[PATCH] fix missed create event for directory audit
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
49 #include <linux/fs.h>
50 #include <linux/namei.h>
51 #include <linux/mm.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/syscalls.h>
68
69 #include "audit.h"
70
71 extern struct list_head audit_filter_list[];
72
73 /* No syscall auditing will take place unless audit_enabled != 0. */
74 extern int audit_enabled;
75
76 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
77 * for saving names from getname(). */
78 #define AUDIT_NAMES 20
79
80 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the
81 * audit_context from being used for nameless inodes from
82 * path_lookup. */
83 #define AUDIT_NAMES_RESERVED 7
84
85 /* Indicates that audit should log the full pathname. */
86 #define AUDIT_NAME_FULL -1
87
88 /* When fs/namei.c:getname() is called, we store the pointer in name and
89 * we don't let putname() free it (instead we free all of the saved
90 * pointers at syscall exit time).
91 *
92 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
93 struct audit_names {
94 const char *name;
95 int name_len; /* number of name's characters to log */
96 unsigned name_put; /* call __putname() for this name */
97 unsigned long ino;
98 dev_t dev;
99 umode_t mode;
100 uid_t uid;
101 gid_t gid;
102 dev_t rdev;
103 u32 osid;
104 };
105
106 struct audit_aux_data {
107 struct audit_aux_data *next;
108 int type;
109 };
110
111 #define AUDIT_AUX_IPCPERM 0
112
113 struct audit_aux_data_mq_open {
114 struct audit_aux_data d;
115 int oflag;
116 mode_t mode;
117 struct mq_attr attr;
118 };
119
120 struct audit_aux_data_mq_sendrecv {
121 struct audit_aux_data d;
122 mqd_t mqdes;
123 size_t msg_len;
124 unsigned int msg_prio;
125 struct timespec abs_timeout;
126 };
127
128 struct audit_aux_data_mq_notify {
129 struct audit_aux_data d;
130 mqd_t mqdes;
131 struct sigevent notification;
132 };
133
134 struct audit_aux_data_mq_getsetattr {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 struct mq_attr mqstat;
138 };
139
140 struct audit_aux_data_ipcctl {
141 struct audit_aux_data d;
142 struct ipc_perm p;
143 unsigned long qbytes;
144 uid_t uid;
145 gid_t gid;
146 mode_t mode;
147 u32 osid;
148 };
149
150 struct audit_aux_data_execve {
151 struct audit_aux_data d;
152 int argc;
153 int envc;
154 char mem[0];
155 };
156
157 struct audit_aux_data_socketcall {
158 struct audit_aux_data d;
159 int nargs;
160 unsigned long args[0];
161 };
162
163 struct audit_aux_data_sockaddr {
164 struct audit_aux_data d;
165 int len;
166 char a[0];
167 };
168
169 struct audit_aux_data_path {
170 struct audit_aux_data d;
171 struct dentry *dentry;
172 struct vfsmount *mnt;
173 };
174
175 /* The per-task audit context. */
176 struct audit_context {
177 int in_syscall; /* 1 if task is in a syscall */
178 enum audit_state state;
179 unsigned int serial; /* serial number for record */
180 struct timespec ctime; /* time of syscall entry */
181 uid_t loginuid; /* login uid (identity) */
182 int major; /* syscall number */
183 unsigned long argv[4]; /* syscall arguments */
184 int return_valid; /* return code is valid */
185 long return_code;/* syscall return code */
186 int auditable; /* 1 if record should be written */
187 int name_count;
188 struct audit_names names[AUDIT_NAMES];
189 char * filterkey; /* key for rule that triggered record */
190 struct dentry * pwd;
191 struct vfsmount * pwdmnt;
192 struct audit_context *previous; /* For nested syscalls */
193 struct audit_aux_data *aux;
194
195 /* Save things to print about task_struct */
196 pid_t pid, ppid;
197 uid_t uid, euid, suid, fsuid;
198 gid_t gid, egid, sgid, fsgid;
199 unsigned long personality;
200 int arch;
201
202 #if AUDIT_DEBUG
203 int put_count;
204 int ino_count;
205 #endif
206 };
207
208 /* Determine if any context name data matches a rule's watch data */
209 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
210 * otherwise. */
211 static int audit_filter_rules(struct task_struct *tsk,
212 struct audit_krule *rule,
213 struct audit_context *ctx,
214 struct audit_names *name,
215 enum audit_state *state)
216 {
217 int i, j, need_sid = 1;
218 u32 sid;
219
220 for (i = 0; i < rule->field_count; i++) {
221 struct audit_field *f = &rule->fields[i];
222 int result = 0;
223
224 switch (f->type) {
225 case AUDIT_PID:
226 result = audit_comparator(tsk->pid, f->op, f->val);
227 break;
228 case AUDIT_PPID:
229 if (ctx)
230 result = audit_comparator(ctx->ppid, f->op, f->val);
231 break;
232 case AUDIT_UID:
233 result = audit_comparator(tsk->uid, f->op, f->val);
234 break;
235 case AUDIT_EUID:
236 result = audit_comparator(tsk->euid, f->op, f->val);
237 break;
238 case AUDIT_SUID:
239 result = audit_comparator(tsk->suid, f->op, f->val);
240 break;
241 case AUDIT_FSUID:
242 result = audit_comparator(tsk->fsuid, f->op, f->val);
243 break;
244 case AUDIT_GID:
245 result = audit_comparator(tsk->gid, f->op, f->val);
246 break;
247 case AUDIT_EGID:
248 result = audit_comparator(tsk->egid, f->op, f->val);
249 break;
250 case AUDIT_SGID:
251 result = audit_comparator(tsk->sgid, f->op, f->val);
252 break;
253 case AUDIT_FSGID:
254 result = audit_comparator(tsk->fsgid, f->op, f->val);
255 break;
256 case AUDIT_PERS:
257 result = audit_comparator(tsk->personality, f->op, f->val);
258 break;
259 case AUDIT_ARCH:
260 if (ctx)
261 result = audit_comparator(ctx->arch, f->op, f->val);
262 break;
263
264 case AUDIT_EXIT:
265 if (ctx && ctx->return_valid)
266 result = audit_comparator(ctx->return_code, f->op, f->val);
267 break;
268 case AUDIT_SUCCESS:
269 if (ctx && ctx->return_valid) {
270 if (f->val)
271 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
272 else
273 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
274 }
275 break;
276 case AUDIT_DEVMAJOR:
277 if (name)
278 result = audit_comparator(MAJOR(name->dev),
279 f->op, f->val);
280 else if (ctx) {
281 for (j = 0; j < ctx->name_count; j++) {
282 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
283 ++result;
284 break;
285 }
286 }
287 }
288 break;
289 case AUDIT_DEVMINOR:
290 if (name)
291 result = audit_comparator(MINOR(name->dev),
292 f->op, f->val);
293 else if (ctx) {
294 for (j = 0; j < ctx->name_count; j++) {
295 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
296 ++result;
297 break;
298 }
299 }
300 }
301 break;
302 case AUDIT_INODE:
303 if (name)
304 result = (name->ino == f->val);
305 else if (ctx) {
306 for (j = 0; j < ctx->name_count; j++) {
307 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
308 ++result;
309 break;
310 }
311 }
312 }
313 break;
314 case AUDIT_WATCH:
315 if (name && rule->watch->ino != (unsigned long)-1)
316 result = (name->dev == rule->watch->dev &&
317 name->ino == rule->watch->ino);
318 break;
319 case AUDIT_LOGINUID:
320 result = 0;
321 if (ctx)
322 result = audit_comparator(ctx->loginuid, f->op, f->val);
323 break;
324 case AUDIT_SUBJ_USER:
325 case AUDIT_SUBJ_ROLE:
326 case AUDIT_SUBJ_TYPE:
327 case AUDIT_SUBJ_SEN:
328 case AUDIT_SUBJ_CLR:
329 /* NOTE: this may return negative values indicating
330 a temporary error. We simply treat this as a
331 match for now to avoid losing information that
332 may be wanted. An error message will also be
333 logged upon error */
334 if (f->se_rule) {
335 if (need_sid) {
336 selinux_task_ctxid(tsk, &sid);
337 need_sid = 0;
338 }
339 result = selinux_audit_rule_match(sid, f->type,
340 f->op,
341 f->se_rule,
342 ctx);
343 }
344 break;
345 case AUDIT_OBJ_USER:
346 case AUDIT_OBJ_ROLE:
347 case AUDIT_OBJ_TYPE:
348 case AUDIT_OBJ_LEV_LOW:
349 case AUDIT_OBJ_LEV_HIGH:
350 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
351 also applies here */
352 if (f->se_rule) {
353 /* Find files that match */
354 if (name) {
355 result = selinux_audit_rule_match(
356 name->osid, f->type, f->op,
357 f->se_rule, ctx);
358 } else if (ctx) {
359 for (j = 0; j < ctx->name_count; j++) {
360 if (selinux_audit_rule_match(
361 ctx->names[j].osid,
362 f->type, f->op,
363 f->se_rule, ctx)) {
364 ++result;
365 break;
366 }
367 }
368 }
369 /* Find ipc objects that match */
370 if (ctx) {
371 struct audit_aux_data *aux;
372 for (aux = ctx->aux; aux;
373 aux = aux->next) {
374 if (aux->type == AUDIT_IPC) {
375 struct audit_aux_data_ipcctl *axi = (void *)aux;
376 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
377 ++result;
378 break;
379 }
380 }
381 }
382 }
383 }
384 break;
385 case AUDIT_ARG0:
386 case AUDIT_ARG1:
387 case AUDIT_ARG2:
388 case AUDIT_ARG3:
389 if (ctx)
390 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
391 break;
392 case AUDIT_FILTERKEY:
393 /* ignore this field for filtering */
394 result = 1;
395 break;
396 }
397
398 if (!result)
399 return 0;
400 }
401 if (rule->filterkey)
402 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
403 switch (rule->action) {
404 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
405 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
406 }
407 return 1;
408 }
409
410 /* At process creation time, we can determine if system-call auditing is
411 * completely disabled for this task. Since we only have the task
412 * structure at this point, we can only check uid and gid.
413 */
414 static enum audit_state audit_filter_task(struct task_struct *tsk)
415 {
416 struct audit_entry *e;
417 enum audit_state state;
418
419 rcu_read_lock();
420 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
421 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
422 rcu_read_unlock();
423 return state;
424 }
425 }
426 rcu_read_unlock();
427 return AUDIT_BUILD_CONTEXT;
428 }
429
430 /* At syscall entry and exit time, this filter is called if the
431 * audit_state is not low enough that auditing cannot take place, but is
432 * also not high enough that we already know we have to write an audit
433 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
434 */
435 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
436 struct audit_context *ctx,
437 struct list_head *list)
438 {
439 struct audit_entry *e;
440 enum audit_state state;
441
442 if (audit_pid && tsk->tgid == audit_pid)
443 return AUDIT_DISABLED;
444
445 rcu_read_lock();
446 if (!list_empty(list)) {
447 int word = AUDIT_WORD(ctx->major);
448 int bit = AUDIT_BIT(ctx->major);
449
450 list_for_each_entry_rcu(e, list, list) {
451 if ((e->rule.mask[word] & bit) == bit &&
452 audit_filter_rules(tsk, &e->rule, ctx, NULL,
453 &state)) {
454 rcu_read_unlock();
455 return state;
456 }
457 }
458 }
459 rcu_read_unlock();
460 return AUDIT_BUILD_CONTEXT;
461 }
462
463 /* At syscall exit time, this filter is called if any audit_names[] have been
464 * collected during syscall processing. We only check rules in sublists at hash
465 * buckets applicable to the inode numbers in audit_names[].
466 * Regarding audit_state, same rules apply as for audit_filter_syscall().
467 */
468 enum audit_state audit_filter_inodes(struct task_struct *tsk,
469 struct audit_context *ctx)
470 {
471 int i;
472 struct audit_entry *e;
473 enum audit_state state;
474
475 if (audit_pid && tsk->tgid == audit_pid)
476 return AUDIT_DISABLED;
477
478 rcu_read_lock();
479 for (i = 0; i < ctx->name_count; i++) {
480 int word = AUDIT_WORD(ctx->major);
481 int bit = AUDIT_BIT(ctx->major);
482 struct audit_names *n = &ctx->names[i];
483 int h = audit_hash_ino((u32)n->ino);
484 struct list_head *list = &audit_inode_hash[h];
485
486 if (list_empty(list))
487 continue;
488
489 list_for_each_entry_rcu(e, list, list) {
490 if ((e->rule.mask[word] & bit) == bit &&
491 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
492 rcu_read_unlock();
493 return state;
494 }
495 }
496 }
497 rcu_read_unlock();
498 return AUDIT_BUILD_CONTEXT;
499 }
500
501 void audit_set_auditable(struct audit_context *ctx)
502 {
503 ctx->auditable = 1;
504 }
505
506 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
507 int return_valid,
508 int return_code)
509 {
510 struct audit_context *context = tsk->audit_context;
511
512 if (likely(!context))
513 return NULL;
514 context->return_valid = return_valid;
515 context->return_code = return_code;
516
517 if (context->in_syscall && !context->auditable) {
518 enum audit_state state;
519
520 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
521 if (state == AUDIT_RECORD_CONTEXT) {
522 context->auditable = 1;
523 goto get_context;
524 }
525
526 state = audit_filter_inodes(tsk, context);
527 if (state == AUDIT_RECORD_CONTEXT)
528 context->auditable = 1;
529
530 }
531
532 get_context:
533 context->pid = tsk->pid;
534 context->ppid = sys_getppid(); /* sic. tsk == current in all cases */
535 context->uid = tsk->uid;
536 context->gid = tsk->gid;
537 context->euid = tsk->euid;
538 context->suid = tsk->suid;
539 context->fsuid = tsk->fsuid;
540 context->egid = tsk->egid;
541 context->sgid = tsk->sgid;
542 context->fsgid = tsk->fsgid;
543 context->personality = tsk->personality;
544 tsk->audit_context = NULL;
545 return context;
546 }
547
548 static inline void audit_free_names(struct audit_context *context)
549 {
550 int i;
551
552 #if AUDIT_DEBUG == 2
553 if (context->auditable
554 ||context->put_count + context->ino_count != context->name_count) {
555 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
556 " name_count=%d put_count=%d"
557 " ino_count=%d [NOT freeing]\n",
558 __FILE__, __LINE__,
559 context->serial, context->major, context->in_syscall,
560 context->name_count, context->put_count,
561 context->ino_count);
562 for (i = 0; i < context->name_count; i++) {
563 printk(KERN_ERR "names[%d] = %p = %s\n", i,
564 context->names[i].name,
565 context->names[i].name ?: "(null)");
566 }
567 dump_stack();
568 return;
569 }
570 #endif
571 #if AUDIT_DEBUG
572 context->put_count = 0;
573 context->ino_count = 0;
574 #endif
575
576 for (i = 0; i < context->name_count; i++) {
577 if (context->names[i].name && context->names[i].name_put)
578 __putname(context->names[i].name);
579 }
580 context->name_count = 0;
581 if (context->pwd)
582 dput(context->pwd);
583 if (context->pwdmnt)
584 mntput(context->pwdmnt);
585 context->pwd = NULL;
586 context->pwdmnt = NULL;
587 }
588
589 static inline void audit_free_aux(struct audit_context *context)
590 {
591 struct audit_aux_data *aux;
592
593 while ((aux = context->aux)) {
594 if (aux->type == AUDIT_AVC_PATH) {
595 struct audit_aux_data_path *axi = (void *)aux;
596 dput(axi->dentry);
597 mntput(axi->mnt);
598 }
599
600 context->aux = aux->next;
601 kfree(aux);
602 }
603 }
604
605 static inline void audit_zero_context(struct audit_context *context,
606 enum audit_state state)
607 {
608 uid_t loginuid = context->loginuid;
609
610 memset(context, 0, sizeof(*context));
611 context->state = state;
612 context->loginuid = loginuid;
613 }
614
615 static inline struct audit_context *audit_alloc_context(enum audit_state state)
616 {
617 struct audit_context *context;
618
619 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
620 return NULL;
621 audit_zero_context(context, state);
622 return context;
623 }
624
625 /**
626 * audit_alloc - allocate an audit context block for a task
627 * @tsk: task
628 *
629 * Filter on the task information and allocate a per-task audit context
630 * if necessary. Doing so turns on system call auditing for the
631 * specified task. This is called from copy_process, so no lock is
632 * needed.
633 */
634 int audit_alloc(struct task_struct *tsk)
635 {
636 struct audit_context *context;
637 enum audit_state state;
638
639 if (likely(!audit_enabled))
640 return 0; /* Return if not auditing. */
641
642 state = audit_filter_task(tsk);
643 if (likely(state == AUDIT_DISABLED))
644 return 0;
645
646 if (!(context = audit_alloc_context(state))) {
647 audit_log_lost("out of memory in audit_alloc");
648 return -ENOMEM;
649 }
650
651 /* Preserve login uid */
652 context->loginuid = -1;
653 if (current->audit_context)
654 context->loginuid = current->audit_context->loginuid;
655
656 tsk->audit_context = context;
657 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
658 return 0;
659 }
660
661 static inline void audit_free_context(struct audit_context *context)
662 {
663 struct audit_context *previous;
664 int count = 0;
665
666 do {
667 previous = context->previous;
668 if (previous || (count && count < 10)) {
669 ++count;
670 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
671 " freeing multiple contexts (%d)\n",
672 context->serial, context->major,
673 context->name_count, count);
674 }
675 audit_free_names(context);
676 audit_free_aux(context);
677 kfree(context->filterkey);
678 kfree(context);
679 context = previous;
680 } while (context);
681 if (count >= 10)
682 printk(KERN_ERR "audit: freed %d contexts\n", count);
683 }
684
685 static void audit_log_task_context(struct audit_buffer *ab)
686 {
687 char *ctx = NULL;
688 ssize_t len = 0;
689
690 len = security_getprocattr(current, "current", NULL, 0);
691 if (len < 0) {
692 if (len != -EINVAL)
693 goto error_path;
694 return;
695 }
696
697 ctx = kmalloc(len, GFP_KERNEL);
698 if (!ctx)
699 goto error_path;
700
701 len = security_getprocattr(current, "current", ctx, len);
702 if (len < 0 )
703 goto error_path;
704
705 audit_log_format(ab, " subj=%s", ctx);
706 return;
707
708 error_path:
709 kfree(ctx);
710 audit_panic("error in audit_log_task_context");
711 return;
712 }
713
714 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
715 {
716 char name[sizeof(tsk->comm)];
717 struct mm_struct *mm = tsk->mm;
718 struct vm_area_struct *vma;
719
720 /* tsk == current */
721
722 get_task_comm(name, tsk);
723 audit_log_format(ab, " comm=");
724 audit_log_untrustedstring(ab, name);
725
726 if (mm) {
727 down_read(&mm->mmap_sem);
728 vma = mm->mmap;
729 while (vma) {
730 if ((vma->vm_flags & VM_EXECUTABLE) &&
731 vma->vm_file) {
732 audit_log_d_path(ab, "exe=",
733 vma->vm_file->f_dentry,
734 vma->vm_file->f_vfsmnt);
735 break;
736 }
737 vma = vma->vm_next;
738 }
739 up_read(&mm->mmap_sem);
740 }
741 audit_log_task_context(ab);
742 }
743
744 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
745 {
746 int i, call_panic = 0;
747 struct audit_buffer *ab;
748 struct audit_aux_data *aux;
749 const char *tty;
750
751 /* tsk == current */
752
753 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
754 if (!ab)
755 return; /* audit_panic has been called */
756 audit_log_format(ab, "arch=%x syscall=%d",
757 context->arch, context->major);
758 if (context->personality != PER_LINUX)
759 audit_log_format(ab, " per=%lx", context->personality);
760 if (context->return_valid)
761 audit_log_format(ab, " success=%s exit=%ld",
762 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
763 context->return_code);
764 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
765 tty = tsk->signal->tty->name;
766 else
767 tty = "(none)";
768 audit_log_format(ab,
769 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
770 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
771 " euid=%u suid=%u fsuid=%u"
772 " egid=%u sgid=%u fsgid=%u tty=%s",
773 context->argv[0],
774 context->argv[1],
775 context->argv[2],
776 context->argv[3],
777 context->name_count,
778 context->ppid,
779 context->pid,
780 context->loginuid,
781 context->uid,
782 context->gid,
783 context->euid, context->suid, context->fsuid,
784 context->egid, context->sgid, context->fsgid, tty);
785 audit_log_task_info(ab, tsk);
786 if (context->filterkey) {
787 audit_log_format(ab, " key=");
788 audit_log_untrustedstring(ab, context->filterkey);
789 } else
790 audit_log_format(ab, " key=(null)");
791 audit_log_end(ab);
792
793 for (aux = context->aux; aux; aux = aux->next) {
794
795 ab = audit_log_start(context, GFP_KERNEL, aux->type);
796 if (!ab)
797 continue; /* audit_panic has been called */
798
799 switch (aux->type) {
800 case AUDIT_MQ_OPEN: {
801 struct audit_aux_data_mq_open *axi = (void *)aux;
802 audit_log_format(ab,
803 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
804 "mq_msgsize=%ld mq_curmsgs=%ld",
805 axi->oflag, axi->mode, axi->attr.mq_flags,
806 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
807 axi->attr.mq_curmsgs);
808 break; }
809
810 case AUDIT_MQ_SENDRECV: {
811 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
812 audit_log_format(ab,
813 "mqdes=%d msg_len=%zd msg_prio=%u "
814 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
815 axi->mqdes, axi->msg_len, axi->msg_prio,
816 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
817 break; }
818
819 case AUDIT_MQ_NOTIFY: {
820 struct audit_aux_data_mq_notify *axi = (void *)aux;
821 audit_log_format(ab,
822 "mqdes=%d sigev_signo=%d",
823 axi->mqdes,
824 axi->notification.sigev_signo);
825 break; }
826
827 case AUDIT_MQ_GETSETATTR: {
828 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
829 audit_log_format(ab,
830 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
831 "mq_curmsgs=%ld ",
832 axi->mqdes,
833 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
834 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
835 break; }
836
837 case AUDIT_IPC: {
838 struct audit_aux_data_ipcctl *axi = (void *)aux;
839 audit_log_format(ab,
840 "ouid=%u ogid=%u mode=%x",
841 axi->uid, axi->gid, axi->mode);
842 if (axi->osid != 0) {
843 char *ctx = NULL;
844 u32 len;
845 if (selinux_ctxid_to_string(
846 axi->osid, &ctx, &len)) {
847 audit_log_format(ab, " osid=%u",
848 axi->osid);
849 call_panic = 1;
850 } else
851 audit_log_format(ab, " obj=%s", ctx);
852 kfree(ctx);
853 }
854 break; }
855
856 case AUDIT_IPC_SET_PERM: {
857 struct audit_aux_data_ipcctl *axi = (void *)aux;
858 audit_log_format(ab,
859 "qbytes=%lx ouid=%u ogid=%u mode=%x",
860 axi->qbytes, axi->uid, axi->gid, axi->mode);
861 break; }
862
863 case AUDIT_EXECVE: {
864 struct audit_aux_data_execve *axi = (void *)aux;
865 int i;
866 const char *p;
867 for (i = 0, p = axi->mem; i < axi->argc; i++) {
868 audit_log_format(ab, "a%d=", i);
869 p = audit_log_untrustedstring(ab, p);
870 audit_log_format(ab, "\n");
871 }
872 break; }
873
874 case AUDIT_SOCKETCALL: {
875 int i;
876 struct audit_aux_data_socketcall *axs = (void *)aux;
877 audit_log_format(ab, "nargs=%d", axs->nargs);
878 for (i=0; i<axs->nargs; i++)
879 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
880 break; }
881
882 case AUDIT_SOCKADDR: {
883 struct audit_aux_data_sockaddr *axs = (void *)aux;
884
885 audit_log_format(ab, "saddr=");
886 audit_log_hex(ab, axs->a, axs->len);
887 break; }
888
889 case AUDIT_AVC_PATH: {
890 struct audit_aux_data_path *axi = (void *)aux;
891 audit_log_d_path(ab, "path=", axi->dentry, axi->mnt);
892 break; }
893
894 }
895 audit_log_end(ab);
896 }
897
898 if (context->pwd && context->pwdmnt) {
899 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
900 if (ab) {
901 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
902 audit_log_end(ab);
903 }
904 }
905 for (i = 0; i < context->name_count; i++) {
906 struct audit_names *n = &context->names[i];
907
908 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
909 if (!ab)
910 continue; /* audit_panic has been called */
911
912 audit_log_format(ab, "item=%d", i);
913
914 if (n->name) {
915 switch(n->name_len) {
916 case AUDIT_NAME_FULL:
917 /* log the full path */
918 audit_log_format(ab, " name=");
919 audit_log_untrustedstring(ab, n->name);
920 break;
921 case 0:
922 /* name was specified as a relative path and the
923 * directory component is the cwd */
924 audit_log_d_path(ab, " name=", context->pwd,
925 context->pwdmnt);
926 break;
927 default:
928 /* log the name's directory component */
929 audit_log_format(ab, " name=");
930 audit_log_n_untrustedstring(ab, n->name_len,
931 n->name);
932 }
933 } else
934 audit_log_format(ab, " name=(null)");
935
936 if (n->ino != (unsigned long)-1) {
937 audit_log_format(ab, " inode=%lu"
938 " dev=%02x:%02x mode=%#o"
939 " ouid=%u ogid=%u rdev=%02x:%02x",
940 n->ino,
941 MAJOR(n->dev),
942 MINOR(n->dev),
943 n->mode,
944 n->uid,
945 n->gid,
946 MAJOR(n->rdev),
947 MINOR(n->rdev));
948 }
949 if (n->osid != 0) {
950 char *ctx = NULL;
951 u32 len;
952 if (selinux_ctxid_to_string(
953 n->osid, &ctx, &len)) {
954 audit_log_format(ab, " osid=%u", n->osid);
955 call_panic = 2;
956 } else
957 audit_log_format(ab, " obj=%s", ctx);
958 kfree(ctx);
959 }
960
961 audit_log_end(ab);
962 }
963 if (call_panic)
964 audit_panic("error converting sid to string");
965 }
966
967 /**
968 * audit_free - free a per-task audit context
969 * @tsk: task whose audit context block to free
970 *
971 * Called from copy_process and do_exit
972 */
973 void audit_free(struct task_struct *tsk)
974 {
975 struct audit_context *context;
976
977 context = audit_get_context(tsk, 0, 0);
978 if (likely(!context))
979 return;
980
981 /* Check for system calls that do not go through the exit
982 * function (e.g., exit_group), then free context block.
983 * We use GFP_ATOMIC here because we might be doing this
984 * in the context of the idle thread */
985 /* that can happen only if we are called from do_exit() */
986 if (context->in_syscall && context->auditable)
987 audit_log_exit(context, tsk);
988
989 audit_free_context(context);
990 }
991
992 /**
993 * audit_syscall_entry - fill in an audit record at syscall entry
994 * @tsk: task being audited
995 * @arch: architecture type
996 * @major: major syscall type (function)
997 * @a1: additional syscall register 1
998 * @a2: additional syscall register 2
999 * @a3: additional syscall register 3
1000 * @a4: additional syscall register 4
1001 *
1002 * Fill in audit context at syscall entry. This only happens if the
1003 * audit context was created when the task was created and the state or
1004 * filters demand the audit context be built. If the state from the
1005 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1006 * then the record will be written at syscall exit time (otherwise, it
1007 * will only be written if another part of the kernel requests that it
1008 * be written).
1009 */
1010 void audit_syscall_entry(int arch, int major,
1011 unsigned long a1, unsigned long a2,
1012 unsigned long a3, unsigned long a4)
1013 {
1014 struct task_struct *tsk = current;
1015 struct audit_context *context = tsk->audit_context;
1016 enum audit_state state;
1017
1018 BUG_ON(!context);
1019
1020 /*
1021 * This happens only on certain architectures that make system
1022 * calls in kernel_thread via the entry.S interface, instead of
1023 * with direct calls. (If you are porting to a new
1024 * architecture, hitting this condition can indicate that you
1025 * got the _exit/_leave calls backward in entry.S.)
1026 *
1027 * i386 no
1028 * x86_64 no
1029 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1030 *
1031 * This also happens with vm86 emulation in a non-nested manner
1032 * (entries without exits), so this case must be caught.
1033 */
1034 if (context->in_syscall) {
1035 struct audit_context *newctx;
1036
1037 #if AUDIT_DEBUG
1038 printk(KERN_ERR
1039 "audit(:%d) pid=%d in syscall=%d;"
1040 " entering syscall=%d\n",
1041 context->serial, tsk->pid, context->major, major);
1042 #endif
1043 newctx = audit_alloc_context(context->state);
1044 if (newctx) {
1045 newctx->previous = context;
1046 context = newctx;
1047 tsk->audit_context = newctx;
1048 } else {
1049 /* If we can't alloc a new context, the best we
1050 * can do is to leak memory (any pending putname
1051 * will be lost). The only other alternative is
1052 * to abandon auditing. */
1053 audit_zero_context(context, context->state);
1054 }
1055 }
1056 BUG_ON(context->in_syscall || context->name_count);
1057
1058 if (!audit_enabled)
1059 return;
1060
1061 context->arch = arch;
1062 context->major = major;
1063 context->argv[0] = a1;
1064 context->argv[1] = a2;
1065 context->argv[2] = a3;
1066 context->argv[3] = a4;
1067
1068 state = context->state;
1069 if (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT)
1070 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1071 if (likely(state == AUDIT_DISABLED))
1072 return;
1073
1074 context->serial = 0;
1075 context->ctime = CURRENT_TIME;
1076 context->in_syscall = 1;
1077 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1078 }
1079
1080 /**
1081 * audit_syscall_exit - deallocate audit context after a system call
1082 * @tsk: task being audited
1083 * @valid: success/failure flag
1084 * @return_code: syscall return value
1085 *
1086 * Tear down after system call. If the audit context has been marked as
1087 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1088 * filtering, or because some other part of the kernel write an audit
1089 * message), then write out the syscall information. In call cases,
1090 * free the names stored from getname().
1091 */
1092 void audit_syscall_exit(int valid, long return_code)
1093 {
1094 struct task_struct *tsk = current;
1095 struct audit_context *context;
1096
1097 context = audit_get_context(tsk, valid, return_code);
1098
1099 if (likely(!context))
1100 return;
1101
1102 if (context->in_syscall && context->auditable)
1103 audit_log_exit(context, tsk);
1104
1105 context->in_syscall = 0;
1106 context->auditable = 0;
1107
1108 if (context->previous) {
1109 struct audit_context *new_context = context->previous;
1110 context->previous = NULL;
1111 audit_free_context(context);
1112 tsk->audit_context = new_context;
1113 } else {
1114 audit_free_names(context);
1115 audit_free_aux(context);
1116 kfree(context->filterkey);
1117 context->filterkey = NULL;
1118 tsk->audit_context = context;
1119 }
1120 }
1121
1122 /**
1123 * audit_getname - add a name to the list
1124 * @name: name to add
1125 *
1126 * Add a name to the list of audit names for this context.
1127 * Called from fs/namei.c:getname().
1128 */
1129 void __audit_getname(const char *name)
1130 {
1131 struct audit_context *context = current->audit_context;
1132
1133 if (IS_ERR(name) || !name)
1134 return;
1135
1136 if (!context->in_syscall) {
1137 #if AUDIT_DEBUG == 2
1138 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1139 __FILE__, __LINE__, context->serial, name);
1140 dump_stack();
1141 #endif
1142 return;
1143 }
1144 BUG_ON(context->name_count >= AUDIT_NAMES);
1145 context->names[context->name_count].name = name;
1146 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1147 context->names[context->name_count].name_put = 1;
1148 context->names[context->name_count].ino = (unsigned long)-1;
1149 ++context->name_count;
1150 if (!context->pwd) {
1151 read_lock(&current->fs->lock);
1152 context->pwd = dget(current->fs->pwd);
1153 context->pwdmnt = mntget(current->fs->pwdmnt);
1154 read_unlock(&current->fs->lock);
1155 }
1156
1157 }
1158
1159 /* audit_putname - intercept a putname request
1160 * @name: name to intercept and delay for putname
1161 *
1162 * If we have stored the name from getname in the audit context,
1163 * then we delay the putname until syscall exit.
1164 * Called from include/linux/fs.h:putname().
1165 */
1166 void audit_putname(const char *name)
1167 {
1168 struct audit_context *context = current->audit_context;
1169
1170 BUG_ON(!context);
1171 if (!context->in_syscall) {
1172 #if AUDIT_DEBUG == 2
1173 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1174 __FILE__, __LINE__, context->serial, name);
1175 if (context->name_count) {
1176 int i;
1177 for (i = 0; i < context->name_count; i++)
1178 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1179 context->names[i].name,
1180 context->names[i].name ?: "(null)");
1181 }
1182 #endif
1183 __putname(name);
1184 }
1185 #if AUDIT_DEBUG
1186 else {
1187 ++context->put_count;
1188 if (context->put_count > context->name_count) {
1189 printk(KERN_ERR "%s:%d(:%d): major=%d"
1190 " in_syscall=%d putname(%p) name_count=%d"
1191 " put_count=%d\n",
1192 __FILE__, __LINE__,
1193 context->serial, context->major,
1194 context->in_syscall, name, context->name_count,
1195 context->put_count);
1196 dump_stack();
1197 }
1198 }
1199 #endif
1200 }
1201
1202 /* Copy inode data into an audit_names. */
1203 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1204 {
1205 name->ino = inode->i_ino;
1206 name->dev = inode->i_sb->s_dev;
1207 name->mode = inode->i_mode;
1208 name->uid = inode->i_uid;
1209 name->gid = inode->i_gid;
1210 name->rdev = inode->i_rdev;
1211 selinux_get_inode_sid(inode, &name->osid);
1212 }
1213
1214 /**
1215 * audit_inode - store the inode and device from a lookup
1216 * @name: name being audited
1217 * @inode: inode being audited
1218 *
1219 * Called from fs/namei.c:path_lookup().
1220 */
1221 void __audit_inode(const char *name, const struct inode *inode)
1222 {
1223 int idx;
1224 struct audit_context *context = current->audit_context;
1225
1226 if (!context->in_syscall)
1227 return;
1228 if (context->name_count
1229 && context->names[context->name_count-1].name
1230 && context->names[context->name_count-1].name == name)
1231 idx = context->name_count - 1;
1232 else if (context->name_count > 1
1233 && context->names[context->name_count-2].name
1234 && context->names[context->name_count-2].name == name)
1235 idx = context->name_count - 2;
1236 else {
1237 /* FIXME: how much do we care about inodes that have no
1238 * associated name? */
1239 if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED)
1240 return;
1241 idx = context->name_count++;
1242 context->names[idx].name = NULL;
1243 #if AUDIT_DEBUG
1244 ++context->ino_count;
1245 #endif
1246 }
1247 audit_copy_inode(&context->names[idx], inode);
1248 }
1249
1250 /**
1251 * audit_inode_child - collect inode info for created/removed objects
1252 * @dname: inode's dentry name
1253 * @inode: inode being audited
1254 * @parent: inode of dentry parent
1255 *
1256 * For syscalls that create or remove filesystem objects, audit_inode
1257 * can only collect information for the filesystem object's parent.
1258 * This call updates the audit context with the child's information.
1259 * Syscalls that create a new filesystem object must be hooked after
1260 * the object is created. Syscalls that remove a filesystem object
1261 * must be hooked prior, in order to capture the target inode during
1262 * unsuccessful attempts.
1263 */
1264 void __audit_inode_child(const char *dname, const struct inode *inode,
1265 const struct inode *parent)
1266 {
1267 int idx;
1268 struct audit_context *context = current->audit_context;
1269 const char *found_name = NULL;
1270 int dirlen = 0;
1271
1272 if (!context->in_syscall)
1273 return;
1274
1275 /* determine matching parent */
1276 if (!dname)
1277 goto update_context;
1278 for (idx = 0; idx < context->name_count; idx++)
1279 if (context->names[idx].ino == parent->i_ino) {
1280 const char *name = context->names[idx].name;
1281
1282 if (!name)
1283 continue;
1284
1285 if (audit_compare_dname_path(dname, name, &dirlen) == 0) {
1286 context->names[idx].name_len = dirlen;
1287 found_name = name;
1288 break;
1289 }
1290 }
1291
1292 update_context:
1293 idx = context->name_count++;
1294 #if AUDIT_DEBUG
1295 context->ino_count++;
1296 #endif
1297 /* Re-use the name belonging to the slot for a matching parent directory.
1298 * All names for this context are relinquished in audit_free_names() */
1299 context->names[idx].name = found_name;
1300 context->names[idx].name_len = AUDIT_NAME_FULL;
1301 context->names[idx].name_put = 0; /* don't call __putname() */
1302
1303 if (!inode)
1304 context->names[idx].ino = (unsigned long)-1;
1305 else
1306 audit_copy_inode(&context->names[idx], inode);
1307
1308 /* A parent was not found in audit_names, so copy the inode data for the
1309 * provided parent. */
1310 if (!found_name) {
1311 idx = context->name_count++;
1312 #if AUDIT_DEBUG
1313 context->ino_count++;
1314 #endif
1315 audit_copy_inode(&context->names[idx], parent);
1316 }
1317 }
1318
1319 /**
1320 * audit_inode_update - update inode info for last collected name
1321 * @inode: inode being audited
1322 *
1323 * When open() is called on an existing object with the O_CREAT flag, the inode
1324 * data audit initially collects is incorrect. This additional hook ensures
1325 * audit has the inode data for the actual object to be opened.
1326 */
1327 void __audit_inode_update(const struct inode *inode)
1328 {
1329 struct audit_context *context = current->audit_context;
1330 int idx;
1331
1332 if (!context->in_syscall || !inode)
1333 return;
1334
1335 if (context->name_count == 0) {
1336 context->name_count++;
1337 #if AUDIT_DEBUG
1338 context->ino_count++;
1339 #endif
1340 }
1341 idx = context->name_count - 1;
1342
1343 audit_copy_inode(&context->names[idx], inode);
1344 }
1345
1346 /**
1347 * auditsc_get_stamp - get local copies of audit_context values
1348 * @ctx: audit_context for the task
1349 * @t: timespec to store time recorded in the audit_context
1350 * @serial: serial value that is recorded in the audit_context
1351 *
1352 * Also sets the context as auditable.
1353 */
1354 void auditsc_get_stamp(struct audit_context *ctx,
1355 struct timespec *t, unsigned int *serial)
1356 {
1357 if (!ctx->serial)
1358 ctx->serial = audit_serial();
1359 t->tv_sec = ctx->ctime.tv_sec;
1360 t->tv_nsec = ctx->ctime.tv_nsec;
1361 *serial = ctx->serial;
1362 ctx->auditable = 1;
1363 }
1364
1365 /**
1366 * audit_set_loginuid - set a task's audit_context loginuid
1367 * @task: task whose audit context is being modified
1368 * @loginuid: loginuid value
1369 *
1370 * Returns 0.
1371 *
1372 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1373 */
1374 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1375 {
1376 struct audit_context *context = task->audit_context;
1377
1378 if (context) {
1379 /* Only log if audit is enabled */
1380 if (context->in_syscall) {
1381 struct audit_buffer *ab;
1382
1383 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1384 if (ab) {
1385 audit_log_format(ab, "login pid=%d uid=%u "
1386 "old auid=%u new auid=%u",
1387 task->pid, task->uid,
1388 context->loginuid, loginuid);
1389 audit_log_end(ab);
1390 }
1391 }
1392 context->loginuid = loginuid;
1393 }
1394 return 0;
1395 }
1396
1397 /**
1398 * audit_get_loginuid - get the loginuid for an audit_context
1399 * @ctx: the audit_context
1400 *
1401 * Returns the context's loginuid or -1 if @ctx is NULL.
1402 */
1403 uid_t audit_get_loginuid(struct audit_context *ctx)
1404 {
1405 return ctx ? ctx->loginuid : -1;
1406 }
1407
1408 /**
1409 * __audit_mq_open - record audit data for a POSIX MQ open
1410 * @oflag: open flag
1411 * @mode: mode bits
1412 * @u_attr: queue attributes
1413 *
1414 * Returns 0 for success or NULL context or < 0 on error.
1415 */
1416 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1417 {
1418 struct audit_aux_data_mq_open *ax;
1419 struct audit_context *context = current->audit_context;
1420
1421 if (!audit_enabled)
1422 return 0;
1423
1424 if (likely(!context))
1425 return 0;
1426
1427 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1428 if (!ax)
1429 return -ENOMEM;
1430
1431 if (u_attr != NULL) {
1432 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1433 kfree(ax);
1434 return -EFAULT;
1435 }
1436 } else
1437 memset(&ax->attr, 0, sizeof(ax->attr));
1438
1439 ax->oflag = oflag;
1440 ax->mode = mode;
1441
1442 ax->d.type = AUDIT_MQ_OPEN;
1443 ax->d.next = context->aux;
1444 context->aux = (void *)ax;
1445 return 0;
1446 }
1447
1448 /**
1449 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1450 * @mqdes: MQ descriptor
1451 * @msg_len: Message length
1452 * @msg_prio: Message priority
1453 * @u_abs_timeout: Message timeout in absolute time
1454 *
1455 * Returns 0 for success or NULL context or < 0 on error.
1456 */
1457 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1458 const struct timespec __user *u_abs_timeout)
1459 {
1460 struct audit_aux_data_mq_sendrecv *ax;
1461 struct audit_context *context = current->audit_context;
1462
1463 if (!audit_enabled)
1464 return 0;
1465
1466 if (likely(!context))
1467 return 0;
1468
1469 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1470 if (!ax)
1471 return -ENOMEM;
1472
1473 if (u_abs_timeout != NULL) {
1474 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1475 kfree(ax);
1476 return -EFAULT;
1477 }
1478 } else
1479 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1480
1481 ax->mqdes = mqdes;
1482 ax->msg_len = msg_len;
1483 ax->msg_prio = msg_prio;
1484
1485 ax->d.type = AUDIT_MQ_SENDRECV;
1486 ax->d.next = context->aux;
1487 context->aux = (void *)ax;
1488 return 0;
1489 }
1490
1491 /**
1492 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1493 * @mqdes: MQ descriptor
1494 * @msg_len: Message length
1495 * @u_msg_prio: Message priority
1496 * @u_abs_timeout: Message timeout in absolute time
1497 *
1498 * Returns 0 for success or NULL context or < 0 on error.
1499 */
1500 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1501 unsigned int __user *u_msg_prio,
1502 const struct timespec __user *u_abs_timeout)
1503 {
1504 struct audit_aux_data_mq_sendrecv *ax;
1505 struct audit_context *context = current->audit_context;
1506
1507 if (!audit_enabled)
1508 return 0;
1509
1510 if (likely(!context))
1511 return 0;
1512
1513 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1514 if (!ax)
1515 return -ENOMEM;
1516
1517 if (u_msg_prio != NULL) {
1518 if (get_user(ax->msg_prio, u_msg_prio)) {
1519 kfree(ax);
1520 return -EFAULT;
1521 }
1522 } else
1523 ax->msg_prio = 0;
1524
1525 if (u_abs_timeout != NULL) {
1526 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1527 kfree(ax);
1528 return -EFAULT;
1529 }
1530 } else
1531 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1532
1533 ax->mqdes = mqdes;
1534 ax->msg_len = msg_len;
1535
1536 ax->d.type = AUDIT_MQ_SENDRECV;
1537 ax->d.next = context->aux;
1538 context->aux = (void *)ax;
1539 return 0;
1540 }
1541
1542 /**
1543 * __audit_mq_notify - record audit data for a POSIX MQ notify
1544 * @mqdes: MQ descriptor
1545 * @u_notification: Notification event
1546 *
1547 * Returns 0 for success or NULL context or < 0 on error.
1548 */
1549
1550 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1551 {
1552 struct audit_aux_data_mq_notify *ax;
1553 struct audit_context *context = current->audit_context;
1554
1555 if (!audit_enabled)
1556 return 0;
1557
1558 if (likely(!context))
1559 return 0;
1560
1561 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1562 if (!ax)
1563 return -ENOMEM;
1564
1565 if (u_notification != NULL) {
1566 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1567 kfree(ax);
1568 return -EFAULT;
1569 }
1570 } else
1571 memset(&ax->notification, 0, sizeof(ax->notification));
1572
1573 ax->mqdes = mqdes;
1574
1575 ax->d.type = AUDIT_MQ_NOTIFY;
1576 ax->d.next = context->aux;
1577 context->aux = (void *)ax;
1578 return 0;
1579 }
1580
1581 /**
1582 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1583 * @mqdes: MQ descriptor
1584 * @mqstat: MQ flags
1585 *
1586 * Returns 0 for success or NULL context or < 0 on error.
1587 */
1588 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1589 {
1590 struct audit_aux_data_mq_getsetattr *ax;
1591 struct audit_context *context = current->audit_context;
1592
1593 if (!audit_enabled)
1594 return 0;
1595
1596 if (likely(!context))
1597 return 0;
1598
1599 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1600 if (!ax)
1601 return -ENOMEM;
1602
1603 ax->mqdes = mqdes;
1604 ax->mqstat = *mqstat;
1605
1606 ax->d.type = AUDIT_MQ_GETSETATTR;
1607 ax->d.next = context->aux;
1608 context->aux = (void *)ax;
1609 return 0;
1610 }
1611
1612 /**
1613 * audit_ipc_obj - record audit data for ipc object
1614 * @ipcp: ipc permissions
1615 *
1616 * Returns 0 for success or NULL context or < 0 on error.
1617 */
1618 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1619 {
1620 struct audit_aux_data_ipcctl *ax;
1621 struct audit_context *context = current->audit_context;
1622
1623 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1624 if (!ax)
1625 return -ENOMEM;
1626
1627 ax->uid = ipcp->uid;
1628 ax->gid = ipcp->gid;
1629 ax->mode = ipcp->mode;
1630 selinux_get_ipc_sid(ipcp, &ax->osid);
1631
1632 ax->d.type = AUDIT_IPC;
1633 ax->d.next = context->aux;
1634 context->aux = (void *)ax;
1635 return 0;
1636 }
1637
1638 /**
1639 * audit_ipc_set_perm - record audit data for new ipc permissions
1640 * @qbytes: msgq bytes
1641 * @uid: msgq user id
1642 * @gid: msgq group id
1643 * @mode: msgq mode (permissions)
1644 *
1645 * Returns 0 for success or NULL context or < 0 on error.
1646 */
1647 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1648 {
1649 struct audit_aux_data_ipcctl *ax;
1650 struct audit_context *context = current->audit_context;
1651
1652 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1653 if (!ax)
1654 return -ENOMEM;
1655
1656 ax->qbytes = qbytes;
1657 ax->uid = uid;
1658 ax->gid = gid;
1659 ax->mode = mode;
1660
1661 ax->d.type = AUDIT_IPC_SET_PERM;
1662 ax->d.next = context->aux;
1663 context->aux = (void *)ax;
1664 return 0;
1665 }
1666
1667 int audit_bprm(struct linux_binprm *bprm)
1668 {
1669 struct audit_aux_data_execve *ax;
1670 struct audit_context *context = current->audit_context;
1671 unsigned long p, next;
1672 void *to;
1673
1674 if (likely(!audit_enabled || !context))
1675 return 0;
1676
1677 ax = kmalloc(sizeof(*ax) + PAGE_SIZE * MAX_ARG_PAGES - bprm->p,
1678 GFP_KERNEL);
1679 if (!ax)
1680 return -ENOMEM;
1681
1682 ax->argc = bprm->argc;
1683 ax->envc = bprm->envc;
1684 for (p = bprm->p, to = ax->mem; p < MAX_ARG_PAGES*PAGE_SIZE; p = next) {
1685 struct page *page = bprm->page[p / PAGE_SIZE];
1686 void *kaddr = kmap(page);
1687 next = (p + PAGE_SIZE) & ~(PAGE_SIZE - 1);
1688 memcpy(to, kaddr + (p & (PAGE_SIZE - 1)), next - p);
1689 to += next - p;
1690 kunmap(page);
1691 }
1692
1693 ax->d.type = AUDIT_EXECVE;
1694 ax->d.next = context->aux;
1695 context->aux = (void *)ax;
1696 return 0;
1697 }
1698
1699
1700 /**
1701 * audit_socketcall - record audit data for sys_socketcall
1702 * @nargs: number of args
1703 * @args: args array
1704 *
1705 * Returns 0 for success or NULL context or < 0 on error.
1706 */
1707 int audit_socketcall(int nargs, unsigned long *args)
1708 {
1709 struct audit_aux_data_socketcall *ax;
1710 struct audit_context *context = current->audit_context;
1711
1712 if (likely(!context))
1713 return 0;
1714
1715 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1716 if (!ax)
1717 return -ENOMEM;
1718
1719 ax->nargs = nargs;
1720 memcpy(ax->args, args, nargs * sizeof(unsigned long));
1721
1722 ax->d.type = AUDIT_SOCKETCALL;
1723 ax->d.next = context->aux;
1724 context->aux = (void *)ax;
1725 return 0;
1726 }
1727
1728 /**
1729 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1730 * @len: data length in user space
1731 * @a: data address in kernel space
1732 *
1733 * Returns 0 for success or NULL context or < 0 on error.
1734 */
1735 int audit_sockaddr(int len, void *a)
1736 {
1737 struct audit_aux_data_sockaddr *ax;
1738 struct audit_context *context = current->audit_context;
1739
1740 if (likely(!context))
1741 return 0;
1742
1743 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1744 if (!ax)
1745 return -ENOMEM;
1746
1747 ax->len = len;
1748 memcpy(ax->a, a, len);
1749
1750 ax->d.type = AUDIT_SOCKADDR;
1751 ax->d.next = context->aux;
1752 context->aux = (void *)ax;
1753 return 0;
1754 }
1755
1756 /**
1757 * audit_avc_path - record the granting or denial of permissions
1758 * @dentry: dentry to record
1759 * @mnt: mnt to record
1760 *
1761 * Returns 0 for success or NULL context or < 0 on error.
1762 *
1763 * Called from security/selinux/avc.c::avc_audit()
1764 */
1765 int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt)
1766 {
1767 struct audit_aux_data_path *ax;
1768 struct audit_context *context = current->audit_context;
1769
1770 if (likely(!context))
1771 return 0;
1772
1773 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1774 if (!ax)
1775 return -ENOMEM;
1776
1777 ax->dentry = dget(dentry);
1778 ax->mnt = mntget(mnt);
1779
1780 ax->d.type = AUDIT_AVC_PATH;
1781 ax->d.next = context->aux;
1782 context->aux = (void *)ax;
1783 return 0;
1784 }
1785
1786 /**
1787 * audit_signal_info - record signal info for shutting down audit subsystem
1788 * @sig: signal value
1789 * @t: task being signaled
1790 *
1791 * If the audit subsystem is being terminated, record the task (pid)
1792 * and uid that is doing that.
1793 */
1794 void __audit_signal_info(int sig, struct task_struct *t)
1795 {
1796 extern pid_t audit_sig_pid;
1797 extern uid_t audit_sig_uid;
1798 extern u32 audit_sig_sid;
1799
1800 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
1801 struct task_struct *tsk = current;
1802 struct audit_context *ctx = tsk->audit_context;
1803 audit_sig_pid = tsk->pid;
1804 if (ctx)
1805 audit_sig_uid = ctx->loginuid;
1806 else
1807 audit_sig_uid = tsk->uid;
1808 selinux_get_task_sid(tsk, &audit_sig_sid);
1809 }
1810 }
This page took 0.07344 seconds and 5 git commands to generate.