 kgid_t gid;
116 dev_t rdev;
117 u32 osid;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 int name_len; /* number of name's characters to log */
121 unsigned char type; /* record type */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
129 };
130
131 struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134 };
135
136 #define AUDIT_AUX_IPCPERM 0
137
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
140
141 struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
145 struct mm_struct *mm;
146 };
147
148 struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
151 kuid_t target_auid[AUDIT_AUX_PIDS];
152 kuid_t target_uid[AUDIT_AUX_PIDS];
153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
154 u32 target_sid[AUDIT_AUX_PIDS];
155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 int pid_count;
157 };
158
159 struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165 };
166
167 struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171 };
172
173 struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176 };
177
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state, current_state;
183 unsigned int serial; /* serial number for record */
184 int major; /* syscall number */
185 struct timespec ctime; /* time of syscall entry */
186 unsigned long argv[4]; /* syscall arguments */
187 long return_code;/* syscall return code */
188 u64 prio;
189 int return_valid; /* return code is valid */
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
201 char * filterkey; /* key for rule that triggered record */
202 struct path pwd;
203 struct audit_aux_data *aux;
204 struct audit_aux_data *aux_pids;
205 struct sockaddr_storage *sockaddr;
206 size_t sockaddr_len;
207 /* Save things to print about task_struct */
208 pid_t pid, ppid;
209 kuid_t uid, euid, suid, fsuid;
210 kgid_t gid, egid, sgid, fsgid;
211 unsigned long personality;
212 int arch;
213
214 pid_t target_pid;
215 kuid_t target_auid;
216 kuid_t target_uid;
217 unsigned int target_sessionid;
218 u32 target_sid;
219 char target_comm[TASK_COMM_LEN];
220
221 struct audit_tree_refs *trees, *first_trees;
222 struct list_head killed_trees;
223 int tree_count;
224
225 int type;
226 union {
227 struct {
228 int nargs;
229 long args[AUDITSC_ARGS];
230 } socketcall;
231 struct {
232 kuid_t uid;
233 kgid_t gid;
234 umode_t mode;
235 u32 osid;
236 int has_perm;
237 uid_t perm_uid;
238 gid_t perm_gid;
239 umode_t perm_mode;
240 unsigned long qbytes;
241 } ipc;
242 struct {
243 mqd_t mqdes;
244 struct mq_attr mqstat;
245 } mq_getsetattr;
246 struct {
247 mqd_t mqdes;
248 int sigev_signo;
249 } mq_notify;
250 struct {
251 mqd_t mqdes;
252 size_t msg_len;
253 unsigned int msg_prio;
254 struct timespec abs_timeout;
255 } mq_sendrecv;
256 struct {
257 int oflag;
258 umode_t mode;
259 struct mq_attr attr;
260 } mq_open;
261 struct {
262 pid_t pid;
263 struct audit_cap_data cap;
264 } capset;
265 struct {
266 int fd;
267 int flags;
268 } mmap;
269 };
270 int fds[2];
271
272 #if AUDIT_DEBUG
273 int put_count;
274 int ino_count;
275 #endif
276 };
277
278 static inline int open_arg(int flags, int mask)
279 {
280 int n = ACC_MODE(flags);
281 if (flags & (O_TRUNC | O_CREAT))
282 n |= AUDIT_PERM_WRITE;
283 return n & mask;
284 }
285
286 static int audit_match_perm(struct audit_context *ctx, int mask)
287 {
288 unsigned n;
289 if (unlikely(!ctx))
290 return 0;
291 n = ctx->major;
292
293 switch (audit_classify_syscall(ctx->arch, n)) {
294 case 0: /* native */
295 if ((mask & AUDIT_PERM_WRITE) &&
296 audit_match_class(AUDIT_CLASS_WRITE, n))
297 return 1;
298 if ((mask & AUDIT_PERM_READ) &&
299 audit_match_class(AUDIT_CLASS_READ, n))
300 return 1;
301 if ((mask & AUDIT_PERM_ATTR) &&
302 audit_match_class(AUDIT_CLASS_CHATTR, n))
303 return 1;
304 return 0;
305 case 1: /* 32bit on biarch */
306 if ((mask & AUDIT_PERM_WRITE) &&
307 audit_match_class(AUDIT_CLASS_WRITE_32, n))
308 return 1;
309 if ((mask & AUDIT_PERM_READ) &&
310 audit_match_class(AUDIT_CLASS_READ_32, n))
311 return 1;
312 if ((mask & AUDIT_PERM_ATTR) &&
313 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
314 return 1;
315 return 0;
316 case 2: /* open */
317 return mask & ACC_MODE(ctx->argv[1]);
318 case 3: /* openat */
319 return mask & ACC_MODE(ctx->argv[2]);
320 case 4: /* socketcall */
321 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
322 case 5: /* execve */
323 return mask & AUDIT_PERM_EXEC;
324 default:
325 return 0;
326 }
327 }
328
329 static int audit_match_filetype(struct audit_context *ctx, int val)
330 {
331 struct audit_names *n;
332 umode_t mode = (umode_t)val;
333
334 if (unlikely(!ctx))
335 return 0;
336
337 list_for_each_entry(n, &ctx->names_list, list) {
338 if ((n->ino != -1) &&
339 ((n->mode & S_IFMT) == mode))
340 return 1;
341 }
342
343 return 0;
344 }
345
346 /*
347 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
348 * ->first_trees points to its beginning, ->trees - to the current end of data.
349 * ->tree_count is the number of free entries in array pointed to by ->trees.
350 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
351 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
352 * it's going to remain 1-element for almost any setup) until we free context itself.
353 * References in it _are_ dropped - at the same time we free/drop aux stuff.
354 */
355
356 #ifdef CONFIG_AUDIT_TREE
357 static void audit_set_auditable(struct audit_context *ctx)
358 {
359 if (!ctx->prio) {
360 ctx->prio = 1;
361 ctx->current_state = AUDIT_RECORD_CONTEXT;
362 }
363 }
364
365 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
366 {
367 struct audit_tree_refs *p = ctx->trees;
368 int left = ctx->tree_count;
369 if (likely(left)) {
370 p->c[--left] = chunk;
371 ctx->tree_count = left;
372 return 1;
373 }
374 if (!p)
375 return 0;
376 p = p->next;
377 if (p) {
378 p->c[30] = chunk;
379 ctx->trees = p;
380 ctx->tree_count = 30;
381 return 1;
382 }
383 return 0;
384 }
385
386 static int grow_tree_refs(struct audit_context *ctx)
387 {
388 struct audit_tree_refs *p = ctx->trees;
389 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
390 if (!ctx->trees) {
391 ctx->trees = p;
392 return 0;
393 }
394 if (p)
395 p->next = ctx->trees;
396 else
397 ctx->first_trees = ctx->trees;
398 ctx->tree_count = 31;
399 return 1;
400 }
401 #endif
402
403 static void unroll_tree_refs(struct audit_context *ctx,
404 struct audit_tree_refs *p, int count)
405 {
406 #ifdef CONFIG_AUDIT_TREE
407 struct audit_tree_refs *q;
408 int n;
409 if (!p) {
410 /* we started with empty chain */
411 p = ctx->first_trees;
412 count = 31;
413 /* if the very first allocation has failed, nothing to do */
414 if (!p)
415 return;
416 }
417 n = count;
418 for (q = p; q != ctx->trees; q = q->next, n = 31) {
419 while (n--) {
420 audit_put_chunk(q->c[n]);
421 q->c[n] = NULL;
422 }
423 }
424 while (n-- > ctx->tree_count) {
425 audit_put_chunk(q->c[n]);
426 q->c[n] = NULL;
427 }
428 ctx->trees = p;
429 ctx->tree_count = count;
430 #endif
431 }
432
433 static void free_tree_refs(struct audit_context *ctx)
434 {
435 struct audit_tree_refs *p, *q;
436 for (p = ctx->first_trees; p; p = q) {
437 q = p->next;
438 kfree(p);
439 }
440 }
441
442 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
443 {
444 #ifdef CONFIG_AUDIT_TREE
445 struct audit_tree_refs *p;
446 int n;
447 if (!tree)
448 return 0;
449 /* full ones */
450 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
451 for (n = 0; n < 31; n++)
452 if (audit_tree_match(p->c[n], tree))
453 return 1;
454 }
455 /* partial */
456 if (p) {
457 for (n = ctx->tree_count; n < 31; n++)
458 if (audit_tree_match(p->c[n], tree))
459 return 1;
460 }
461 #endif
462 return 0;
463 }
464
465 static int audit_compare_uid(kuid_t uid,
466 struct audit_names *name,
467 struct audit_field *f,
468 struct audit_context *ctx)
469 {
470 struct audit_names *n;
471 int rc;
472
473 if (name) {
474 rc = audit_uid_comparator(uid, f->op, name->uid);
475 if (rc)
476 return rc;
477 }
478
479 if (ctx) {
480 list_for_each_entry(n, &ctx->names_list, list) {
481 rc = audit_uid_comparator(uid, f->op, n->uid);
482 if (rc)
483 return rc;
484 }
485 }
486 return 0;
487 }
488
489 static int audit_compare_gid(kgid_t gid,
490 struct audit_names *name,
491 struct audit_field *f,
492 struct audit_context *ctx)
493 {
494 struct audit_names *n;
495 int rc;
496
497 if (name) {
498 rc = audit_gid_comparator(gid, f->op, name->gid);
499 if (rc)
500 return rc;
501 }
502
503 if (ctx) {
504 list_for_each_entry(n, &ctx->names_list, list) {
505 rc = audit_gid_comparator(gid, f->op, n->gid);
506 if (rc)
507 return rc;
508 }
509 }
510 return 0;
511 }
512
513 static int audit_field_compare(struct task_struct *tsk,
514 const struct cred *cred,
515 struct audit_field *f,
516 struct audit_context *ctx,
517 struct audit_names *name)
518 {
519 switch (f->val) {
520 /* process to file object comparisons */
521 case AUDIT_COMPARE_UID_TO_OBJ_UID:
522 return audit_compare_uid(cred->uid, name, f, ctx);
523 case AUDIT_COMPARE_GID_TO_OBJ_GID:
524 return audit_compare_gid(cred->gid, name, f, ctx);
525 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
526 return audit_compare_uid(cred->euid, name, f, ctx);
527 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
528 return audit_compare_gid(cred->egid, name, f, ctx);
529 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
530 return audit_compare_uid(tsk->loginuid, name, f, ctx);
531 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
532 return audit_compare_uid(cred->suid, name, f, ctx);
533 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
534 return audit_compare_gid(cred->sgid, name, f, ctx);
535 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
536 return audit_compare_uid(cred->fsuid, name, f, ctx);
537 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
538 return audit_compare_gid(cred->fsgid, name, f, ctx);
539 /* uid comparisons */
540 case AUDIT_COMPARE_UID_TO_AUID:
541 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
542 case AUDIT_COMPARE_UID_TO_EUID:
543 return audit_uid_comparator(cred->uid, f->op, cred->euid);
544 case AUDIT_COMPARE_UID_TO_SUID:
545 return audit_uid_comparator(cred->uid, f->op, cred->suid);
546 case AUDIT_COMPARE_UID_TO_FSUID:
547 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
548 /* auid comparisons */
549 case AUDIT_COMPARE_AUID_TO_EUID:
550 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
551 case AUDIT_COMPARE_AUID_TO_SUID:
552 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
553 case AUDIT_COMPARE_AUID_TO_FSUID:
554 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
555 /* euid comparisons */
556 case AUDIT_COMPARE_EUID_TO_SUID:
557 return audit_uid_comparator(cred->euid, f->op, cred->suid);
558 case AUDIT_COMPARE_EUID_TO_FSUID:
559 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
560 /* suid comparisons */
561 case AUDIT_COMPARE_SUID_TO_FSUID:
562 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
563 /* gid comparisons */
564 case AUDIT_COMPARE_GID_TO_EGID:
565 return audit_gid_comparator(cred->gid, f->op, cred->egid);
566 case AUDIT_COMPARE_GID_TO_SGID:
567 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
568 case AUDIT_COMPARE_GID_TO_FSGID:
569 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
570 /* egid comparisons */
571 case AUDIT_COMPARE_EGID_TO_SGID:
572 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
573 case AUDIT_COMPARE_EGID_TO_FSGID:
574 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
575 /* sgid comparison */
576 case AUDIT_COMPARE_SGID_TO_FSGID:
577 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
578 default:
579 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
580 return 0;
581 }
582 return 0;
583 }
584
585 /* Determine if any context name data matches a rule's watch data */
586 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
587 * otherwise.
588 *
589 * If task_creation is true, this is an explicit indication that we are
590 * filtering a task rule at task creation time. This and tsk == current are
591 * the only situations where tsk->cred may be accessed without an rcu read lock.
592 */
593 static int audit_filter_rules(struct task_struct *tsk,
594 struct audit_krule *rule,
595 struct audit_context *ctx,
596 struct audit_names *name,
597 enum audit_state *state,
598 bool task_creation)
599 {
600 const struct cred *cred;
601 int i, need_sid = 1;
602 u32 sid;
603
604 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
605
606 for (i = 0; i < rule->field_count; i++) {
607 struct audit_field *f = &rule->fields[i];
608 struct audit_names *n;
609 int result = 0;
610
611 switch (f->type) {
612 case AUDIT_PID:
613 result = audit_comparator(tsk->pid, f->op, f->val);
614 break;
615 case AUDIT_PPID:
616 if (ctx) {
617 if (!ctx->ppid)
618 ctx->ppid = sys_getppid();
619 result = audit_comparator(ctx->ppid, f->op, f->val);
620 }
621 break;
622 case AUDIT_UID:
623 result = audit_uid_comparator(cred->uid, f->op, f->uid);
624 break;
625 case AUDIT_EUID:
626 result = audit_uid_comparator(cred->euid, f->op, f->uid);
627 break;
628 case AUDIT_SUID:
629 result = audit_uid_comparator(cred->suid, f->op, f->uid);
630 break;
631 case AUDIT_FSUID:
632 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
633 break;
634 case AUDIT_GID:
635 result = audit_gid_comparator(cred->gid, f->op, f->gid);
636 if (f->op == Audit_equal) {
637 if (!result)
638 result = in_group_p(f->gid);
639 } else if (f->op == Audit_not_equal) {
640 if (result)
641 result = !in_group_p(f->gid);
642 }
643 break;
644 case AUDIT_EGID:
645 result = audit_gid_comparator(cred->egid, f->op, f->gid);
646 if (f->op == Audit_equal) {
647 if (!result)
648 result = in_egroup_p(f->gid);
649 } else if (f->op == Audit_not_equal) {
650 if (result)
651 result = !in_egroup_p(f->gid);
652 }
653 break;
654 case AUDIT_SGID:
655 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
656 break;
657 case AUDIT_FSGID:
658 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
659 break;
660 case AUDIT_PERS:
661 result = audit_comparator(tsk->personality, f->op, f->val);
662 break;
663 case AUDIT_ARCH:
664 if (ctx)
665 result = audit_comparator(ctx->arch, f->op, f->val);
666 break;
667
668 case AUDIT_EXIT:
669 if (ctx && ctx->return_valid)
670 result = audit_comparator(ctx->return_code, f->op, f->val);
671 break;
672 case AUDIT_SUCCESS:
673 if (ctx && ctx->return_valid) {
674 if (f->val)
675 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
676 else
677 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
678 }
679 break;
680 case AUDIT_DEVMAJOR:
681 if (name) {
682 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
683 audit_comparator(MAJOR(name->rdev), f->op, f->val))
684 ++result;
685 } else if (ctx) {
686 list_for_each_entry(n, &ctx->names_list, list) {
687 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
688 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
689 ++result;
690 break;
691 }
692 }
693 }
694 break;
695 case AUDIT_DEVMINOR:
696 if (name) {
697 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
698 audit_comparator(MINOR(name->rdev), f->op, f->val))
699 ++result;
700 } else if (ctx) {
701 list_for_each_entry(n, &ctx->names_list, list) {
702 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
703 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
704 ++result;
705 break;
706 }
707 }
708 }
709 break;
710 case AUDIT_INODE:
711 if (name)
712 result = (name->ino == f->val);
713 else if (ctx) {
714 list_for_each_entry(n, &ctx->names_list, list) {
715 if (audit_comparator(n->ino, f->op, f->val)) {
716 ++result;
717 break;
718 }
719 }
720 }
721 break;
722 case AUDIT_OBJ_UID:
723 if (name) {
724 result = audit_uid_comparator(name->uid, f->op, f->uid);
725 } else if (ctx) {
726 list_for_each_entry(n, &ctx->names_list, list) {
727 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
728 ++result;
729 break;
730 }
731 }
732 }
733 break;
734 case AUDIT_OBJ_GID:
735 if (name) {
736 result = audit_gid_comparator(name->gid, f->op, f->gid);
737 } else if (ctx) {
738 list_for_each_entry(n, &ctx->names_list, list) {
739 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
740 ++result;
741 break;
742 }
743 }
744 }
745 break;
746 case AUDIT_WATCH:
747 if (name)
748 result = audit_watch_compare(rule->watch, name->ino, name->dev);
749 break;
750 case AUDIT_DIR:
751 if (ctx)
752 result = match_tree_refs(ctx, rule->tree);
753 break;
754 case AUDIT_LOGINUID:
755 result = 0;
756 if (ctx)
757 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
758 break;
759 case AUDIT_SUBJ_USER:
760 case AUDIT_SUBJ_ROLE:
761 case AUDIT_SUBJ_TYPE:
762 case AUDIT_SUBJ_SEN:
763 case AUDIT_SUBJ_CLR:
764 /* NOTE: this may return negative values indicating
765 a temporary error. We simply treat this as a
766 match for now to avoid losing information that
767 may be wanted. An error message will also be
768 logged upon error */
769 if (f->lsm_rule) {
770 if (need_sid) {
771 security_task_getsecid(tsk, &sid);
772 need_sid = 0;
773 }
774 result = security_audit_rule_match(sid, f->type,
775 f->op,
776 f->lsm_rule,
777 ctx);
778 }
779 break;
780 case AUDIT_OBJ_USER:
781 case AUDIT_OBJ_ROLE:
782 case AUDIT_OBJ_TYPE:
783 case AUDIT_OBJ_LEV_LOW:
784 case AUDIT_OBJ_LEV_HIGH:
785 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
786 also applies here */
787 if (f->lsm_rule) {
788 /* Find files that match */
789 if (name) {
790 result = security_audit_rule_match(
791 name->osid, f->type, f->op,
792 f->lsm_rule, ctx);
793 } else if (ctx) {
794 list_for_each_entry(n, &ctx->names_list, list) {
795 if (security_audit_rule_match(n->osid, f->type,
796 f->op, f->lsm_rule,
797 ctx)) {
798 ++result;
799 break;
800 }
801 }
802 }
803 /* Find ipc objects that match */
804 if (!ctx || ctx->type != AUDIT_IPC)
805 break;
806 if (security_audit_rule_match(ctx->ipc.osid,
807 f->type, f->op,
808 f->lsm_rule, ctx))
809 ++result;
810 }
811 break;
812 case AUDIT_ARG0:
813 case AUDIT_ARG1:
814 case AUDIT_ARG2:
815 case AUDIT_ARG3:
816 if (ctx)
817 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
818 break;
819 case AUDIT_FILTERKEY:
820 /* ignore this field for filtering */
821 result = 1;
822 break;
823 case AUDIT_PERM:
824 result = audit_match_perm(ctx, f->val);
825 break;
826 case AUDIT_FILETYPE:
827 result = audit_match_filetype(ctx, f->val);
828 break;
829 case AUDIT_FIELD_COMPARE:
830 result = audit_field_compare(tsk, cred, f, ctx, name);
831 break;
832 }
833 if (!result)
834 return 0;
835 }
836
837 if (ctx) {
838 if (rule->prio <= ctx->prio)
839 return 0;
840 if (rule->filterkey) {
841 kfree(ctx->filterkey);
842 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
843 }
844 ctx->prio = rule->prio;
845 }
846 switch (rule->action) {
847 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
848 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
849 }
850 return 1;
851 }
852
853 /* At process creation time, we can determine if system-call auditing is
854 * completely disabled for this task. Since we only have the task
855 * structure at this point, we can only check uid and gid.
856 */
857 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
858 {
859 struct audit_entry *e;
860 enum audit_state state;
861
862 rcu_read_lock();
863 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
864 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
865 &state, true)) {
866 if (state == AUDIT_RECORD_CONTEXT)
867 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
868 rcu_read_unlock();
869 return state;
870 }
871 }
872 rcu_read_unlock();
873 return AUDIT_BUILD_CONTEXT;
874 }
875
876 /* At syscall entry and exit time, this filter is called if the
877 * audit_state is not low enough that auditing cannot take place, but is
878 * also not high enough that we already know we have to write an audit
879 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
880 */
881 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
882 struct audit_context *ctx,
883 struct list_head *list)
884 {
885 struct audit_entry *e;
886 enum audit_state state;
887
888 if (audit_pid && tsk->tgid == audit_pid)
889 return AUDIT_DISABLED;
890
891 rcu_read_lock();
892 if (!list_empty(list)) {
893 int word = AUDIT_WORD(ctx->major);
894 int bit = AUDIT_BIT(ctx->major);
895
896 list_for_each_entry_rcu(e, list, list) {
897 if ((e->rule.mask[word] & bit) == bit &&
898 audit_filter_rules(tsk, &e->rule, ctx, NULL,
899 &state, false)) {
900 rcu_read_unlock();
901 ctx->current_state = state;
902 return state;
903 }
904 }
905 }
906 rcu_read_unlock();
907 return AUDIT_BUILD_CONTEXT;
908 }
909
910 /*
911 * Given an audit_name check the inode hash table to see if they match.
912 * Called holding the rcu read lock to protect the use of audit_inode_hash
913 */
914 static int audit_filter_inode_name(struct task_struct *tsk,
915 struct audit_names *n,
916 struct audit_context *ctx) {
917 int word, bit;
918 int h = audit_hash_ino((u32)n->ino);
919 struct list_head *list = &audit_inode_hash[h];
920 struct audit_entry *e;
921 enum audit_state state;
922
923 word = AUDIT_WORD(ctx->major);
924 bit = AUDIT_BIT(ctx->major);
925
926 if (list_empty(list))
927 return 0;
928
929 list_for_each_entry_rcu(e, list, list) {
930 if ((e->rule.mask[word] & bit) == bit &&
931 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
932 ctx->current_state = state;
933 return 1;
934 }
935 }
936
937 return 0;
938 }
939
940 /* At syscall exit time, this filter is called if any audit_names have been
941 * collected during syscall processing. We only check rules in sublists at hash
942 * buckets applicable to the inode numbers in audit_names.
943 * Regarding audit_state, same rules apply as for audit_filter_syscall().
944 */
945 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
946 {
947 struct audit_names *n;
948
949 if (audit_pid && tsk->tgid == audit_pid)
950 return;
951
952 rcu_read_lock();
953
954 list_for_each_entry(n, &ctx->names_list, list) {
955 if (audit_filter_inode_name(tsk, n, ctx))
956 break;
957 }
958 rcu_read_unlock();
959 }
960
961 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
962 int return_valid,
963 long return_code)
964 {
965 struct audit_context *context = tsk->audit_context;
966
967 if (!context)
968 return NULL;
969 context->return_valid = return_valid;
970
971 /*
972 * we need to fix up the return code in the audit logs if the actual
973 * return codes are later going to be fixed up by the arch specific
974 * signal handlers
975 *
976 * This is actually a test for:
977 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
978 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
979 *
980 * but is faster than a bunch of ||
981 */
982 if (unlikely(return_code <= -ERESTARTSYS) &&
983 (return_code >= -ERESTART_RESTARTBLOCK) &&
984 (return_code != -ENOIOCTLCMD))
985 context->return_code = -EINTR;
986 else
987 context->return_code = return_code;
988
989 if (context->in_syscall && !context->dummy) {
990 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
991 audit_filter_inodes(tsk, context);
992 }
993
994 tsk->audit_context = NULL;
995 return context;
996 }
997
998 static inline void audit_free_names(struct audit_context *context)
999 {
1000 struct audit_names *n, *next;
1001
1002 #if AUDIT_DEBUG == 2
1003 if (context->put_count + context->ino_count != context->name_count) {
1004 int i = 0;
1005
1006 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1007 " name_count=%d put_count=%d"
1008 " ino_count=%d [NOT freeing]\n",
1009 __FILE__, __LINE__,
1010 context->serial, context->major, context->in_syscall,
1011 context->name_count, context->put_count,
1012 context->ino_count);
1013 list_for_each_entry(n, &context->names_list, list) {
1014 printk(KERN_ERR "names[%d] = %p = %s\n", i++,
1015 n->name, n->name->name ?: "(null)");
1016 }
1017 dump_stack();
1018 return;
1019 }
1020 #endif
1021 #if AUDIT_DEBUG
1022 context->put_count = 0;
1023 context->ino_count = 0;
1024 #endif
1025
1026 list_for_each_entry_safe(n, next, &context->names_list, list) {
1027 list_del(&n->list);
1028 if (n->name && n->name_put)
1029 final_putname(n->name);
1030 if (n->should_free)
1031 kfree(n);
1032 }
1033 context->name_count = 0;
1034 path_put(&context->pwd);
1035 context->pwd.dentry = NULL;
1036 context->pwd.mnt = NULL;
1037 }
1038
1039 static inline void audit_free_aux(struct audit_context *context)
1040 {
1041 struct audit_aux_data *aux;
1042
1043 while ((aux = context->aux)) {
1044 context->aux = aux->next;
1045 kfree(aux);
1046 }
1047 while ((aux = context->aux_pids)) {
1048 context->aux_pids = aux->next;
1049 kfree(aux);
1050 }
1051 }
1052
1053 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1054 {
1055 struct audit_context *context;
1056
1057 context = kzalloc(sizeof(*context), GFP_KERNEL);
1058 if (!context)
1059 return NULL;
1060 context->state = state;
1061 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1062 INIT_LIST_HEAD(&context->killed_trees);
1063 INIT_LIST_HEAD(&context->names_list);
1064 return context;
1065 }
1066
1067 /**
1068 * audit_alloc - allocate an audit context block for a task
1069 * @tsk: task
1070 *
1071 * Filter on the task information and allocate a per-task audit context
1072 * if necessary. Doing so turns on system call auditing for the
1073 * specified task. This is called from copy_process, so no lock is
1074 * needed.
1075 */
1076 int audit_alloc(struct task_struct *tsk)
1077 {
1078 struct audit_context *context;
1079 enum audit_state state;
1080 char *key = NULL;
1081
1082 if (likely(!audit_ever_enabled))
1083 return 0; /* Return if not auditing. */
1084
1085 state = audit_filter_task(tsk, &key);
1086 if (state == AUDIT_DISABLED)
1087 return 0;
1088
1089 if (!(context = audit_alloc_context(state))) {
1090 kfree(key);
1091 audit_log_lost("out of memory in audit_alloc");
1092 return -ENOMEM;
1093 }
1094 context->filterkey = key;
1095
1096 tsk->audit_context = context;
1097 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1098 return 0;
1099 }
1100
1101 static inline void audit_free_context(struct audit_context *context)
1102 {
1103 audit_free_names(context);
1104 unroll_tree_refs(context, NULL, 0);
1105 free_tree_refs(context);
1106 audit_free_aux(context);
1107 kfree(context->filterkey);
1108 kfree(context->sockaddr);
1109 kfree(context);
1110 }
1111
1112 int audit_log_task_context(struct audit_buffer *ab)
1113 {
1114 char *ctx = NULL;
1115 unsigned len;
1116 int error;
1117 u32 sid;
1118
1119 security_task_getsecid(current, &sid);
1120 if (!sid)
1121 return 0;
1122
1123 error = security_secid_to_secctx(sid, &ctx, &len);
1124 if (error) {
1125 if (error != -EINVAL)
1126 goto error_path;
1127 return 0;
1128 }
1129
1130 audit_log_format(ab, " subj=%s", ctx);
1131 security_release_secctx(ctx, len);
1132 return 0;
1133
1134 error_path:
1135 audit_panic("error in audit_log_task_context");
1136 return error;
1137 }
1138
1139 EXPORT_SYMBOL(audit_log_task_context);
1140
1141 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1142 {
1143 const struct cred *cred;
1144 char name[sizeof(tsk->comm)];
1145 struct mm_struct *mm = tsk->mm;
1146 char *tty;
1147
1148 if (!ab)
1149 return;
1150
1151 /* tsk == current */
1152 cred = current_cred();
1153
1154 spin_lock_irq(&tsk->sighand->siglock);
1155 if (tsk->signal && tsk->signal->tty)
1156 tty = tsk->signal->tty->name;
1157 else
1158 tty = "(none)";
1159 spin_unlock_irq(&tsk->sighand->siglock);
1160
1161
1162 audit_log_format(ab,
1163 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1164 " euid=%u suid=%u fsuid=%u"
1165 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1166 sys_getppid(),
1167 tsk->pid,
1168 from_kuid(&init_user_ns, tsk->loginuid),
1169 from_kuid(&init_user_ns, cred->uid),
1170 from_kgid(&init_user_ns, cred->gid),
1171 from_kuid(&init_user_ns, cred->euid),
1172 from_kuid(&init_user_ns, cred->suid),
1173 from_kuid(&init_user_ns, cred->fsuid),
1174 from_kgid(&init_user_ns, cred->egid),
1175 from_kgid(&init_user_ns, cred->sgid),
1176 from_kgid(&init_user_ns, cred->fsgid),
1177 tsk->sessionid, tty);
1178
1179 get_task_comm(name, tsk);
1180 audit_log_format(ab, " comm=");
1181 audit_log_untrustedstring(ab, name);
1182
1183 if (mm) {
1184 down_read(&mm->mmap_sem);
1185 if (mm->exe_file)
1186 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1187 up_read(&mm->mmap_sem);
1188 }
1189 audit_log_task_context(ab);
1190 }
1191
1192 EXPORT_SYMBOL(audit_log_task_info);
1193
1194 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1195 kuid_t auid, kuid_t uid, unsigned int sessionid,
1196 u32 sid, char *comm)
1197 {
1198 struct audit_buffer *ab;
1199 char *ctx = NULL;
1200 u32 len;
1201 int rc = 0;
1202
1203 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1204 if (!ab)
1205 return rc;
1206
1207 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1208 from_kuid(&init_user_ns, auid),
1209 from_kuid(&init_user_ns, uid), sessionid);
1210 if (sid) {
1211 if (security_secid_to_secctx(sid, &ctx, &len)) {
1212 audit_log_format(ab, " obj=(none)");
1213 rc = 1;
1214 } else {
1215 audit_log_format(ab, " obj=%s", ctx);
1216 security_release_secctx(ctx, len);
1217 }
1218 }
1219 audit_log_format(ab, " ocomm=");
1220 audit_log_untrustedstring(ab, comm);
1221 audit_log_end(ab);
1222
1223 return rc;
1224 }
1225
1226 /*
1227 * to_send and len_sent accounting are very loose estimates. We aren't
1228 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1229 * within about 500 bytes (next page boundary)
1230 *
1231 * why snprintf? an int is up to 12 digits long. if we just assumed when
1232 * logging that a[%d]= was going to be 16 characters long we would be wasting
1233 * space in every audit message. In one 7500 byte message we can log up to
1234 * about 1000 min size arguments. That comes down to about 50% waste of space
1235 * if we didn't do the snprintf to find out how long arg_num_len was.
1236 */
1237 static int audit_log_single_execve_arg(struct audit_context *context,
1238 struct audit_buffer **ab,
1239 int arg_num,
1240 size_t *len_sent,
1241 const char __user *p,
1242 char *buf)
1243 {
1244 char arg_num_len_buf[12];
1245 const char __user *tmp_p = p;
1246 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1247 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1248 size_t len, len_left, to_send;
1249 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1250 unsigned int i, has_cntl = 0, too_long = 0;
1251 int ret;
1252
1253 /* strnlen_user includes the null we don't want to send */
1254 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1255
1256 /*
1257 * We just created this mm, if we can't find the strings
1258 * we just copied into it something is _very_ wrong. Similar
1259 * for strings that are too long, we should not have created
1260 * any.
1261 */
1262 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1263 WARN_ON(1);
1264 send_sig(SIGKILL, current, 0);
1265 return -1;
1266 }
1267
1268 /* walk the whole argument looking for non-ascii chars */
1269 do {
1270 if (len_left > MAX_EXECVE_AUDIT_LEN)
1271 to_send = MAX_EXECVE_AUDIT_LEN;
1272 else
1273 to_send = len_left;
1274 ret = copy_from_user(buf, tmp_p, to_send);
1275 /*
1276 * There is no reason for this copy to be short. We just
1277 * copied them here, and the mm hasn't been exposed to user-
1278 * space yet.
1279 */
1280 if (ret) {
1281 WARN_ON(1);
1282 send_sig(SIGKILL, current, 0);
1283 return -1;
1284 }
1285 buf[to_send] = '\0';
1286 has_cntl = audit_string_contains_control(buf, to_send);
1287 if (has_cntl) {
1288 /*
1289 * hex messages get logged as 2 bytes, so we can only
1290 * send half as much in each message
1291 */
1292 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1293 break;
1294 }
1295 len_left -= to_send;
1296 tmp_p += to_send;
1297 } while (len_left > 0);
1298
1299 len_left = len;
1300
1301 if (len > max_execve_audit_len)
1302 too_long = 1;
1303
1304 /* rewalk the argument actually logging the message */
1305 for (i = 0; len_left > 0; i++) {
1306 int room_left;
1307
1308 if (len_left > max_execve_audit_len)
1309 to_send = max_execve_audit_len;
1310 else
1311 to_send = len_left;
1312
1313 /* do we have space left to send this argument in this ab? */
1314 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1315 if (has_cntl)
1316 room_left -= (to_send * 2);
1317 else
1318 room_left -= to_send;
1319 if (room_left < 0) {
1320 *len_sent = 0;
1321 audit_log_end(*ab);
1322 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1323 if (!*ab)
1324 return 0;
1325 }
1326
1327 /*
1328 * first record needs to say how long the original string was
1329 * so we can be sure nothing was lost.
1330 */
1331 if ((i == 0) && (too_long))
1332 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1333 has_cntl ? 2*len : len);
1334
1335 /*
1336 * normally arguments are small enough to fit and we already
1337 * filled buf above when we checked for control characters
1338 * so don't bother with another copy_from_user
1339 */
1340 if (len >= max_execve_audit_len)
1341 ret = copy_from_user(buf, p, to_send);
1342 else
1343 ret = 0;
1344 if (ret) {
1345 WARN_ON(1);
1346 send_sig(SIGKILL, current, 0);
1347 return -1;
1348 }
1349 buf[to_send] = '\0';
1350
1351 /* actually log it */
1352 audit_log_format(*ab, " a%d", arg_num);
1353 if (too_long)
1354 audit_log_format(*ab, "[%d]", i);
1355 audit_log_format(*ab, "=");
1356 if (has_cntl)
1357 audit_log_n_hex(*ab, buf, to_send);
1358 else
1359 audit_log_string(*ab, buf);
1360
1361 p += to_send;
1362 len_left -= to_send;
1363 *len_sent += arg_num_len;
1364 if (has_cntl)
1365 *len_sent += to_send * 2;
1366 else
1367 *len_sent += to_send;
1368 }
1369 /* include the null we didn't log */
1370 return len + 1;
1371 }
1372
1373 static void audit_log_execve_info(struct audit_context *context,
1374 struct audit_buffer **ab,
1375 struct audit_aux_data_execve *axi)
1376 {
1377 int i, len;
1378 size_t len_sent = 0;
1379 const char __user *p;
1380 char *buf;
1381
1382 if (axi->mm != current->mm)
1383 return; /* execve failed, no additional info */
1384
1385 p = (const char __user *)axi->mm->arg_start;
1386
1387 audit_log_format(*ab, "argc=%d", axi->argc);
1388
1389 /*
1390 * we need some kernel buffer to hold the userspace args. Just
1391 * allocate one big one rather than allocating one of the right size
1392 * for every single argument inside audit_log_single_execve_arg()
1393 * should be <8k allocation so should be pretty safe.
1394 */
1395 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1396 if (!buf) {
1397 audit_panic("out of memory for argv string\n");
1398 return;
1399 }
1400
1401 for (i = 0; i < axi->argc; i++) {
1402 len = audit_log_single_execve_arg(context, ab, i,
1403 &len_sent, p, buf);
1404 if (len <= 0)
1405 break;
1406 p += len;
1407 }
1408 kfree(buf);
1409 }
1410
1411 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1412 {
1413 int i;
1414
1415 audit_log_format(ab, " %s=", prefix);
1416 CAP_FOR_EACH_U32(i) {
1417 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1418 }
1419 }
1420
1421 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1422 {
1423 kernel_cap_t *perm = &name->fcap.permitted;
1424 kernel_cap_t *inh = &name->fcap.inheritable;
1425 int log = 0;
1426
1427 if (!cap_isclear(*perm)) {
1428 audit_log_cap(ab, "cap_fp", perm);
1429 log = 1;
1430 }
1431 if (!cap_isclear(*inh)) {
1432 audit_log_cap(ab, "cap_fi", inh);
1433 log = 1;
1434 }
1435
1436 if (log)
1437 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1438 }
1439
1440 static void show_special(struct audit_context *context, int *call_panic)
1441 {
1442 struct audit_buffer *ab;
1443 int i;
1444
1445 ab = audit_log_start(context, GFP_KERNEL, context->type);
1446 if (!ab)
1447 return;
1448
1449 switch (context->type) {
1450 case AUDIT_SOCKETCALL: {
1451 int nargs = context->socketcall.nargs;
1452 audit_log_format(ab, "nargs=%d", nargs);
1453 for (i = 0; i < nargs; i++)
1454 audit_log_format(ab, " a%d=%lx", i,
1455 context->socketcall.args[i]);
1456 break; }
1457 case AUDIT_IPC: {
1458 u32 osid = context->ipc.osid;
1459
1460 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1461 from_kuid(&init_user_ns, context->ipc.uid),
1462 from_kgid(&init_user_ns, context->ipc.gid),
1463 context->ipc.mode);
1464 if (osid) {
1465 char *ctx = NULL;
1466 u32 len;
1467 if (security_secid_to_secctx(osid, &ctx, &len)) {
1468 audit_log_format(ab, " osid=%u", osid);
1469 *call_panic = 1;
1470 } else {
1471 audit_log_format(ab, " obj=%s", ctx);
1472 security_release_secctx(ctx, len);
1473 }
1474 }
1475 if (context->ipc.has_perm) {
1476 audit_log_end(ab);
1477 ab = audit_log_start(context, GFP_KERNEL,
1478 AUDIT_IPC_SET_PERM);
1479 if (unlikely(!ab))
1480 return;
1481 audit_log_format(ab,
1482 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1483 context->ipc.qbytes,
1484 context->ipc.perm_uid,
1485 context->ipc.perm_gid,
1486 context->ipc.perm_mode);
1487 }
1488 break; }
1489 case AUDIT_MQ_OPEN: {
1490 audit_log_format(ab,
1491 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1492 "mq_msgsize=%ld mq_curmsgs=%ld",
1493 context->mq_open.oflag, context->mq_open.mode,
1494 context->mq_open.attr.mq_flags,
1495 context->mq_open.attr.mq_maxmsg,
1496 context->mq_open.attr.mq_msgsize,
1497 context->mq_open.attr.mq_curmsgs);
1498 break; }
1499 case AUDIT_MQ_SENDRECV: {
1500 audit_log_format(ab,
1501 "mqdes=%d msg_len=%zd msg_prio=%u "
1502 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1503 context->mq_sendrecv.mqdes,
1504 context->mq_sendrecv.msg_len,
1505 context->mq_sendrecv.msg_prio,
1506 context->mq_sendrecv.abs_timeout.tv_sec,
1507 context->mq_sendrecv.abs_timeout.tv_nsec);
1508 break; }
1509 case AUDIT_MQ_NOTIFY: {
1510 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1511 context->mq_notify.mqdes,
1512 context->mq_notify.sigev_signo);
1513 break; }
1514 case AUDIT_MQ_GETSETATTR: {
1515 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1516 audit_log_format(ab,
1517 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1518 "mq_curmsgs=%ld ",
1519 context->mq_getsetattr.mqdes,
1520 attr->mq_flags, attr->mq_maxmsg,
1521 attr->mq_msgsize, attr->mq_curmsgs);
1522 break; }
1523 case AUDIT_CAPSET: {
1524 audit_log_format(ab, "pid=%d", context->capset.pid);
1525 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1526 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1527 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1528 break; }
1529 case AUDIT_MMAP: {
1530 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1531 context->mmap.flags);
1532 break; }
1533 }
1534 audit_log_end(ab);
1535 }
1536
1537 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1538 int record_num, int *call_panic)
1539 {
1540 struct audit_buffer *ab;
1541 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1542 if (!ab)
1543 return; /* audit_panic has been called */
1544
1545 audit_log_format(ab, "item=%d", record_num);
1546
1547 if (n->name) {
1548 switch (n->name_len) {
1549 case AUDIT_NAME_FULL:
1550 /* log the full path */
1551 audit_log_format(ab, " name=");
1552 audit_log_untrustedstring(ab, n->name->name);
1553 break;
1554 case 0:
1555 /* name was specified as a relative path and the
1556 * directory component is the cwd */
1557 audit_log_d_path(ab, " name=", &context->pwd);
1558 break;
1559 default:
1560 /* log the name's directory component */
1561 audit_log_format(ab, " name=");
1562 audit_log_n_untrustedstring(ab, n->name->name,
1563 n->name_len);
1564 }
1565 } else
1566 audit_log_format(ab, " name=(null)");
1567
1568 if (n->ino != (unsigned long)-1) {
1569 audit_log_format(ab, " inode=%lu"
1570 " dev=%02x:%02x mode=%#ho"
1571 " ouid=%u ogid=%u rdev=%02x:%02x",
1572 n->ino,
1573 MAJOR(n->dev),
1574 MINOR(n->dev),
1575 n->mode,
1576 from_kuid(&init_user_ns, n->uid),
1577 from_kgid(&init_user_ns, n->gid),
1578 MAJOR(n->rdev),
1579 MINOR(n->rdev));
1580 }
1581 if (n->osid != 0) {
1582 char *ctx = NULL;
1583 u32 len;
1584 if (security_secid_to_secctx(
1585 n->osid, &ctx, &len)) {
1586 audit_log_format(ab, " osid=%u", n->osid);
1587 *call_panic = 2;
1588 } else {
1589 audit_log_format(ab, " obj=%s", ctx);
1590 security_release_secctx(ctx, len);
1591 }
1592 }
1593
1594 audit_log_fcaps(ab, n);
1595
1596 audit_log_end(ab);
1597 }
1598
1599 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1600 {
1601 int i, call_panic = 0;
1602 struct audit_buffer *ab;
1603 struct audit_aux_data *aux;
1604 struct audit_names *n;
1605
1606 /* tsk == current */
1607 context->personality = tsk->personality;
1608
1609 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1610 if (!ab)
1611 return; /* audit_panic has been called */
1612 audit_log_format(ab, "arch=%x syscall=%d",
1613 context->arch, context->major);
1614 if (context->personality != PER_LINUX)
1615 audit_log_format(ab, " per=%lx", context->personality);
1616 if (context->return_valid)
1617 audit_log_format(ab, " success=%s exit=%ld",
1618 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1619 context->return_code);
1620
1621 audit_log_format(ab,
1622 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1623 context->argv[0],
1624 context->argv[1],
1625 context->argv[2],
1626 context->argv[3],
1627 context->name_count);
1628
1629 audit_log_task_info(ab, tsk);
1630 audit_log_key(ab, context->filterkey);
1631 audit_log_end(ab);
1632
1633 for (aux = context->aux; aux; aux = aux->next) {
1634
1635 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1636 if (!ab)
1637 continue; /* audit_panic has been called */
1638
1639 switch (aux->type) {
1640
1641 case AUDIT_EXECVE: {
1642 struct audit_aux_data_execve *axi = (void *)aux;
1643 audit_log_execve_info(context, &ab, axi);
1644 break; }
1645
1646 case AUDIT_BPRM_FCAPS: {
1647 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1648 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1649 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1650 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1651 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1652 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1653 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1654 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1655 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1656 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1657 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1658 break; }
1659
1660 }
1661 audit_log_end(ab);
1662 }
1663
1664 if (context->type)
1665 show_special(context, &call_panic);
1666
1667 if (context->fds[0] >= 0) {
1668 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1669 if (ab) {
1670 audit_log_format(ab, "fd0=%d fd1=%d",
1671 context->fds[0], context->fds[1]);
1672 audit_log_end(ab);
1673 }
1674 }
1675
1676 if (context->sockaddr_len) {
1677 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1678 if (ab) {
1679 audit_log_format(ab, "saddr=");
1680 audit_log_n_hex(ab, (void *)context->sockaddr,
1681 context->sockaddr_len);
1682 audit_log_end(ab);
1683 }
1684 }
1685
1686 for (aux = context->aux_pids; aux; aux = aux->next) {
1687 struct audit_aux_data_pids *axs = (void *)aux;
1688
1689 for (i = 0; i < axs->pid_count; i++)
1690 if (audit_log_pid_context(context, axs->target_pid[i],
1691 axs->target_auid[i],
1692 axs->target_uid[i],
1693 axs->target_sessionid[i],
1694 axs->target_sid[i],
1695 axs->target_comm[i]))
1696 call_panic = 1;
1697 }
1698
1699 if (context->target_pid &&
1700 audit_log_pid_context(context, context->target_pid,
1701 context->target_auid, context->target_uid,
1702 context->target_sessionid,
1703 context->target_sid, context->target_comm))
1704 call_panic = 1;
1705
1706 if (context->pwd.dentry && context->pwd.mnt) {
1707 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1708 if (ab) {
1709 audit_log_d_path(ab, " cwd=", &context->pwd);
1710 audit_log_end(ab);
1711 }
1712 }
1713
1714 i = 0;
1715 list_for_each_entry(n, &context->names_list, list)
1716 audit_log_name(context, n, i++, &call_panic);
1717
1718 /* Send end of event record to help user space know we are finished */
1719 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1720 if (ab)
1721 audit_log_end(ab);
1722 if (call_panic)
1723 audit_panic("error converting sid to string");
1724 }
1725
1726 /**
1727 * audit_free - free a per-task audit context
1728 * @tsk: task whose audit context block to free
1729 *
1730 * Called from copy_process and do_exit
1731 */
1732 void __audit_free(struct task_struct *tsk)
1733 {
1734 struct audit_context *context;
1735
1736 context = audit_get_context(tsk, 0, 0);
1737 if (!context)
1738 return;
1739
1740 /* Check for system calls that do not go through the exit
1741 * function (e.g., exit_group), then free context block.
1742 * We use GFP_ATOMIC here because we might be doing this
1743 * in the context of the idle thread */
1744 /* that can happen only if we are called from do_exit() */
1745 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1746 audit_log_exit(context, tsk);
1747 if (!list_empty(&context->killed_trees))
1748 audit_kill_trees(&context->killed_trees);
1749
1750 audit_free_context(context);
1751 }
1752
1753 /**
1754 * audit_syscall_entry - fill in an audit record at syscall entry
1755 * @arch: architecture type
1756 * @major: major syscall type (function)
1757 * @a1: additional syscall register 1
1758 * @a2: additional syscall register 2
1759 * @a3: additional syscall register 3
1760 * @a4: additional syscall register 4
1761 *
1762 * Fill in audit context at syscall entry. This only happens if the
1763 * audit context was created when the task was created and the state or
1764 * filters demand the audit context be built. If the state from the
1765 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1766 * then the record will be written at syscall exit time (otherwise, it
1767 * will only be written if another part of the kernel requests that it
1768 * be written).
1769 */
1770 void __audit_syscall_entry(int arch, int major,
1771 unsigned long a1, unsigned long a2,
1772 unsigned long a3, unsigned long a4)
1773 {
1774 struct task_struct *tsk = current;
1775 struct audit_context *context = tsk->audit_context;
1776 enum audit_state state;
1777
1778 if (!context)
1779 return;
1780
1781 BUG_ON(context->in_syscall || context->name_count);
1782
1783 if (!audit_enabled)
1784 return;
1785
1786 context->arch = arch;
1787 context->major = major;
1788 context->argv[0] = a1;
1789 context->argv[1] = a2;
1790 context->argv[2] = a3;
1791 context->argv[3] = a4;
1792
1793 state = context->state;
1794 context->dummy = !audit_n_rules;
1795 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1796 context->prio = 0;
1797 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1798 }
1799 if (state == AUDIT_DISABLED)
1800 return;
1801
1802 context->serial = 0;
1803 context->ctime = CURRENT_TIME;
1804 context->in_syscall = 1;
1805 context->current_state = state;
1806 context->ppid = 0;
1807 }
1808
1809 /**
1810 * audit_syscall_exit - deallocate audit context after a system call
1811 * @success: success value of the syscall
1812 * @return_code: return value of the syscall
1813 *
1814 * Tear down after system call. If the audit context has been marked as
1815 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1816 * filtering, or because some other part of the kernel wrote an audit
1817 * message), then write out the syscall information. In call cases,
1818 * free the names stored from getname().
1819 */
1820 void __audit_syscall_exit(int success, long return_code)
1821 {
1822 struct task_struct *tsk = current;
1823 struct audit_context *context;
1824
1825 if (success)
1826 success = AUDITSC_SUCCESS;
1827 else
1828 success = AUDITSC_FAILURE;
1829
1830 context = audit_get_context(tsk, success, return_code);
1831 if (!context)
1832 return;
1833
1834 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1835 audit_log_exit(context, tsk);
1836
1837 context->in_syscall = 0;
1838 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1839
1840 if (!list_empty(&context->killed_trees))
1841 audit_kill_trees(&context->killed_trees);
1842
1843 audit_free_names(context);
1844 unroll_tree_refs(context, NULL, 0);
1845 audit_free_aux(context);
1846 context->aux = NULL;
1847 context->aux_pids = NULL;
1848 context->target_pid = 0;
1849 context->target_sid = 0;
1850 context->sockaddr_len = 0;
1851 context->type = 0;
1852 context->fds[0] = -1;
1853 if (context->state != AUDIT_RECORD_CONTEXT) {
1854 kfree(context->filterkey);
1855 context->filterkey = NULL;
1856 }
1857 tsk->audit_context = context;
1858 }
1859
1860 static inline void handle_one(const struct inode *inode)
1861 {
1862 #ifdef CONFIG_AUDIT_TREE
1863 struct audit_context *context;
1864 struct audit_tree_refs *p;
1865 struct audit_chunk *chunk;
1866 int count;
1867 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1868 return;
1869 context = current->audit_context;
1870 p = context->trees;
1871 count = context->tree_count;
1872 rcu_read_lock();
1873 chunk = audit_tree_lookup(inode);
1874 rcu_read_unlock();
1875 if (!chunk)
1876 return;
1877 if (likely(put_tree_ref(context, chunk)))
1878 return;
1879 if (unlikely(!grow_tree_refs(context))) {
1880 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1881 audit_set_auditable(context);
1882 audit_put_chunk(chunk);
1883 unroll_tree_refs(context, p, count);
1884 return;
1885 }
1886 put_tree_ref(context, chunk);
1887 #endif
1888 }
1889
1890 static void handle_path(const struct dentry *dentry)
1891 {
1892 #ifdef CONFIG_AUDIT_TREE
1893 struct audit_context *context;
1894 struct audit_tree_refs *p;
1895 const struct dentry *d, *parent;
1896 struct audit_chunk *drop;
1897 unsigned long seq;
1898 int count;
1899
1900 context = current->audit_context;
1901 p = context->trees;
1902 count = context->tree_count;
1903 retry:
1904 drop = NULL;
1905 d = dentry;
1906 rcu_read_lock();
1907 seq = read_seqbegin(&rename_lock);
1908 for(;;) {
1909 struct inode *inode = d->d_inode;
1910 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1911 struct audit_chunk *chunk;
1912 chunk = audit_tree_lookup(inode);
1913 if (chunk) {
1914 if (unlikely(!put_tree_ref(context, chunk))) {
1915 drop = chunk;
1916 break;
1917 }
1918 }
1919 }
1920 parent = d->d_parent;
1921 if (parent == d)
1922 break;
1923 d = parent;
1924 }
1925 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1926 rcu_read_unlock();
1927 if (!drop) {
1928 /* just a race with rename */
1929 unroll_tree_refs(context, p, count);
1930 goto retry;
1931 }
1932 audit_put_chunk(drop);
1933 if (grow_tree_refs(context)) {
1934 /* OK, got more space */
1935 unroll_tree_refs(context, p, count);
1936 goto retry;
1937 }
1938 /* too bad */
1939 printk(KERN_WARNING
1940 "out of memory, audit has lost a tree reference\n");
1941 unroll_tree_refs(context, p, count);
1942 audit_set_auditable(context);
1943 return;
1944 }
1945 rcu_read_unlock();
1946 #endif
1947 }
1948
1949 static struct audit_names *audit_alloc_name(struct audit_context *context,
1950 unsigned char type)
1951 {
1952 struct audit_names *aname;
1953
1954 if (context->name_count < AUDIT_NAMES) {
1955 aname = &context->preallocated_names[context->name_count];
1956 memset(aname, 0, sizeof(*aname));
1957 } else {
1958 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1959 if (!aname)
1960 return NULL;
1961 aname->should_free = true;
1962 }
1963
1964 aname->ino = (unsigned long)-1;
1965 aname->type = type;
1966 list_add_tail(&aname->list, &context->names_list);
1967
1968 context->name_count++;
1969 #if AUDIT_DEBUG
1970 context->ino_count++;
1971 #endif
1972 return aname;
1973 }
1974
1975 /**
1976 * audit_reusename - fill out filename with info from existing entry
1977 * @uptr: userland ptr to pathname
1978 *
1979 * Search the audit_names list for the current audit context. If there is an
1980 * existing entry with a matching "uptr" then return the filename
1981 * associated with that audit_name. If not, return NULL.
1982 */
1983 struct filename *
1984 __audit_reusename(const __user char *uptr)
1985 {
1986 struct audit_context *context = current->audit_context;
1987 struct audit_names *n;
1988
1989 list_for_each_entry(n, &context->names_list, list) {
1990 if (!n->name)
1991 continue;
1992 if (n->name->uptr == uptr)
1993 return n->name;
1994 }
1995 return NULL;
1996 }
1997
1998 /**
1999 * audit_getname - add a name to the list
2000 * @name: name to add
2001 *
2002 * Add a name to the list of audit names for this context.
2003 * Called from fs/namei.c:getname().
2004 */
2005 void __audit_getname(struct filename *name)
2006 {
2007 struct audit_context *context = current->audit_context;
2008 struct audit_names *n;
2009
2010 if (!context->in_syscall) {
2011 #if AUDIT_DEBUG == 2
2012 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2013 __FILE__, __LINE__, context->serial, name);
2014 dump_stack();
2015 #endif
2016 return;
2017 }
2018
2019 #if AUDIT_DEBUG
2020 /* The filename _must_ have a populated ->name */
2021 BUG_ON(!name->name);
2022 #endif
2023
2024 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2025 if (!n)
2026 return;
2027
2028 n->name = name;
2029 n->name_len = AUDIT_NAME_FULL;
2030 n->name_put = true;
2031 name->aname = n;
2032
2033 if (!context->pwd.dentry)
2034 get_fs_pwd(current->fs, &context->pwd);
2035 }
2036
2037 /* audit_putname - intercept a putname request
2038 * @name: name to intercept and delay for putname
2039 *
2040 * If we have stored the name from getname in the audit context,
2041 * then we delay the putname until syscall exit.
2042 * Called from include/linux/fs.h:putname().
2043 */
2044 void audit_putname(struct filename *name)
2045 {
2046 struct audit_context *context = current->audit_context;
2047
2048 BUG_ON(!context);
2049 if (!context->in_syscall) {
2050 #if AUDIT_DEBUG == 2
2051 printk(KERN_ERR "%s:%d(:%d): final_putname(%p)\n",
2052 __FILE__, __LINE__, context->serial, name);
2053 if (context->name_count) {
2054 struct audit_names *n;
2055 int i = 0;
2056
2057 list_for_each_entry(n, &context->names_list, list)
2058 printk(KERN_ERR "name[%d] = %p = %s\n", i++,
2059 n->name, n->name->name ?: "(null)");
2060 }
2061 #endif
2062 final_putname(name);
2063 }
2064 #if AUDIT_DEBUG
2065 else {
2066 ++context->put_count;
2067 if (context->put_count > context->name_count) {
2068 printk(KERN_ERR "%s:%d(:%d): major=%d"
2069 " in_syscall=%d putname(%p) name_count=%d"
2070 " put_count=%d\n",
2071 __FILE__, __LINE__,
2072 context->serial, context->major,
2073 context->in_syscall, name->name,
2074 context->name_count, context->put_count);
2075 dump_stack();
2076 }
2077 }
2078 #endif
2079 }
2080
2081 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2082 {
2083 struct cpu_vfs_cap_data caps;
2084 int rc;
2085
2086 if (!dentry)
2087 return 0;
2088
2089 rc = get_vfs_caps_from_disk(dentry, &caps);
2090 if (rc)
2091 return rc;
2092
2093 name->fcap.permitted = caps.permitted;
2094 name->fcap.inheritable = caps.inheritable;
2095 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2096 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2097
2098 return 0;
2099 }
2100
2101
2102 /* Copy inode data into an audit_names. */
2103 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2104 const struct inode *inode)
2105 {
2106 name->ino = inode->i_ino;
2107 name->dev = inode->i_sb->s_dev;
2108 name->mode = inode->i_mode;
2109 name->uid = inode->i_uid;
2110 name->gid = inode->i_gid;
2111 name->rdev = inode->i_rdev;
2112 security_inode_getsecid(inode, &name->osid);
2113 audit_copy_fcaps(name, dentry);
2114 }
2115
2116 /**
2117 * __audit_inode - store the inode and device from a lookup
2118 * @name: name being audited
2119 * @dentry: dentry being audited
2120 * @parent: does this dentry represent the parent?
2121 */
2122 void __audit_inode(struct filename *name, const struct dentry *dentry,
2123 unsigned int parent)
2124 {
2125 struct audit_context *context = current->audit_context;
2126 const struct inode *inode = dentry->d_inode;
2127 struct audit_names *n;
2128
2129 if (!context->in_syscall)
2130 return;
2131
2132 if (!name)
2133 goto out_alloc;
2134
2135 #if AUDIT_DEBUG
2136 /* The struct filename _must_ have a populated ->name */
2137 BUG_ON(!name->name);
2138 #endif
2139 /*
2140 * If we have a pointer to an audit_names entry already, then we can
2141 * just use it directly if the type is correct.
2142 */
2143 n = name->aname;
2144 if (n) {
2145 if (parent) {
2146 if (n->type == AUDIT_TYPE_PARENT ||
2147 n->type == AUDIT_TYPE_UNKNOWN)
2148 goto out;
2149 } else {
2150 if (n->type != AUDIT_TYPE_PARENT)
2151 goto out;
2152 }
2153 }
2154
2155 list_for_each_entry_reverse(n, &context->names_list, list) {
2156 /* does the name pointer match? */
2157 if (!n->name || n->name->name != name->name)
2158 continue;
2159
2160 /* match the correct record type */
2161 if (parent) {
2162 if (n->type == AUDIT_TYPE_PARENT ||
2163 n->type == AUDIT_TYPE_UNKNOWN)
2164 goto out;
2165 } else {
2166 if (n->type != AUDIT_TYPE_PARENT)
2167 goto out;
2168 }
2169 }
2170
2171 out_alloc:
2172 /* unable to find the name from a previous getname(). Allocate a new
2173 * anonymous entry.
2174 */
2175 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2176 if (!n)
2177 return;
2178 out:
2179 if (parent) {
2180 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2181 n->type = AUDIT_TYPE_PARENT;
2182 } else {
2183 n->name_len = AUDIT_NAME_FULL;
2184 n->type = AUDIT_TYPE_NORMAL;
2185 }
2186 handle_path(dentry);
2187 audit_copy_inode(n, dentry, inode);
2188 }
2189
2190 /**
2191 * __audit_inode_child - collect inode info for created/removed objects
2192 * @parent: inode of dentry parent
2193 * @dentry: dentry being audited
2194 * @type: AUDIT_TYPE_* value that we're looking for
2195 *
2196 * For syscalls that create or remove filesystem objects, audit_inode
2197 * can only collect information for the filesystem object's parent.
2198 * This call updates the audit context with the child's information.
2199 * Syscalls that create a new filesystem object must be hooked after
2200 * the object is created. Syscalls that remove a filesystem object
2201 * must be hooked prior, in order to capture the target inode during
2202 * unsuccessful attempts.
2203 */
2204 void __audit_inode_child(const struct inode *parent,
2205 const struct dentry *dentry,
2206 const unsigned char type)
2207 {
2208 struct audit_context *context = current->audit_context;
2209 const struct inode *inode = dentry->d_inode;
2210 const char *dname = dentry->d_name.name;
2211 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2212
2213 if (!context->in_syscall)
2214 return;
2215
2216 if (inode)
2217 handle_one(inode);
2218
2219 /* look for a parent entry first */
2220 list_for_each_entry(n, &context->names_list, list) {
2221 if (!n->name || n->type != AUDIT_TYPE_PARENT)
2222 continue;
2223
2224 if (n->ino == parent->i_ino &&
2225 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
2226 found_parent = n;
2227 break;
2228 }
2229 }
2230
2231 /* is there a matching child entry? */
2232 list_for_each_entry(n, &context->names_list, list) {
2233 /* can only match entries that have a name */
2234 if (!n->name || n->type != type)
2235 continue;
2236
2237 /* if we found a parent, make sure this one is a child of it */
2238 if (found_parent && (n->name != found_parent->name))
2239 continue;
2240
2241 if (!strcmp(dname, n->name->name) ||
2242 !audit_compare_dname_path(dname, n->name->name,
2243 found_parent ?
2244 found_parent->name_len :
2245 AUDIT_NAME_FULL)) {
2246 found_child = n;
2247 break;
2248 }
2249 }
2250
2251 if (!found_parent) {
2252 /* create a new, "anonymous" parent record */
2253 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2254 if (!n)
2255 return;
2256 audit_copy_inode(n, NULL, parent);
2257 }
2258
2259 if (!found_child) {
2260 found_child = audit_alloc_name(context, type);
2261 if (!found_child)
2262 return;
2263
2264 /* Re-use the name belonging to the slot for a matching parent
2265 * directory. All names for this context are relinquished in
2266 * audit_free_names() */
2267 if (found_parent) {
2268 found_child->name = found_parent->name;
2269 found_child->name_len = AUDIT_NAME_FULL;
2270 /* don't call __putname() */
2271 found_child->name_put = false;
2272 }
2273 }
2274 if (inode)
2275 audit_copy_inode(found_child, dentry, inode);
2276 else
2277 found_child->ino = (unsigned long)-1;
2278 }
2279 EXPORT_SYMBOL_GPL(__audit_inode_child);
2280
2281 /**
2282 * auditsc_get_stamp - get local copies of audit_context values
2283 * @ctx: audit_context for the task
2284 * @t: timespec to store time recorded in the audit_context
2285 * @serial: serial value that is recorded in the audit_context
2286 *
2287 * Also sets the context as auditable.
2288 */
2289 int auditsc_get_stamp(struct audit_context *ctx,
2290 struct timespec *t, unsigned int *serial)
2291 {
2292 if (!ctx->in_syscall)
2293 return 0;
2294 if (!ctx->serial)
2295 ctx->serial = audit_serial();
2296 t->tv_sec = ctx->ctime.tv_sec;
2297 t->tv_nsec = ctx->ctime.tv_nsec;
2298 *serial = ctx->serial;
2299 if (!ctx->prio) {
2300 ctx->prio = 1;
2301 ctx->current_state = AUDIT_RECORD_CONTEXT;
2302 }
2303 return 1;
2304 }
2305
2306 /* global counter which is incremented every time something logs in */
2307 static atomic_t session_id = ATOMIC_INIT(0);
2308
2309 /**
2310 * audit_set_loginuid - set current task's audit_context loginuid
2311 * @loginuid: loginuid value
2312 *
2313 * Returns 0.
2314 *
2315 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2316 */
2317 int audit_set_loginuid(kuid_t loginuid)
2318 {
2319 struct task_struct *task = current;
2320 struct audit_context *context = task->audit_context;
2321 unsigned int sessionid;
2322
2323 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2324 if (uid_valid(task->loginuid))
2325 return -EPERM;
2326 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2327 if (!capable(CAP_AUDIT_CONTROL))
2328 return -EPERM;
2329 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2330
2331 sessionid = atomic_inc_return(&session_id);
2332 if (context && context->in_syscall) {
2333 struct audit_buffer *ab;
2334
2335 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2336 if (ab) {
2337 audit_log_format(ab, "login pid=%d uid=%u "
2338 "old auid=%u new auid=%u"
2339 " old ses=%u new ses=%u",
2340 task->pid,
2341 from_kuid(&init_user_ns, task_uid(task)),
2342 from_kuid(&init_user_ns, task->loginuid),
2343 from_kuid(&init_user_ns, loginuid),
2344 task->sessionid, sessionid);
2345 audit_log_end(ab);
2346 }
2347 }
2348 task->sessionid = sessionid;
2349 task->loginuid = loginuid;
2350 return 0;
2351 }
2352
2353 /**
2354 * __audit_mq_open - record audit data for a POSIX MQ open
2355 * @oflag: open flag
2356 * @mode: mode bits
2357 * @attr: queue attributes
2358 *
2359 */
2360 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2361 {
2362 struct audit_context *context = current->audit_context;
2363
2364 if (attr)
2365 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2366 else
2367 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2368
2369 context->mq_open.oflag = oflag;
2370 context->mq_open.mode = mode;
2371
2372 context->type = AUDIT_MQ_OPEN;
2373 }
2374
2375 /**
2376 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2377 * @mqdes: MQ descriptor
2378 * @msg_len: Message length
2379 * @msg_prio: Message priority
2380 * @abs_timeout: Message timeout in absolute time
2381 *
2382 */
2383 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2384 const struct timespec *abs_timeout)
2385 {
2386 struct audit_context *context = current->audit_context;
2387 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2388
2389 if (abs_timeout)
2390 memcpy(p, abs_timeout, sizeof(struct timespec));
2391 else
2392 memset(p, 0, sizeof(struct timespec));
2393
2394 context->mq_sendrecv.mqdes = mqdes;
2395 context->mq_sendrecv.msg_len = msg_len;
2396 context->mq_sendrecv.msg_prio = msg_prio;
2397
2398 context->type = AUDIT_MQ_SENDRECV;
2399 }
2400
2401 /**
2402 * __audit_mq_notify - record audit data for a POSIX MQ notify
2403 * @mqdes: MQ descriptor
2404 * @notification: Notification event
2405 *
2406 */
2407
2408 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2409 {
2410 struct audit_context *context = current->audit_context;
2411
2412 if (notification)
2413 context->mq_notify.sigev_signo = notification->sigev_signo;
2414 else
2415 context->mq_notify.sigev_signo = 0;
2416
2417 context->mq_notify.mqdes = mqdes;
2418 context->type = AUDIT_MQ_NOTIFY;
2419 }
2420
2421 /**
2422 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2423 * @mqdes: MQ descriptor
2424 * @mqstat: MQ flags
2425 *
2426 */
2427 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2428 {
2429 struct audit_context *context = current->audit_context;
2430 context->mq_getsetattr.mqdes = mqdes;
2431 context->mq_getsetattr.mqstat = *mqstat;
2432 context->type = AUDIT_MQ_GETSETATTR;
2433 }
2434
2435 /**
2436 * audit_ipc_obj - record audit data for ipc object
2437 * @ipcp: ipc permissions
2438 *
2439 */
2440 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2441 {
2442 struct audit_context *context = current->audit_context;
2443 context->ipc.uid = ipcp->uid;
2444 context->ipc.gid = ipcp->gid;
2445 context->ipc.mode = ipcp->mode;
2446 context->ipc.has_perm = 0;
2447 security_ipc_getsecid(ipcp, &context->ipc.osid);
2448 context->type = AUDIT_IPC;
2449 }
2450
2451 /**
2452 * audit_ipc_set_perm - record audit data for new ipc permissions
2453 * @qbytes: msgq bytes
2454 * @uid: msgq user id
2455 * @gid: msgq group id
2456 * @mode: msgq mode (permissions)
2457 *
2458 * Called only after audit_ipc_obj().
2459 */
2460 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2461 {
2462 struct audit_context *context = current->audit_context;
2463
2464 context->ipc.qbytes = qbytes;
2465 context->ipc.perm_uid = uid;
2466 context->ipc.perm_gid = gid;
2467 context->ipc.perm_mode = mode;
2468 context->ipc.has_perm = 1;
2469 }
2470
2471 int __audit_bprm(struct linux_binprm *bprm)
2472 {
2473 struct audit_aux_data_execve *ax;
2474 struct audit_context *context = current->audit_context;
2475
2476 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2477 if (!ax)
2478 return -ENOMEM;
2479
2480 ax->argc = bprm->argc;
2481 ax->envc = bprm->envc;
2482 ax->mm = bprm->mm;
2483 ax->d.type = AUDIT_EXECVE;
2484 ax->d.next = context->aux;
2485 context->aux = (void *)ax;
2486 return 0;
2487 }
2488
2489
2490 /**
2491 * audit_socketcall - record audit data for sys_socketcall
2492 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2493 * @args: args array
2494 *
2495 */
2496 int __audit_socketcall(int nargs, unsigned long *args)
2497 {
2498 struct audit_context *context = current->audit_context;
2499
2500 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2501 return -EINVAL;
2502 context->type = AUDIT_SOCKETCALL;
2503 context->socketcall.nargs = nargs;
2504 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2505 return 0;
2506 }
2507
2508 /**
2509 * __audit_fd_pair - record audit data for pipe and socketpair
2510 * @fd1: the first file descriptor
2511 * @fd2: the second file descriptor
2512 *
2513 */
2514 void __audit_fd_pair(int fd1, int fd2)
2515 {
2516 struct audit_context *context = current->audit_context;
2517 context->fds[0] = fd1;
2518 context->fds[1] = fd2;
2519 }
2520
2521 /**
2522 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2523 * @len: data length in user space
2524 * @a: data address in kernel space
2525 *
2526 * Returns 0 for success or NULL context or < 0 on error.
2527 */
2528 int __audit_sockaddr(int len, void *a)
2529 {
2530 struct audit_context *context = current->audit_context;
2531
2532 if (!context->sockaddr) {
2533 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2534 if (!p)
2535 return -ENOMEM;
2536 context->sockaddr = p;
2537 }
2538
2539 context->sockaddr_len = len;
2540 memcpy(context->sockaddr, a, len);
2541 return 0;
2542 }
2543
2544 void __audit_ptrace(struct task_struct *t)
2545 {
2546 struct audit_context *context = current->audit_context;
2547
2548 context->target_pid = t->pid;
2549 context->target_auid = audit_get_loginuid(t);
2550 context->target_uid = task_uid(t);
2551 context->target_sessionid = audit_get_sessionid(t);
2552 security_task_getsecid(t, &context->target_sid);
2553 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2554 }
2555
2556 /**
2557 * audit_signal_info - record signal info for shutting down audit subsystem
2558 * @sig: signal value
2559 * @t: task being signaled
2560 *
2561 * If the audit subsystem is being terminated, record the task (pid)
2562 * and uid that is doing that.
2563 */
2564 int __audit_signal_info(int sig, struct task_struct *t)
2565 {
2566 struct audit_aux_data_pids *axp;
2567 struct task_struct *tsk = current;
2568 struct audit_context *ctx = tsk->audit_context;
2569 kuid_t uid = current_uid(), t_uid = task_uid(t);
2570
2571 if (audit_pid && t->tgid == audit_pid) {
2572 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2573 audit_sig_pid = tsk->pid;
2574 if (uid_valid(tsk->loginuid))
2575 audit_sig_uid = tsk->loginuid;
2576 else
2577 audit_sig_uid = uid;
2578 security_task_getsecid(tsk, &audit_sig_sid);
2579 }
2580 if (!audit_signals || audit_dummy_context())
2581 return 0;
2582 }
2583
2584 /* optimize the common case by putting first signal recipient directly
2585 * in audit_context */
2586 if (!ctx->target_pid) {
2587 ctx->target_pid = t->tgid;
2588 ctx->target_auid = audit_get_loginuid(t);
2589 ctx->target_uid = t_uid;
2590 ctx->target_sessionid = audit_get_sessionid(t);
2591 security_task_getsecid(t, &ctx->target_sid);
2592 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2593 return 0;
2594 }
2595
2596 axp = (void *)ctx->aux_pids;
2597 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2598 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2599 if (!axp)
2600 return -ENOMEM;
2601
2602 axp->d.type = AUDIT_OBJ_PID;
2603 axp->d.next = ctx->aux_pids;
2604 ctx->aux_pids = (void *)axp;
2605 }
2606 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2607
2608 axp->target_pid[axp->pid_count] = t->tgid;
2609 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2610 axp->target_uid[axp->pid_count] = t_uid;
2611 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2612 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2613 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2614 axp->pid_count++;
2615
2616 return 0;
2617 }
2618
2619 /**
2620 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2621 * @bprm: pointer to the bprm being processed
2622 * @new: the proposed new credentials
2623 * @old: the old credentials
2624 *
2625 * Simply check if the proc already has the caps given by the file and if not
2626 * store the priv escalation info for later auditing at the end of the syscall
2627 *
2628 * -Eric
2629 */
2630 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2631 const struct cred *new, const struct cred *old)
2632 {
2633 struct audit_aux_data_bprm_fcaps *ax;
2634 struct audit_context *context = current->audit_context;
2635 struct cpu_vfs_cap_data vcaps;
2636 struct dentry *dentry;
2637
2638 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2639 if (!ax)
2640 return -ENOMEM;
2641
2642 ax->d.type = AUDIT_BPRM_FCAPS;
2643 ax->d.next = context->aux;
2644 context->aux = (void *)ax;
2645
2646 dentry = dget(bprm->file->f_dentry);
2647 get_vfs_caps_from_disk(dentry, &vcaps);
2648 dput(dentry);
2649
2650 ax->fcap.permitted = vcaps.permitted;
2651 ax->fcap.inheritable = vcaps.inheritable;
2652 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2653 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2654
2655 ax->old_pcap.permitted = old->cap_permitted;
2656 ax->old_pcap.inheritable = old->cap_inheritable;
2657 ax->old_pcap.effective = old->cap_effective;
2658
2659 ax->new_pcap.permitted = new->cap_permitted;
2660 ax->new_pcap.inheritable = new->cap_inheritable;
2661 ax->new_pcap.effective = new->cap_effective;
2662 return 0;
2663 }
2664
2665 /**
2666 * __audit_log_capset - store information about the arguments to the capset syscall
2667 * @pid: target pid of the capset call
2668 * @new: the new credentials
2669 * @old: the old (current) credentials
2670 *
2671 * Record the aguments userspace sent to sys_capset for later printing by the
2672 * audit system if applicable
2673 */
2674 void __audit_log_capset(pid_t pid,
2675 const struct cred *new, const struct cred *old)
2676 {
2677 struct audit_context *context = current->audit_context;
2678 context->capset.pid = pid;
2679 context->capset.cap.effective = new->cap_effective;
2680 context->capset.cap.inheritable = new->cap_effective;
2681 context->capset.cap.permitted = new->cap_permitted;
2682 context->type = AUDIT_CAPSET;
2683 }
2684
2685 void __audit_mmap_fd(int fd, int flags)
2686 {
2687 struct audit_context *context = current->audit_context;
2688 context->mmap.fd = fd;
2689 context->mmap.flags = flags;
2690 context->type = AUDIT_MMAP;
2691 }
2692
2693 static void audit_log_task(struct audit_buffer *ab)
2694 {
2695 kuid_t auid, uid;
2696 kgid_t gid;
2697 unsigned int sessionid;
2698
2699 auid = audit_get_loginuid(current);
2700 sessionid = audit_get_sessionid(current);
2701 current_uid_gid(&uid, &gid);
2702
2703 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2704 from_kuid(&init_user_ns, auid),
2705 from_kuid(&init_user_ns, uid),
2706 from_kgid(&init_user_ns, gid),
2707 sessionid);
2708 audit_log_task_context(ab);
2709 audit_log_format(ab, " pid=%d comm=", current->pid);
2710 audit_log_untrustedstring(ab, current->comm);
2711 }
2712
2713 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2714 {
2715 audit_log_task(ab);
2716 audit_log_format(ab, " reason=");
2717 audit_log_string(ab, reason);
2718 audit_log_format(ab, " sig=%ld", signr);
2719 }
2720 /**
2721 * audit_core_dumps - record information about processes that end abnormally
2722 * @signr: signal value
2723 *
2724 * If a process ends with a core dump, something fishy is going on and we
2725 * should record the event for investigation.
2726 */
2727 void audit_core_dumps(long signr)
2728 {
2729 struct audit_buffer *ab;
2730
2731 if (!audit_enabled)
2732 return;
2733
2734 if (signr == SIGQUIT) /* don't care for those */
2735 return;
2736
2737 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2738 if (unlikely(!ab))
2739 return;
2740 audit_log_abend(ab, "memory violation", signr);
2741 audit_log_end(ab);
2742 }
2743
2744 void __audit_seccomp(unsigned long syscall, long signr, int code)
2745 {
2746 struct audit_buffer *ab;
2747
2748 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2749 if (unlikely(!ab))
2750 return;
2751 audit_log_task(ab);
2752 audit_log_format(ab, " sig=%ld", signr);
2753 audit_log_format(ab, " syscall=%ld", syscall);
2754 audit_log_format(ab, " compat=%d", is_compat_task());
2755 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2756 audit_log_format(ab, " code=0x%x", code);
2757 audit_log_end(ab);
2758 }
2759
2760 struct list_head *audit_killed_trees(void)
2761 {
2762 struct audit_context *ctx = current->audit_context;
2763 if (likely(!ctx || !ctx->in_syscall))
2764 return NULL;
2765 return &ctx->killed_trees;
2766 }
This page took 0.098306 seconds and 5 git commands to generate.