sched/fair: Fix RCU stall upon -ENOMEM in sched_create_group()
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
75
76 #include "audit.h"
77
78 /* flags stating the success for a syscall */
79 #define AUDITSC_INVALID 0
80 #define AUDITSC_SUCCESS 1
81 #define AUDITSC_FAILURE 2
82
83 /* no execve audit message should be longer than this (userspace limits) */
84 #define MAX_EXECVE_AUDIT_LEN 7500
85
86 /* max length to print of cmdline/proctitle value during audit */
87 #define MAX_PROCTITLE_AUDIT_LEN 128
88
89 /* number of audit rules */
90 int audit_n_rules;
91
92 /* determines whether we collect data for signals sent */
93 int audit_signals;
94
95 struct audit_aux_data {
96 struct audit_aux_data *next;
97 int type;
98 };
99
100 #define AUDIT_AUX_IPCPERM 0
101
102 /* Number of target pids per aux struct. */
103 #define AUDIT_AUX_PIDS 16
104
105 struct audit_aux_data_pids {
106 struct audit_aux_data d;
107 pid_t target_pid[AUDIT_AUX_PIDS];
108 kuid_t target_auid[AUDIT_AUX_PIDS];
109 kuid_t target_uid[AUDIT_AUX_PIDS];
110 unsigned int target_sessionid[AUDIT_AUX_PIDS];
111 u32 target_sid[AUDIT_AUX_PIDS];
112 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
113 int pid_count;
114 };
115
116 struct audit_aux_data_bprm_fcaps {
117 struct audit_aux_data d;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 struct audit_cap_data old_pcap;
121 struct audit_cap_data new_pcap;
122 };
123
124 struct audit_tree_refs {
125 struct audit_tree_refs *next;
126 struct audit_chunk *c[31];
127 };
128
129 static int audit_match_perm(struct audit_context *ctx, int mask)
130 {
131 unsigned n;
132 if (unlikely(!ctx))
133 return 0;
134 n = ctx->major;
135
136 switch (audit_classify_syscall(ctx->arch, n)) {
137 case 0: /* native */
138 if ((mask & AUDIT_PERM_WRITE) &&
139 audit_match_class(AUDIT_CLASS_WRITE, n))
140 return 1;
141 if ((mask & AUDIT_PERM_READ) &&
142 audit_match_class(AUDIT_CLASS_READ, n))
143 return 1;
144 if ((mask & AUDIT_PERM_ATTR) &&
145 audit_match_class(AUDIT_CLASS_CHATTR, n))
146 return 1;
147 return 0;
148 case 1: /* 32bit on biarch */
149 if ((mask & AUDIT_PERM_WRITE) &&
150 audit_match_class(AUDIT_CLASS_WRITE_32, n))
151 return 1;
152 if ((mask & AUDIT_PERM_READ) &&
153 audit_match_class(AUDIT_CLASS_READ_32, n))
154 return 1;
155 if ((mask & AUDIT_PERM_ATTR) &&
156 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
157 return 1;
158 return 0;
159 case 2: /* open */
160 return mask & ACC_MODE(ctx->argv[1]);
161 case 3: /* openat */
162 return mask & ACC_MODE(ctx->argv[2]);
163 case 4: /* socketcall */
164 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
165 case 5: /* execve */
166 return mask & AUDIT_PERM_EXEC;
167 default:
168 return 0;
169 }
170 }
171
172 static int audit_match_filetype(struct audit_context *ctx, int val)
173 {
174 struct audit_names *n;
175 umode_t mode = (umode_t)val;
176
177 if (unlikely(!ctx))
178 return 0;
179
180 list_for_each_entry(n, &ctx->names_list, list) {
181 if ((n->ino != -1) &&
182 ((n->mode & S_IFMT) == mode))
183 return 1;
184 }
185
186 return 0;
187 }
188
189 /*
190 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
191 * ->first_trees points to its beginning, ->trees - to the current end of data.
192 * ->tree_count is the number of free entries in array pointed to by ->trees.
193 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
194 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
195 * it's going to remain 1-element for almost any setup) until we free context itself.
196 * References in it _are_ dropped - at the same time we free/drop aux stuff.
197 */
198
199 #ifdef CONFIG_AUDIT_TREE
200 static void audit_set_auditable(struct audit_context *ctx)
201 {
202 if (!ctx->prio) {
203 ctx->prio = 1;
204 ctx->current_state = AUDIT_RECORD_CONTEXT;
205 }
206 }
207
208 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
209 {
210 struct audit_tree_refs *p = ctx->trees;
211 int left = ctx->tree_count;
212 if (likely(left)) {
213 p->c[--left] = chunk;
214 ctx->tree_count = left;
215 return 1;
216 }
217 if (!p)
218 return 0;
219 p = p->next;
220 if (p) {
221 p->c[30] = chunk;
222 ctx->trees = p;
223 ctx->tree_count = 30;
224 return 1;
225 }
226 return 0;
227 }
228
229 static int grow_tree_refs(struct audit_context *ctx)
230 {
231 struct audit_tree_refs *p = ctx->trees;
232 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
233 if (!ctx->trees) {
234 ctx->trees = p;
235 return 0;
236 }
237 if (p)
238 p->next = ctx->trees;
239 else
240 ctx->first_trees = ctx->trees;
241 ctx->tree_count = 31;
242 return 1;
243 }
244 #endif
245
246 static void unroll_tree_refs(struct audit_context *ctx,
247 struct audit_tree_refs *p, int count)
248 {
249 #ifdef CONFIG_AUDIT_TREE
250 struct audit_tree_refs *q;
251 int n;
252 if (!p) {
253 /* we started with empty chain */
254 p = ctx->first_trees;
255 count = 31;
256 /* if the very first allocation has failed, nothing to do */
257 if (!p)
258 return;
259 }
260 n = count;
261 for (q = p; q != ctx->trees; q = q->next, n = 31) {
262 while (n--) {
263 audit_put_chunk(q->c[n]);
264 q->c[n] = NULL;
265 }
266 }
267 while (n-- > ctx->tree_count) {
268 audit_put_chunk(q->c[n]);
269 q->c[n] = NULL;
270 }
271 ctx->trees = p;
272 ctx->tree_count = count;
273 #endif
274 }
275
276 static void free_tree_refs(struct audit_context *ctx)
277 {
278 struct audit_tree_refs *p, *q;
279 for (p = ctx->first_trees; p; p = q) {
280 q = p->next;
281 kfree(p);
282 }
283 }
284
285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286 {
287 #ifdef CONFIG_AUDIT_TREE
288 struct audit_tree_refs *p;
289 int n;
290 if (!tree)
291 return 0;
292 /* full ones */
293 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
294 for (n = 0; n < 31; n++)
295 if (audit_tree_match(p->c[n], tree))
296 return 1;
297 }
298 /* partial */
299 if (p) {
300 for (n = ctx->tree_count; n < 31; n++)
301 if (audit_tree_match(p->c[n], tree))
302 return 1;
303 }
304 #endif
305 return 0;
306 }
307
308 static int audit_compare_uid(kuid_t uid,
309 struct audit_names *name,
310 struct audit_field *f,
311 struct audit_context *ctx)
312 {
313 struct audit_names *n;
314 int rc;
315
316 if (name) {
317 rc = audit_uid_comparator(uid, f->op, name->uid);
318 if (rc)
319 return rc;
320 }
321
322 if (ctx) {
323 list_for_each_entry(n, &ctx->names_list, list) {
324 rc = audit_uid_comparator(uid, f->op, n->uid);
325 if (rc)
326 return rc;
327 }
328 }
329 return 0;
330 }
331
332 static int audit_compare_gid(kgid_t gid,
333 struct audit_names *name,
334 struct audit_field *f,
335 struct audit_context *ctx)
336 {
337 struct audit_names *n;
338 int rc;
339
340 if (name) {
341 rc = audit_gid_comparator(gid, f->op, name->gid);
342 if (rc)
343 return rc;
344 }
345
346 if (ctx) {
347 list_for_each_entry(n, &ctx->names_list, list) {
348 rc = audit_gid_comparator(gid, f->op, n->gid);
349 if (rc)
350 return rc;
351 }
352 }
353 return 0;
354 }
355
356 static int audit_field_compare(struct task_struct *tsk,
357 const struct cred *cred,
358 struct audit_field *f,
359 struct audit_context *ctx,
360 struct audit_names *name)
361 {
362 switch (f->val) {
363 /* process to file object comparisons */
364 case AUDIT_COMPARE_UID_TO_OBJ_UID:
365 return audit_compare_uid(cred->uid, name, f, ctx);
366 case AUDIT_COMPARE_GID_TO_OBJ_GID:
367 return audit_compare_gid(cred->gid, name, f, ctx);
368 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
369 return audit_compare_uid(cred->euid, name, f, ctx);
370 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
371 return audit_compare_gid(cred->egid, name, f, ctx);
372 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
373 return audit_compare_uid(tsk->loginuid, name, f, ctx);
374 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
375 return audit_compare_uid(cred->suid, name, f, ctx);
376 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
377 return audit_compare_gid(cred->sgid, name, f, ctx);
378 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
379 return audit_compare_uid(cred->fsuid, name, f, ctx);
380 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
381 return audit_compare_gid(cred->fsgid, name, f, ctx);
382 /* uid comparisons */
383 case AUDIT_COMPARE_UID_TO_AUID:
384 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
385 case AUDIT_COMPARE_UID_TO_EUID:
386 return audit_uid_comparator(cred->uid, f->op, cred->euid);
387 case AUDIT_COMPARE_UID_TO_SUID:
388 return audit_uid_comparator(cred->uid, f->op, cred->suid);
389 case AUDIT_COMPARE_UID_TO_FSUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
391 /* auid comparisons */
392 case AUDIT_COMPARE_AUID_TO_EUID:
393 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
394 case AUDIT_COMPARE_AUID_TO_SUID:
395 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
396 case AUDIT_COMPARE_AUID_TO_FSUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
398 /* euid comparisons */
399 case AUDIT_COMPARE_EUID_TO_SUID:
400 return audit_uid_comparator(cred->euid, f->op, cred->suid);
401 case AUDIT_COMPARE_EUID_TO_FSUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
403 /* suid comparisons */
404 case AUDIT_COMPARE_SUID_TO_FSUID:
405 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
406 /* gid comparisons */
407 case AUDIT_COMPARE_GID_TO_EGID:
408 return audit_gid_comparator(cred->gid, f->op, cred->egid);
409 case AUDIT_COMPARE_GID_TO_SGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
411 case AUDIT_COMPARE_GID_TO_FSGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
413 /* egid comparisons */
414 case AUDIT_COMPARE_EGID_TO_SGID:
415 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
416 case AUDIT_COMPARE_EGID_TO_FSGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
418 /* sgid comparison */
419 case AUDIT_COMPARE_SGID_TO_FSGID:
420 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
421 default:
422 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
423 return 0;
424 }
425 return 0;
426 }
427
428 /* Determine if any context name data matches a rule's watch data */
429 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
430 * otherwise.
431 *
432 * If task_creation is true, this is an explicit indication that we are
433 * filtering a task rule at task creation time. This and tsk == current are
434 * the only situations where tsk->cred may be accessed without an rcu read lock.
435 */
436 static int audit_filter_rules(struct task_struct *tsk,
437 struct audit_krule *rule,
438 struct audit_context *ctx,
439 struct audit_names *name,
440 enum audit_state *state,
441 bool task_creation)
442 {
443 const struct cred *cred;
444 int i, need_sid = 1;
445 u32 sid;
446
447 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
448
449 for (i = 0; i < rule->field_count; i++) {
450 struct audit_field *f = &rule->fields[i];
451 struct audit_names *n;
452 int result = 0;
453 pid_t pid;
454
455 switch (f->type) {
456 case AUDIT_PID:
457 pid = task_pid_nr(tsk);
458 result = audit_comparator(pid, f->op, f->val);
459 break;
460 case AUDIT_PPID:
461 if (ctx) {
462 if (!ctx->ppid)
463 ctx->ppid = task_ppid_nr(tsk);
464 result = audit_comparator(ctx->ppid, f->op, f->val);
465 }
466 break;
467 case AUDIT_UID:
468 result = audit_uid_comparator(cred->uid, f->op, f->uid);
469 break;
470 case AUDIT_EUID:
471 result = audit_uid_comparator(cred->euid, f->op, f->uid);
472 break;
473 case AUDIT_SUID:
474 result = audit_uid_comparator(cred->suid, f->op, f->uid);
475 break;
476 case AUDIT_FSUID:
477 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
478 break;
479 case AUDIT_GID:
480 result = audit_gid_comparator(cred->gid, f->op, f->gid);
481 if (f->op == Audit_equal) {
482 if (!result)
483 result = in_group_p(f->gid);
484 } else if (f->op == Audit_not_equal) {
485 if (result)
486 result = !in_group_p(f->gid);
487 }
488 break;
489 case AUDIT_EGID:
490 result = audit_gid_comparator(cred->egid, f->op, f->gid);
491 if (f->op == Audit_equal) {
492 if (!result)
493 result = in_egroup_p(f->gid);
494 } else if (f->op == Audit_not_equal) {
495 if (result)
496 result = !in_egroup_p(f->gid);
497 }
498 break;
499 case AUDIT_SGID:
500 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
501 break;
502 case AUDIT_FSGID:
503 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
504 break;
505 case AUDIT_PERS:
506 result = audit_comparator(tsk->personality, f->op, f->val);
507 break;
508 case AUDIT_ARCH:
509 if (ctx)
510 result = audit_comparator(ctx->arch, f->op, f->val);
511 break;
512
513 case AUDIT_EXIT:
514 if (ctx && ctx->return_valid)
515 result = audit_comparator(ctx->return_code, f->op, f->val);
516 break;
517 case AUDIT_SUCCESS:
518 if (ctx && ctx->return_valid) {
519 if (f->val)
520 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
521 else
522 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
523 }
524 break;
525 case AUDIT_DEVMAJOR:
526 if (name) {
527 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
528 audit_comparator(MAJOR(name->rdev), f->op, f->val))
529 ++result;
530 } else if (ctx) {
531 list_for_each_entry(n, &ctx->names_list, list) {
532 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
533 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
534 ++result;
535 break;
536 }
537 }
538 }
539 break;
540 case AUDIT_DEVMINOR:
541 if (name) {
542 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
543 audit_comparator(MINOR(name->rdev), f->op, f->val))
544 ++result;
545 } else if (ctx) {
546 list_for_each_entry(n, &ctx->names_list, list) {
547 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
548 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
549 ++result;
550 break;
551 }
552 }
553 }
554 break;
555 case AUDIT_INODE:
556 if (name)
557 result = audit_comparator(name->ino, f->op, f->val);
558 else if (ctx) {
559 list_for_each_entry(n, &ctx->names_list, list) {
560 if (audit_comparator(n->ino, f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_OBJ_UID:
568 if (name) {
569 result = audit_uid_comparator(name->uid, f->op, f->uid);
570 } else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_GID:
580 if (name) {
581 result = audit_gid_comparator(name->gid, f->op, f->gid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_WATCH:
592 if (name)
593 result = audit_watch_compare(rule->watch, name->ino, name->dev);
594 break;
595 case AUDIT_DIR:
596 if (ctx)
597 result = match_tree_refs(ctx, rule->tree);
598 break;
599 case AUDIT_LOGINUID:
600 result = 0;
601 if (ctx)
602 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
603 break;
604 case AUDIT_LOGINUID_SET:
605 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
606 break;
607 case AUDIT_SUBJ_USER:
608 case AUDIT_SUBJ_ROLE:
609 case AUDIT_SUBJ_TYPE:
610 case AUDIT_SUBJ_SEN:
611 case AUDIT_SUBJ_CLR:
612 /* NOTE: this may return negative values indicating
613 a temporary error. We simply treat this as a
614 match for now to avoid losing information that
615 may be wanted. An error message will also be
616 logged upon error */
617 if (f->lsm_rule) {
618 if (need_sid) {
619 security_task_getsecid(tsk, &sid);
620 need_sid = 0;
621 }
622 result = security_audit_rule_match(sid, f->type,
623 f->op,
624 f->lsm_rule,
625 ctx);
626 }
627 break;
628 case AUDIT_OBJ_USER:
629 case AUDIT_OBJ_ROLE:
630 case AUDIT_OBJ_TYPE:
631 case AUDIT_OBJ_LEV_LOW:
632 case AUDIT_OBJ_LEV_HIGH:
633 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
634 also applies here */
635 if (f->lsm_rule) {
636 /* Find files that match */
637 if (name) {
638 result = security_audit_rule_match(
639 name->osid, f->type, f->op,
640 f->lsm_rule, ctx);
641 } else if (ctx) {
642 list_for_each_entry(n, &ctx->names_list, list) {
643 if (security_audit_rule_match(n->osid, f->type,
644 f->op, f->lsm_rule,
645 ctx)) {
646 ++result;
647 break;
648 }
649 }
650 }
651 /* Find ipc objects that match */
652 if (!ctx || ctx->type != AUDIT_IPC)
653 break;
654 if (security_audit_rule_match(ctx->ipc.osid,
655 f->type, f->op,
656 f->lsm_rule, ctx))
657 ++result;
658 }
659 break;
660 case AUDIT_ARG0:
661 case AUDIT_ARG1:
662 case AUDIT_ARG2:
663 case AUDIT_ARG3:
664 if (ctx)
665 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
666 break;
667 case AUDIT_FILTERKEY:
668 /* ignore this field for filtering */
669 result = 1;
670 break;
671 case AUDIT_PERM:
672 result = audit_match_perm(ctx, f->val);
673 break;
674 case AUDIT_FILETYPE:
675 result = audit_match_filetype(ctx, f->val);
676 break;
677 case AUDIT_FIELD_COMPARE:
678 result = audit_field_compare(tsk, cred, f, ctx, name);
679 break;
680 }
681 if (!result)
682 return 0;
683 }
684
685 if (ctx) {
686 if (rule->prio <= ctx->prio)
687 return 0;
688 if (rule->filterkey) {
689 kfree(ctx->filterkey);
690 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
691 }
692 ctx->prio = rule->prio;
693 }
694 switch (rule->action) {
695 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
696 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
697 }
698 return 1;
699 }
700
701 /* At process creation time, we can determine if system-call auditing is
702 * completely disabled for this task. Since we only have the task
703 * structure at this point, we can only check uid and gid.
704 */
705 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
706 {
707 struct audit_entry *e;
708 enum audit_state state;
709
710 rcu_read_lock();
711 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
712 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
713 &state, true)) {
714 if (state == AUDIT_RECORD_CONTEXT)
715 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
716 rcu_read_unlock();
717 return state;
718 }
719 }
720 rcu_read_unlock();
721 return AUDIT_BUILD_CONTEXT;
722 }
723
724 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
725 {
726 int word, bit;
727
728 if (val > 0xffffffff)
729 return false;
730
731 word = AUDIT_WORD(val);
732 if (word >= AUDIT_BITMASK_SIZE)
733 return false;
734
735 bit = AUDIT_BIT(val);
736
737 return rule->mask[word] & bit;
738 }
739
740 /* At syscall entry and exit time, this filter is called if the
741 * audit_state is not low enough that auditing cannot take place, but is
742 * also not high enough that we already know we have to write an audit
743 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
744 */
745 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
746 struct audit_context *ctx,
747 struct list_head *list)
748 {
749 struct audit_entry *e;
750 enum audit_state state;
751
752 if (audit_pid && tsk->tgid == audit_pid)
753 return AUDIT_DISABLED;
754
755 rcu_read_lock();
756 if (!list_empty(list)) {
757 list_for_each_entry_rcu(e, list, list) {
758 if (audit_in_mask(&e->rule, ctx->major) &&
759 audit_filter_rules(tsk, &e->rule, ctx, NULL,
760 &state, false)) {
761 rcu_read_unlock();
762 ctx->current_state = state;
763 return state;
764 }
765 }
766 }
767 rcu_read_unlock();
768 return AUDIT_BUILD_CONTEXT;
769 }
770
771 /*
772 * Given an audit_name check the inode hash table to see if they match.
773 * Called holding the rcu read lock to protect the use of audit_inode_hash
774 */
775 static int audit_filter_inode_name(struct task_struct *tsk,
776 struct audit_names *n,
777 struct audit_context *ctx) {
778 int h = audit_hash_ino((u32)n->ino);
779 struct list_head *list = &audit_inode_hash[h];
780 struct audit_entry *e;
781 enum audit_state state;
782
783 if (list_empty(list))
784 return 0;
785
786 list_for_each_entry_rcu(e, list, list) {
787 if (audit_in_mask(&e->rule, ctx->major) &&
788 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
789 ctx->current_state = state;
790 return 1;
791 }
792 }
793
794 return 0;
795 }
796
797 /* At syscall exit time, this filter is called if any audit_names have been
798 * collected during syscall processing. We only check rules in sublists at hash
799 * buckets applicable to the inode numbers in audit_names.
800 * Regarding audit_state, same rules apply as for audit_filter_syscall().
801 */
802 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
803 {
804 struct audit_names *n;
805
806 if (audit_pid && tsk->tgid == audit_pid)
807 return;
808
809 rcu_read_lock();
810
811 list_for_each_entry(n, &ctx->names_list, list) {
812 if (audit_filter_inode_name(tsk, n, ctx))
813 break;
814 }
815 rcu_read_unlock();
816 }
817
818 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
819 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
820 int return_valid,
821 long return_code)
822 {
823 struct audit_context *context = tsk->audit_context;
824
825 if (!context)
826 return NULL;
827 context->return_valid = return_valid;
828
829 /*
830 * we need to fix up the return code in the audit logs if the actual
831 * return codes are later going to be fixed up by the arch specific
832 * signal handlers
833 *
834 * This is actually a test for:
835 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
836 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
837 *
838 * but is faster than a bunch of ||
839 */
840 if (unlikely(return_code <= -ERESTARTSYS) &&
841 (return_code >= -ERESTART_RESTARTBLOCK) &&
842 (return_code != -ENOIOCTLCMD))
843 context->return_code = -EINTR;
844 else
845 context->return_code = return_code;
846
847 if (context->in_syscall && !context->dummy) {
848 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
849 audit_filter_inodes(tsk, context);
850 }
851
852 tsk->audit_context = NULL;
853 return context;
854 }
855
856 static inline void audit_proctitle_free(struct audit_context *context)
857 {
858 kfree(context->proctitle.value);
859 context->proctitle.value = NULL;
860 context->proctitle.len = 0;
861 }
862
863 static inline void audit_free_names(struct audit_context *context)
864 {
865 struct audit_names *n, *next;
866
867 #if AUDIT_DEBUG == 2
868 if (context->put_count + context->ino_count != context->name_count) {
869 int i = 0;
870
871 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
872 " name_count=%d put_count=%d ino_count=%d"
873 " [NOT freeing]\n", __FILE__, __LINE__,
874 context->serial, context->major, context->in_syscall,
875 context->name_count, context->put_count,
876 context->ino_count);
877 list_for_each_entry(n, &context->names_list, list) {
878 pr_err("names[%d] = %p = %s\n", i++, n->name,
879 n->name->name ?: "(null)");
880 }
881 dump_stack();
882 return;
883 }
884 #endif
885 #if AUDIT_DEBUG
886 context->put_count = 0;
887 context->ino_count = 0;
888 #endif
889
890 list_for_each_entry_safe(n, next, &context->names_list, list) {
891 list_del(&n->list);
892 if (n->name && n->name_put)
893 final_putname(n->name);
894 if (n->should_free)
895 kfree(n);
896 }
897 context->name_count = 0;
898 path_put(&context->pwd);
899 context->pwd.dentry = NULL;
900 context->pwd.mnt = NULL;
901 }
902
903 static inline void audit_free_aux(struct audit_context *context)
904 {
905 struct audit_aux_data *aux;
906
907 while ((aux = context->aux)) {
908 context->aux = aux->next;
909 kfree(aux);
910 }
911 while ((aux = context->aux_pids)) {
912 context->aux_pids = aux->next;
913 kfree(aux);
914 }
915 }
916
917 static inline struct audit_context *audit_alloc_context(enum audit_state state)
918 {
919 struct audit_context *context;
920
921 context = kzalloc(sizeof(*context), GFP_KERNEL);
922 if (!context)
923 return NULL;
924 context->state = state;
925 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
926 INIT_LIST_HEAD(&context->killed_trees);
927 INIT_LIST_HEAD(&context->names_list);
928 return context;
929 }
930
931 /**
932 * audit_alloc - allocate an audit context block for a task
933 * @tsk: task
934 *
935 * Filter on the task information and allocate a per-task audit context
936 * if necessary. Doing so turns on system call auditing for the
937 * specified task. This is called from copy_process, so no lock is
938 * needed.
939 */
940 int audit_alloc(struct task_struct *tsk)
941 {
942 struct audit_context *context;
943 enum audit_state state;
944 char *key = NULL;
945
946 if (likely(!audit_ever_enabled))
947 return 0; /* Return if not auditing. */
948
949 state = audit_filter_task(tsk, &key);
950 if (state == AUDIT_DISABLED) {
951 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
952 return 0;
953 }
954
955 if (!(context = audit_alloc_context(state))) {
956 kfree(key);
957 audit_log_lost("out of memory in audit_alloc");
958 return -ENOMEM;
959 }
960 context->filterkey = key;
961
962 tsk->audit_context = context;
963 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
964 return 0;
965 }
966
967 static inline void audit_free_context(struct audit_context *context)
968 {
969 audit_free_names(context);
970 unroll_tree_refs(context, NULL, 0);
971 free_tree_refs(context);
972 audit_free_aux(context);
973 kfree(context->filterkey);
974 kfree(context->sockaddr);
975 audit_proctitle_free(context);
976 kfree(context);
977 }
978
979 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
980 kuid_t auid, kuid_t uid, unsigned int sessionid,
981 u32 sid, char *comm)
982 {
983 struct audit_buffer *ab;
984 char *ctx = NULL;
985 u32 len;
986 int rc = 0;
987
988 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
989 if (!ab)
990 return rc;
991
992 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
993 from_kuid(&init_user_ns, auid),
994 from_kuid(&init_user_ns, uid), sessionid);
995 if (sid) {
996 if (security_secid_to_secctx(sid, &ctx, &len)) {
997 audit_log_format(ab, " obj=(none)");
998 rc = 1;
999 } else {
1000 audit_log_format(ab, " obj=%s", ctx);
1001 security_release_secctx(ctx, len);
1002 }
1003 }
1004 audit_log_format(ab, " ocomm=");
1005 audit_log_untrustedstring(ab, comm);
1006 audit_log_end(ab);
1007
1008 return rc;
1009 }
1010
1011 /*
1012 * to_send and len_sent accounting are very loose estimates. We aren't
1013 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1014 * within about 500 bytes (next page boundary)
1015 *
1016 * why snprintf? an int is up to 12 digits long. if we just assumed when
1017 * logging that a[%d]= was going to be 16 characters long we would be wasting
1018 * space in every audit message. In one 7500 byte message we can log up to
1019 * about 1000 min size arguments. That comes down to about 50% waste of space
1020 * if we didn't do the snprintf to find out how long arg_num_len was.
1021 */
1022 static int audit_log_single_execve_arg(struct audit_context *context,
1023 struct audit_buffer **ab,
1024 int arg_num,
1025 size_t *len_sent,
1026 const char __user *p,
1027 char *buf)
1028 {
1029 char arg_num_len_buf[12];
1030 const char __user *tmp_p = p;
1031 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1032 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1033 size_t len, len_left, to_send;
1034 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1035 unsigned int i, has_cntl = 0, too_long = 0;
1036 int ret;
1037
1038 /* strnlen_user includes the null we don't want to send */
1039 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1040
1041 /*
1042 * We just created this mm, if we can't find the strings
1043 * we just copied into it something is _very_ wrong. Similar
1044 * for strings that are too long, we should not have created
1045 * any.
1046 */
1047 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1048 WARN_ON(1);
1049 send_sig(SIGKILL, current, 0);
1050 return -1;
1051 }
1052
1053 /* walk the whole argument looking for non-ascii chars */
1054 do {
1055 if (len_left > MAX_EXECVE_AUDIT_LEN)
1056 to_send = MAX_EXECVE_AUDIT_LEN;
1057 else
1058 to_send = len_left;
1059 ret = copy_from_user(buf, tmp_p, to_send);
1060 /*
1061 * There is no reason for this copy to be short. We just
1062 * copied them here, and the mm hasn't been exposed to user-
1063 * space yet.
1064 */
1065 if (ret) {
1066 WARN_ON(1);
1067 send_sig(SIGKILL, current, 0);
1068 return -1;
1069 }
1070 buf[to_send] = '\0';
1071 has_cntl = audit_string_contains_control(buf, to_send);
1072 if (has_cntl) {
1073 /*
1074 * hex messages get logged as 2 bytes, so we can only
1075 * send half as much in each message
1076 */
1077 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1078 break;
1079 }
1080 len_left -= to_send;
1081 tmp_p += to_send;
1082 } while (len_left > 0);
1083
1084 len_left = len;
1085
1086 if (len > max_execve_audit_len)
1087 too_long = 1;
1088
1089 /* rewalk the argument actually logging the message */
1090 for (i = 0; len_left > 0; i++) {
1091 int room_left;
1092
1093 if (len_left > max_execve_audit_len)
1094 to_send = max_execve_audit_len;
1095 else
1096 to_send = len_left;
1097
1098 /* do we have space left to send this argument in this ab? */
1099 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1100 if (has_cntl)
1101 room_left -= (to_send * 2);
1102 else
1103 room_left -= to_send;
1104 if (room_left < 0) {
1105 *len_sent = 0;
1106 audit_log_end(*ab);
1107 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1108 if (!*ab)
1109 return 0;
1110 }
1111
1112 /*
1113 * first record needs to say how long the original string was
1114 * so we can be sure nothing was lost.
1115 */
1116 if ((i == 0) && (too_long))
1117 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1118 has_cntl ? 2*len : len);
1119
1120 /*
1121 * normally arguments are small enough to fit and we already
1122 * filled buf above when we checked for control characters
1123 * so don't bother with another copy_from_user
1124 */
1125 if (len >= max_execve_audit_len)
1126 ret = copy_from_user(buf, p, to_send);
1127 else
1128 ret = 0;
1129 if (ret) {
1130 WARN_ON(1);
1131 send_sig(SIGKILL, current, 0);
1132 return -1;
1133 }
1134 buf[to_send] = '\0';
1135
1136 /* actually log it */
1137 audit_log_format(*ab, " a%d", arg_num);
1138 if (too_long)
1139 audit_log_format(*ab, "[%d]", i);
1140 audit_log_format(*ab, "=");
1141 if (has_cntl)
1142 audit_log_n_hex(*ab, buf, to_send);
1143 else
1144 audit_log_string(*ab, buf);
1145
1146 p += to_send;
1147 len_left -= to_send;
1148 *len_sent += arg_num_len;
1149 if (has_cntl)
1150 *len_sent += to_send * 2;
1151 else
1152 *len_sent += to_send;
1153 }
1154 /* include the null we didn't log */
1155 return len + 1;
1156 }
1157
1158 static void audit_log_execve_info(struct audit_context *context,
1159 struct audit_buffer **ab)
1160 {
1161 int i, len;
1162 size_t len_sent = 0;
1163 const char __user *p;
1164 char *buf;
1165
1166 p = (const char __user *)current->mm->arg_start;
1167
1168 audit_log_format(*ab, "argc=%d", context->execve.argc);
1169
1170 /*
1171 * we need some kernel buffer to hold the userspace args. Just
1172 * allocate one big one rather than allocating one of the right size
1173 * for every single argument inside audit_log_single_execve_arg()
1174 * should be <8k allocation so should be pretty safe.
1175 */
1176 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1177 if (!buf) {
1178 audit_panic("out of memory for argv string");
1179 return;
1180 }
1181
1182 for (i = 0; i < context->execve.argc; i++) {
1183 len = audit_log_single_execve_arg(context, ab, i,
1184 &len_sent, p, buf);
1185 if (len <= 0)
1186 break;
1187 p += len;
1188 }
1189 kfree(buf);
1190 }
1191
1192 static void show_special(struct audit_context *context, int *call_panic)
1193 {
1194 struct audit_buffer *ab;
1195 int i;
1196
1197 ab = audit_log_start(context, GFP_KERNEL, context->type);
1198 if (!ab)
1199 return;
1200
1201 switch (context->type) {
1202 case AUDIT_SOCKETCALL: {
1203 int nargs = context->socketcall.nargs;
1204 audit_log_format(ab, "nargs=%d", nargs);
1205 for (i = 0; i < nargs; i++)
1206 audit_log_format(ab, " a%d=%lx", i,
1207 context->socketcall.args[i]);
1208 break; }
1209 case AUDIT_IPC: {
1210 u32 osid = context->ipc.osid;
1211
1212 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1213 from_kuid(&init_user_ns, context->ipc.uid),
1214 from_kgid(&init_user_ns, context->ipc.gid),
1215 context->ipc.mode);
1216 if (osid) {
1217 char *ctx = NULL;
1218 u32 len;
1219 if (security_secid_to_secctx(osid, &ctx, &len)) {
1220 audit_log_format(ab, " osid=%u", osid);
1221 *call_panic = 1;
1222 } else {
1223 audit_log_format(ab, " obj=%s", ctx);
1224 security_release_secctx(ctx, len);
1225 }
1226 }
1227 if (context->ipc.has_perm) {
1228 audit_log_end(ab);
1229 ab = audit_log_start(context, GFP_KERNEL,
1230 AUDIT_IPC_SET_PERM);
1231 if (unlikely(!ab))
1232 return;
1233 audit_log_format(ab,
1234 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1235 context->ipc.qbytes,
1236 context->ipc.perm_uid,
1237 context->ipc.perm_gid,
1238 context->ipc.perm_mode);
1239 }
1240 break; }
1241 case AUDIT_MQ_OPEN: {
1242 audit_log_format(ab,
1243 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1244 "mq_msgsize=%ld mq_curmsgs=%ld",
1245 context->mq_open.oflag, context->mq_open.mode,
1246 context->mq_open.attr.mq_flags,
1247 context->mq_open.attr.mq_maxmsg,
1248 context->mq_open.attr.mq_msgsize,
1249 context->mq_open.attr.mq_curmsgs);
1250 break; }
1251 case AUDIT_MQ_SENDRECV: {
1252 audit_log_format(ab,
1253 "mqdes=%d msg_len=%zd msg_prio=%u "
1254 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1255 context->mq_sendrecv.mqdes,
1256 context->mq_sendrecv.msg_len,
1257 context->mq_sendrecv.msg_prio,
1258 context->mq_sendrecv.abs_timeout.tv_sec,
1259 context->mq_sendrecv.abs_timeout.tv_nsec);
1260 break; }
1261 case AUDIT_MQ_NOTIFY: {
1262 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1263 context->mq_notify.mqdes,
1264 context->mq_notify.sigev_signo);
1265 break; }
1266 case AUDIT_MQ_GETSETATTR: {
1267 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1268 audit_log_format(ab,
1269 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1270 "mq_curmsgs=%ld ",
1271 context->mq_getsetattr.mqdes,
1272 attr->mq_flags, attr->mq_maxmsg,
1273 attr->mq_msgsize, attr->mq_curmsgs);
1274 break; }
1275 case AUDIT_CAPSET: {
1276 audit_log_format(ab, "pid=%d", context->capset.pid);
1277 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1278 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1279 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1280 break; }
1281 case AUDIT_MMAP: {
1282 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1283 context->mmap.flags);
1284 break; }
1285 case AUDIT_EXECVE: {
1286 audit_log_execve_info(context, &ab);
1287 break; }
1288 }
1289 audit_log_end(ab);
1290 }
1291
1292 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1293 {
1294 char *end = proctitle + len - 1;
1295 while (end > proctitle && !isprint(*end))
1296 end--;
1297
1298 /* catch the case where proctitle is only 1 non-print character */
1299 len = end - proctitle + 1;
1300 len -= isprint(proctitle[len-1]) == 0;
1301 return len;
1302 }
1303
1304 static void audit_log_proctitle(struct task_struct *tsk,
1305 struct audit_context *context)
1306 {
1307 int res;
1308 char *buf;
1309 char *msg = "(null)";
1310 int len = strlen(msg);
1311 struct audit_buffer *ab;
1312
1313 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1314 if (!ab)
1315 return; /* audit_panic or being filtered */
1316
1317 audit_log_format(ab, "proctitle=");
1318
1319 /* Not cached */
1320 if (!context->proctitle.value) {
1321 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1322 if (!buf)
1323 goto out;
1324 /* Historically called this from procfs naming */
1325 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1326 if (res == 0) {
1327 kfree(buf);
1328 goto out;
1329 }
1330 res = audit_proctitle_rtrim(buf, res);
1331 if (res == 0) {
1332 kfree(buf);
1333 goto out;
1334 }
1335 context->proctitle.value = buf;
1336 context->proctitle.len = res;
1337 }
1338 msg = context->proctitle.value;
1339 len = context->proctitle.len;
1340 out:
1341 audit_log_n_untrustedstring(ab, msg, len);
1342 audit_log_end(ab);
1343 }
1344
1345 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1346 {
1347 int i, call_panic = 0;
1348 struct audit_buffer *ab;
1349 struct audit_aux_data *aux;
1350 struct audit_names *n;
1351
1352 /* tsk == current */
1353 context->personality = tsk->personality;
1354
1355 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1356 if (!ab)
1357 return; /* audit_panic has been called */
1358 audit_log_format(ab, "arch=%x syscall=%d",
1359 context->arch, context->major);
1360 if (context->personality != PER_LINUX)
1361 audit_log_format(ab, " per=%lx", context->personality);
1362 if (context->return_valid)
1363 audit_log_format(ab, " success=%s exit=%ld",
1364 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1365 context->return_code);
1366
1367 audit_log_format(ab,
1368 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1369 context->argv[0],
1370 context->argv[1],
1371 context->argv[2],
1372 context->argv[3],
1373 context->name_count);
1374
1375 audit_log_task_info(ab, tsk);
1376 audit_log_key(ab, context->filterkey);
1377 audit_log_end(ab);
1378
1379 for (aux = context->aux; aux; aux = aux->next) {
1380
1381 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1382 if (!ab)
1383 continue; /* audit_panic has been called */
1384
1385 switch (aux->type) {
1386
1387 case AUDIT_BPRM_FCAPS: {
1388 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1389 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1390 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1391 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1392 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1393 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1394 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1395 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1396 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1397 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1398 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1399 break; }
1400
1401 }
1402 audit_log_end(ab);
1403 }
1404
1405 if (context->type)
1406 show_special(context, &call_panic);
1407
1408 if (context->fds[0] >= 0) {
1409 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1410 if (ab) {
1411 audit_log_format(ab, "fd0=%d fd1=%d",
1412 context->fds[0], context->fds[1]);
1413 audit_log_end(ab);
1414 }
1415 }
1416
1417 if (context->sockaddr_len) {
1418 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1419 if (ab) {
1420 audit_log_format(ab, "saddr=");
1421 audit_log_n_hex(ab, (void *)context->sockaddr,
1422 context->sockaddr_len);
1423 audit_log_end(ab);
1424 }
1425 }
1426
1427 for (aux = context->aux_pids; aux; aux = aux->next) {
1428 struct audit_aux_data_pids *axs = (void *)aux;
1429
1430 for (i = 0; i < axs->pid_count; i++)
1431 if (audit_log_pid_context(context, axs->target_pid[i],
1432 axs->target_auid[i],
1433 axs->target_uid[i],
1434 axs->target_sessionid[i],
1435 axs->target_sid[i],
1436 axs->target_comm[i]))
1437 call_panic = 1;
1438 }
1439
1440 if (context->target_pid &&
1441 audit_log_pid_context(context, context->target_pid,
1442 context->target_auid, context->target_uid,
1443 context->target_sessionid,
1444 context->target_sid, context->target_comm))
1445 call_panic = 1;
1446
1447 if (context->pwd.dentry && context->pwd.mnt) {
1448 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1449 if (ab) {
1450 audit_log_d_path(ab, " cwd=", &context->pwd);
1451 audit_log_end(ab);
1452 }
1453 }
1454
1455 i = 0;
1456 list_for_each_entry(n, &context->names_list, list) {
1457 if (n->hidden)
1458 continue;
1459 audit_log_name(context, n, NULL, i++, &call_panic);
1460 }
1461
1462 audit_log_proctitle(tsk, context);
1463
1464 /* Send end of event record to help user space know we are finished */
1465 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1466 if (ab)
1467 audit_log_end(ab);
1468 if (call_panic)
1469 audit_panic("error converting sid to string");
1470 }
1471
1472 /**
1473 * audit_free - free a per-task audit context
1474 * @tsk: task whose audit context block to free
1475 *
1476 * Called from copy_process and do_exit
1477 */
1478 void __audit_free(struct task_struct *tsk)
1479 {
1480 struct audit_context *context;
1481
1482 context = audit_take_context(tsk, 0, 0);
1483 if (!context)
1484 return;
1485
1486 /* Check for system calls that do not go through the exit
1487 * function (e.g., exit_group), then free context block.
1488 * We use GFP_ATOMIC here because we might be doing this
1489 * in the context of the idle thread */
1490 /* that can happen only if we are called from do_exit() */
1491 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1492 audit_log_exit(context, tsk);
1493 if (!list_empty(&context->killed_trees))
1494 audit_kill_trees(&context->killed_trees);
1495
1496 audit_free_context(context);
1497 }
1498
1499 /**
1500 * audit_syscall_entry - fill in an audit record at syscall entry
1501 * @major: major syscall type (function)
1502 * @a1: additional syscall register 1
1503 * @a2: additional syscall register 2
1504 * @a3: additional syscall register 3
1505 * @a4: additional syscall register 4
1506 *
1507 * Fill in audit context at syscall entry. This only happens if the
1508 * audit context was created when the task was created and the state or
1509 * filters demand the audit context be built. If the state from the
1510 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1511 * then the record will be written at syscall exit time (otherwise, it
1512 * will only be written if another part of the kernel requests that it
1513 * be written).
1514 */
1515 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1516 unsigned long a3, unsigned long a4)
1517 {
1518 struct task_struct *tsk = current;
1519 struct audit_context *context = tsk->audit_context;
1520 enum audit_state state;
1521
1522 if (!context)
1523 return;
1524
1525 BUG_ON(context->in_syscall || context->name_count);
1526
1527 if (!audit_enabled)
1528 return;
1529
1530 context->arch = syscall_get_arch();
1531 context->major = major;
1532 context->argv[0] = a1;
1533 context->argv[1] = a2;
1534 context->argv[2] = a3;
1535 context->argv[3] = a4;
1536
1537 state = context->state;
1538 context->dummy = !audit_n_rules;
1539 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1540 context->prio = 0;
1541 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1542 }
1543 if (state == AUDIT_DISABLED)
1544 return;
1545
1546 context->serial = 0;
1547 context->ctime = CURRENT_TIME;
1548 context->in_syscall = 1;
1549 context->current_state = state;
1550 context->ppid = 0;
1551 }
1552
1553 /**
1554 * audit_syscall_exit - deallocate audit context after a system call
1555 * @success: success value of the syscall
1556 * @return_code: return value of the syscall
1557 *
1558 * Tear down after system call. If the audit context has been marked as
1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1560 * filtering, or because some other part of the kernel wrote an audit
1561 * message), then write out the syscall information. In call cases,
1562 * free the names stored from getname().
1563 */
1564 void __audit_syscall_exit(int success, long return_code)
1565 {
1566 struct task_struct *tsk = current;
1567 struct audit_context *context;
1568
1569 if (success)
1570 success = AUDITSC_SUCCESS;
1571 else
1572 success = AUDITSC_FAILURE;
1573
1574 context = audit_take_context(tsk, success, return_code);
1575 if (!context)
1576 return;
1577
1578 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1579 audit_log_exit(context, tsk);
1580
1581 context->in_syscall = 0;
1582 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1583
1584 if (!list_empty(&context->killed_trees))
1585 audit_kill_trees(&context->killed_trees);
1586
1587 audit_free_names(context);
1588 unroll_tree_refs(context, NULL, 0);
1589 audit_free_aux(context);
1590 context->aux = NULL;
1591 context->aux_pids = NULL;
1592 context->target_pid = 0;
1593 context->target_sid = 0;
1594 context->sockaddr_len = 0;
1595 context->type = 0;
1596 context->fds[0] = -1;
1597 if (context->state != AUDIT_RECORD_CONTEXT) {
1598 kfree(context->filterkey);
1599 context->filterkey = NULL;
1600 }
1601 tsk->audit_context = context;
1602 }
1603
1604 static inline void handle_one(const struct inode *inode)
1605 {
1606 #ifdef CONFIG_AUDIT_TREE
1607 struct audit_context *context;
1608 struct audit_tree_refs *p;
1609 struct audit_chunk *chunk;
1610 int count;
1611 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1612 return;
1613 context = current->audit_context;
1614 p = context->trees;
1615 count = context->tree_count;
1616 rcu_read_lock();
1617 chunk = audit_tree_lookup(inode);
1618 rcu_read_unlock();
1619 if (!chunk)
1620 return;
1621 if (likely(put_tree_ref(context, chunk)))
1622 return;
1623 if (unlikely(!grow_tree_refs(context))) {
1624 pr_warn("out of memory, audit has lost a tree reference\n");
1625 audit_set_auditable(context);
1626 audit_put_chunk(chunk);
1627 unroll_tree_refs(context, p, count);
1628 return;
1629 }
1630 put_tree_ref(context, chunk);
1631 #endif
1632 }
1633
1634 static void handle_path(const struct dentry *dentry)
1635 {
1636 #ifdef CONFIG_AUDIT_TREE
1637 struct audit_context *context;
1638 struct audit_tree_refs *p;
1639 const struct dentry *d, *parent;
1640 struct audit_chunk *drop;
1641 unsigned long seq;
1642 int count;
1643
1644 context = current->audit_context;
1645 p = context->trees;
1646 count = context->tree_count;
1647 retry:
1648 drop = NULL;
1649 d = dentry;
1650 rcu_read_lock();
1651 seq = read_seqbegin(&rename_lock);
1652 for(;;) {
1653 struct inode *inode = d->d_inode;
1654 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1655 struct audit_chunk *chunk;
1656 chunk = audit_tree_lookup(inode);
1657 if (chunk) {
1658 if (unlikely(!put_tree_ref(context, chunk))) {
1659 drop = chunk;
1660 break;
1661 }
1662 }
1663 }
1664 parent = d->d_parent;
1665 if (parent == d)
1666 break;
1667 d = parent;
1668 }
1669 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1670 rcu_read_unlock();
1671 if (!drop) {
1672 /* just a race with rename */
1673 unroll_tree_refs(context, p, count);
1674 goto retry;
1675 }
1676 audit_put_chunk(drop);
1677 if (grow_tree_refs(context)) {
1678 /* OK, got more space */
1679 unroll_tree_refs(context, p, count);
1680 goto retry;
1681 }
1682 /* too bad */
1683 pr_warn("out of memory, audit has lost a tree reference\n");
1684 unroll_tree_refs(context, p, count);
1685 audit_set_auditable(context);
1686 return;
1687 }
1688 rcu_read_unlock();
1689 #endif
1690 }
1691
1692 static struct audit_names *audit_alloc_name(struct audit_context *context,
1693 unsigned char type)
1694 {
1695 struct audit_names *aname;
1696
1697 if (context->name_count < AUDIT_NAMES) {
1698 aname = &context->preallocated_names[context->name_count];
1699 memset(aname, 0, sizeof(*aname));
1700 } else {
1701 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1702 if (!aname)
1703 return NULL;
1704 aname->should_free = true;
1705 }
1706
1707 aname->ino = (unsigned long)-1;
1708 aname->type = type;
1709 list_add_tail(&aname->list, &context->names_list);
1710
1711 context->name_count++;
1712 #if AUDIT_DEBUG
1713 context->ino_count++;
1714 #endif
1715 return aname;
1716 }
1717
1718 /**
1719 * audit_reusename - fill out filename with info from existing entry
1720 * @uptr: userland ptr to pathname
1721 *
1722 * Search the audit_names list for the current audit context. If there is an
1723 * existing entry with a matching "uptr" then return the filename
1724 * associated with that audit_name. If not, return NULL.
1725 */
1726 struct filename *
1727 __audit_reusename(const __user char *uptr)
1728 {
1729 struct audit_context *context = current->audit_context;
1730 struct audit_names *n;
1731
1732 list_for_each_entry(n, &context->names_list, list) {
1733 if (!n->name)
1734 continue;
1735 if (n->name->uptr == uptr)
1736 return n->name;
1737 }
1738 return NULL;
1739 }
1740
1741 /**
1742 * audit_getname - add a name to the list
1743 * @name: name to add
1744 *
1745 * Add a name to the list of audit names for this context.
1746 * Called from fs/namei.c:getname().
1747 */
1748 void __audit_getname(struct filename *name)
1749 {
1750 struct audit_context *context = current->audit_context;
1751 struct audit_names *n;
1752
1753 if (!context->in_syscall) {
1754 #if AUDIT_DEBUG == 2
1755 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1756 __FILE__, __LINE__, context->serial, name);
1757 dump_stack();
1758 #endif
1759 return;
1760 }
1761
1762 #if AUDIT_DEBUG
1763 /* The filename _must_ have a populated ->name */
1764 BUG_ON(!name->name);
1765 #endif
1766
1767 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1768 if (!n)
1769 return;
1770
1771 n->name = name;
1772 n->name_len = AUDIT_NAME_FULL;
1773 n->name_put = true;
1774 name->aname = n;
1775
1776 if (!context->pwd.dentry)
1777 get_fs_pwd(current->fs, &context->pwd);
1778 }
1779
1780 /* audit_putname - intercept a putname request
1781 * @name: name to intercept and delay for putname
1782 *
1783 * If we have stored the name from getname in the audit context,
1784 * then we delay the putname until syscall exit.
1785 * Called from include/linux/fs.h:putname().
1786 */
1787 void audit_putname(struct filename *name)
1788 {
1789 struct audit_context *context = current->audit_context;
1790
1791 BUG_ON(!context);
1792 if (!name->aname || !context->in_syscall) {
1793 #if AUDIT_DEBUG == 2
1794 pr_err("%s:%d(:%d): final_putname(%p)\n",
1795 __FILE__, __LINE__, context->serial, name);
1796 if (context->name_count) {
1797 struct audit_names *n;
1798 int i = 0;
1799
1800 list_for_each_entry(n, &context->names_list, list)
1801 pr_err("name[%d] = %p = %s\n", i++, n->name,
1802 n->name->name ?: "(null)");
1803 }
1804 #endif
1805 final_putname(name);
1806 }
1807 #if AUDIT_DEBUG
1808 else {
1809 ++context->put_count;
1810 if (context->put_count > context->name_count) {
1811 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1812 " name_count=%d put_count=%d\n",
1813 __FILE__, __LINE__,
1814 context->serial, context->major,
1815 context->in_syscall, name->name,
1816 context->name_count, context->put_count);
1817 dump_stack();
1818 }
1819 }
1820 #endif
1821 }
1822
1823 /**
1824 * __audit_inode - store the inode and device from a lookup
1825 * @name: name being audited
1826 * @dentry: dentry being audited
1827 * @flags: attributes for this particular entry
1828 */
1829 void __audit_inode(struct filename *name, const struct dentry *dentry,
1830 unsigned int flags)
1831 {
1832 struct audit_context *context = current->audit_context;
1833 const struct inode *inode = dentry->d_inode;
1834 struct audit_names *n;
1835 bool parent = flags & AUDIT_INODE_PARENT;
1836
1837 if (!context->in_syscall)
1838 return;
1839
1840 if (!name)
1841 goto out_alloc;
1842
1843 #if AUDIT_DEBUG
1844 /* The struct filename _must_ have a populated ->name */
1845 BUG_ON(!name->name);
1846 #endif
1847 /*
1848 * If we have a pointer to an audit_names entry already, then we can
1849 * just use it directly if the type is correct.
1850 */
1851 n = name->aname;
1852 if (n) {
1853 if (parent) {
1854 if (n->type == AUDIT_TYPE_PARENT ||
1855 n->type == AUDIT_TYPE_UNKNOWN)
1856 goto out;
1857 } else {
1858 if (n->type != AUDIT_TYPE_PARENT)
1859 goto out;
1860 }
1861 }
1862
1863 list_for_each_entry_reverse(n, &context->names_list, list) {
1864 /* does the name pointer match? */
1865 if (!n->name || n->name->name != name->name)
1866 continue;
1867
1868 /* match the correct record type */
1869 if (parent) {
1870 if (n->type == AUDIT_TYPE_PARENT ||
1871 n->type == AUDIT_TYPE_UNKNOWN)
1872 goto out;
1873 } else {
1874 if (n->type != AUDIT_TYPE_PARENT)
1875 goto out;
1876 }
1877 }
1878
1879 out_alloc:
1880 /* unable to find the name from a previous getname(). Allocate a new
1881 * anonymous entry.
1882 */
1883 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
1884 if (!n)
1885 return;
1886 out:
1887 if (parent) {
1888 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1889 n->type = AUDIT_TYPE_PARENT;
1890 if (flags & AUDIT_INODE_HIDDEN)
1891 n->hidden = true;
1892 } else {
1893 n->name_len = AUDIT_NAME_FULL;
1894 n->type = AUDIT_TYPE_NORMAL;
1895 }
1896 handle_path(dentry);
1897 audit_copy_inode(n, dentry, inode);
1898 }
1899
1900 void __audit_file(const struct file *file)
1901 {
1902 __audit_inode(NULL, file->f_path.dentry, 0);
1903 }
1904
1905 /**
1906 * __audit_inode_child - collect inode info for created/removed objects
1907 * @parent: inode of dentry parent
1908 * @dentry: dentry being audited
1909 * @type: AUDIT_TYPE_* value that we're looking for
1910 *
1911 * For syscalls that create or remove filesystem objects, audit_inode
1912 * can only collect information for the filesystem object's parent.
1913 * This call updates the audit context with the child's information.
1914 * Syscalls that create a new filesystem object must be hooked after
1915 * the object is created. Syscalls that remove a filesystem object
1916 * must be hooked prior, in order to capture the target inode during
1917 * unsuccessful attempts.
1918 */
1919 void __audit_inode_child(const struct inode *parent,
1920 const struct dentry *dentry,
1921 const unsigned char type)
1922 {
1923 struct audit_context *context = current->audit_context;
1924 const struct inode *inode = dentry->d_inode;
1925 const char *dname = dentry->d_name.name;
1926 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1927
1928 if (!context->in_syscall)
1929 return;
1930
1931 if (inode)
1932 handle_one(inode);
1933
1934 /* look for a parent entry first */
1935 list_for_each_entry(n, &context->names_list, list) {
1936 if (!n->name || n->type != AUDIT_TYPE_PARENT)
1937 continue;
1938
1939 if (n->ino == parent->i_ino &&
1940 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1941 found_parent = n;
1942 break;
1943 }
1944 }
1945
1946 /* is there a matching child entry? */
1947 list_for_each_entry(n, &context->names_list, list) {
1948 /* can only match entries that have a name */
1949 if (!n->name || n->type != type)
1950 continue;
1951
1952 /* if we found a parent, make sure this one is a child of it */
1953 if (found_parent && (n->name != found_parent->name))
1954 continue;
1955
1956 if (!strcmp(dname, n->name->name) ||
1957 !audit_compare_dname_path(dname, n->name->name,
1958 found_parent ?
1959 found_parent->name_len :
1960 AUDIT_NAME_FULL)) {
1961 found_child = n;
1962 break;
1963 }
1964 }
1965
1966 if (!found_parent) {
1967 /* create a new, "anonymous" parent record */
1968 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1969 if (!n)
1970 return;
1971 audit_copy_inode(n, NULL, parent);
1972 }
1973
1974 if (!found_child) {
1975 found_child = audit_alloc_name(context, type);
1976 if (!found_child)
1977 return;
1978
1979 /* Re-use the name belonging to the slot for a matching parent
1980 * directory. All names for this context are relinquished in
1981 * audit_free_names() */
1982 if (found_parent) {
1983 found_child->name = found_parent->name;
1984 found_child->name_len = AUDIT_NAME_FULL;
1985 /* don't call __putname() */
1986 found_child->name_put = false;
1987 }
1988 }
1989 if (inode)
1990 audit_copy_inode(found_child, dentry, inode);
1991 else
1992 found_child->ino = (unsigned long)-1;
1993 }
1994 EXPORT_SYMBOL_GPL(__audit_inode_child);
1995
1996 /**
1997 * auditsc_get_stamp - get local copies of audit_context values
1998 * @ctx: audit_context for the task
1999 * @t: timespec to store time recorded in the audit_context
2000 * @serial: serial value that is recorded in the audit_context
2001 *
2002 * Also sets the context as auditable.
2003 */
2004 int auditsc_get_stamp(struct audit_context *ctx,
2005 struct timespec *t, unsigned int *serial)
2006 {
2007 if (!ctx->in_syscall)
2008 return 0;
2009 if (!ctx->serial)
2010 ctx->serial = audit_serial();
2011 t->tv_sec = ctx->ctime.tv_sec;
2012 t->tv_nsec = ctx->ctime.tv_nsec;
2013 *serial = ctx->serial;
2014 if (!ctx->prio) {
2015 ctx->prio = 1;
2016 ctx->current_state = AUDIT_RECORD_CONTEXT;
2017 }
2018 return 1;
2019 }
2020
2021 /* global counter which is incremented every time something logs in */
2022 static atomic_t session_id = ATOMIC_INIT(0);
2023
2024 static int audit_set_loginuid_perm(kuid_t loginuid)
2025 {
2026 /* if we are unset, we don't need privs */
2027 if (!audit_loginuid_set(current))
2028 return 0;
2029 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2030 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2031 return -EPERM;
2032 /* it is set, you need permission */
2033 if (!capable(CAP_AUDIT_CONTROL))
2034 return -EPERM;
2035 /* reject if this is not an unset and we don't allow that */
2036 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2037 return -EPERM;
2038 return 0;
2039 }
2040
2041 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2042 unsigned int oldsessionid, unsigned int sessionid,
2043 int rc)
2044 {
2045 struct audit_buffer *ab;
2046 uid_t uid, oldloginuid, loginuid;
2047
2048 if (!audit_enabled)
2049 return;
2050
2051 uid = from_kuid(&init_user_ns, task_uid(current));
2052 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2053 loginuid = from_kuid(&init_user_ns, kloginuid),
2054
2055 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2056 if (!ab)
2057 return;
2058 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2059 audit_log_task_context(ab);
2060 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2061 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
2062 audit_log_end(ab);
2063 }
2064
2065 /**
2066 * audit_set_loginuid - set current task's audit_context loginuid
2067 * @loginuid: loginuid value
2068 *
2069 * Returns 0.
2070 *
2071 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2072 */
2073 int audit_set_loginuid(kuid_t loginuid)
2074 {
2075 struct task_struct *task = current;
2076 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2077 kuid_t oldloginuid;
2078 int rc;
2079
2080 oldloginuid = audit_get_loginuid(current);
2081 oldsessionid = audit_get_sessionid(current);
2082
2083 rc = audit_set_loginuid_perm(loginuid);
2084 if (rc)
2085 goto out;
2086
2087 /* are we setting or clearing? */
2088 if (uid_valid(loginuid))
2089 sessionid = (unsigned int)atomic_inc_return(&session_id);
2090
2091 task->sessionid = sessionid;
2092 task->loginuid = loginuid;
2093 out:
2094 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2095 return rc;
2096 }
2097
2098 /**
2099 * __audit_mq_open - record audit data for a POSIX MQ open
2100 * @oflag: open flag
2101 * @mode: mode bits
2102 * @attr: queue attributes
2103 *
2104 */
2105 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2106 {
2107 struct audit_context *context = current->audit_context;
2108
2109 if (attr)
2110 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2111 else
2112 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2113
2114 context->mq_open.oflag = oflag;
2115 context->mq_open.mode = mode;
2116
2117 context->type = AUDIT_MQ_OPEN;
2118 }
2119
2120 /**
2121 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2122 * @mqdes: MQ descriptor
2123 * @msg_len: Message length
2124 * @msg_prio: Message priority
2125 * @abs_timeout: Message timeout in absolute time
2126 *
2127 */
2128 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2129 const struct timespec *abs_timeout)
2130 {
2131 struct audit_context *context = current->audit_context;
2132 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2133
2134 if (abs_timeout)
2135 memcpy(p, abs_timeout, sizeof(struct timespec));
2136 else
2137 memset(p, 0, sizeof(struct timespec));
2138
2139 context->mq_sendrecv.mqdes = mqdes;
2140 context->mq_sendrecv.msg_len = msg_len;
2141 context->mq_sendrecv.msg_prio = msg_prio;
2142
2143 context->type = AUDIT_MQ_SENDRECV;
2144 }
2145
2146 /**
2147 * __audit_mq_notify - record audit data for a POSIX MQ notify
2148 * @mqdes: MQ descriptor
2149 * @notification: Notification event
2150 *
2151 */
2152
2153 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2154 {
2155 struct audit_context *context = current->audit_context;
2156
2157 if (notification)
2158 context->mq_notify.sigev_signo = notification->sigev_signo;
2159 else
2160 context->mq_notify.sigev_signo = 0;
2161
2162 context->mq_notify.mqdes = mqdes;
2163 context->type = AUDIT_MQ_NOTIFY;
2164 }
2165
2166 /**
2167 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2168 * @mqdes: MQ descriptor
2169 * @mqstat: MQ flags
2170 *
2171 */
2172 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2173 {
2174 struct audit_context *context = current->audit_context;
2175 context->mq_getsetattr.mqdes = mqdes;
2176 context->mq_getsetattr.mqstat = *mqstat;
2177 context->type = AUDIT_MQ_GETSETATTR;
2178 }
2179
2180 /**
2181 * audit_ipc_obj - record audit data for ipc object
2182 * @ipcp: ipc permissions
2183 *
2184 */
2185 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2186 {
2187 struct audit_context *context = current->audit_context;
2188 context->ipc.uid = ipcp->uid;
2189 context->ipc.gid = ipcp->gid;
2190 context->ipc.mode = ipcp->mode;
2191 context->ipc.has_perm = 0;
2192 security_ipc_getsecid(ipcp, &context->ipc.osid);
2193 context->type = AUDIT_IPC;
2194 }
2195
2196 /**
2197 * audit_ipc_set_perm - record audit data for new ipc permissions
2198 * @qbytes: msgq bytes
2199 * @uid: msgq user id
2200 * @gid: msgq group id
2201 * @mode: msgq mode (permissions)
2202 *
2203 * Called only after audit_ipc_obj().
2204 */
2205 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2206 {
2207 struct audit_context *context = current->audit_context;
2208
2209 context->ipc.qbytes = qbytes;
2210 context->ipc.perm_uid = uid;
2211 context->ipc.perm_gid = gid;
2212 context->ipc.perm_mode = mode;
2213 context->ipc.has_perm = 1;
2214 }
2215
2216 void __audit_bprm(struct linux_binprm *bprm)
2217 {
2218 struct audit_context *context = current->audit_context;
2219
2220 context->type = AUDIT_EXECVE;
2221 context->execve.argc = bprm->argc;
2222 }
2223
2224
2225 /**
2226 * audit_socketcall - record audit data for sys_socketcall
2227 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2228 * @args: args array
2229 *
2230 */
2231 int __audit_socketcall(int nargs, unsigned long *args)
2232 {
2233 struct audit_context *context = current->audit_context;
2234
2235 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2236 return -EINVAL;
2237 context->type = AUDIT_SOCKETCALL;
2238 context->socketcall.nargs = nargs;
2239 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2240 return 0;
2241 }
2242
2243 /**
2244 * __audit_fd_pair - record audit data for pipe and socketpair
2245 * @fd1: the first file descriptor
2246 * @fd2: the second file descriptor
2247 *
2248 */
2249 void __audit_fd_pair(int fd1, int fd2)
2250 {
2251 struct audit_context *context = current->audit_context;
2252 context->fds[0] = fd1;
2253 context->fds[1] = fd2;
2254 }
2255
2256 /**
2257 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2258 * @len: data length in user space
2259 * @a: data address in kernel space
2260 *
2261 * Returns 0 for success or NULL context or < 0 on error.
2262 */
2263 int __audit_sockaddr(int len, void *a)
2264 {
2265 struct audit_context *context = current->audit_context;
2266
2267 if (!context->sockaddr) {
2268 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2269 if (!p)
2270 return -ENOMEM;
2271 context->sockaddr = p;
2272 }
2273
2274 context->sockaddr_len = len;
2275 memcpy(context->sockaddr, a, len);
2276 return 0;
2277 }
2278
2279 void __audit_ptrace(struct task_struct *t)
2280 {
2281 struct audit_context *context = current->audit_context;
2282
2283 context->target_pid = task_pid_nr(t);
2284 context->target_auid = audit_get_loginuid(t);
2285 context->target_uid = task_uid(t);
2286 context->target_sessionid = audit_get_sessionid(t);
2287 security_task_getsecid(t, &context->target_sid);
2288 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2289 }
2290
2291 /**
2292 * audit_signal_info - record signal info for shutting down audit subsystem
2293 * @sig: signal value
2294 * @t: task being signaled
2295 *
2296 * If the audit subsystem is being terminated, record the task (pid)
2297 * and uid that is doing that.
2298 */
2299 int __audit_signal_info(int sig, struct task_struct *t)
2300 {
2301 struct audit_aux_data_pids *axp;
2302 struct task_struct *tsk = current;
2303 struct audit_context *ctx = tsk->audit_context;
2304 kuid_t uid = current_uid(), t_uid = task_uid(t);
2305
2306 if (audit_pid && t->tgid == audit_pid) {
2307 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2308 audit_sig_pid = task_pid_nr(tsk);
2309 if (uid_valid(tsk->loginuid))
2310 audit_sig_uid = tsk->loginuid;
2311 else
2312 audit_sig_uid = uid;
2313 security_task_getsecid(tsk, &audit_sig_sid);
2314 }
2315 if (!audit_signals || audit_dummy_context())
2316 return 0;
2317 }
2318
2319 /* optimize the common case by putting first signal recipient directly
2320 * in audit_context */
2321 if (!ctx->target_pid) {
2322 ctx->target_pid = task_tgid_nr(t);
2323 ctx->target_auid = audit_get_loginuid(t);
2324 ctx->target_uid = t_uid;
2325 ctx->target_sessionid = audit_get_sessionid(t);
2326 security_task_getsecid(t, &ctx->target_sid);
2327 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2328 return 0;
2329 }
2330
2331 axp = (void *)ctx->aux_pids;
2332 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2333 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2334 if (!axp)
2335 return -ENOMEM;
2336
2337 axp->d.type = AUDIT_OBJ_PID;
2338 axp->d.next = ctx->aux_pids;
2339 ctx->aux_pids = (void *)axp;
2340 }
2341 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2342
2343 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2344 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2345 axp->target_uid[axp->pid_count] = t_uid;
2346 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2347 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2348 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2349 axp->pid_count++;
2350
2351 return 0;
2352 }
2353
2354 /**
2355 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2356 * @bprm: pointer to the bprm being processed
2357 * @new: the proposed new credentials
2358 * @old: the old credentials
2359 *
2360 * Simply check if the proc already has the caps given by the file and if not
2361 * store the priv escalation info for later auditing at the end of the syscall
2362 *
2363 * -Eric
2364 */
2365 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2366 const struct cred *new, const struct cred *old)
2367 {
2368 struct audit_aux_data_bprm_fcaps *ax;
2369 struct audit_context *context = current->audit_context;
2370 struct cpu_vfs_cap_data vcaps;
2371 struct dentry *dentry;
2372
2373 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2374 if (!ax)
2375 return -ENOMEM;
2376
2377 ax->d.type = AUDIT_BPRM_FCAPS;
2378 ax->d.next = context->aux;
2379 context->aux = (void *)ax;
2380
2381 dentry = dget(bprm->file->f_path.dentry);
2382 get_vfs_caps_from_disk(dentry, &vcaps);
2383 dput(dentry);
2384
2385 ax->fcap.permitted = vcaps.permitted;
2386 ax->fcap.inheritable = vcaps.inheritable;
2387 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2388 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2389
2390 ax->old_pcap.permitted = old->cap_permitted;
2391 ax->old_pcap.inheritable = old->cap_inheritable;
2392 ax->old_pcap.effective = old->cap_effective;
2393
2394 ax->new_pcap.permitted = new->cap_permitted;
2395 ax->new_pcap.inheritable = new->cap_inheritable;
2396 ax->new_pcap.effective = new->cap_effective;
2397 return 0;
2398 }
2399
2400 /**
2401 * __audit_log_capset - store information about the arguments to the capset syscall
2402 * @new: the new credentials
2403 * @old: the old (current) credentials
2404 *
2405 * Record the arguments userspace sent to sys_capset for later printing by the
2406 * audit system if applicable
2407 */
2408 void __audit_log_capset(const struct cred *new, const struct cred *old)
2409 {
2410 struct audit_context *context = current->audit_context;
2411 context->capset.pid = task_pid_nr(current);
2412 context->capset.cap.effective = new->cap_effective;
2413 context->capset.cap.inheritable = new->cap_effective;
2414 context->capset.cap.permitted = new->cap_permitted;
2415 context->type = AUDIT_CAPSET;
2416 }
2417
2418 void __audit_mmap_fd(int fd, int flags)
2419 {
2420 struct audit_context *context = current->audit_context;
2421 context->mmap.fd = fd;
2422 context->mmap.flags = flags;
2423 context->type = AUDIT_MMAP;
2424 }
2425
2426 static void audit_log_task(struct audit_buffer *ab)
2427 {
2428 kuid_t auid, uid;
2429 kgid_t gid;
2430 unsigned int sessionid;
2431 struct mm_struct *mm = current->mm;
2432 char comm[sizeof(current->comm)];
2433
2434 auid = audit_get_loginuid(current);
2435 sessionid = audit_get_sessionid(current);
2436 current_uid_gid(&uid, &gid);
2437
2438 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2439 from_kuid(&init_user_ns, auid),
2440 from_kuid(&init_user_ns, uid),
2441 from_kgid(&init_user_ns, gid),
2442 sessionid);
2443 audit_log_task_context(ab);
2444 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2445 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2446 if (mm) {
2447 down_read(&mm->mmap_sem);
2448 if (mm->exe_file)
2449 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2450 up_read(&mm->mmap_sem);
2451 } else
2452 audit_log_format(ab, " exe=(null)");
2453 }
2454
2455 /**
2456 * audit_core_dumps - record information about processes that end abnormally
2457 * @signr: signal value
2458 *
2459 * If a process ends with a core dump, something fishy is going on and we
2460 * should record the event for investigation.
2461 */
2462 void audit_core_dumps(long signr)
2463 {
2464 struct audit_buffer *ab;
2465
2466 if (!audit_enabled)
2467 return;
2468
2469 if (signr == SIGQUIT) /* don't care for those */
2470 return;
2471
2472 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2473 if (unlikely(!ab))
2474 return;
2475 audit_log_task(ab);
2476 audit_log_format(ab, " sig=%ld", signr);
2477 audit_log_end(ab);
2478 }
2479
2480 void __audit_seccomp(unsigned long syscall, long signr, int code)
2481 {
2482 struct audit_buffer *ab;
2483
2484 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2485 if (unlikely(!ab))
2486 return;
2487 audit_log_task(ab);
2488 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2489 signr, syscall_get_arch(), syscall, is_compat_task(),
2490 KSTK_EIP(current), code);
2491 audit_log_end(ab);
2492 }
2493
2494 struct list_head *audit_killed_trees(void)
2495 {
2496 struct audit_context *ctx = current->audit_context;
2497 if (likely(!ctx || !ctx->in_syscall))
2498 return NULL;
2499 return &ctx->killed_trees;
2500 }
This page took 0.087596 seconds and 5 git commands to generate.