CRED: Inaugurate COW credentials
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
69
70 #include "audit.h"
71
72 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74 #define AUDIT_NAMES 20
75
76 /* Indicates that audit should log the full pathname. */
77 #define AUDIT_NAME_FULL -1
78
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
81
82 /* number of audit rules */
83 int audit_n_rules;
84
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87
88 struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95 };
96
97 /* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102 struct audit_names {
103 const char *name;
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
112 u32 osid;
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
115 };
116
117 struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120 };
121
122 #define AUDIT_AUX_IPCPERM 0
123
124 /* Number of target pids per aux struct. */
125 #define AUDIT_AUX_PIDS 16
126
127 struct audit_aux_data_mq_open {
128 struct audit_aux_data d;
129 int oflag;
130 mode_t mode;
131 struct mq_attr attr;
132 };
133
134 struct audit_aux_data_mq_sendrecv {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 size_t msg_len;
138 unsigned int msg_prio;
139 struct timespec abs_timeout;
140 };
141
142 struct audit_aux_data_mq_notify {
143 struct audit_aux_data d;
144 mqd_t mqdes;
145 struct sigevent notification;
146 };
147
148 struct audit_aux_data_mq_getsetattr {
149 struct audit_aux_data d;
150 mqd_t mqdes;
151 struct mq_attr mqstat;
152 };
153
154 struct audit_aux_data_ipcctl {
155 struct audit_aux_data d;
156 struct ipc_perm p;
157 unsigned long qbytes;
158 uid_t uid;
159 gid_t gid;
160 mode_t mode;
161 u32 osid;
162 };
163
164 struct audit_aux_data_execve {
165 struct audit_aux_data d;
166 int argc;
167 int envc;
168 struct mm_struct *mm;
169 };
170
171 struct audit_aux_data_socketcall {
172 struct audit_aux_data d;
173 int nargs;
174 unsigned long args[0];
175 };
176
177 struct audit_aux_data_sockaddr {
178 struct audit_aux_data d;
179 int len;
180 char a[0];
181 };
182
183 struct audit_aux_data_fd_pair {
184 struct audit_aux_data d;
185 int fd[2];
186 };
187
188 struct audit_aux_data_pids {
189 struct audit_aux_data d;
190 pid_t target_pid[AUDIT_AUX_PIDS];
191 uid_t target_auid[AUDIT_AUX_PIDS];
192 uid_t target_uid[AUDIT_AUX_PIDS];
193 unsigned int target_sessionid[AUDIT_AUX_PIDS];
194 u32 target_sid[AUDIT_AUX_PIDS];
195 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
196 int pid_count;
197 };
198
199 struct audit_aux_data_bprm_fcaps {
200 struct audit_aux_data d;
201 struct audit_cap_data fcap;
202 unsigned int fcap_ver;
203 struct audit_cap_data old_pcap;
204 struct audit_cap_data new_pcap;
205 };
206
207 struct audit_aux_data_capset {
208 struct audit_aux_data d;
209 pid_t pid;
210 struct audit_cap_data cap;
211 };
212
213 struct audit_tree_refs {
214 struct audit_tree_refs *next;
215 struct audit_chunk *c[31];
216 };
217
218 /* The per-task audit context. */
219 struct audit_context {
220 int dummy; /* must be the first element */
221 int in_syscall; /* 1 if task is in a syscall */
222 enum audit_state state;
223 unsigned int serial; /* serial number for record */
224 struct timespec ctime; /* time of syscall entry */
225 int major; /* syscall number */
226 unsigned long argv[4]; /* syscall arguments */
227 int return_valid; /* return code is valid */
228 long return_code;/* syscall return code */
229 int auditable; /* 1 if record should be written */
230 int name_count;
231 struct audit_names names[AUDIT_NAMES];
232 char * filterkey; /* key for rule that triggered record */
233 struct path pwd;
234 struct audit_context *previous; /* For nested syscalls */
235 struct audit_aux_data *aux;
236 struct audit_aux_data *aux_pids;
237
238 /* Save things to print about task_struct */
239 pid_t pid, ppid;
240 uid_t uid, euid, suid, fsuid;
241 gid_t gid, egid, sgid, fsgid;
242 unsigned long personality;
243 int arch;
244
245 pid_t target_pid;
246 uid_t target_auid;
247 uid_t target_uid;
248 unsigned int target_sessionid;
249 u32 target_sid;
250 char target_comm[TASK_COMM_LEN];
251
252 struct audit_tree_refs *trees, *first_trees;
253 int tree_count;
254
255 #if AUDIT_DEBUG
256 int put_count;
257 int ino_count;
258 #endif
259 };
260
261 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
262 static inline int open_arg(int flags, int mask)
263 {
264 int n = ACC_MODE(flags);
265 if (flags & (O_TRUNC | O_CREAT))
266 n |= AUDIT_PERM_WRITE;
267 return n & mask;
268 }
269
270 static int audit_match_perm(struct audit_context *ctx, int mask)
271 {
272 unsigned n;
273 if (unlikely(!ctx))
274 return 0;
275 n = ctx->major;
276
277 switch (audit_classify_syscall(ctx->arch, n)) {
278 case 0: /* native */
279 if ((mask & AUDIT_PERM_WRITE) &&
280 audit_match_class(AUDIT_CLASS_WRITE, n))
281 return 1;
282 if ((mask & AUDIT_PERM_READ) &&
283 audit_match_class(AUDIT_CLASS_READ, n))
284 return 1;
285 if ((mask & AUDIT_PERM_ATTR) &&
286 audit_match_class(AUDIT_CLASS_CHATTR, n))
287 return 1;
288 return 0;
289 case 1: /* 32bit on biarch */
290 if ((mask & AUDIT_PERM_WRITE) &&
291 audit_match_class(AUDIT_CLASS_WRITE_32, n))
292 return 1;
293 if ((mask & AUDIT_PERM_READ) &&
294 audit_match_class(AUDIT_CLASS_READ_32, n))
295 return 1;
296 if ((mask & AUDIT_PERM_ATTR) &&
297 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
298 return 1;
299 return 0;
300 case 2: /* open */
301 return mask & ACC_MODE(ctx->argv[1]);
302 case 3: /* openat */
303 return mask & ACC_MODE(ctx->argv[2]);
304 case 4: /* socketcall */
305 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
306 case 5: /* execve */
307 return mask & AUDIT_PERM_EXEC;
308 default:
309 return 0;
310 }
311 }
312
313 static int audit_match_filetype(struct audit_context *ctx, int which)
314 {
315 unsigned index = which & ~S_IFMT;
316 mode_t mode = which & S_IFMT;
317
318 if (unlikely(!ctx))
319 return 0;
320
321 if (index >= ctx->name_count)
322 return 0;
323 if (ctx->names[index].ino == -1)
324 return 0;
325 if ((ctx->names[index].mode ^ mode) & S_IFMT)
326 return 0;
327 return 1;
328 }
329
330 /*
331 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
332 * ->first_trees points to its beginning, ->trees - to the current end of data.
333 * ->tree_count is the number of free entries in array pointed to by ->trees.
334 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
335 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
336 * it's going to remain 1-element for almost any setup) until we free context itself.
337 * References in it _are_ dropped - at the same time we free/drop aux stuff.
338 */
339
340 #ifdef CONFIG_AUDIT_TREE
341 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
342 {
343 struct audit_tree_refs *p = ctx->trees;
344 int left = ctx->tree_count;
345 if (likely(left)) {
346 p->c[--left] = chunk;
347 ctx->tree_count = left;
348 return 1;
349 }
350 if (!p)
351 return 0;
352 p = p->next;
353 if (p) {
354 p->c[30] = chunk;
355 ctx->trees = p;
356 ctx->tree_count = 30;
357 return 1;
358 }
359 return 0;
360 }
361
362 static int grow_tree_refs(struct audit_context *ctx)
363 {
364 struct audit_tree_refs *p = ctx->trees;
365 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
366 if (!ctx->trees) {
367 ctx->trees = p;
368 return 0;
369 }
370 if (p)
371 p->next = ctx->trees;
372 else
373 ctx->first_trees = ctx->trees;
374 ctx->tree_count = 31;
375 return 1;
376 }
377 #endif
378
379 static void unroll_tree_refs(struct audit_context *ctx,
380 struct audit_tree_refs *p, int count)
381 {
382 #ifdef CONFIG_AUDIT_TREE
383 struct audit_tree_refs *q;
384 int n;
385 if (!p) {
386 /* we started with empty chain */
387 p = ctx->first_trees;
388 count = 31;
389 /* if the very first allocation has failed, nothing to do */
390 if (!p)
391 return;
392 }
393 n = count;
394 for (q = p; q != ctx->trees; q = q->next, n = 31) {
395 while (n--) {
396 audit_put_chunk(q->c[n]);
397 q->c[n] = NULL;
398 }
399 }
400 while (n-- > ctx->tree_count) {
401 audit_put_chunk(q->c[n]);
402 q->c[n] = NULL;
403 }
404 ctx->trees = p;
405 ctx->tree_count = count;
406 #endif
407 }
408
409 static void free_tree_refs(struct audit_context *ctx)
410 {
411 struct audit_tree_refs *p, *q;
412 for (p = ctx->first_trees; p; p = q) {
413 q = p->next;
414 kfree(p);
415 }
416 }
417
418 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
419 {
420 #ifdef CONFIG_AUDIT_TREE
421 struct audit_tree_refs *p;
422 int n;
423 if (!tree)
424 return 0;
425 /* full ones */
426 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
427 for (n = 0; n < 31; n++)
428 if (audit_tree_match(p->c[n], tree))
429 return 1;
430 }
431 /* partial */
432 if (p) {
433 for (n = ctx->tree_count; n < 31; n++)
434 if (audit_tree_match(p->c[n], tree))
435 return 1;
436 }
437 #endif
438 return 0;
439 }
440
441 /* Determine if any context name data matches a rule's watch data */
442 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
443 * otherwise. */
444 static int audit_filter_rules(struct task_struct *tsk,
445 struct audit_krule *rule,
446 struct audit_context *ctx,
447 struct audit_names *name,
448 enum audit_state *state)
449 {
450 const struct cred *cred = get_task_cred(tsk);
451 int i, j, need_sid = 1;
452 u32 sid;
453
454 for (i = 0; i < rule->field_count; i++) {
455 struct audit_field *f = &rule->fields[i];
456 int result = 0;
457
458 switch (f->type) {
459 case AUDIT_PID:
460 result = audit_comparator(tsk->pid, f->op, f->val);
461 break;
462 case AUDIT_PPID:
463 if (ctx) {
464 if (!ctx->ppid)
465 ctx->ppid = sys_getppid();
466 result = audit_comparator(ctx->ppid, f->op, f->val);
467 }
468 break;
469 case AUDIT_UID:
470 result = audit_comparator(cred->uid, f->op, f->val);
471 break;
472 case AUDIT_EUID:
473 result = audit_comparator(cred->euid, f->op, f->val);
474 break;
475 case AUDIT_SUID:
476 result = audit_comparator(cred->suid, f->op, f->val);
477 break;
478 case AUDIT_FSUID:
479 result = audit_comparator(cred->fsuid, f->op, f->val);
480 break;
481 case AUDIT_GID:
482 result = audit_comparator(cred->gid, f->op, f->val);
483 break;
484 case AUDIT_EGID:
485 result = audit_comparator(cred->egid, f->op, f->val);
486 break;
487 case AUDIT_SGID:
488 result = audit_comparator(cred->sgid, f->op, f->val);
489 break;
490 case AUDIT_FSGID:
491 result = audit_comparator(cred->fsgid, f->op, f->val);
492 break;
493 case AUDIT_PERS:
494 result = audit_comparator(tsk->personality, f->op, f->val);
495 break;
496 case AUDIT_ARCH:
497 if (ctx)
498 result = audit_comparator(ctx->arch, f->op, f->val);
499 break;
500
501 case AUDIT_EXIT:
502 if (ctx && ctx->return_valid)
503 result = audit_comparator(ctx->return_code, f->op, f->val);
504 break;
505 case AUDIT_SUCCESS:
506 if (ctx && ctx->return_valid) {
507 if (f->val)
508 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
509 else
510 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
511 }
512 break;
513 case AUDIT_DEVMAJOR:
514 if (name)
515 result = audit_comparator(MAJOR(name->dev),
516 f->op, f->val);
517 else if (ctx) {
518 for (j = 0; j < ctx->name_count; j++) {
519 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
520 ++result;
521 break;
522 }
523 }
524 }
525 break;
526 case AUDIT_DEVMINOR:
527 if (name)
528 result = audit_comparator(MINOR(name->dev),
529 f->op, f->val);
530 else if (ctx) {
531 for (j = 0; j < ctx->name_count; j++) {
532 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
533 ++result;
534 break;
535 }
536 }
537 }
538 break;
539 case AUDIT_INODE:
540 if (name)
541 result = (name->ino == f->val);
542 else if (ctx) {
543 for (j = 0; j < ctx->name_count; j++) {
544 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
545 ++result;
546 break;
547 }
548 }
549 }
550 break;
551 case AUDIT_WATCH:
552 if (name && rule->watch->ino != (unsigned long)-1)
553 result = (name->dev == rule->watch->dev &&
554 name->ino == rule->watch->ino);
555 break;
556 case AUDIT_DIR:
557 if (ctx)
558 result = match_tree_refs(ctx, rule->tree);
559 break;
560 case AUDIT_LOGINUID:
561 result = 0;
562 if (ctx)
563 result = audit_comparator(tsk->loginuid, f->op, f->val);
564 break;
565 case AUDIT_SUBJ_USER:
566 case AUDIT_SUBJ_ROLE:
567 case AUDIT_SUBJ_TYPE:
568 case AUDIT_SUBJ_SEN:
569 case AUDIT_SUBJ_CLR:
570 /* NOTE: this may return negative values indicating
571 a temporary error. We simply treat this as a
572 match for now to avoid losing information that
573 may be wanted. An error message will also be
574 logged upon error */
575 if (f->lsm_rule) {
576 if (need_sid) {
577 security_task_getsecid(tsk, &sid);
578 need_sid = 0;
579 }
580 result = security_audit_rule_match(sid, f->type,
581 f->op,
582 f->lsm_rule,
583 ctx);
584 }
585 break;
586 case AUDIT_OBJ_USER:
587 case AUDIT_OBJ_ROLE:
588 case AUDIT_OBJ_TYPE:
589 case AUDIT_OBJ_LEV_LOW:
590 case AUDIT_OBJ_LEV_HIGH:
591 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
592 also applies here */
593 if (f->lsm_rule) {
594 /* Find files that match */
595 if (name) {
596 result = security_audit_rule_match(
597 name->osid, f->type, f->op,
598 f->lsm_rule, ctx);
599 } else if (ctx) {
600 for (j = 0; j < ctx->name_count; j++) {
601 if (security_audit_rule_match(
602 ctx->names[j].osid,
603 f->type, f->op,
604 f->lsm_rule, ctx)) {
605 ++result;
606 break;
607 }
608 }
609 }
610 /* Find ipc objects that match */
611 if (ctx) {
612 struct audit_aux_data *aux;
613 for (aux = ctx->aux; aux;
614 aux = aux->next) {
615 if (aux->type == AUDIT_IPC) {
616 struct audit_aux_data_ipcctl *axi = (void *)aux;
617 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
618 ++result;
619 break;
620 }
621 }
622 }
623 }
624 }
625 break;
626 case AUDIT_ARG0:
627 case AUDIT_ARG1:
628 case AUDIT_ARG2:
629 case AUDIT_ARG3:
630 if (ctx)
631 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
632 break;
633 case AUDIT_FILTERKEY:
634 /* ignore this field for filtering */
635 result = 1;
636 break;
637 case AUDIT_PERM:
638 result = audit_match_perm(ctx, f->val);
639 break;
640 case AUDIT_FILETYPE:
641 result = audit_match_filetype(ctx, f->val);
642 break;
643 }
644
645 if (!result) {
646 put_cred(cred);
647 return 0;
648 }
649 }
650 if (rule->filterkey && ctx)
651 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
652 switch (rule->action) {
653 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
654 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
655 }
656 put_cred(cred);
657 return 1;
658 }
659
660 /* At process creation time, we can determine if system-call auditing is
661 * completely disabled for this task. Since we only have the task
662 * structure at this point, we can only check uid and gid.
663 */
664 static enum audit_state audit_filter_task(struct task_struct *tsk)
665 {
666 struct audit_entry *e;
667 enum audit_state state;
668
669 rcu_read_lock();
670 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
671 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
672 rcu_read_unlock();
673 return state;
674 }
675 }
676 rcu_read_unlock();
677 return AUDIT_BUILD_CONTEXT;
678 }
679
680 /* At syscall entry and exit time, this filter is called if the
681 * audit_state is not low enough that auditing cannot take place, but is
682 * also not high enough that we already know we have to write an audit
683 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
684 */
685 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
686 struct audit_context *ctx,
687 struct list_head *list)
688 {
689 struct audit_entry *e;
690 enum audit_state state;
691
692 if (audit_pid && tsk->tgid == audit_pid)
693 return AUDIT_DISABLED;
694
695 rcu_read_lock();
696 if (!list_empty(list)) {
697 int word = AUDIT_WORD(ctx->major);
698 int bit = AUDIT_BIT(ctx->major);
699
700 list_for_each_entry_rcu(e, list, list) {
701 if ((e->rule.mask[word] & bit) == bit &&
702 audit_filter_rules(tsk, &e->rule, ctx, NULL,
703 &state)) {
704 rcu_read_unlock();
705 return state;
706 }
707 }
708 }
709 rcu_read_unlock();
710 return AUDIT_BUILD_CONTEXT;
711 }
712
713 /* At syscall exit time, this filter is called if any audit_names[] have been
714 * collected during syscall processing. We only check rules in sublists at hash
715 * buckets applicable to the inode numbers in audit_names[].
716 * Regarding audit_state, same rules apply as for audit_filter_syscall().
717 */
718 enum audit_state audit_filter_inodes(struct task_struct *tsk,
719 struct audit_context *ctx)
720 {
721 int i;
722 struct audit_entry *e;
723 enum audit_state state;
724
725 if (audit_pid && tsk->tgid == audit_pid)
726 return AUDIT_DISABLED;
727
728 rcu_read_lock();
729 for (i = 0; i < ctx->name_count; i++) {
730 int word = AUDIT_WORD(ctx->major);
731 int bit = AUDIT_BIT(ctx->major);
732 struct audit_names *n = &ctx->names[i];
733 int h = audit_hash_ino((u32)n->ino);
734 struct list_head *list = &audit_inode_hash[h];
735
736 if (list_empty(list))
737 continue;
738
739 list_for_each_entry_rcu(e, list, list) {
740 if ((e->rule.mask[word] & bit) == bit &&
741 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
742 rcu_read_unlock();
743 return state;
744 }
745 }
746 }
747 rcu_read_unlock();
748 return AUDIT_BUILD_CONTEXT;
749 }
750
751 void audit_set_auditable(struct audit_context *ctx)
752 {
753 ctx->auditable = 1;
754 }
755
756 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
757 int return_valid,
758 int return_code)
759 {
760 struct audit_context *context = tsk->audit_context;
761
762 if (likely(!context))
763 return NULL;
764 context->return_valid = return_valid;
765
766 /*
767 * we need to fix up the return code in the audit logs if the actual
768 * return codes are later going to be fixed up by the arch specific
769 * signal handlers
770 *
771 * This is actually a test for:
772 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
773 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
774 *
775 * but is faster than a bunch of ||
776 */
777 if (unlikely(return_code <= -ERESTARTSYS) &&
778 (return_code >= -ERESTART_RESTARTBLOCK) &&
779 (return_code != -ENOIOCTLCMD))
780 context->return_code = -EINTR;
781 else
782 context->return_code = return_code;
783
784 if (context->in_syscall && !context->dummy && !context->auditable) {
785 enum audit_state state;
786
787 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
788 if (state == AUDIT_RECORD_CONTEXT) {
789 context->auditable = 1;
790 goto get_context;
791 }
792
793 state = audit_filter_inodes(tsk, context);
794 if (state == AUDIT_RECORD_CONTEXT)
795 context->auditable = 1;
796
797 }
798
799 get_context:
800
801 tsk->audit_context = NULL;
802 return context;
803 }
804
805 static inline void audit_free_names(struct audit_context *context)
806 {
807 int i;
808
809 #if AUDIT_DEBUG == 2
810 if (context->auditable
811 ||context->put_count + context->ino_count != context->name_count) {
812 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
813 " name_count=%d put_count=%d"
814 " ino_count=%d [NOT freeing]\n",
815 __FILE__, __LINE__,
816 context->serial, context->major, context->in_syscall,
817 context->name_count, context->put_count,
818 context->ino_count);
819 for (i = 0; i < context->name_count; i++) {
820 printk(KERN_ERR "names[%d] = %p = %s\n", i,
821 context->names[i].name,
822 context->names[i].name ?: "(null)");
823 }
824 dump_stack();
825 return;
826 }
827 #endif
828 #if AUDIT_DEBUG
829 context->put_count = 0;
830 context->ino_count = 0;
831 #endif
832
833 for (i = 0; i < context->name_count; i++) {
834 if (context->names[i].name && context->names[i].name_put)
835 __putname(context->names[i].name);
836 }
837 context->name_count = 0;
838 path_put(&context->pwd);
839 context->pwd.dentry = NULL;
840 context->pwd.mnt = NULL;
841 }
842
843 static inline void audit_free_aux(struct audit_context *context)
844 {
845 struct audit_aux_data *aux;
846
847 while ((aux = context->aux)) {
848 context->aux = aux->next;
849 kfree(aux);
850 }
851 while ((aux = context->aux_pids)) {
852 context->aux_pids = aux->next;
853 kfree(aux);
854 }
855 }
856
857 static inline void audit_zero_context(struct audit_context *context,
858 enum audit_state state)
859 {
860 memset(context, 0, sizeof(*context));
861 context->state = state;
862 }
863
864 static inline struct audit_context *audit_alloc_context(enum audit_state state)
865 {
866 struct audit_context *context;
867
868 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
869 return NULL;
870 audit_zero_context(context, state);
871 return context;
872 }
873
874 /**
875 * audit_alloc - allocate an audit context block for a task
876 * @tsk: task
877 *
878 * Filter on the task information and allocate a per-task audit context
879 * if necessary. Doing so turns on system call auditing for the
880 * specified task. This is called from copy_process, so no lock is
881 * needed.
882 */
883 int audit_alloc(struct task_struct *tsk)
884 {
885 struct audit_context *context;
886 enum audit_state state;
887
888 if (likely(!audit_ever_enabled))
889 return 0; /* Return if not auditing. */
890
891 state = audit_filter_task(tsk);
892 if (likely(state == AUDIT_DISABLED))
893 return 0;
894
895 if (!(context = audit_alloc_context(state))) {
896 audit_log_lost("out of memory in audit_alloc");
897 return -ENOMEM;
898 }
899
900 tsk->audit_context = context;
901 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
902 return 0;
903 }
904
905 static inline void audit_free_context(struct audit_context *context)
906 {
907 struct audit_context *previous;
908 int count = 0;
909
910 do {
911 previous = context->previous;
912 if (previous || (count && count < 10)) {
913 ++count;
914 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
915 " freeing multiple contexts (%d)\n",
916 context->serial, context->major,
917 context->name_count, count);
918 }
919 audit_free_names(context);
920 unroll_tree_refs(context, NULL, 0);
921 free_tree_refs(context);
922 audit_free_aux(context);
923 kfree(context->filterkey);
924 kfree(context);
925 context = previous;
926 } while (context);
927 if (count >= 10)
928 printk(KERN_ERR "audit: freed %d contexts\n", count);
929 }
930
931 void audit_log_task_context(struct audit_buffer *ab)
932 {
933 char *ctx = NULL;
934 unsigned len;
935 int error;
936 u32 sid;
937
938 security_task_getsecid(current, &sid);
939 if (!sid)
940 return;
941
942 error = security_secid_to_secctx(sid, &ctx, &len);
943 if (error) {
944 if (error != -EINVAL)
945 goto error_path;
946 return;
947 }
948
949 audit_log_format(ab, " subj=%s", ctx);
950 security_release_secctx(ctx, len);
951 return;
952
953 error_path:
954 audit_panic("error in audit_log_task_context");
955 return;
956 }
957
958 EXPORT_SYMBOL(audit_log_task_context);
959
960 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
961 {
962 char name[sizeof(tsk->comm)];
963 struct mm_struct *mm = tsk->mm;
964 struct vm_area_struct *vma;
965
966 /* tsk == current */
967
968 get_task_comm(name, tsk);
969 audit_log_format(ab, " comm=");
970 audit_log_untrustedstring(ab, name);
971
972 if (mm) {
973 down_read(&mm->mmap_sem);
974 vma = mm->mmap;
975 while (vma) {
976 if ((vma->vm_flags & VM_EXECUTABLE) &&
977 vma->vm_file) {
978 audit_log_d_path(ab, "exe=",
979 &vma->vm_file->f_path);
980 break;
981 }
982 vma = vma->vm_next;
983 }
984 up_read(&mm->mmap_sem);
985 }
986 audit_log_task_context(ab);
987 }
988
989 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
990 uid_t auid, uid_t uid, unsigned int sessionid,
991 u32 sid, char *comm)
992 {
993 struct audit_buffer *ab;
994 char *ctx = NULL;
995 u32 len;
996 int rc = 0;
997
998 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
999 if (!ab)
1000 return rc;
1001
1002 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003 uid, sessionid);
1004 if (security_secid_to_secctx(sid, &ctx, &len)) {
1005 audit_log_format(ab, " obj=(none)");
1006 rc = 1;
1007 } else {
1008 audit_log_format(ab, " obj=%s", ctx);
1009 security_release_secctx(ctx, len);
1010 }
1011 audit_log_format(ab, " ocomm=");
1012 audit_log_untrustedstring(ab, comm);
1013 audit_log_end(ab);
1014
1015 return rc;
1016 }
1017
1018 /*
1019 * to_send and len_sent accounting are very loose estimates. We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundry)
1022 *
1023 * why snprintf? an int is up to 12 digits long. if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message. In one 7500 byte message we can log up to
1026 * about 1000 min size arguments. That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029 static int audit_log_single_execve_arg(struct audit_context *context,
1030 struct audit_buffer **ab,
1031 int arg_num,
1032 size_t *len_sent,
1033 const char __user *p,
1034 char *buf)
1035 {
1036 char arg_num_len_buf[12];
1037 const char __user *tmp_p = p;
1038 /* how many digits are in arg_num? 3 is the length of a=\n */
1039 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1040 size_t len, len_left, to_send;
1041 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042 unsigned int i, has_cntl = 0, too_long = 0;
1043 int ret;
1044
1045 /* strnlen_user includes the null we don't want to send */
1046 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1047
1048 /*
1049 * We just created this mm, if we can't find the strings
1050 * we just copied into it something is _very_ wrong. Similar
1051 * for strings that are too long, we should not have created
1052 * any.
1053 */
1054 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055 WARN_ON(1);
1056 send_sig(SIGKILL, current, 0);
1057 return -1;
1058 }
1059
1060 /* walk the whole argument looking for non-ascii chars */
1061 do {
1062 if (len_left > MAX_EXECVE_AUDIT_LEN)
1063 to_send = MAX_EXECVE_AUDIT_LEN;
1064 else
1065 to_send = len_left;
1066 ret = copy_from_user(buf, tmp_p, to_send);
1067 /*
1068 * There is no reason for this copy to be short. We just
1069 * copied them here, and the mm hasn't been exposed to user-
1070 * space yet.
1071 */
1072 if (ret) {
1073 WARN_ON(1);
1074 send_sig(SIGKILL, current, 0);
1075 return -1;
1076 }
1077 buf[to_send] = '\0';
1078 has_cntl = audit_string_contains_control(buf, to_send);
1079 if (has_cntl) {
1080 /*
1081 * hex messages get logged as 2 bytes, so we can only
1082 * send half as much in each message
1083 */
1084 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085 break;
1086 }
1087 len_left -= to_send;
1088 tmp_p += to_send;
1089 } while (len_left > 0);
1090
1091 len_left = len;
1092
1093 if (len > max_execve_audit_len)
1094 too_long = 1;
1095
1096 /* rewalk the argument actually logging the message */
1097 for (i = 0; len_left > 0; i++) {
1098 int room_left;
1099
1100 if (len_left > max_execve_audit_len)
1101 to_send = max_execve_audit_len;
1102 else
1103 to_send = len_left;
1104
1105 /* do we have space left to send this argument in this ab? */
1106 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107 if (has_cntl)
1108 room_left -= (to_send * 2);
1109 else
1110 room_left -= to_send;
1111 if (room_left < 0) {
1112 *len_sent = 0;
1113 audit_log_end(*ab);
1114 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115 if (!*ab)
1116 return 0;
1117 }
1118
1119 /*
1120 * first record needs to say how long the original string was
1121 * so we can be sure nothing was lost.
1122 */
1123 if ((i == 0) && (too_long))
1124 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1125 has_cntl ? 2*len : len);
1126
1127 /*
1128 * normally arguments are small enough to fit and we already
1129 * filled buf above when we checked for control characters
1130 * so don't bother with another copy_from_user
1131 */
1132 if (len >= max_execve_audit_len)
1133 ret = copy_from_user(buf, p, to_send);
1134 else
1135 ret = 0;
1136 if (ret) {
1137 WARN_ON(1);
1138 send_sig(SIGKILL, current, 0);
1139 return -1;
1140 }
1141 buf[to_send] = '\0';
1142
1143 /* actually log it */
1144 audit_log_format(*ab, "a%d", arg_num);
1145 if (too_long)
1146 audit_log_format(*ab, "[%d]", i);
1147 audit_log_format(*ab, "=");
1148 if (has_cntl)
1149 audit_log_n_hex(*ab, buf, to_send);
1150 else
1151 audit_log_format(*ab, "\"%s\"", buf);
1152 audit_log_format(*ab, "\n");
1153
1154 p += to_send;
1155 len_left -= to_send;
1156 *len_sent += arg_num_len;
1157 if (has_cntl)
1158 *len_sent += to_send * 2;
1159 else
1160 *len_sent += to_send;
1161 }
1162 /* include the null we didn't log */
1163 return len + 1;
1164 }
1165
1166 static void audit_log_execve_info(struct audit_context *context,
1167 struct audit_buffer **ab,
1168 struct audit_aux_data_execve *axi)
1169 {
1170 int i;
1171 size_t len, len_sent = 0;
1172 const char __user *p;
1173 char *buf;
1174
1175 if (axi->mm != current->mm)
1176 return; /* execve failed, no additional info */
1177
1178 p = (const char __user *)axi->mm->arg_start;
1179
1180 audit_log_format(*ab, "argc=%d ", axi->argc);
1181
1182 /*
1183 * we need some kernel buffer to hold the userspace args. Just
1184 * allocate one big one rather than allocating one of the right size
1185 * for every single argument inside audit_log_single_execve_arg()
1186 * should be <8k allocation so should be pretty safe.
1187 */
1188 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1189 if (!buf) {
1190 audit_panic("out of memory for argv string\n");
1191 return;
1192 }
1193
1194 for (i = 0; i < axi->argc; i++) {
1195 len = audit_log_single_execve_arg(context, ab, i,
1196 &len_sent, p, buf);
1197 if (len <= 0)
1198 break;
1199 p += len;
1200 }
1201 kfree(buf);
1202 }
1203
1204 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1205 {
1206 int i;
1207
1208 audit_log_format(ab, " %s=", prefix);
1209 CAP_FOR_EACH_U32(i) {
1210 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1211 }
1212 }
1213
1214 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1215 {
1216 kernel_cap_t *perm = &name->fcap.permitted;
1217 kernel_cap_t *inh = &name->fcap.inheritable;
1218 int log = 0;
1219
1220 if (!cap_isclear(*perm)) {
1221 audit_log_cap(ab, "cap_fp", perm);
1222 log = 1;
1223 }
1224 if (!cap_isclear(*inh)) {
1225 audit_log_cap(ab, "cap_fi", inh);
1226 log = 1;
1227 }
1228
1229 if (log)
1230 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1231 }
1232
1233 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1234 {
1235 const struct cred *cred;
1236 int i, call_panic = 0;
1237 struct audit_buffer *ab;
1238 struct audit_aux_data *aux;
1239 const char *tty;
1240
1241 /* tsk == current */
1242 context->pid = tsk->pid;
1243 if (!context->ppid)
1244 context->ppid = sys_getppid();
1245 cred = current_cred();
1246 context->uid = cred->uid;
1247 context->gid = cred->gid;
1248 context->euid = cred->euid;
1249 context->suid = cred->suid;
1250 context->fsuid = cred->fsuid;
1251 context->egid = cred->egid;
1252 context->sgid = cred->sgid;
1253 context->fsgid = cred->fsgid;
1254 context->personality = tsk->personality;
1255
1256 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1257 if (!ab)
1258 return; /* audit_panic has been called */
1259 audit_log_format(ab, "arch=%x syscall=%d",
1260 context->arch, context->major);
1261 if (context->personality != PER_LINUX)
1262 audit_log_format(ab, " per=%lx", context->personality);
1263 if (context->return_valid)
1264 audit_log_format(ab, " success=%s exit=%ld",
1265 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1266 context->return_code);
1267
1268 spin_lock_irq(&tsk->sighand->siglock);
1269 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1270 tty = tsk->signal->tty->name;
1271 else
1272 tty = "(none)";
1273 spin_unlock_irq(&tsk->sighand->siglock);
1274
1275 audit_log_format(ab,
1276 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1277 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1278 " euid=%u suid=%u fsuid=%u"
1279 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1280 context->argv[0],
1281 context->argv[1],
1282 context->argv[2],
1283 context->argv[3],
1284 context->name_count,
1285 context->ppid,
1286 context->pid,
1287 tsk->loginuid,
1288 context->uid,
1289 context->gid,
1290 context->euid, context->suid, context->fsuid,
1291 context->egid, context->sgid, context->fsgid, tty,
1292 tsk->sessionid);
1293
1294
1295 audit_log_task_info(ab, tsk);
1296 if (context->filterkey) {
1297 audit_log_format(ab, " key=");
1298 audit_log_untrustedstring(ab, context->filterkey);
1299 } else
1300 audit_log_format(ab, " key=(null)");
1301 audit_log_end(ab);
1302
1303 for (aux = context->aux; aux; aux = aux->next) {
1304
1305 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1306 if (!ab)
1307 continue; /* audit_panic has been called */
1308
1309 switch (aux->type) {
1310 case AUDIT_MQ_OPEN: {
1311 struct audit_aux_data_mq_open *axi = (void *)aux;
1312 audit_log_format(ab,
1313 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1314 "mq_msgsize=%ld mq_curmsgs=%ld",
1315 axi->oflag, axi->mode, axi->attr.mq_flags,
1316 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1317 axi->attr.mq_curmsgs);
1318 break; }
1319
1320 case AUDIT_MQ_SENDRECV: {
1321 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1322 audit_log_format(ab,
1323 "mqdes=%d msg_len=%zd msg_prio=%u "
1324 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1325 axi->mqdes, axi->msg_len, axi->msg_prio,
1326 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1327 break; }
1328
1329 case AUDIT_MQ_NOTIFY: {
1330 struct audit_aux_data_mq_notify *axi = (void *)aux;
1331 audit_log_format(ab,
1332 "mqdes=%d sigev_signo=%d",
1333 axi->mqdes,
1334 axi->notification.sigev_signo);
1335 break; }
1336
1337 case AUDIT_MQ_GETSETATTR: {
1338 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1339 audit_log_format(ab,
1340 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1341 "mq_curmsgs=%ld ",
1342 axi->mqdes,
1343 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1344 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1345 break; }
1346
1347 case AUDIT_IPC: {
1348 struct audit_aux_data_ipcctl *axi = (void *)aux;
1349 audit_log_format(ab,
1350 "ouid=%u ogid=%u mode=%#o",
1351 axi->uid, axi->gid, axi->mode);
1352 if (axi->osid != 0) {
1353 char *ctx = NULL;
1354 u32 len;
1355 if (security_secid_to_secctx(
1356 axi->osid, &ctx, &len)) {
1357 audit_log_format(ab, " osid=%u",
1358 axi->osid);
1359 call_panic = 1;
1360 } else {
1361 audit_log_format(ab, " obj=%s", ctx);
1362 security_release_secctx(ctx, len);
1363 }
1364 }
1365 break; }
1366
1367 case AUDIT_IPC_SET_PERM: {
1368 struct audit_aux_data_ipcctl *axi = (void *)aux;
1369 audit_log_format(ab,
1370 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1371 axi->qbytes, axi->uid, axi->gid, axi->mode);
1372 break; }
1373
1374 case AUDIT_EXECVE: {
1375 struct audit_aux_data_execve *axi = (void *)aux;
1376 audit_log_execve_info(context, &ab, axi);
1377 break; }
1378
1379 case AUDIT_SOCKETCALL: {
1380 struct audit_aux_data_socketcall *axs = (void *)aux;
1381 audit_log_format(ab, "nargs=%d", axs->nargs);
1382 for (i=0; i<axs->nargs; i++)
1383 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1384 break; }
1385
1386 case AUDIT_SOCKADDR: {
1387 struct audit_aux_data_sockaddr *axs = (void *)aux;
1388
1389 audit_log_format(ab, "saddr=");
1390 audit_log_n_hex(ab, axs->a, axs->len);
1391 break; }
1392
1393 case AUDIT_FD_PAIR: {
1394 struct audit_aux_data_fd_pair *axs = (void *)aux;
1395 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1396 break; }
1397
1398 case AUDIT_BPRM_FCAPS: {
1399 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1400 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1401 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1402 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1403 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1404 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1405 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1406 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1407 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1408 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1409 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1410 break; }
1411
1412 case AUDIT_CAPSET: {
1413 struct audit_aux_data_capset *axs = (void *)aux;
1414 audit_log_format(ab, "pid=%d", axs->pid);
1415 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1416 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1417 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1418 break; }
1419
1420 }
1421 audit_log_end(ab);
1422 }
1423
1424 for (aux = context->aux_pids; aux; aux = aux->next) {
1425 struct audit_aux_data_pids *axs = (void *)aux;
1426
1427 for (i = 0; i < axs->pid_count; i++)
1428 if (audit_log_pid_context(context, axs->target_pid[i],
1429 axs->target_auid[i],
1430 axs->target_uid[i],
1431 axs->target_sessionid[i],
1432 axs->target_sid[i],
1433 axs->target_comm[i]))
1434 call_panic = 1;
1435 }
1436
1437 if (context->target_pid &&
1438 audit_log_pid_context(context, context->target_pid,
1439 context->target_auid, context->target_uid,
1440 context->target_sessionid,
1441 context->target_sid, context->target_comm))
1442 call_panic = 1;
1443
1444 if (context->pwd.dentry && context->pwd.mnt) {
1445 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1446 if (ab) {
1447 audit_log_d_path(ab, "cwd=", &context->pwd);
1448 audit_log_end(ab);
1449 }
1450 }
1451 for (i = 0; i < context->name_count; i++) {
1452 struct audit_names *n = &context->names[i];
1453
1454 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1455 if (!ab)
1456 continue; /* audit_panic has been called */
1457
1458 audit_log_format(ab, "item=%d", i);
1459
1460 if (n->name) {
1461 switch(n->name_len) {
1462 case AUDIT_NAME_FULL:
1463 /* log the full path */
1464 audit_log_format(ab, " name=");
1465 audit_log_untrustedstring(ab, n->name);
1466 break;
1467 case 0:
1468 /* name was specified as a relative path and the
1469 * directory component is the cwd */
1470 audit_log_d_path(ab, " name=", &context->pwd);
1471 break;
1472 default:
1473 /* log the name's directory component */
1474 audit_log_format(ab, " name=");
1475 audit_log_n_untrustedstring(ab, n->name,
1476 n->name_len);
1477 }
1478 } else
1479 audit_log_format(ab, " name=(null)");
1480
1481 if (n->ino != (unsigned long)-1) {
1482 audit_log_format(ab, " inode=%lu"
1483 " dev=%02x:%02x mode=%#o"
1484 " ouid=%u ogid=%u rdev=%02x:%02x",
1485 n->ino,
1486 MAJOR(n->dev),
1487 MINOR(n->dev),
1488 n->mode,
1489 n->uid,
1490 n->gid,
1491 MAJOR(n->rdev),
1492 MINOR(n->rdev));
1493 }
1494 if (n->osid != 0) {
1495 char *ctx = NULL;
1496 u32 len;
1497 if (security_secid_to_secctx(
1498 n->osid, &ctx, &len)) {
1499 audit_log_format(ab, " osid=%u", n->osid);
1500 call_panic = 2;
1501 } else {
1502 audit_log_format(ab, " obj=%s", ctx);
1503 security_release_secctx(ctx, len);
1504 }
1505 }
1506
1507 audit_log_fcaps(ab, n);
1508
1509 audit_log_end(ab);
1510 }
1511
1512 /* Send end of event record to help user space know we are finished */
1513 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1514 if (ab)
1515 audit_log_end(ab);
1516 if (call_panic)
1517 audit_panic("error converting sid to string");
1518 }
1519
1520 /**
1521 * audit_free - free a per-task audit context
1522 * @tsk: task whose audit context block to free
1523 *
1524 * Called from copy_process and do_exit
1525 */
1526 void audit_free(struct task_struct *tsk)
1527 {
1528 struct audit_context *context;
1529
1530 context = audit_get_context(tsk, 0, 0);
1531 if (likely(!context))
1532 return;
1533
1534 /* Check for system calls that do not go through the exit
1535 * function (e.g., exit_group), then free context block.
1536 * We use GFP_ATOMIC here because we might be doing this
1537 * in the context of the idle thread */
1538 /* that can happen only if we are called from do_exit() */
1539 if (context->in_syscall && context->auditable)
1540 audit_log_exit(context, tsk);
1541
1542 audit_free_context(context);
1543 }
1544
1545 /**
1546 * audit_syscall_entry - fill in an audit record at syscall entry
1547 * @tsk: task being audited
1548 * @arch: architecture type
1549 * @major: major syscall type (function)
1550 * @a1: additional syscall register 1
1551 * @a2: additional syscall register 2
1552 * @a3: additional syscall register 3
1553 * @a4: additional syscall register 4
1554 *
1555 * Fill in audit context at syscall entry. This only happens if the
1556 * audit context was created when the task was created and the state or
1557 * filters demand the audit context be built. If the state from the
1558 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1559 * then the record will be written at syscall exit time (otherwise, it
1560 * will only be written if another part of the kernel requests that it
1561 * be written).
1562 */
1563 void audit_syscall_entry(int arch, int major,
1564 unsigned long a1, unsigned long a2,
1565 unsigned long a3, unsigned long a4)
1566 {
1567 struct task_struct *tsk = current;
1568 struct audit_context *context = tsk->audit_context;
1569 enum audit_state state;
1570
1571 if (unlikely(!context))
1572 return;
1573
1574 /*
1575 * This happens only on certain architectures that make system
1576 * calls in kernel_thread via the entry.S interface, instead of
1577 * with direct calls. (If you are porting to a new
1578 * architecture, hitting this condition can indicate that you
1579 * got the _exit/_leave calls backward in entry.S.)
1580 *
1581 * i386 no
1582 * x86_64 no
1583 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1584 *
1585 * This also happens with vm86 emulation in a non-nested manner
1586 * (entries without exits), so this case must be caught.
1587 */
1588 if (context->in_syscall) {
1589 struct audit_context *newctx;
1590
1591 #if AUDIT_DEBUG
1592 printk(KERN_ERR
1593 "audit(:%d) pid=%d in syscall=%d;"
1594 " entering syscall=%d\n",
1595 context->serial, tsk->pid, context->major, major);
1596 #endif
1597 newctx = audit_alloc_context(context->state);
1598 if (newctx) {
1599 newctx->previous = context;
1600 context = newctx;
1601 tsk->audit_context = newctx;
1602 } else {
1603 /* If we can't alloc a new context, the best we
1604 * can do is to leak memory (any pending putname
1605 * will be lost). The only other alternative is
1606 * to abandon auditing. */
1607 audit_zero_context(context, context->state);
1608 }
1609 }
1610 BUG_ON(context->in_syscall || context->name_count);
1611
1612 if (!audit_enabled)
1613 return;
1614
1615 context->arch = arch;
1616 context->major = major;
1617 context->argv[0] = a1;
1618 context->argv[1] = a2;
1619 context->argv[2] = a3;
1620 context->argv[3] = a4;
1621
1622 state = context->state;
1623 context->dummy = !audit_n_rules;
1624 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1625 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1626 if (likely(state == AUDIT_DISABLED))
1627 return;
1628
1629 context->serial = 0;
1630 context->ctime = CURRENT_TIME;
1631 context->in_syscall = 1;
1632 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1633 context->ppid = 0;
1634 }
1635
1636 /**
1637 * audit_syscall_exit - deallocate audit context after a system call
1638 * @tsk: task being audited
1639 * @valid: success/failure flag
1640 * @return_code: syscall return value
1641 *
1642 * Tear down after system call. If the audit context has been marked as
1643 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1644 * filtering, or because some other part of the kernel write an audit
1645 * message), then write out the syscall information. In call cases,
1646 * free the names stored from getname().
1647 */
1648 void audit_syscall_exit(int valid, long return_code)
1649 {
1650 struct task_struct *tsk = current;
1651 struct audit_context *context;
1652
1653 context = audit_get_context(tsk, valid, return_code);
1654
1655 if (likely(!context))
1656 return;
1657
1658 if (context->in_syscall && context->auditable)
1659 audit_log_exit(context, tsk);
1660
1661 context->in_syscall = 0;
1662 context->auditable = 0;
1663
1664 if (context->previous) {
1665 struct audit_context *new_context = context->previous;
1666 context->previous = NULL;
1667 audit_free_context(context);
1668 tsk->audit_context = new_context;
1669 } else {
1670 audit_free_names(context);
1671 unroll_tree_refs(context, NULL, 0);
1672 audit_free_aux(context);
1673 context->aux = NULL;
1674 context->aux_pids = NULL;
1675 context->target_pid = 0;
1676 context->target_sid = 0;
1677 kfree(context->filterkey);
1678 context->filterkey = NULL;
1679 tsk->audit_context = context;
1680 }
1681 }
1682
1683 static inline void handle_one(const struct inode *inode)
1684 {
1685 #ifdef CONFIG_AUDIT_TREE
1686 struct audit_context *context;
1687 struct audit_tree_refs *p;
1688 struct audit_chunk *chunk;
1689 int count;
1690 if (likely(list_empty(&inode->inotify_watches)))
1691 return;
1692 context = current->audit_context;
1693 p = context->trees;
1694 count = context->tree_count;
1695 rcu_read_lock();
1696 chunk = audit_tree_lookup(inode);
1697 rcu_read_unlock();
1698 if (!chunk)
1699 return;
1700 if (likely(put_tree_ref(context, chunk)))
1701 return;
1702 if (unlikely(!grow_tree_refs(context))) {
1703 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1704 audit_set_auditable(context);
1705 audit_put_chunk(chunk);
1706 unroll_tree_refs(context, p, count);
1707 return;
1708 }
1709 put_tree_ref(context, chunk);
1710 #endif
1711 }
1712
1713 static void handle_path(const struct dentry *dentry)
1714 {
1715 #ifdef CONFIG_AUDIT_TREE
1716 struct audit_context *context;
1717 struct audit_tree_refs *p;
1718 const struct dentry *d, *parent;
1719 struct audit_chunk *drop;
1720 unsigned long seq;
1721 int count;
1722
1723 context = current->audit_context;
1724 p = context->trees;
1725 count = context->tree_count;
1726 retry:
1727 drop = NULL;
1728 d = dentry;
1729 rcu_read_lock();
1730 seq = read_seqbegin(&rename_lock);
1731 for(;;) {
1732 struct inode *inode = d->d_inode;
1733 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1734 struct audit_chunk *chunk;
1735 chunk = audit_tree_lookup(inode);
1736 if (chunk) {
1737 if (unlikely(!put_tree_ref(context, chunk))) {
1738 drop = chunk;
1739 break;
1740 }
1741 }
1742 }
1743 parent = d->d_parent;
1744 if (parent == d)
1745 break;
1746 d = parent;
1747 }
1748 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1749 rcu_read_unlock();
1750 if (!drop) {
1751 /* just a race with rename */
1752 unroll_tree_refs(context, p, count);
1753 goto retry;
1754 }
1755 audit_put_chunk(drop);
1756 if (grow_tree_refs(context)) {
1757 /* OK, got more space */
1758 unroll_tree_refs(context, p, count);
1759 goto retry;
1760 }
1761 /* too bad */
1762 printk(KERN_WARNING
1763 "out of memory, audit has lost a tree reference\n");
1764 unroll_tree_refs(context, p, count);
1765 audit_set_auditable(context);
1766 return;
1767 }
1768 rcu_read_unlock();
1769 #endif
1770 }
1771
1772 /**
1773 * audit_getname - add a name to the list
1774 * @name: name to add
1775 *
1776 * Add a name to the list of audit names for this context.
1777 * Called from fs/namei.c:getname().
1778 */
1779 void __audit_getname(const char *name)
1780 {
1781 struct audit_context *context = current->audit_context;
1782
1783 if (IS_ERR(name) || !name)
1784 return;
1785
1786 if (!context->in_syscall) {
1787 #if AUDIT_DEBUG == 2
1788 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1789 __FILE__, __LINE__, context->serial, name);
1790 dump_stack();
1791 #endif
1792 return;
1793 }
1794 BUG_ON(context->name_count >= AUDIT_NAMES);
1795 context->names[context->name_count].name = name;
1796 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1797 context->names[context->name_count].name_put = 1;
1798 context->names[context->name_count].ino = (unsigned long)-1;
1799 context->names[context->name_count].osid = 0;
1800 ++context->name_count;
1801 if (!context->pwd.dentry) {
1802 read_lock(&current->fs->lock);
1803 context->pwd = current->fs->pwd;
1804 path_get(&current->fs->pwd);
1805 read_unlock(&current->fs->lock);
1806 }
1807
1808 }
1809
1810 /* audit_putname - intercept a putname request
1811 * @name: name to intercept and delay for putname
1812 *
1813 * If we have stored the name from getname in the audit context,
1814 * then we delay the putname until syscall exit.
1815 * Called from include/linux/fs.h:putname().
1816 */
1817 void audit_putname(const char *name)
1818 {
1819 struct audit_context *context = current->audit_context;
1820
1821 BUG_ON(!context);
1822 if (!context->in_syscall) {
1823 #if AUDIT_DEBUG == 2
1824 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1825 __FILE__, __LINE__, context->serial, name);
1826 if (context->name_count) {
1827 int i;
1828 for (i = 0; i < context->name_count; i++)
1829 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1830 context->names[i].name,
1831 context->names[i].name ?: "(null)");
1832 }
1833 #endif
1834 __putname(name);
1835 }
1836 #if AUDIT_DEBUG
1837 else {
1838 ++context->put_count;
1839 if (context->put_count > context->name_count) {
1840 printk(KERN_ERR "%s:%d(:%d): major=%d"
1841 " in_syscall=%d putname(%p) name_count=%d"
1842 " put_count=%d\n",
1843 __FILE__, __LINE__,
1844 context->serial, context->major,
1845 context->in_syscall, name, context->name_count,
1846 context->put_count);
1847 dump_stack();
1848 }
1849 }
1850 #endif
1851 }
1852
1853 static int audit_inc_name_count(struct audit_context *context,
1854 const struct inode *inode)
1855 {
1856 if (context->name_count >= AUDIT_NAMES) {
1857 if (inode)
1858 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1859 "dev=%02x:%02x, inode=%lu\n",
1860 MAJOR(inode->i_sb->s_dev),
1861 MINOR(inode->i_sb->s_dev),
1862 inode->i_ino);
1863
1864 else
1865 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1866 return 1;
1867 }
1868 context->name_count++;
1869 #if AUDIT_DEBUG
1870 context->ino_count++;
1871 #endif
1872 return 0;
1873 }
1874
1875
1876 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1877 {
1878 struct cpu_vfs_cap_data caps;
1879 int rc;
1880
1881 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1882 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1883 name->fcap.fE = 0;
1884 name->fcap_ver = 0;
1885
1886 if (!dentry)
1887 return 0;
1888
1889 rc = get_vfs_caps_from_disk(dentry, &caps);
1890 if (rc)
1891 return rc;
1892
1893 name->fcap.permitted = caps.permitted;
1894 name->fcap.inheritable = caps.inheritable;
1895 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1896 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1897
1898 return 0;
1899 }
1900
1901
1902 /* Copy inode data into an audit_names. */
1903 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1904 const struct inode *inode)
1905 {
1906 name->ino = inode->i_ino;
1907 name->dev = inode->i_sb->s_dev;
1908 name->mode = inode->i_mode;
1909 name->uid = inode->i_uid;
1910 name->gid = inode->i_gid;
1911 name->rdev = inode->i_rdev;
1912 security_inode_getsecid(inode, &name->osid);
1913 audit_copy_fcaps(name, dentry);
1914 }
1915
1916 /**
1917 * audit_inode - store the inode and device from a lookup
1918 * @name: name being audited
1919 * @dentry: dentry being audited
1920 *
1921 * Called from fs/namei.c:path_lookup().
1922 */
1923 void __audit_inode(const char *name, const struct dentry *dentry)
1924 {
1925 int idx;
1926 struct audit_context *context = current->audit_context;
1927 const struct inode *inode = dentry->d_inode;
1928
1929 if (!context->in_syscall)
1930 return;
1931 if (context->name_count
1932 && context->names[context->name_count-1].name
1933 && context->names[context->name_count-1].name == name)
1934 idx = context->name_count - 1;
1935 else if (context->name_count > 1
1936 && context->names[context->name_count-2].name
1937 && context->names[context->name_count-2].name == name)
1938 idx = context->name_count - 2;
1939 else {
1940 /* FIXME: how much do we care about inodes that have no
1941 * associated name? */
1942 if (audit_inc_name_count(context, inode))
1943 return;
1944 idx = context->name_count - 1;
1945 context->names[idx].name = NULL;
1946 }
1947 handle_path(dentry);
1948 audit_copy_inode(&context->names[idx], dentry, inode);
1949 }
1950
1951 /**
1952 * audit_inode_child - collect inode info for created/removed objects
1953 * @dname: inode's dentry name
1954 * @dentry: dentry being audited
1955 * @parent: inode of dentry parent
1956 *
1957 * For syscalls that create or remove filesystem objects, audit_inode
1958 * can only collect information for the filesystem object's parent.
1959 * This call updates the audit context with the child's information.
1960 * Syscalls that create a new filesystem object must be hooked after
1961 * the object is created. Syscalls that remove a filesystem object
1962 * must be hooked prior, in order to capture the target inode during
1963 * unsuccessful attempts.
1964 */
1965 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1966 const struct inode *parent)
1967 {
1968 int idx;
1969 struct audit_context *context = current->audit_context;
1970 const char *found_parent = NULL, *found_child = NULL;
1971 const struct inode *inode = dentry->d_inode;
1972 int dirlen = 0;
1973
1974 if (!context->in_syscall)
1975 return;
1976
1977 if (inode)
1978 handle_one(inode);
1979 /* determine matching parent */
1980 if (!dname)
1981 goto add_names;
1982
1983 /* parent is more likely, look for it first */
1984 for (idx = 0; idx < context->name_count; idx++) {
1985 struct audit_names *n = &context->names[idx];
1986
1987 if (!n->name)
1988 continue;
1989
1990 if (n->ino == parent->i_ino &&
1991 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1992 n->name_len = dirlen; /* update parent data in place */
1993 found_parent = n->name;
1994 goto add_names;
1995 }
1996 }
1997
1998 /* no matching parent, look for matching child */
1999 for (idx = 0; idx < context->name_count; idx++) {
2000 struct audit_names *n = &context->names[idx];
2001
2002 if (!n->name)
2003 continue;
2004
2005 /* strcmp() is the more likely scenario */
2006 if (!strcmp(dname, n->name) ||
2007 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2008 if (inode)
2009 audit_copy_inode(n, NULL, inode);
2010 else
2011 n->ino = (unsigned long)-1;
2012 found_child = n->name;
2013 goto add_names;
2014 }
2015 }
2016
2017 add_names:
2018 if (!found_parent) {
2019 if (audit_inc_name_count(context, parent))
2020 return;
2021 idx = context->name_count - 1;
2022 context->names[idx].name = NULL;
2023 audit_copy_inode(&context->names[idx], NULL, parent);
2024 }
2025
2026 if (!found_child) {
2027 if (audit_inc_name_count(context, inode))
2028 return;
2029 idx = context->name_count - 1;
2030
2031 /* Re-use the name belonging to the slot for a matching parent
2032 * directory. All names for this context are relinquished in
2033 * audit_free_names() */
2034 if (found_parent) {
2035 context->names[idx].name = found_parent;
2036 context->names[idx].name_len = AUDIT_NAME_FULL;
2037 /* don't call __putname() */
2038 context->names[idx].name_put = 0;
2039 } else {
2040 context->names[idx].name = NULL;
2041 }
2042
2043 if (inode)
2044 audit_copy_inode(&context->names[idx], NULL, inode);
2045 else
2046 context->names[idx].ino = (unsigned long)-1;
2047 }
2048 }
2049 EXPORT_SYMBOL_GPL(__audit_inode_child);
2050
2051 /**
2052 * auditsc_get_stamp - get local copies of audit_context values
2053 * @ctx: audit_context for the task
2054 * @t: timespec to store time recorded in the audit_context
2055 * @serial: serial value that is recorded in the audit_context
2056 *
2057 * Also sets the context as auditable.
2058 */
2059 void auditsc_get_stamp(struct audit_context *ctx,
2060 struct timespec *t, unsigned int *serial)
2061 {
2062 if (!ctx->serial)
2063 ctx->serial = audit_serial();
2064 t->tv_sec = ctx->ctime.tv_sec;
2065 t->tv_nsec = ctx->ctime.tv_nsec;
2066 *serial = ctx->serial;
2067 ctx->auditable = 1;
2068 }
2069
2070 /* global counter which is incremented every time something logs in */
2071 static atomic_t session_id = ATOMIC_INIT(0);
2072
2073 /**
2074 * audit_set_loginuid - set a task's audit_context loginuid
2075 * @task: task whose audit context is being modified
2076 * @loginuid: loginuid value
2077 *
2078 * Returns 0.
2079 *
2080 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2081 */
2082 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2083 {
2084 unsigned int sessionid = atomic_inc_return(&session_id);
2085 struct audit_context *context = task->audit_context;
2086
2087 if (context && context->in_syscall) {
2088 struct audit_buffer *ab;
2089
2090 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2091 if (ab) {
2092 audit_log_format(ab, "login pid=%d uid=%u "
2093 "old auid=%u new auid=%u"
2094 " old ses=%u new ses=%u",
2095 task->pid, task_uid(task),
2096 task->loginuid, loginuid,
2097 task->sessionid, sessionid);
2098 audit_log_end(ab);
2099 }
2100 }
2101 task->sessionid = sessionid;
2102 task->loginuid = loginuid;
2103 return 0;
2104 }
2105
2106 /**
2107 * __audit_mq_open - record audit data for a POSIX MQ open
2108 * @oflag: open flag
2109 * @mode: mode bits
2110 * @u_attr: queue attributes
2111 *
2112 * Returns 0 for success or NULL context or < 0 on error.
2113 */
2114 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2115 {
2116 struct audit_aux_data_mq_open *ax;
2117 struct audit_context *context = current->audit_context;
2118
2119 if (!audit_enabled)
2120 return 0;
2121
2122 if (likely(!context))
2123 return 0;
2124
2125 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2126 if (!ax)
2127 return -ENOMEM;
2128
2129 if (u_attr != NULL) {
2130 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2131 kfree(ax);
2132 return -EFAULT;
2133 }
2134 } else
2135 memset(&ax->attr, 0, sizeof(ax->attr));
2136
2137 ax->oflag = oflag;
2138 ax->mode = mode;
2139
2140 ax->d.type = AUDIT_MQ_OPEN;
2141 ax->d.next = context->aux;
2142 context->aux = (void *)ax;
2143 return 0;
2144 }
2145
2146 /**
2147 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2148 * @mqdes: MQ descriptor
2149 * @msg_len: Message length
2150 * @msg_prio: Message priority
2151 * @u_abs_timeout: Message timeout in absolute time
2152 *
2153 * Returns 0 for success or NULL context or < 0 on error.
2154 */
2155 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2156 const struct timespec __user *u_abs_timeout)
2157 {
2158 struct audit_aux_data_mq_sendrecv *ax;
2159 struct audit_context *context = current->audit_context;
2160
2161 if (!audit_enabled)
2162 return 0;
2163
2164 if (likely(!context))
2165 return 0;
2166
2167 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2168 if (!ax)
2169 return -ENOMEM;
2170
2171 if (u_abs_timeout != NULL) {
2172 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2173 kfree(ax);
2174 return -EFAULT;
2175 }
2176 } else
2177 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2178
2179 ax->mqdes = mqdes;
2180 ax->msg_len = msg_len;
2181 ax->msg_prio = msg_prio;
2182
2183 ax->d.type = AUDIT_MQ_SENDRECV;
2184 ax->d.next = context->aux;
2185 context->aux = (void *)ax;
2186 return 0;
2187 }
2188
2189 /**
2190 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2191 * @mqdes: MQ descriptor
2192 * @msg_len: Message length
2193 * @u_msg_prio: Message priority
2194 * @u_abs_timeout: Message timeout in absolute time
2195 *
2196 * Returns 0 for success or NULL context or < 0 on error.
2197 */
2198 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2199 unsigned int __user *u_msg_prio,
2200 const struct timespec __user *u_abs_timeout)
2201 {
2202 struct audit_aux_data_mq_sendrecv *ax;
2203 struct audit_context *context = current->audit_context;
2204
2205 if (!audit_enabled)
2206 return 0;
2207
2208 if (likely(!context))
2209 return 0;
2210
2211 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2212 if (!ax)
2213 return -ENOMEM;
2214
2215 if (u_msg_prio != NULL) {
2216 if (get_user(ax->msg_prio, u_msg_prio)) {
2217 kfree(ax);
2218 return -EFAULT;
2219 }
2220 } else
2221 ax->msg_prio = 0;
2222
2223 if (u_abs_timeout != NULL) {
2224 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2225 kfree(ax);
2226 return -EFAULT;
2227 }
2228 } else
2229 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2230
2231 ax->mqdes = mqdes;
2232 ax->msg_len = msg_len;
2233
2234 ax->d.type = AUDIT_MQ_SENDRECV;
2235 ax->d.next = context->aux;
2236 context->aux = (void *)ax;
2237 return 0;
2238 }
2239
2240 /**
2241 * __audit_mq_notify - record audit data for a POSIX MQ notify
2242 * @mqdes: MQ descriptor
2243 * @u_notification: Notification event
2244 *
2245 * Returns 0 for success or NULL context or < 0 on error.
2246 */
2247
2248 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2249 {
2250 struct audit_aux_data_mq_notify *ax;
2251 struct audit_context *context = current->audit_context;
2252
2253 if (!audit_enabled)
2254 return 0;
2255
2256 if (likely(!context))
2257 return 0;
2258
2259 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2260 if (!ax)
2261 return -ENOMEM;
2262
2263 if (u_notification != NULL) {
2264 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2265 kfree(ax);
2266 return -EFAULT;
2267 }
2268 } else
2269 memset(&ax->notification, 0, sizeof(ax->notification));
2270
2271 ax->mqdes = mqdes;
2272
2273 ax->d.type = AUDIT_MQ_NOTIFY;
2274 ax->d.next = context->aux;
2275 context->aux = (void *)ax;
2276 return 0;
2277 }
2278
2279 /**
2280 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2281 * @mqdes: MQ descriptor
2282 * @mqstat: MQ flags
2283 *
2284 * Returns 0 for success or NULL context or < 0 on error.
2285 */
2286 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2287 {
2288 struct audit_aux_data_mq_getsetattr *ax;
2289 struct audit_context *context = current->audit_context;
2290
2291 if (!audit_enabled)
2292 return 0;
2293
2294 if (likely(!context))
2295 return 0;
2296
2297 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2298 if (!ax)
2299 return -ENOMEM;
2300
2301 ax->mqdes = mqdes;
2302 ax->mqstat = *mqstat;
2303
2304 ax->d.type = AUDIT_MQ_GETSETATTR;
2305 ax->d.next = context->aux;
2306 context->aux = (void *)ax;
2307 return 0;
2308 }
2309
2310 /**
2311 * audit_ipc_obj - record audit data for ipc object
2312 * @ipcp: ipc permissions
2313 *
2314 * Returns 0 for success or NULL context or < 0 on error.
2315 */
2316 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2317 {
2318 struct audit_aux_data_ipcctl *ax;
2319 struct audit_context *context = current->audit_context;
2320
2321 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2322 if (!ax)
2323 return -ENOMEM;
2324
2325 ax->uid = ipcp->uid;
2326 ax->gid = ipcp->gid;
2327 ax->mode = ipcp->mode;
2328 security_ipc_getsecid(ipcp, &ax->osid);
2329 ax->d.type = AUDIT_IPC;
2330 ax->d.next = context->aux;
2331 context->aux = (void *)ax;
2332 return 0;
2333 }
2334
2335 /**
2336 * audit_ipc_set_perm - record audit data for new ipc permissions
2337 * @qbytes: msgq bytes
2338 * @uid: msgq user id
2339 * @gid: msgq group id
2340 * @mode: msgq mode (permissions)
2341 *
2342 * Returns 0 for success or NULL context or < 0 on error.
2343 */
2344 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2345 {
2346 struct audit_aux_data_ipcctl *ax;
2347 struct audit_context *context = current->audit_context;
2348
2349 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2350 if (!ax)
2351 return -ENOMEM;
2352
2353 ax->qbytes = qbytes;
2354 ax->uid = uid;
2355 ax->gid = gid;
2356 ax->mode = mode;
2357
2358 ax->d.type = AUDIT_IPC_SET_PERM;
2359 ax->d.next = context->aux;
2360 context->aux = (void *)ax;
2361 return 0;
2362 }
2363
2364 int audit_bprm(struct linux_binprm *bprm)
2365 {
2366 struct audit_aux_data_execve *ax;
2367 struct audit_context *context = current->audit_context;
2368
2369 if (likely(!audit_enabled || !context || context->dummy))
2370 return 0;
2371
2372 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2373 if (!ax)
2374 return -ENOMEM;
2375
2376 ax->argc = bprm->argc;
2377 ax->envc = bprm->envc;
2378 ax->mm = bprm->mm;
2379 ax->d.type = AUDIT_EXECVE;
2380 ax->d.next = context->aux;
2381 context->aux = (void *)ax;
2382 return 0;
2383 }
2384
2385
2386 /**
2387 * audit_socketcall - record audit data for sys_socketcall
2388 * @nargs: number of args
2389 * @args: args array
2390 *
2391 * Returns 0 for success or NULL context or < 0 on error.
2392 */
2393 int audit_socketcall(int nargs, unsigned long *args)
2394 {
2395 struct audit_aux_data_socketcall *ax;
2396 struct audit_context *context = current->audit_context;
2397
2398 if (likely(!context || context->dummy))
2399 return 0;
2400
2401 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2402 if (!ax)
2403 return -ENOMEM;
2404
2405 ax->nargs = nargs;
2406 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2407
2408 ax->d.type = AUDIT_SOCKETCALL;
2409 ax->d.next = context->aux;
2410 context->aux = (void *)ax;
2411 return 0;
2412 }
2413
2414 /**
2415 * __audit_fd_pair - record audit data for pipe and socketpair
2416 * @fd1: the first file descriptor
2417 * @fd2: the second file descriptor
2418 *
2419 * Returns 0 for success or NULL context or < 0 on error.
2420 */
2421 int __audit_fd_pair(int fd1, int fd2)
2422 {
2423 struct audit_context *context = current->audit_context;
2424 struct audit_aux_data_fd_pair *ax;
2425
2426 if (likely(!context)) {
2427 return 0;
2428 }
2429
2430 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2431 if (!ax) {
2432 return -ENOMEM;
2433 }
2434
2435 ax->fd[0] = fd1;
2436 ax->fd[1] = fd2;
2437
2438 ax->d.type = AUDIT_FD_PAIR;
2439 ax->d.next = context->aux;
2440 context->aux = (void *)ax;
2441 return 0;
2442 }
2443
2444 /**
2445 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2446 * @len: data length in user space
2447 * @a: data address in kernel space
2448 *
2449 * Returns 0 for success or NULL context or < 0 on error.
2450 */
2451 int audit_sockaddr(int len, void *a)
2452 {
2453 struct audit_aux_data_sockaddr *ax;
2454 struct audit_context *context = current->audit_context;
2455
2456 if (likely(!context || context->dummy))
2457 return 0;
2458
2459 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2460 if (!ax)
2461 return -ENOMEM;
2462
2463 ax->len = len;
2464 memcpy(ax->a, a, len);
2465
2466 ax->d.type = AUDIT_SOCKADDR;
2467 ax->d.next = context->aux;
2468 context->aux = (void *)ax;
2469 return 0;
2470 }
2471
2472 void __audit_ptrace(struct task_struct *t)
2473 {
2474 struct audit_context *context = current->audit_context;
2475
2476 context->target_pid = t->pid;
2477 context->target_auid = audit_get_loginuid(t);
2478 context->target_uid = task_uid(t);
2479 context->target_sessionid = audit_get_sessionid(t);
2480 security_task_getsecid(t, &context->target_sid);
2481 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2482 }
2483
2484 /**
2485 * audit_signal_info - record signal info for shutting down audit subsystem
2486 * @sig: signal value
2487 * @t: task being signaled
2488 *
2489 * If the audit subsystem is being terminated, record the task (pid)
2490 * and uid that is doing that.
2491 */
2492 int __audit_signal_info(int sig, struct task_struct *t)
2493 {
2494 struct audit_aux_data_pids *axp;
2495 struct task_struct *tsk = current;
2496 struct audit_context *ctx = tsk->audit_context;
2497 uid_t uid = current_uid(), t_uid = task_uid(t);
2498
2499 if (audit_pid && t->tgid == audit_pid) {
2500 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2501 audit_sig_pid = tsk->pid;
2502 if (tsk->loginuid != -1)
2503 audit_sig_uid = tsk->loginuid;
2504 else
2505 audit_sig_uid = uid;
2506 security_task_getsecid(tsk, &audit_sig_sid);
2507 }
2508 if (!audit_signals || audit_dummy_context())
2509 return 0;
2510 }
2511
2512 /* optimize the common case by putting first signal recipient directly
2513 * in audit_context */
2514 if (!ctx->target_pid) {
2515 ctx->target_pid = t->tgid;
2516 ctx->target_auid = audit_get_loginuid(t);
2517 ctx->target_uid = t_uid;
2518 ctx->target_sessionid = audit_get_sessionid(t);
2519 security_task_getsecid(t, &ctx->target_sid);
2520 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2521 return 0;
2522 }
2523
2524 axp = (void *)ctx->aux_pids;
2525 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2526 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2527 if (!axp)
2528 return -ENOMEM;
2529
2530 axp->d.type = AUDIT_OBJ_PID;
2531 axp->d.next = ctx->aux_pids;
2532 ctx->aux_pids = (void *)axp;
2533 }
2534 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2535
2536 axp->target_pid[axp->pid_count] = t->tgid;
2537 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2538 axp->target_uid[axp->pid_count] = t_uid;
2539 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2540 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2541 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2542 axp->pid_count++;
2543
2544 return 0;
2545 }
2546
2547 /**
2548 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2549 * @bprm: pointer to the bprm being processed
2550 * @new: the proposed new credentials
2551 * @old: the old credentials
2552 *
2553 * Simply check if the proc already has the caps given by the file and if not
2554 * store the priv escalation info for later auditing at the end of the syscall
2555 *
2556 * -Eric
2557 */
2558 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2559 const struct cred *new, const struct cred *old)
2560 {
2561 struct audit_aux_data_bprm_fcaps *ax;
2562 struct audit_context *context = current->audit_context;
2563 struct cpu_vfs_cap_data vcaps;
2564 struct dentry *dentry;
2565
2566 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2567 if (!ax)
2568 return -ENOMEM;
2569
2570 ax->d.type = AUDIT_BPRM_FCAPS;
2571 ax->d.next = context->aux;
2572 context->aux = (void *)ax;
2573
2574 dentry = dget(bprm->file->f_dentry);
2575 get_vfs_caps_from_disk(dentry, &vcaps);
2576 dput(dentry);
2577
2578 ax->fcap.permitted = vcaps.permitted;
2579 ax->fcap.inheritable = vcaps.inheritable;
2580 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2581 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2582
2583 ax->old_pcap.permitted = old->cap_permitted;
2584 ax->old_pcap.inheritable = old->cap_inheritable;
2585 ax->old_pcap.effective = old->cap_effective;
2586
2587 ax->new_pcap.permitted = new->cap_permitted;
2588 ax->new_pcap.inheritable = new->cap_inheritable;
2589 ax->new_pcap.effective = new->cap_effective;
2590 return 0;
2591 }
2592
2593 /**
2594 * __audit_log_capset - store information about the arguments to the capset syscall
2595 * @pid: target pid of the capset call
2596 * @new: the new credentials
2597 * @old: the old (current) credentials
2598 *
2599 * Record the aguments userspace sent to sys_capset for later printing by the
2600 * audit system if applicable
2601 */
2602 int __audit_log_capset(pid_t pid,
2603 const struct cred *new, const struct cred *old)
2604 {
2605 struct audit_aux_data_capset *ax;
2606 struct audit_context *context = current->audit_context;
2607
2608 if (likely(!audit_enabled || !context || context->dummy))
2609 return 0;
2610
2611 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2612 if (!ax)
2613 return -ENOMEM;
2614
2615 ax->d.type = AUDIT_CAPSET;
2616 ax->d.next = context->aux;
2617 context->aux = (void *)ax;
2618
2619 ax->pid = pid;
2620 ax->cap.effective = new->cap_effective;
2621 ax->cap.inheritable = new->cap_effective;
2622 ax->cap.permitted = new->cap_permitted;
2623
2624 return 0;
2625 }
2626
2627 /**
2628 * audit_core_dumps - record information about processes that end abnormally
2629 * @signr: signal value
2630 *
2631 * If a process ends with a core dump, something fishy is going on and we
2632 * should record the event for investigation.
2633 */
2634 void audit_core_dumps(long signr)
2635 {
2636 struct audit_buffer *ab;
2637 u32 sid;
2638 uid_t auid = audit_get_loginuid(current), uid;
2639 gid_t gid;
2640 unsigned int sessionid = audit_get_sessionid(current);
2641
2642 if (!audit_enabled)
2643 return;
2644
2645 if (signr == SIGQUIT) /* don't care for those */
2646 return;
2647
2648 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2649 current_uid_gid(&uid, &gid);
2650 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2651 auid, uid, gid, sessionid);
2652 security_task_getsecid(current, &sid);
2653 if (sid) {
2654 char *ctx = NULL;
2655 u32 len;
2656
2657 if (security_secid_to_secctx(sid, &ctx, &len))
2658 audit_log_format(ab, " ssid=%u", sid);
2659 else {
2660 audit_log_format(ab, " subj=%s", ctx);
2661 security_release_secctx(ctx, len);
2662 }
2663 }
2664 audit_log_format(ab, " pid=%d comm=", current->pid);
2665 audit_log_untrustedstring(ab, current->comm);
2666 audit_log_format(ab, " sig=%ld", signr);
2667 audit_log_end(ab);
2668 }
This page took 0.084822 seconds and 5 git commands to generate.