Audit: use new LSM hooks instead of SELinux exports
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/selinux.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/inotify.h>
69
70 #include "audit.h"
71
72 extern struct list_head audit_filter_list[];
73 extern int audit_ever_enabled;
74
75 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
76 * for saving names from getname(). */
77 #define AUDIT_NAMES 20
78
79 /* Indicates that audit should log the full pathname. */
80 #define AUDIT_NAME_FULL -1
81
82 /* no execve audit message should be longer than this (userspace limits) */
83 #define MAX_EXECVE_AUDIT_LEN 7500
84
85 /* number of audit rules */
86 int audit_n_rules;
87
88 /* determines whether we collect data for signals sent */
89 int audit_signals;
90
91 /* When fs/namei.c:getname() is called, we store the pointer in name and
92 * we don't let putname() free it (instead we free all of the saved
93 * pointers at syscall exit time).
94 *
95 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
96 struct audit_names {
97 const char *name;
98 int name_len; /* number of name's characters to log */
99 unsigned name_put; /* call __putname() for this name */
100 unsigned long ino;
101 dev_t dev;
102 umode_t mode;
103 uid_t uid;
104 gid_t gid;
105 dev_t rdev;
106 u32 osid;
107 };
108
109 struct audit_aux_data {
110 struct audit_aux_data *next;
111 int type;
112 };
113
114 #define AUDIT_AUX_IPCPERM 0
115
116 /* Number of target pids per aux struct. */
117 #define AUDIT_AUX_PIDS 16
118
119 struct audit_aux_data_mq_open {
120 struct audit_aux_data d;
121 int oflag;
122 mode_t mode;
123 struct mq_attr attr;
124 };
125
126 struct audit_aux_data_mq_sendrecv {
127 struct audit_aux_data d;
128 mqd_t mqdes;
129 size_t msg_len;
130 unsigned int msg_prio;
131 struct timespec abs_timeout;
132 };
133
134 struct audit_aux_data_mq_notify {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 struct sigevent notification;
138 };
139
140 struct audit_aux_data_mq_getsetattr {
141 struct audit_aux_data d;
142 mqd_t mqdes;
143 struct mq_attr mqstat;
144 };
145
146 struct audit_aux_data_ipcctl {
147 struct audit_aux_data d;
148 struct ipc_perm p;
149 unsigned long qbytes;
150 uid_t uid;
151 gid_t gid;
152 mode_t mode;
153 u32 osid;
154 };
155
156 struct audit_aux_data_execve {
157 struct audit_aux_data d;
158 int argc;
159 int envc;
160 struct mm_struct *mm;
161 };
162
163 struct audit_aux_data_socketcall {
164 struct audit_aux_data d;
165 int nargs;
166 unsigned long args[0];
167 };
168
169 struct audit_aux_data_sockaddr {
170 struct audit_aux_data d;
171 int len;
172 char a[0];
173 };
174
175 struct audit_aux_data_fd_pair {
176 struct audit_aux_data d;
177 int fd[2];
178 };
179
180 struct audit_aux_data_pids {
181 struct audit_aux_data d;
182 pid_t target_pid[AUDIT_AUX_PIDS];
183 uid_t target_auid[AUDIT_AUX_PIDS];
184 uid_t target_uid[AUDIT_AUX_PIDS];
185 unsigned int target_sessionid[AUDIT_AUX_PIDS];
186 u32 target_sid[AUDIT_AUX_PIDS];
187 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
188 int pid_count;
189 };
190
191 struct audit_tree_refs {
192 struct audit_tree_refs *next;
193 struct audit_chunk *c[31];
194 };
195
196 /* The per-task audit context. */
197 struct audit_context {
198 int dummy; /* must be the first element */
199 int in_syscall; /* 1 if task is in a syscall */
200 enum audit_state state;
201 unsigned int serial; /* serial number for record */
202 struct timespec ctime; /* time of syscall entry */
203 int major; /* syscall number */
204 unsigned long argv[4]; /* syscall arguments */
205 int return_valid; /* return code is valid */
206 long return_code;/* syscall return code */
207 int auditable; /* 1 if record should be written */
208 int name_count;
209 struct audit_names names[AUDIT_NAMES];
210 char * filterkey; /* key for rule that triggered record */
211 struct path pwd;
212 struct audit_context *previous; /* For nested syscalls */
213 struct audit_aux_data *aux;
214 struct audit_aux_data *aux_pids;
215
216 /* Save things to print about task_struct */
217 pid_t pid, ppid;
218 uid_t uid, euid, suid, fsuid;
219 gid_t gid, egid, sgid, fsgid;
220 unsigned long personality;
221 int arch;
222
223 pid_t target_pid;
224 uid_t target_auid;
225 uid_t target_uid;
226 unsigned int target_sessionid;
227 u32 target_sid;
228 char target_comm[TASK_COMM_LEN];
229
230 struct audit_tree_refs *trees, *first_trees;
231 int tree_count;
232
233 #if AUDIT_DEBUG
234 int put_count;
235 int ino_count;
236 #endif
237 };
238
239 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
240 static inline int open_arg(int flags, int mask)
241 {
242 int n = ACC_MODE(flags);
243 if (flags & (O_TRUNC | O_CREAT))
244 n |= AUDIT_PERM_WRITE;
245 return n & mask;
246 }
247
248 static int audit_match_perm(struct audit_context *ctx, int mask)
249 {
250 unsigned n = ctx->major;
251 switch (audit_classify_syscall(ctx->arch, n)) {
252 case 0: /* native */
253 if ((mask & AUDIT_PERM_WRITE) &&
254 audit_match_class(AUDIT_CLASS_WRITE, n))
255 return 1;
256 if ((mask & AUDIT_PERM_READ) &&
257 audit_match_class(AUDIT_CLASS_READ, n))
258 return 1;
259 if ((mask & AUDIT_PERM_ATTR) &&
260 audit_match_class(AUDIT_CLASS_CHATTR, n))
261 return 1;
262 return 0;
263 case 1: /* 32bit on biarch */
264 if ((mask & AUDIT_PERM_WRITE) &&
265 audit_match_class(AUDIT_CLASS_WRITE_32, n))
266 return 1;
267 if ((mask & AUDIT_PERM_READ) &&
268 audit_match_class(AUDIT_CLASS_READ_32, n))
269 return 1;
270 if ((mask & AUDIT_PERM_ATTR) &&
271 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
272 return 1;
273 return 0;
274 case 2: /* open */
275 return mask & ACC_MODE(ctx->argv[1]);
276 case 3: /* openat */
277 return mask & ACC_MODE(ctx->argv[2]);
278 case 4: /* socketcall */
279 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
280 case 5: /* execve */
281 return mask & AUDIT_PERM_EXEC;
282 default:
283 return 0;
284 }
285 }
286
287 /*
288 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
289 * ->first_trees points to its beginning, ->trees - to the current end of data.
290 * ->tree_count is the number of free entries in array pointed to by ->trees.
291 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
292 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
293 * it's going to remain 1-element for almost any setup) until we free context itself.
294 * References in it _are_ dropped - at the same time we free/drop aux stuff.
295 */
296
297 #ifdef CONFIG_AUDIT_TREE
298 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
299 {
300 struct audit_tree_refs *p = ctx->trees;
301 int left = ctx->tree_count;
302 if (likely(left)) {
303 p->c[--left] = chunk;
304 ctx->tree_count = left;
305 return 1;
306 }
307 if (!p)
308 return 0;
309 p = p->next;
310 if (p) {
311 p->c[30] = chunk;
312 ctx->trees = p;
313 ctx->tree_count = 30;
314 return 1;
315 }
316 return 0;
317 }
318
319 static int grow_tree_refs(struct audit_context *ctx)
320 {
321 struct audit_tree_refs *p = ctx->trees;
322 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
323 if (!ctx->trees) {
324 ctx->trees = p;
325 return 0;
326 }
327 if (p)
328 p->next = ctx->trees;
329 else
330 ctx->first_trees = ctx->trees;
331 ctx->tree_count = 31;
332 return 1;
333 }
334 #endif
335
336 static void unroll_tree_refs(struct audit_context *ctx,
337 struct audit_tree_refs *p, int count)
338 {
339 #ifdef CONFIG_AUDIT_TREE
340 struct audit_tree_refs *q;
341 int n;
342 if (!p) {
343 /* we started with empty chain */
344 p = ctx->first_trees;
345 count = 31;
346 /* if the very first allocation has failed, nothing to do */
347 if (!p)
348 return;
349 }
350 n = count;
351 for (q = p; q != ctx->trees; q = q->next, n = 31) {
352 while (n--) {
353 audit_put_chunk(q->c[n]);
354 q->c[n] = NULL;
355 }
356 }
357 while (n-- > ctx->tree_count) {
358 audit_put_chunk(q->c[n]);
359 q->c[n] = NULL;
360 }
361 ctx->trees = p;
362 ctx->tree_count = count;
363 #endif
364 }
365
366 static void free_tree_refs(struct audit_context *ctx)
367 {
368 struct audit_tree_refs *p, *q;
369 for (p = ctx->first_trees; p; p = q) {
370 q = p->next;
371 kfree(p);
372 }
373 }
374
375 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
376 {
377 #ifdef CONFIG_AUDIT_TREE
378 struct audit_tree_refs *p;
379 int n;
380 if (!tree)
381 return 0;
382 /* full ones */
383 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
384 for (n = 0; n < 31; n++)
385 if (audit_tree_match(p->c[n], tree))
386 return 1;
387 }
388 /* partial */
389 if (p) {
390 for (n = ctx->tree_count; n < 31; n++)
391 if (audit_tree_match(p->c[n], tree))
392 return 1;
393 }
394 #endif
395 return 0;
396 }
397
398 /* Determine if any context name data matches a rule's watch data */
399 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
400 * otherwise. */
401 static int audit_filter_rules(struct task_struct *tsk,
402 struct audit_krule *rule,
403 struct audit_context *ctx,
404 struct audit_names *name,
405 enum audit_state *state)
406 {
407 int i, j, need_sid = 1;
408 u32 sid;
409
410 for (i = 0; i < rule->field_count; i++) {
411 struct audit_field *f = &rule->fields[i];
412 int result = 0;
413
414 switch (f->type) {
415 case AUDIT_PID:
416 result = audit_comparator(tsk->pid, f->op, f->val);
417 break;
418 case AUDIT_PPID:
419 if (ctx) {
420 if (!ctx->ppid)
421 ctx->ppid = sys_getppid();
422 result = audit_comparator(ctx->ppid, f->op, f->val);
423 }
424 break;
425 case AUDIT_UID:
426 result = audit_comparator(tsk->uid, f->op, f->val);
427 break;
428 case AUDIT_EUID:
429 result = audit_comparator(tsk->euid, f->op, f->val);
430 break;
431 case AUDIT_SUID:
432 result = audit_comparator(tsk->suid, f->op, f->val);
433 break;
434 case AUDIT_FSUID:
435 result = audit_comparator(tsk->fsuid, f->op, f->val);
436 break;
437 case AUDIT_GID:
438 result = audit_comparator(tsk->gid, f->op, f->val);
439 break;
440 case AUDIT_EGID:
441 result = audit_comparator(tsk->egid, f->op, f->val);
442 break;
443 case AUDIT_SGID:
444 result = audit_comparator(tsk->sgid, f->op, f->val);
445 break;
446 case AUDIT_FSGID:
447 result = audit_comparator(tsk->fsgid, f->op, f->val);
448 break;
449 case AUDIT_PERS:
450 result = audit_comparator(tsk->personality, f->op, f->val);
451 break;
452 case AUDIT_ARCH:
453 if (ctx)
454 result = audit_comparator(ctx->arch, f->op, f->val);
455 break;
456
457 case AUDIT_EXIT:
458 if (ctx && ctx->return_valid)
459 result = audit_comparator(ctx->return_code, f->op, f->val);
460 break;
461 case AUDIT_SUCCESS:
462 if (ctx && ctx->return_valid) {
463 if (f->val)
464 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
465 else
466 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
467 }
468 break;
469 case AUDIT_DEVMAJOR:
470 if (name)
471 result = audit_comparator(MAJOR(name->dev),
472 f->op, f->val);
473 else if (ctx) {
474 for (j = 0; j < ctx->name_count; j++) {
475 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
476 ++result;
477 break;
478 }
479 }
480 }
481 break;
482 case AUDIT_DEVMINOR:
483 if (name)
484 result = audit_comparator(MINOR(name->dev),
485 f->op, f->val);
486 else if (ctx) {
487 for (j = 0; j < ctx->name_count; j++) {
488 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
489 ++result;
490 break;
491 }
492 }
493 }
494 break;
495 case AUDIT_INODE:
496 if (name)
497 result = (name->ino == f->val);
498 else if (ctx) {
499 for (j = 0; j < ctx->name_count; j++) {
500 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
501 ++result;
502 break;
503 }
504 }
505 }
506 break;
507 case AUDIT_WATCH:
508 if (name && rule->watch->ino != (unsigned long)-1)
509 result = (name->dev == rule->watch->dev &&
510 name->ino == rule->watch->ino);
511 break;
512 case AUDIT_DIR:
513 if (ctx)
514 result = match_tree_refs(ctx, rule->tree);
515 break;
516 case AUDIT_LOGINUID:
517 result = 0;
518 if (ctx)
519 result = audit_comparator(tsk->loginuid, f->op, f->val);
520 break;
521 case AUDIT_SUBJ_USER:
522 case AUDIT_SUBJ_ROLE:
523 case AUDIT_SUBJ_TYPE:
524 case AUDIT_SUBJ_SEN:
525 case AUDIT_SUBJ_CLR:
526 /* NOTE: this may return negative values indicating
527 a temporary error. We simply treat this as a
528 match for now to avoid losing information that
529 may be wanted. An error message will also be
530 logged upon error */
531 if (f->se_rule) {
532 if (need_sid) {
533 security_task_getsecid(tsk, &sid);
534 need_sid = 0;
535 }
536 result = selinux_audit_rule_match(sid, f->type,
537 f->op,
538 f->se_rule,
539 ctx);
540 }
541 break;
542 case AUDIT_OBJ_USER:
543 case AUDIT_OBJ_ROLE:
544 case AUDIT_OBJ_TYPE:
545 case AUDIT_OBJ_LEV_LOW:
546 case AUDIT_OBJ_LEV_HIGH:
547 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
548 also applies here */
549 if (f->se_rule) {
550 /* Find files that match */
551 if (name) {
552 result = selinux_audit_rule_match(
553 name->osid, f->type, f->op,
554 f->se_rule, ctx);
555 } else if (ctx) {
556 for (j = 0; j < ctx->name_count; j++) {
557 if (selinux_audit_rule_match(
558 ctx->names[j].osid,
559 f->type, f->op,
560 f->se_rule, ctx)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 /* Find ipc objects that match */
567 if (ctx) {
568 struct audit_aux_data *aux;
569 for (aux = ctx->aux; aux;
570 aux = aux->next) {
571 if (aux->type == AUDIT_IPC) {
572 struct audit_aux_data_ipcctl *axi = (void *)aux;
573 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
574 ++result;
575 break;
576 }
577 }
578 }
579 }
580 }
581 break;
582 case AUDIT_ARG0:
583 case AUDIT_ARG1:
584 case AUDIT_ARG2:
585 case AUDIT_ARG3:
586 if (ctx)
587 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
588 break;
589 case AUDIT_FILTERKEY:
590 /* ignore this field for filtering */
591 result = 1;
592 break;
593 case AUDIT_PERM:
594 result = audit_match_perm(ctx, f->val);
595 break;
596 }
597
598 if (!result)
599 return 0;
600 }
601 if (rule->filterkey)
602 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
603 switch (rule->action) {
604 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
605 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
606 }
607 return 1;
608 }
609
610 /* At process creation time, we can determine if system-call auditing is
611 * completely disabled for this task. Since we only have the task
612 * structure at this point, we can only check uid and gid.
613 */
614 static enum audit_state audit_filter_task(struct task_struct *tsk)
615 {
616 struct audit_entry *e;
617 enum audit_state state;
618
619 rcu_read_lock();
620 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
621 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
622 rcu_read_unlock();
623 return state;
624 }
625 }
626 rcu_read_unlock();
627 return AUDIT_BUILD_CONTEXT;
628 }
629
630 /* At syscall entry and exit time, this filter is called if the
631 * audit_state is not low enough that auditing cannot take place, but is
632 * also not high enough that we already know we have to write an audit
633 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
634 */
635 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
636 struct audit_context *ctx,
637 struct list_head *list)
638 {
639 struct audit_entry *e;
640 enum audit_state state;
641
642 if (audit_pid && tsk->tgid == audit_pid)
643 return AUDIT_DISABLED;
644
645 rcu_read_lock();
646 if (!list_empty(list)) {
647 int word = AUDIT_WORD(ctx->major);
648 int bit = AUDIT_BIT(ctx->major);
649
650 list_for_each_entry_rcu(e, list, list) {
651 if ((e->rule.mask[word] & bit) == bit &&
652 audit_filter_rules(tsk, &e->rule, ctx, NULL,
653 &state)) {
654 rcu_read_unlock();
655 return state;
656 }
657 }
658 }
659 rcu_read_unlock();
660 return AUDIT_BUILD_CONTEXT;
661 }
662
663 /* At syscall exit time, this filter is called if any audit_names[] have been
664 * collected during syscall processing. We only check rules in sublists at hash
665 * buckets applicable to the inode numbers in audit_names[].
666 * Regarding audit_state, same rules apply as for audit_filter_syscall().
667 */
668 enum audit_state audit_filter_inodes(struct task_struct *tsk,
669 struct audit_context *ctx)
670 {
671 int i;
672 struct audit_entry *e;
673 enum audit_state state;
674
675 if (audit_pid && tsk->tgid == audit_pid)
676 return AUDIT_DISABLED;
677
678 rcu_read_lock();
679 for (i = 0; i < ctx->name_count; i++) {
680 int word = AUDIT_WORD(ctx->major);
681 int bit = AUDIT_BIT(ctx->major);
682 struct audit_names *n = &ctx->names[i];
683 int h = audit_hash_ino((u32)n->ino);
684 struct list_head *list = &audit_inode_hash[h];
685
686 if (list_empty(list))
687 continue;
688
689 list_for_each_entry_rcu(e, list, list) {
690 if ((e->rule.mask[word] & bit) == bit &&
691 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
692 rcu_read_unlock();
693 return state;
694 }
695 }
696 }
697 rcu_read_unlock();
698 return AUDIT_BUILD_CONTEXT;
699 }
700
701 void audit_set_auditable(struct audit_context *ctx)
702 {
703 ctx->auditable = 1;
704 }
705
706 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
707 int return_valid,
708 int return_code)
709 {
710 struct audit_context *context = tsk->audit_context;
711
712 if (likely(!context))
713 return NULL;
714 context->return_valid = return_valid;
715
716 /*
717 * we need to fix up the return code in the audit logs if the actual
718 * return codes are later going to be fixed up by the arch specific
719 * signal handlers
720 *
721 * This is actually a test for:
722 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
723 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
724 *
725 * but is faster than a bunch of ||
726 */
727 if (unlikely(return_code <= -ERESTARTSYS) &&
728 (return_code >= -ERESTART_RESTARTBLOCK) &&
729 (return_code != -ENOIOCTLCMD))
730 context->return_code = -EINTR;
731 else
732 context->return_code = return_code;
733
734 if (context->in_syscall && !context->dummy && !context->auditable) {
735 enum audit_state state;
736
737 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
738 if (state == AUDIT_RECORD_CONTEXT) {
739 context->auditable = 1;
740 goto get_context;
741 }
742
743 state = audit_filter_inodes(tsk, context);
744 if (state == AUDIT_RECORD_CONTEXT)
745 context->auditable = 1;
746
747 }
748
749 get_context:
750
751 tsk->audit_context = NULL;
752 return context;
753 }
754
755 static inline void audit_free_names(struct audit_context *context)
756 {
757 int i;
758
759 #if AUDIT_DEBUG == 2
760 if (context->auditable
761 ||context->put_count + context->ino_count != context->name_count) {
762 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
763 " name_count=%d put_count=%d"
764 " ino_count=%d [NOT freeing]\n",
765 __FILE__, __LINE__,
766 context->serial, context->major, context->in_syscall,
767 context->name_count, context->put_count,
768 context->ino_count);
769 for (i = 0; i < context->name_count; i++) {
770 printk(KERN_ERR "names[%d] = %p = %s\n", i,
771 context->names[i].name,
772 context->names[i].name ?: "(null)");
773 }
774 dump_stack();
775 return;
776 }
777 #endif
778 #if AUDIT_DEBUG
779 context->put_count = 0;
780 context->ino_count = 0;
781 #endif
782
783 for (i = 0; i < context->name_count; i++) {
784 if (context->names[i].name && context->names[i].name_put)
785 __putname(context->names[i].name);
786 }
787 context->name_count = 0;
788 path_put(&context->pwd);
789 context->pwd.dentry = NULL;
790 context->pwd.mnt = NULL;
791 }
792
793 static inline void audit_free_aux(struct audit_context *context)
794 {
795 struct audit_aux_data *aux;
796
797 while ((aux = context->aux)) {
798 context->aux = aux->next;
799 kfree(aux);
800 }
801 while ((aux = context->aux_pids)) {
802 context->aux_pids = aux->next;
803 kfree(aux);
804 }
805 }
806
807 static inline void audit_zero_context(struct audit_context *context,
808 enum audit_state state)
809 {
810 memset(context, 0, sizeof(*context));
811 context->state = state;
812 }
813
814 static inline struct audit_context *audit_alloc_context(enum audit_state state)
815 {
816 struct audit_context *context;
817
818 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
819 return NULL;
820 audit_zero_context(context, state);
821 return context;
822 }
823
824 /**
825 * audit_alloc - allocate an audit context block for a task
826 * @tsk: task
827 *
828 * Filter on the task information and allocate a per-task audit context
829 * if necessary. Doing so turns on system call auditing for the
830 * specified task. This is called from copy_process, so no lock is
831 * needed.
832 */
833 int audit_alloc(struct task_struct *tsk)
834 {
835 struct audit_context *context;
836 enum audit_state state;
837
838 if (likely(!audit_ever_enabled))
839 return 0; /* Return if not auditing. */
840
841 state = audit_filter_task(tsk);
842 if (likely(state == AUDIT_DISABLED))
843 return 0;
844
845 if (!(context = audit_alloc_context(state))) {
846 audit_log_lost("out of memory in audit_alloc");
847 return -ENOMEM;
848 }
849
850 tsk->audit_context = context;
851 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
852 return 0;
853 }
854
855 static inline void audit_free_context(struct audit_context *context)
856 {
857 struct audit_context *previous;
858 int count = 0;
859
860 do {
861 previous = context->previous;
862 if (previous || (count && count < 10)) {
863 ++count;
864 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
865 " freeing multiple contexts (%d)\n",
866 context->serial, context->major,
867 context->name_count, count);
868 }
869 audit_free_names(context);
870 unroll_tree_refs(context, NULL, 0);
871 free_tree_refs(context);
872 audit_free_aux(context);
873 kfree(context->filterkey);
874 kfree(context);
875 context = previous;
876 } while (context);
877 if (count >= 10)
878 printk(KERN_ERR "audit: freed %d contexts\n", count);
879 }
880
881 void audit_log_task_context(struct audit_buffer *ab)
882 {
883 char *ctx = NULL;
884 unsigned len;
885 int error;
886 u32 sid;
887
888 security_task_getsecid(current, &sid);
889 if (!sid)
890 return;
891
892 error = security_secid_to_secctx(sid, &ctx, &len);
893 if (error) {
894 if (error != -EINVAL)
895 goto error_path;
896 return;
897 }
898
899 audit_log_format(ab, " subj=%s", ctx);
900 security_release_secctx(ctx, len);
901 return;
902
903 error_path:
904 audit_panic("error in audit_log_task_context");
905 return;
906 }
907
908 EXPORT_SYMBOL(audit_log_task_context);
909
910 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
911 {
912 char name[sizeof(tsk->comm)];
913 struct mm_struct *mm = tsk->mm;
914 struct vm_area_struct *vma;
915
916 /* tsk == current */
917
918 get_task_comm(name, tsk);
919 audit_log_format(ab, " comm=");
920 audit_log_untrustedstring(ab, name);
921
922 if (mm) {
923 down_read(&mm->mmap_sem);
924 vma = mm->mmap;
925 while (vma) {
926 if ((vma->vm_flags & VM_EXECUTABLE) &&
927 vma->vm_file) {
928 audit_log_d_path(ab, "exe=",
929 &vma->vm_file->f_path);
930 break;
931 }
932 vma = vma->vm_next;
933 }
934 up_read(&mm->mmap_sem);
935 }
936 audit_log_task_context(ab);
937 }
938
939 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
940 uid_t auid, uid_t uid, unsigned int sessionid,
941 u32 sid, char *comm)
942 {
943 struct audit_buffer *ab;
944 char *ctx = NULL;
945 u32 len;
946 int rc = 0;
947
948 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
949 if (!ab)
950 return rc;
951
952 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
953 uid, sessionid);
954 if (security_secid_to_secctx(sid, &ctx, &len)) {
955 audit_log_format(ab, " obj=(none)");
956 rc = 1;
957 } else {
958 audit_log_format(ab, " obj=%s", ctx);
959 security_release_secctx(ctx, len);
960 }
961 audit_log_format(ab, " ocomm=");
962 audit_log_untrustedstring(ab, comm);
963 audit_log_end(ab);
964
965 return rc;
966 }
967
968 /*
969 * to_send and len_sent accounting are very loose estimates. We aren't
970 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
971 * within about 500 bytes (next page boundry)
972 *
973 * why snprintf? an int is up to 12 digits long. if we just assumed when
974 * logging that a[%d]= was going to be 16 characters long we would be wasting
975 * space in every audit message. In one 7500 byte message we can log up to
976 * about 1000 min size arguments. That comes down to about 50% waste of space
977 * if we didn't do the snprintf to find out how long arg_num_len was.
978 */
979 static int audit_log_single_execve_arg(struct audit_context *context,
980 struct audit_buffer **ab,
981 int arg_num,
982 size_t *len_sent,
983 const char __user *p,
984 char *buf)
985 {
986 char arg_num_len_buf[12];
987 const char __user *tmp_p = p;
988 /* how many digits are in arg_num? 3 is the length of a=\n */
989 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
990 size_t len, len_left, to_send;
991 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
992 unsigned int i, has_cntl = 0, too_long = 0;
993 int ret;
994
995 /* strnlen_user includes the null we don't want to send */
996 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
997
998 /*
999 * We just created this mm, if we can't find the strings
1000 * we just copied into it something is _very_ wrong. Similar
1001 * for strings that are too long, we should not have created
1002 * any.
1003 */
1004 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1005 WARN_ON(1);
1006 send_sig(SIGKILL, current, 0);
1007 return -1;
1008 }
1009
1010 /* walk the whole argument looking for non-ascii chars */
1011 do {
1012 if (len_left > MAX_EXECVE_AUDIT_LEN)
1013 to_send = MAX_EXECVE_AUDIT_LEN;
1014 else
1015 to_send = len_left;
1016 ret = copy_from_user(buf, tmp_p, to_send);
1017 /*
1018 * There is no reason for this copy to be short. We just
1019 * copied them here, and the mm hasn't been exposed to user-
1020 * space yet.
1021 */
1022 if (ret) {
1023 WARN_ON(1);
1024 send_sig(SIGKILL, current, 0);
1025 return -1;
1026 }
1027 buf[to_send] = '\0';
1028 has_cntl = audit_string_contains_control(buf, to_send);
1029 if (has_cntl) {
1030 /*
1031 * hex messages get logged as 2 bytes, so we can only
1032 * send half as much in each message
1033 */
1034 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1035 break;
1036 }
1037 len_left -= to_send;
1038 tmp_p += to_send;
1039 } while (len_left > 0);
1040
1041 len_left = len;
1042
1043 if (len > max_execve_audit_len)
1044 too_long = 1;
1045
1046 /* rewalk the argument actually logging the message */
1047 for (i = 0; len_left > 0; i++) {
1048 int room_left;
1049
1050 if (len_left > max_execve_audit_len)
1051 to_send = max_execve_audit_len;
1052 else
1053 to_send = len_left;
1054
1055 /* do we have space left to send this argument in this ab? */
1056 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1057 if (has_cntl)
1058 room_left -= (to_send * 2);
1059 else
1060 room_left -= to_send;
1061 if (room_left < 0) {
1062 *len_sent = 0;
1063 audit_log_end(*ab);
1064 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1065 if (!*ab)
1066 return 0;
1067 }
1068
1069 /*
1070 * first record needs to say how long the original string was
1071 * so we can be sure nothing was lost.
1072 */
1073 if ((i == 0) && (too_long))
1074 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1075 has_cntl ? 2*len : len);
1076
1077 /*
1078 * normally arguments are small enough to fit and we already
1079 * filled buf above when we checked for control characters
1080 * so don't bother with another copy_from_user
1081 */
1082 if (len >= max_execve_audit_len)
1083 ret = copy_from_user(buf, p, to_send);
1084 else
1085 ret = 0;
1086 if (ret) {
1087 WARN_ON(1);
1088 send_sig(SIGKILL, current, 0);
1089 return -1;
1090 }
1091 buf[to_send] = '\0';
1092
1093 /* actually log it */
1094 audit_log_format(*ab, "a%d", arg_num);
1095 if (too_long)
1096 audit_log_format(*ab, "[%d]", i);
1097 audit_log_format(*ab, "=");
1098 if (has_cntl)
1099 audit_log_hex(*ab, buf, to_send);
1100 else
1101 audit_log_format(*ab, "\"%s\"", buf);
1102 audit_log_format(*ab, "\n");
1103
1104 p += to_send;
1105 len_left -= to_send;
1106 *len_sent += arg_num_len;
1107 if (has_cntl)
1108 *len_sent += to_send * 2;
1109 else
1110 *len_sent += to_send;
1111 }
1112 /* include the null we didn't log */
1113 return len + 1;
1114 }
1115
1116 static void audit_log_execve_info(struct audit_context *context,
1117 struct audit_buffer **ab,
1118 struct audit_aux_data_execve *axi)
1119 {
1120 int i;
1121 size_t len, len_sent = 0;
1122 const char __user *p;
1123 char *buf;
1124
1125 if (axi->mm != current->mm)
1126 return; /* execve failed, no additional info */
1127
1128 p = (const char __user *)axi->mm->arg_start;
1129
1130 audit_log_format(*ab, "argc=%d ", axi->argc);
1131
1132 /*
1133 * we need some kernel buffer to hold the userspace args. Just
1134 * allocate one big one rather than allocating one of the right size
1135 * for every single argument inside audit_log_single_execve_arg()
1136 * should be <8k allocation so should be pretty safe.
1137 */
1138 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1139 if (!buf) {
1140 audit_panic("out of memory for argv string\n");
1141 return;
1142 }
1143
1144 for (i = 0; i < axi->argc; i++) {
1145 len = audit_log_single_execve_arg(context, ab, i,
1146 &len_sent, p, buf);
1147 if (len <= 0)
1148 break;
1149 p += len;
1150 }
1151 kfree(buf);
1152 }
1153
1154 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1155 {
1156 int i, call_panic = 0;
1157 struct audit_buffer *ab;
1158 struct audit_aux_data *aux;
1159 const char *tty;
1160
1161 /* tsk == current */
1162 context->pid = tsk->pid;
1163 if (!context->ppid)
1164 context->ppid = sys_getppid();
1165 context->uid = tsk->uid;
1166 context->gid = tsk->gid;
1167 context->euid = tsk->euid;
1168 context->suid = tsk->suid;
1169 context->fsuid = tsk->fsuid;
1170 context->egid = tsk->egid;
1171 context->sgid = tsk->sgid;
1172 context->fsgid = tsk->fsgid;
1173 context->personality = tsk->personality;
1174
1175 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1176 if (!ab)
1177 return; /* audit_panic has been called */
1178 audit_log_format(ab, "arch=%x syscall=%d",
1179 context->arch, context->major);
1180 if (context->personality != PER_LINUX)
1181 audit_log_format(ab, " per=%lx", context->personality);
1182 if (context->return_valid)
1183 audit_log_format(ab, " success=%s exit=%ld",
1184 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1185 context->return_code);
1186
1187 mutex_lock(&tty_mutex);
1188 read_lock(&tasklist_lock);
1189 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1190 tty = tsk->signal->tty->name;
1191 else
1192 tty = "(none)";
1193 read_unlock(&tasklist_lock);
1194 audit_log_format(ab,
1195 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1196 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1197 " euid=%u suid=%u fsuid=%u"
1198 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1199 context->argv[0],
1200 context->argv[1],
1201 context->argv[2],
1202 context->argv[3],
1203 context->name_count,
1204 context->ppid,
1205 context->pid,
1206 tsk->loginuid,
1207 context->uid,
1208 context->gid,
1209 context->euid, context->suid, context->fsuid,
1210 context->egid, context->sgid, context->fsgid, tty,
1211 tsk->sessionid);
1212
1213 mutex_unlock(&tty_mutex);
1214
1215 audit_log_task_info(ab, tsk);
1216 if (context->filterkey) {
1217 audit_log_format(ab, " key=");
1218 audit_log_untrustedstring(ab, context->filterkey);
1219 } else
1220 audit_log_format(ab, " key=(null)");
1221 audit_log_end(ab);
1222
1223 for (aux = context->aux; aux; aux = aux->next) {
1224
1225 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1226 if (!ab)
1227 continue; /* audit_panic has been called */
1228
1229 switch (aux->type) {
1230 case AUDIT_MQ_OPEN: {
1231 struct audit_aux_data_mq_open *axi = (void *)aux;
1232 audit_log_format(ab,
1233 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1234 "mq_msgsize=%ld mq_curmsgs=%ld",
1235 axi->oflag, axi->mode, axi->attr.mq_flags,
1236 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1237 axi->attr.mq_curmsgs);
1238 break; }
1239
1240 case AUDIT_MQ_SENDRECV: {
1241 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1242 audit_log_format(ab,
1243 "mqdes=%d msg_len=%zd msg_prio=%u "
1244 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1245 axi->mqdes, axi->msg_len, axi->msg_prio,
1246 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1247 break; }
1248
1249 case AUDIT_MQ_NOTIFY: {
1250 struct audit_aux_data_mq_notify *axi = (void *)aux;
1251 audit_log_format(ab,
1252 "mqdes=%d sigev_signo=%d",
1253 axi->mqdes,
1254 axi->notification.sigev_signo);
1255 break; }
1256
1257 case AUDIT_MQ_GETSETATTR: {
1258 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1259 audit_log_format(ab,
1260 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1261 "mq_curmsgs=%ld ",
1262 axi->mqdes,
1263 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1264 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1265 break; }
1266
1267 case AUDIT_IPC: {
1268 struct audit_aux_data_ipcctl *axi = (void *)aux;
1269 audit_log_format(ab,
1270 "ouid=%u ogid=%u mode=%#o",
1271 axi->uid, axi->gid, axi->mode);
1272 if (axi->osid != 0) {
1273 char *ctx = NULL;
1274 u32 len;
1275 if (security_secid_to_secctx(
1276 axi->osid, &ctx, &len)) {
1277 audit_log_format(ab, " osid=%u",
1278 axi->osid);
1279 call_panic = 1;
1280 } else {
1281 audit_log_format(ab, " obj=%s", ctx);
1282 security_release_secctx(ctx, len);
1283 }
1284 }
1285 break; }
1286
1287 case AUDIT_IPC_SET_PERM: {
1288 struct audit_aux_data_ipcctl *axi = (void *)aux;
1289 audit_log_format(ab,
1290 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1291 axi->qbytes, axi->uid, axi->gid, axi->mode);
1292 break; }
1293
1294 case AUDIT_EXECVE: {
1295 struct audit_aux_data_execve *axi = (void *)aux;
1296 audit_log_execve_info(context, &ab, axi);
1297 break; }
1298
1299 case AUDIT_SOCKETCALL: {
1300 int i;
1301 struct audit_aux_data_socketcall *axs = (void *)aux;
1302 audit_log_format(ab, "nargs=%d", axs->nargs);
1303 for (i=0; i<axs->nargs; i++)
1304 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1305 break; }
1306
1307 case AUDIT_SOCKADDR: {
1308 struct audit_aux_data_sockaddr *axs = (void *)aux;
1309
1310 audit_log_format(ab, "saddr=");
1311 audit_log_hex(ab, axs->a, axs->len);
1312 break; }
1313
1314 case AUDIT_FD_PAIR: {
1315 struct audit_aux_data_fd_pair *axs = (void *)aux;
1316 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1317 break; }
1318
1319 }
1320 audit_log_end(ab);
1321 }
1322
1323 for (aux = context->aux_pids; aux; aux = aux->next) {
1324 struct audit_aux_data_pids *axs = (void *)aux;
1325 int i;
1326
1327 for (i = 0; i < axs->pid_count; i++)
1328 if (audit_log_pid_context(context, axs->target_pid[i],
1329 axs->target_auid[i],
1330 axs->target_uid[i],
1331 axs->target_sessionid[i],
1332 axs->target_sid[i],
1333 axs->target_comm[i]))
1334 call_panic = 1;
1335 }
1336
1337 if (context->target_pid &&
1338 audit_log_pid_context(context, context->target_pid,
1339 context->target_auid, context->target_uid,
1340 context->target_sessionid,
1341 context->target_sid, context->target_comm))
1342 call_panic = 1;
1343
1344 if (context->pwd.dentry && context->pwd.mnt) {
1345 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1346 if (ab) {
1347 audit_log_d_path(ab, "cwd=", &context->pwd);
1348 audit_log_end(ab);
1349 }
1350 }
1351 for (i = 0; i < context->name_count; i++) {
1352 struct audit_names *n = &context->names[i];
1353
1354 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1355 if (!ab)
1356 continue; /* audit_panic has been called */
1357
1358 audit_log_format(ab, "item=%d", i);
1359
1360 if (n->name) {
1361 switch(n->name_len) {
1362 case AUDIT_NAME_FULL:
1363 /* log the full path */
1364 audit_log_format(ab, " name=");
1365 audit_log_untrustedstring(ab, n->name);
1366 break;
1367 case 0:
1368 /* name was specified as a relative path and the
1369 * directory component is the cwd */
1370 audit_log_d_path(ab, " name=", &context->pwd);
1371 break;
1372 default:
1373 /* log the name's directory component */
1374 audit_log_format(ab, " name=");
1375 audit_log_n_untrustedstring(ab, n->name_len,
1376 n->name);
1377 }
1378 } else
1379 audit_log_format(ab, " name=(null)");
1380
1381 if (n->ino != (unsigned long)-1) {
1382 audit_log_format(ab, " inode=%lu"
1383 " dev=%02x:%02x mode=%#o"
1384 " ouid=%u ogid=%u rdev=%02x:%02x",
1385 n->ino,
1386 MAJOR(n->dev),
1387 MINOR(n->dev),
1388 n->mode,
1389 n->uid,
1390 n->gid,
1391 MAJOR(n->rdev),
1392 MINOR(n->rdev));
1393 }
1394 if (n->osid != 0) {
1395 char *ctx = NULL;
1396 u32 len;
1397 if (security_secid_to_secctx(
1398 n->osid, &ctx, &len)) {
1399 audit_log_format(ab, " osid=%u", n->osid);
1400 call_panic = 2;
1401 } else {
1402 audit_log_format(ab, " obj=%s", ctx);
1403 security_release_secctx(ctx, len);
1404 }
1405 }
1406
1407 audit_log_end(ab);
1408 }
1409
1410 /* Send end of event record to help user space know we are finished */
1411 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1412 if (ab)
1413 audit_log_end(ab);
1414 if (call_panic)
1415 audit_panic("error converting sid to string");
1416 }
1417
1418 /**
1419 * audit_free - free a per-task audit context
1420 * @tsk: task whose audit context block to free
1421 *
1422 * Called from copy_process and do_exit
1423 */
1424 void audit_free(struct task_struct *tsk)
1425 {
1426 struct audit_context *context;
1427
1428 context = audit_get_context(tsk, 0, 0);
1429 if (likely(!context))
1430 return;
1431
1432 /* Check for system calls that do not go through the exit
1433 * function (e.g., exit_group), then free context block.
1434 * We use GFP_ATOMIC here because we might be doing this
1435 * in the context of the idle thread */
1436 /* that can happen only if we are called from do_exit() */
1437 if (context->in_syscall && context->auditable)
1438 audit_log_exit(context, tsk);
1439
1440 audit_free_context(context);
1441 }
1442
1443 /**
1444 * audit_syscall_entry - fill in an audit record at syscall entry
1445 * @tsk: task being audited
1446 * @arch: architecture type
1447 * @major: major syscall type (function)
1448 * @a1: additional syscall register 1
1449 * @a2: additional syscall register 2
1450 * @a3: additional syscall register 3
1451 * @a4: additional syscall register 4
1452 *
1453 * Fill in audit context at syscall entry. This only happens if the
1454 * audit context was created when the task was created and the state or
1455 * filters demand the audit context be built. If the state from the
1456 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1457 * then the record will be written at syscall exit time (otherwise, it
1458 * will only be written if another part of the kernel requests that it
1459 * be written).
1460 */
1461 void audit_syscall_entry(int arch, int major,
1462 unsigned long a1, unsigned long a2,
1463 unsigned long a3, unsigned long a4)
1464 {
1465 struct task_struct *tsk = current;
1466 struct audit_context *context = tsk->audit_context;
1467 enum audit_state state;
1468
1469 BUG_ON(!context);
1470
1471 /*
1472 * This happens only on certain architectures that make system
1473 * calls in kernel_thread via the entry.S interface, instead of
1474 * with direct calls. (If you are porting to a new
1475 * architecture, hitting this condition can indicate that you
1476 * got the _exit/_leave calls backward in entry.S.)
1477 *
1478 * i386 no
1479 * x86_64 no
1480 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1481 *
1482 * This also happens with vm86 emulation in a non-nested manner
1483 * (entries without exits), so this case must be caught.
1484 */
1485 if (context->in_syscall) {
1486 struct audit_context *newctx;
1487
1488 #if AUDIT_DEBUG
1489 printk(KERN_ERR
1490 "audit(:%d) pid=%d in syscall=%d;"
1491 " entering syscall=%d\n",
1492 context->serial, tsk->pid, context->major, major);
1493 #endif
1494 newctx = audit_alloc_context(context->state);
1495 if (newctx) {
1496 newctx->previous = context;
1497 context = newctx;
1498 tsk->audit_context = newctx;
1499 } else {
1500 /* If we can't alloc a new context, the best we
1501 * can do is to leak memory (any pending putname
1502 * will be lost). The only other alternative is
1503 * to abandon auditing. */
1504 audit_zero_context(context, context->state);
1505 }
1506 }
1507 BUG_ON(context->in_syscall || context->name_count);
1508
1509 if (!audit_enabled)
1510 return;
1511
1512 context->arch = arch;
1513 context->major = major;
1514 context->argv[0] = a1;
1515 context->argv[1] = a2;
1516 context->argv[2] = a3;
1517 context->argv[3] = a4;
1518
1519 state = context->state;
1520 context->dummy = !audit_n_rules;
1521 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1522 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1523 if (likely(state == AUDIT_DISABLED))
1524 return;
1525
1526 context->serial = 0;
1527 context->ctime = CURRENT_TIME;
1528 context->in_syscall = 1;
1529 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1530 context->ppid = 0;
1531 }
1532
1533 /**
1534 * audit_syscall_exit - deallocate audit context after a system call
1535 * @tsk: task being audited
1536 * @valid: success/failure flag
1537 * @return_code: syscall return value
1538 *
1539 * Tear down after system call. If the audit context has been marked as
1540 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1541 * filtering, or because some other part of the kernel write an audit
1542 * message), then write out the syscall information. In call cases,
1543 * free the names stored from getname().
1544 */
1545 void audit_syscall_exit(int valid, long return_code)
1546 {
1547 struct task_struct *tsk = current;
1548 struct audit_context *context;
1549
1550 context = audit_get_context(tsk, valid, return_code);
1551
1552 if (likely(!context))
1553 return;
1554
1555 if (context->in_syscall && context->auditable)
1556 audit_log_exit(context, tsk);
1557
1558 context->in_syscall = 0;
1559 context->auditable = 0;
1560
1561 if (context->previous) {
1562 struct audit_context *new_context = context->previous;
1563 context->previous = NULL;
1564 audit_free_context(context);
1565 tsk->audit_context = new_context;
1566 } else {
1567 audit_free_names(context);
1568 unroll_tree_refs(context, NULL, 0);
1569 audit_free_aux(context);
1570 context->aux = NULL;
1571 context->aux_pids = NULL;
1572 context->target_pid = 0;
1573 context->target_sid = 0;
1574 kfree(context->filterkey);
1575 context->filterkey = NULL;
1576 tsk->audit_context = context;
1577 }
1578 }
1579
1580 static inline void handle_one(const struct inode *inode)
1581 {
1582 #ifdef CONFIG_AUDIT_TREE
1583 struct audit_context *context;
1584 struct audit_tree_refs *p;
1585 struct audit_chunk *chunk;
1586 int count;
1587 if (likely(list_empty(&inode->inotify_watches)))
1588 return;
1589 context = current->audit_context;
1590 p = context->trees;
1591 count = context->tree_count;
1592 rcu_read_lock();
1593 chunk = audit_tree_lookup(inode);
1594 rcu_read_unlock();
1595 if (!chunk)
1596 return;
1597 if (likely(put_tree_ref(context, chunk)))
1598 return;
1599 if (unlikely(!grow_tree_refs(context))) {
1600 printk(KERN_WARNING "out of memory, audit has lost a tree reference");
1601 audit_set_auditable(context);
1602 audit_put_chunk(chunk);
1603 unroll_tree_refs(context, p, count);
1604 return;
1605 }
1606 put_tree_ref(context, chunk);
1607 #endif
1608 }
1609
1610 static void handle_path(const struct dentry *dentry)
1611 {
1612 #ifdef CONFIG_AUDIT_TREE
1613 struct audit_context *context;
1614 struct audit_tree_refs *p;
1615 const struct dentry *d, *parent;
1616 struct audit_chunk *drop;
1617 unsigned long seq;
1618 int count;
1619
1620 context = current->audit_context;
1621 p = context->trees;
1622 count = context->tree_count;
1623 retry:
1624 drop = NULL;
1625 d = dentry;
1626 rcu_read_lock();
1627 seq = read_seqbegin(&rename_lock);
1628 for(;;) {
1629 struct inode *inode = d->d_inode;
1630 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1631 struct audit_chunk *chunk;
1632 chunk = audit_tree_lookup(inode);
1633 if (chunk) {
1634 if (unlikely(!put_tree_ref(context, chunk))) {
1635 drop = chunk;
1636 break;
1637 }
1638 }
1639 }
1640 parent = d->d_parent;
1641 if (parent == d)
1642 break;
1643 d = parent;
1644 }
1645 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1646 rcu_read_unlock();
1647 if (!drop) {
1648 /* just a race with rename */
1649 unroll_tree_refs(context, p, count);
1650 goto retry;
1651 }
1652 audit_put_chunk(drop);
1653 if (grow_tree_refs(context)) {
1654 /* OK, got more space */
1655 unroll_tree_refs(context, p, count);
1656 goto retry;
1657 }
1658 /* too bad */
1659 printk(KERN_WARNING
1660 "out of memory, audit has lost a tree reference");
1661 unroll_tree_refs(context, p, count);
1662 audit_set_auditable(context);
1663 return;
1664 }
1665 rcu_read_unlock();
1666 #endif
1667 }
1668
1669 /**
1670 * audit_getname - add a name to the list
1671 * @name: name to add
1672 *
1673 * Add a name to the list of audit names for this context.
1674 * Called from fs/namei.c:getname().
1675 */
1676 void __audit_getname(const char *name)
1677 {
1678 struct audit_context *context = current->audit_context;
1679
1680 if (IS_ERR(name) || !name)
1681 return;
1682
1683 if (!context->in_syscall) {
1684 #if AUDIT_DEBUG == 2
1685 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1686 __FILE__, __LINE__, context->serial, name);
1687 dump_stack();
1688 #endif
1689 return;
1690 }
1691 BUG_ON(context->name_count >= AUDIT_NAMES);
1692 context->names[context->name_count].name = name;
1693 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1694 context->names[context->name_count].name_put = 1;
1695 context->names[context->name_count].ino = (unsigned long)-1;
1696 context->names[context->name_count].osid = 0;
1697 ++context->name_count;
1698 if (!context->pwd.dentry) {
1699 read_lock(&current->fs->lock);
1700 context->pwd = current->fs->pwd;
1701 path_get(&current->fs->pwd);
1702 read_unlock(&current->fs->lock);
1703 }
1704
1705 }
1706
1707 /* audit_putname - intercept a putname request
1708 * @name: name to intercept and delay for putname
1709 *
1710 * If we have stored the name from getname in the audit context,
1711 * then we delay the putname until syscall exit.
1712 * Called from include/linux/fs.h:putname().
1713 */
1714 void audit_putname(const char *name)
1715 {
1716 struct audit_context *context = current->audit_context;
1717
1718 BUG_ON(!context);
1719 if (!context->in_syscall) {
1720 #if AUDIT_DEBUG == 2
1721 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1722 __FILE__, __LINE__, context->serial, name);
1723 if (context->name_count) {
1724 int i;
1725 for (i = 0; i < context->name_count; i++)
1726 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1727 context->names[i].name,
1728 context->names[i].name ?: "(null)");
1729 }
1730 #endif
1731 __putname(name);
1732 }
1733 #if AUDIT_DEBUG
1734 else {
1735 ++context->put_count;
1736 if (context->put_count > context->name_count) {
1737 printk(KERN_ERR "%s:%d(:%d): major=%d"
1738 " in_syscall=%d putname(%p) name_count=%d"
1739 " put_count=%d\n",
1740 __FILE__, __LINE__,
1741 context->serial, context->major,
1742 context->in_syscall, name, context->name_count,
1743 context->put_count);
1744 dump_stack();
1745 }
1746 }
1747 #endif
1748 }
1749
1750 static int audit_inc_name_count(struct audit_context *context,
1751 const struct inode *inode)
1752 {
1753 if (context->name_count >= AUDIT_NAMES) {
1754 if (inode)
1755 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1756 "dev=%02x:%02x, inode=%lu",
1757 MAJOR(inode->i_sb->s_dev),
1758 MINOR(inode->i_sb->s_dev),
1759 inode->i_ino);
1760
1761 else
1762 printk(KERN_DEBUG "name_count maxed, losing inode data");
1763 return 1;
1764 }
1765 context->name_count++;
1766 #if AUDIT_DEBUG
1767 context->ino_count++;
1768 #endif
1769 return 0;
1770 }
1771
1772 /* Copy inode data into an audit_names. */
1773 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1774 {
1775 name->ino = inode->i_ino;
1776 name->dev = inode->i_sb->s_dev;
1777 name->mode = inode->i_mode;
1778 name->uid = inode->i_uid;
1779 name->gid = inode->i_gid;
1780 name->rdev = inode->i_rdev;
1781 security_inode_getsecid(inode, &name->osid);
1782 }
1783
1784 /**
1785 * audit_inode - store the inode and device from a lookup
1786 * @name: name being audited
1787 * @dentry: dentry being audited
1788 *
1789 * Called from fs/namei.c:path_lookup().
1790 */
1791 void __audit_inode(const char *name, const struct dentry *dentry)
1792 {
1793 int idx;
1794 struct audit_context *context = current->audit_context;
1795 const struct inode *inode = dentry->d_inode;
1796
1797 if (!context->in_syscall)
1798 return;
1799 if (context->name_count
1800 && context->names[context->name_count-1].name
1801 && context->names[context->name_count-1].name == name)
1802 idx = context->name_count - 1;
1803 else if (context->name_count > 1
1804 && context->names[context->name_count-2].name
1805 && context->names[context->name_count-2].name == name)
1806 idx = context->name_count - 2;
1807 else {
1808 /* FIXME: how much do we care about inodes that have no
1809 * associated name? */
1810 if (audit_inc_name_count(context, inode))
1811 return;
1812 idx = context->name_count - 1;
1813 context->names[idx].name = NULL;
1814 }
1815 handle_path(dentry);
1816 audit_copy_inode(&context->names[idx], inode);
1817 }
1818
1819 /**
1820 * audit_inode_child - collect inode info for created/removed objects
1821 * @dname: inode's dentry name
1822 * @dentry: dentry being audited
1823 * @parent: inode of dentry parent
1824 *
1825 * For syscalls that create or remove filesystem objects, audit_inode
1826 * can only collect information for the filesystem object's parent.
1827 * This call updates the audit context with the child's information.
1828 * Syscalls that create a new filesystem object must be hooked after
1829 * the object is created. Syscalls that remove a filesystem object
1830 * must be hooked prior, in order to capture the target inode during
1831 * unsuccessful attempts.
1832 */
1833 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1834 const struct inode *parent)
1835 {
1836 int idx;
1837 struct audit_context *context = current->audit_context;
1838 const char *found_parent = NULL, *found_child = NULL;
1839 const struct inode *inode = dentry->d_inode;
1840 int dirlen = 0;
1841
1842 if (!context->in_syscall)
1843 return;
1844
1845 if (inode)
1846 handle_one(inode);
1847 /* determine matching parent */
1848 if (!dname)
1849 goto add_names;
1850
1851 /* parent is more likely, look for it first */
1852 for (idx = 0; idx < context->name_count; idx++) {
1853 struct audit_names *n = &context->names[idx];
1854
1855 if (!n->name)
1856 continue;
1857
1858 if (n->ino == parent->i_ino &&
1859 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1860 n->name_len = dirlen; /* update parent data in place */
1861 found_parent = n->name;
1862 goto add_names;
1863 }
1864 }
1865
1866 /* no matching parent, look for matching child */
1867 for (idx = 0; idx < context->name_count; idx++) {
1868 struct audit_names *n = &context->names[idx];
1869
1870 if (!n->name)
1871 continue;
1872
1873 /* strcmp() is the more likely scenario */
1874 if (!strcmp(dname, n->name) ||
1875 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1876 if (inode)
1877 audit_copy_inode(n, inode);
1878 else
1879 n->ino = (unsigned long)-1;
1880 found_child = n->name;
1881 goto add_names;
1882 }
1883 }
1884
1885 add_names:
1886 if (!found_parent) {
1887 if (audit_inc_name_count(context, parent))
1888 return;
1889 idx = context->name_count - 1;
1890 context->names[idx].name = NULL;
1891 audit_copy_inode(&context->names[idx], parent);
1892 }
1893
1894 if (!found_child) {
1895 if (audit_inc_name_count(context, inode))
1896 return;
1897 idx = context->name_count - 1;
1898
1899 /* Re-use the name belonging to the slot for a matching parent
1900 * directory. All names for this context are relinquished in
1901 * audit_free_names() */
1902 if (found_parent) {
1903 context->names[idx].name = found_parent;
1904 context->names[idx].name_len = AUDIT_NAME_FULL;
1905 /* don't call __putname() */
1906 context->names[idx].name_put = 0;
1907 } else {
1908 context->names[idx].name = NULL;
1909 }
1910
1911 if (inode)
1912 audit_copy_inode(&context->names[idx], inode);
1913 else
1914 context->names[idx].ino = (unsigned long)-1;
1915 }
1916 }
1917 EXPORT_SYMBOL_GPL(__audit_inode_child);
1918
1919 /**
1920 * auditsc_get_stamp - get local copies of audit_context values
1921 * @ctx: audit_context for the task
1922 * @t: timespec to store time recorded in the audit_context
1923 * @serial: serial value that is recorded in the audit_context
1924 *
1925 * Also sets the context as auditable.
1926 */
1927 void auditsc_get_stamp(struct audit_context *ctx,
1928 struct timespec *t, unsigned int *serial)
1929 {
1930 if (!ctx->serial)
1931 ctx->serial = audit_serial();
1932 t->tv_sec = ctx->ctime.tv_sec;
1933 t->tv_nsec = ctx->ctime.tv_nsec;
1934 *serial = ctx->serial;
1935 ctx->auditable = 1;
1936 }
1937
1938 /* global counter which is incremented every time something logs in */
1939 static atomic_t session_id = ATOMIC_INIT(0);
1940
1941 /**
1942 * audit_set_loginuid - set a task's audit_context loginuid
1943 * @task: task whose audit context is being modified
1944 * @loginuid: loginuid value
1945 *
1946 * Returns 0.
1947 *
1948 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1949 */
1950 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1951 {
1952 unsigned int sessionid = atomic_inc_return(&session_id);
1953 struct audit_context *context = task->audit_context;
1954
1955 if (context && context->in_syscall) {
1956 struct audit_buffer *ab;
1957
1958 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1959 if (ab) {
1960 audit_log_format(ab, "login pid=%d uid=%u "
1961 "old auid=%u new auid=%u"
1962 " old ses=%u new ses=%u",
1963 task->pid, task->uid,
1964 task->loginuid, loginuid,
1965 task->sessionid, sessionid);
1966 audit_log_end(ab);
1967 }
1968 }
1969 task->sessionid = sessionid;
1970 task->loginuid = loginuid;
1971 return 0;
1972 }
1973
1974 /**
1975 * __audit_mq_open - record audit data for a POSIX MQ open
1976 * @oflag: open flag
1977 * @mode: mode bits
1978 * @u_attr: queue attributes
1979 *
1980 * Returns 0 for success or NULL context or < 0 on error.
1981 */
1982 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1983 {
1984 struct audit_aux_data_mq_open *ax;
1985 struct audit_context *context = current->audit_context;
1986
1987 if (!audit_enabled)
1988 return 0;
1989
1990 if (likely(!context))
1991 return 0;
1992
1993 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1994 if (!ax)
1995 return -ENOMEM;
1996
1997 if (u_attr != NULL) {
1998 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1999 kfree(ax);
2000 return -EFAULT;
2001 }
2002 } else
2003 memset(&ax->attr, 0, sizeof(ax->attr));
2004
2005 ax->oflag = oflag;
2006 ax->mode = mode;
2007
2008 ax->d.type = AUDIT_MQ_OPEN;
2009 ax->d.next = context->aux;
2010 context->aux = (void *)ax;
2011 return 0;
2012 }
2013
2014 /**
2015 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2016 * @mqdes: MQ descriptor
2017 * @msg_len: Message length
2018 * @msg_prio: Message priority
2019 * @u_abs_timeout: Message timeout in absolute time
2020 *
2021 * Returns 0 for success or NULL context or < 0 on error.
2022 */
2023 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2024 const struct timespec __user *u_abs_timeout)
2025 {
2026 struct audit_aux_data_mq_sendrecv *ax;
2027 struct audit_context *context = current->audit_context;
2028
2029 if (!audit_enabled)
2030 return 0;
2031
2032 if (likely(!context))
2033 return 0;
2034
2035 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2036 if (!ax)
2037 return -ENOMEM;
2038
2039 if (u_abs_timeout != NULL) {
2040 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2041 kfree(ax);
2042 return -EFAULT;
2043 }
2044 } else
2045 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2046
2047 ax->mqdes = mqdes;
2048 ax->msg_len = msg_len;
2049 ax->msg_prio = msg_prio;
2050
2051 ax->d.type = AUDIT_MQ_SENDRECV;
2052 ax->d.next = context->aux;
2053 context->aux = (void *)ax;
2054 return 0;
2055 }
2056
2057 /**
2058 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2059 * @mqdes: MQ descriptor
2060 * @msg_len: Message length
2061 * @u_msg_prio: Message priority
2062 * @u_abs_timeout: Message timeout in absolute time
2063 *
2064 * Returns 0 for success or NULL context or < 0 on error.
2065 */
2066 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2067 unsigned int __user *u_msg_prio,
2068 const struct timespec __user *u_abs_timeout)
2069 {
2070 struct audit_aux_data_mq_sendrecv *ax;
2071 struct audit_context *context = current->audit_context;
2072
2073 if (!audit_enabled)
2074 return 0;
2075
2076 if (likely(!context))
2077 return 0;
2078
2079 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2080 if (!ax)
2081 return -ENOMEM;
2082
2083 if (u_msg_prio != NULL) {
2084 if (get_user(ax->msg_prio, u_msg_prio)) {
2085 kfree(ax);
2086 return -EFAULT;
2087 }
2088 } else
2089 ax->msg_prio = 0;
2090
2091 if (u_abs_timeout != NULL) {
2092 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2093 kfree(ax);
2094 return -EFAULT;
2095 }
2096 } else
2097 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2098
2099 ax->mqdes = mqdes;
2100 ax->msg_len = msg_len;
2101
2102 ax->d.type = AUDIT_MQ_SENDRECV;
2103 ax->d.next = context->aux;
2104 context->aux = (void *)ax;
2105 return 0;
2106 }
2107
2108 /**
2109 * __audit_mq_notify - record audit data for a POSIX MQ notify
2110 * @mqdes: MQ descriptor
2111 * @u_notification: Notification event
2112 *
2113 * Returns 0 for success or NULL context or < 0 on error.
2114 */
2115
2116 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2117 {
2118 struct audit_aux_data_mq_notify *ax;
2119 struct audit_context *context = current->audit_context;
2120
2121 if (!audit_enabled)
2122 return 0;
2123
2124 if (likely(!context))
2125 return 0;
2126
2127 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2128 if (!ax)
2129 return -ENOMEM;
2130
2131 if (u_notification != NULL) {
2132 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2133 kfree(ax);
2134 return -EFAULT;
2135 }
2136 } else
2137 memset(&ax->notification, 0, sizeof(ax->notification));
2138
2139 ax->mqdes = mqdes;
2140
2141 ax->d.type = AUDIT_MQ_NOTIFY;
2142 ax->d.next = context->aux;
2143 context->aux = (void *)ax;
2144 return 0;
2145 }
2146
2147 /**
2148 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2149 * @mqdes: MQ descriptor
2150 * @mqstat: MQ flags
2151 *
2152 * Returns 0 for success or NULL context or < 0 on error.
2153 */
2154 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2155 {
2156 struct audit_aux_data_mq_getsetattr *ax;
2157 struct audit_context *context = current->audit_context;
2158
2159 if (!audit_enabled)
2160 return 0;
2161
2162 if (likely(!context))
2163 return 0;
2164
2165 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2166 if (!ax)
2167 return -ENOMEM;
2168
2169 ax->mqdes = mqdes;
2170 ax->mqstat = *mqstat;
2171
2172 ax->d.type = AUDIT_MQ_GETSETATTR;
2173 ax->d.next = context->aux;
2174 context->aux = (void *)ax;
2175 return 0;
2176 }
2177
2178 /**
2179 * audit_ipc_obj - record audit data for ipc object
2180 * @ipcp: ipc permissions
2181 *
2182 * Returns 0 for success or NULL context or < 0 on error.
2183 */
2184 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2185 {
2186 struct audit_aux_data_ipcctl *ax;
2187 struct audit_context *context = current->audit_context;
2188
2189 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2190 if (!ax)
2191 return -ENOMEM;
2192
2193 ax->uid = ipcp->uid;
2194 ax->gid = ipcp->gid;
2195 ax->mode = ipcp->mode;
2196 security_ipc_getsecid(ipcp, &ax->osid);
2197 ax->d.type = AUDIT_IPC;
2198 ax->d.next = context->aux;
2199 context->aux = (void *)ax;
2200 return 0;
2201 }
2202
2203 /**
2204 * audit_ipc_set_perm - record audit data for new ipc permissions
2205 * @qbytes: msgq bytes
2206 * @uid: msgq user id
2207 * @gid: msgq group id
2208 * @mode: msgq mode (permissions)
2209 *
2210 * Returns 0 for success or NULL context or < 0 on error.
2211 */
2212 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2213 {
2214 struct audit_aux_data_ipcctl *ax;
2215 struct audit_context *context = current->audit_context;
2216
2217 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2218 if (!ax)
2219 return -ENOMEM;
2220
2221 ax->qbytes = qbytes;
2222 ax->uid = uid;
2223 ax->gid = gid;
2224 ax->mode = mode;
2225
2226 ax->d.type = AUDIT_IPC_SET_PERM;
2227 ax->d.next = context->aux;
2228 context->aux = (void *)ax;
2229 return 0;
2230 }
2231
2232 int audit_bprm(struct linux_binprm *bprm)
2233 {
2234 struct audit_aux_data_execve *ax;
2235 struct audit_context *context = current->audit_context;
2236
2237 if (likely(!audit_enabled || !context || context->dummy))
2238 return 0;
2239
2240 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2241 if (!ax)
2242 return -ENOMEM;
2243
2244 ax->argc = bprm->argc;
2245 ax->envc = bprm->envc;
2246 ax->mm = bprm->mm;
2247 ax->d.type = AUDIT_EXECVE;
2248 ax->d.next = context->aux;
2249 context->aux = (void *)ax;
2250 return 0;
2251 }
2252
2253
2254 /**
2255 * audit_socketcall - record audit data for sys_socketcall
2256 * @nargs: number of args
2257 * @args: args array
2258 *
2259 * Returns 0 for success or NULL context or < 0 on error.
2260 */
2261 int audit_socketcall(int nargs, unsigned long *args)
2262 {
2263 struct audit_aux_data_socketcall *ax;
2264 struct audit_context *context = current->audit_context;
2265
2266 if (likely(!context || context->dummy))
2267 return 0;
2268
2269 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2270 if (!ax)
2271 return -ENOMEM;
2272
2273 ax->nargs = nargs;
2274 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2275
2276 ax->d.type = AUDIT_SOCKETCALL;
2277 ax->d.next = context->aux;
2278 context->aux = (void *)ax;
2279 return 0;
2280 }
2281
2282 /**
2283 * __audit_fd_pair - record audit data for pipe and socketpair
2284 * @fd1: the first file descriptor
2285 * @fd2: the second file descriptor
2286 *
2287 * Returns 0 for success or NULL context or < 0 on error.
2288 */
2289 int __audit_fd_pair(int fd1, int fd2)
2290 {
2291 struct audit_context *context = current->audit_context;
2292 struct audit_aux_data_fd_pair *ax;
2293
2294 if (likely(!context)) {
2295 return 0;
2296 }
2297
2298 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2299 if (!ax) {
2300 return -ENOMEM;
2301 }
2302
2303 ax->fd[0] = fd1;
2304 ax->fd[1] = fd2;
2305
2306 ax->d.type = AUDIT_FD_PAIR;
2307 ax->d.next = context->aux;
2308 context->aux = (void *)ax;
2309 return 0;
2310 }
2311
2312 /**
2313 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2314 * @len: data length in user space
2315 * @a: data address in kernel space
2316 *
2317 * Returns 0 for success or NULL context or < 0 on error.
2318 */
2319 int audit_sockaddr(int len, void *a)
2320 {
2321 struct audit_aux_data_sockaddr *ax;
2322 struct audit_context *context = current->audit_context;
2323
2324 if (likely(!context || context->dummy))
2325 return 0;
2326
2327 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2328 if (!ax)
2329 return -ENOMEM;
2330
2331 ax->len = len;
2332 memcpy(ax->a, a, len);
2333
2334 ax->d.type = AUDIT_SOCKADDR;
2335 ax->d.next = context->aux;
2336 context->aux = (void *)ax;
2337 return 0;
2338 }
2339
2340 void __audit_ptrace(struct task_struct *t)
2341 {
2342 struct audit_context *context = current->audit_context;
2343
2344 context->target_pid = t->pid;
2345 context->target_auid = audit_get_loginuid(t);
2346 context->target_uid = t->uid;
2347 context->target_sessionid = audit_get_sessionid(t);
2348 security_task_getsecid(t, &context->target_sid);
2349 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2350 }
2351
2352 /**
2353 * audit_signal_info - record signal info for shutting down audit subsystem
2354 * @sig: signal value
2355 * @t: task being signaled
2356 *
2357 * If the audit subsystem is being terminated, record the task (pid)
2358 * and uid that is doing that.
2359 */
2360 int __audit_signal_info(int sig, struct task_struct *t)
2361 {
2362 struct audit_aux_data_pids *axp;
2363 struct task_struct *tsk = current;
2364 struct audit_context *ctx = tsk->audit_context;
2365 extern pid_t audit_sig_pid;
2366 extern uid_t audit_sig_uid;
2367 extern u32 audit_sig_sid;
2368
2369 if (audit_pid && t->tgid == audit_pid) {
2370 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
2371 audit_sig_pid = tsk->pid;
2372 if (tsk->loginuid != -1)
2373 audit_sig_uid = tsk->loginuid;
2374 else
2375 audit_sig_uid = tsk->uid;
2376 security_task_getsecid(tsk, &audit_sig_sid);
2377 }
2378 if (!audit_signals || audit_dummy_context())
2379 return 0;
2380 }
2381
2382 /* optimize the common case by putting first signal recipient directly
2383 * in audit_context */
2384 if (!ctx->target_pid) {
2385 ctx->target_pid = t->tgid;
2386 ctx->target_auid = audit_get_loginuid(t);
2387 ctx->target_uid = t->uid;
2388 ctx->target_sessionid = audit_get_sessionid(t);
2389 security_task_getsecid(t, &ctx->target_sid);
2390 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2391 return 0;
2392 }
2393
2394 axp = (void *)ctx->aux_pids;
2395 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2396 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2397 if (!axp)
2398 return -ENOMEM;
2399
2400 axp->d.type = AUDIT_OBJ_PID;
2401 axp->d.next = ctx->aux_pids;
2402 ctx->aux_pids = (void *)axp;
2403 }
2404 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2405
2406 axp->target_pid[axp->pid_count] = t->tgid;
2407 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2408 axp->target_uid[axp->pid_count] = t->uid;
2409 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2410 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2411 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2412 axp->pid_count++;
2413
2414 return 0;
2415 }
2416
2417 /**
2418 * audit_core_dumps - record information about processes that end abnormally
2419 * @signr: signal value
2420 *
2421 * If a process ends with a core dump, something fishy is going on and we
2422 * should record the event for investigation.
2423 */
2424 void audit_core_dumps(long signr)
2425 {
2426 struct audit_buffer *ab;
2427 u32 sid;
2428 uid_t auid = audit_get_loginuid(current);
2429 unsigned int sessionid = audit_get_sessionid(current);
2430
2431 if (!audit_enabled)
2432 return;
2433
2434 if (signr == SIGQUIT) /* don't care for those */
2435 return;
2436
2437 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2438 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2439 auid, current->uid, current->gid, sessionid);
2440 security_task_getsecid(current, &sid);
2441 if (sid) {
2442 char *ctx = NULL;
2443 u32 len;
2444
2445 if (security_secid_to_secctx(sid, &ctx, &len))
2446 audit_log_format(ab, " ssid=%u", sid);
2447 else {
2448 audit_log_format(ab, " subj=%s", ctx);
2449 security_release_secctx(ctx, len);
2450 }
2451 }
2452 audit_log_format(ab, " pid=%d comm=", current->pid);
2453 audit_log_untrustedstring(ab, current->comm);
2454 audit_log_format(ab, " sig=%ld", signr);
2455 audit_log_end(ab);
2456 }
This page took 0.086773 seconds and 5 git commands to generate.