sanitize audit_ipc_set_perm()
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
69
70 #include "audit.h"
71
72 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74 #define AUDIT_NAMES 20
75
76 /* Indicates that audit should log the full pathname. */
77 #define AUDIT_NAME_FULL -1
78
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
81
82 /* number of audit rules */
83 int audit_n_rules;
84
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87
88 struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95 };
96
97 /* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102 struct audit_names {
103 const char *name;
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
112 u32 osid;
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
115 };
116
117 struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120 };
121
122 #define AUDIT_AUX_IPCPERM 0
123
124 /* Number of target pids per aux struct. */
125 #define AUDIT_AUX_PIDS 16
126
127 struct audit_aux_data_mq_open {
128 struct audit_aux_data d;
129 int oflag;
130 mode_t mode;
131 struct mq_attr attr;
132 };
133
134 struct audit_aux_data_mq_sendrecv {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 size_t msg_len;
138 unsigned int msg_prio;
139 struct timespec abs_timeout;
140 };
141
142 struct audit_aux_data_mq_notify {
143 struct audit_aux_data d;
144 mqd_t mqdes;
145 struct sigevent notification;
146 };
147
148 struct audit_aux_data_mq_getsetattr {
149 struct audit_aux_data d;
150 mqd_t mqdes;
151 struct mq_attr mqstat;
152 };
153
154 struct audit_aux_data_execve {
155 struct audit_aux_data d;
156 int argc;
157 int envc;
158 struct mm_struct *mm;
159 };
160
161 struct audit_aux_data_fd_pair {
162 struct audit_aux_data d;
163 int fd[2];
164 };
165
166 struct audit_aux_data_pids {
167 struct audit_aux_data d;
168 pid_t target_pid[AUDIT_AUX_PIDS];
169 uid_t target_auid[AUDIT_AUX_PIDS];
170 uid_t target_uid[AUDIT_AUX_PIDS];
171 unsigned int target_sessionid[AUDIT_AUX_PIDS];
172 u32 target_sid[AUDIT_AUX_PIDS];
173 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
174 int pid_count;
175 };
176
177 struct audit_aux_data_bprm_fcaps {
178 struct audit_aux_data d;
179 struct audit_cap_data fcap;
180 unsigned int fcap_ver;
181 struct audit_cap_data old_pcap;
182 struct audit_cap_data new_pcap;
183 };
184
185 struct audit_aux_data_capset {
186 struct audit_aux_data d;
187 pid_t pid;
188 struct audit_cap_data cap;
189 };
190
191 struct audit_tree_refs {
192 struct audit_tree_refs *next;
193 struct audit_chunk *c[31];
194 };
195
196 /* The per-task audit context. */
197 struct audit_context {
198 int dummy; /* must be the first element */
199 int in_syscall; /* 1 if task is in a syscall */
200 enum audit_state state;
201 unsigned int serial; /* serial number for record */
202 struct timespec ctime; /* time of syscall entry */
203 int major; /* syscall number */
204 unsigned long argv[4]; /* syscall arguments */
205 int return_valid; /* return code is valid */
206 long return_code;/* syscall return code */
207 int auditable; /* 1 if record should be written */
208 int name_count;
209 struct audit_names names[AUDIT_NAMES];
210 char * filterkey; /* key for rule that triggered record */
211 struct path pwd;
212 struct audit_context *previous; /* For nested syscalls */
213 struct audit_aux_data *aux;
214 struct audit_aux_data *aux_pids;
215 struct sockaddr_storage *sockaddr;
216 size_t sockaddr_len;
217 /* Save things to print about task_struct */
218 pid_t pid, ppid;
219 uid_t uid, euid, suid, fsuid;
220 gid_t gid, egid, sgid, fsgid;
221 unsigned long personality;
222 int arch;
223
224 pid_t target_pid;
225 uid_t target_auid;
226 uid_t target_uid;
227 unsigned int target_sessionid;
228 u32 target_sid;
229 char target_comm[TASK_COMM_LEN];
230
231 struct audit_tree_refs *trees, *first_trees;
232 int tree_count;
233
234 int type;
235 union {
236 struct {
237 int nargs;
238 long args[6];
239 } socketcall;
240 struct {
241 uid_t uid;
242 gid_t gid;
243 mode_t mode;
244 u32 osid;
245 int has_perm;
246 uid_t perm_uid;
247 gid_t perm_gid;
248 mode_t perm_mode;
249 unsigned long qbytes;
250 } ipc;
251 };
252
253 #if AUDIT_DEBUG
254 int put_count;
255 int ino_count;
256 #endif
257 };
258
259 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
260 static inline int open_arg(int flags, int mask)
261 {
262 int n = ACC_MODE(flags);
263 if (flags & (O_TRUNC | O_CREAT))
264 n |= AUDIT_PERM_WRITE;
265 return n & mask;
266 }
267
268 static int audit_match_perm(struct audit_context *ctx, int mask)
269 {
270 unsigned n;
271 if (unlikely(!ctx))
272 return 0;
273 n = ctx->major;
274
275 switch (audit_classify_syscall(ctx->arch, n)) {
276 case 0: /* native */
277 if ((mask & AUDIT_PERM_WRITE) &&
278 audit_match_class(AUDIT_CLASS_WRITE, n))
279 return 1;
280 if ((mask & AUDIT_PERM_READ) &&
281 audit_match_class(AUDIT_CLASS_READ, n))
282 return 1;
283 if ((mask & AUDIT_PERM_ATTR) &&
284 audit_match_class(AUDIT_CLASS_CHATTR, n))
285 return 1;
286 return 0;
287 case 1: /* 32bit on biarch */
288 if ((mask & AUDIT_PERM_WRITE) &&
289 audit_match_class(AUDIT_CLASS_WRITE_32, n))
290 return 1;
291 if ((mask & AUDIT_PERM_READ) &&
292 audit_match_class(AUDIT_CLASS_READ_32, n))
293 return 1;
294 if ((mask & AUDIT_PERM_ATTR) &&
295 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
296 return 1;
297 return 0;
298 case 2: /* open */
299 return mask & ACC_MODE(ctx->argv[1]);
300 case 3: /* openat */
301 return mask & ACC_MODE(ctx->argv[2]);
302 case 4: /* socketcall */
303 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
304 case 5: /* execve */
305 return mask & AUDIT_PERM_EXEC;
306 default:
307 return 0;
308 }
309 }
310
311 static int audit_match_filetype(struct audit_context *ctx, int which)
312 {
313 unsigned index = which & ~S_IFMT;
314 mode_t mode = which & S_IFMT;
315
316 if (unlikely(!ctx))
317 return 0;
318
319 if (index >= ctx->name_count)
320 return 0;
321 if (ctx->names[index].ino == -1)
322 return 0;
323 if ((ctx->names[index].mode ^ mode) & S_IFMT)
324 return 0;
325 return 1;
326 }
327
328 /*
329 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
330 * ->first_trees points to its beginning, ->trees - to the current end of data.
331 * ->tree_count is the number of free entries in array pointed to by ->trees.
332 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
333 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
334 * it's going to remain 1-element for almost any setup) until we free context itself.
335 * References in it _are_ dropped - at the same time we free/drop aux stuff.
336 */
337
338 #ifdef CONFIG_AUDIT_TREE
339 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
340 {
341 struct audit_tree_refs *p = ctx->trees;
342 int left = ctx->tree_count;
343 if (likely(left)) {
344 p->c[--left] = chunk;
345 ctx->tree_count = left;
346 return 1;
347 }
348 if (!p)
349 return 0;
350 p = p->next;
351 if (p) {
352 p->c[30] = chunk;
353 ctx->trees = p;
354 ctx->tree_count = 30;
355 return 1;
356 }
357 return 0;
358 }
359
360 static int grow_tree_refs(struct audit_context *ctx)
361 {
362 struct audit_tree_refs *p = ctx->trees;
363 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
364 if (!ctx->trees) {
365 ctx->trees = p;
366 return 0;
367 }
368 if (p)
369 p->next = ctx->trees;
370 else
371 ctx->first_trees = ctx->trees;
372 ctx->tree_count = 31;
373 return 1;
374 }
375 #endif
376
377 static void unroll_tree_refs(struct audit_context *ctx,
378 struct audit_tree_refs *p, int count)
379 {
380 #ifdef CONFIG_AUDIT_TREE
381 struct audit_tree_refs *q;
382 int n;
383 if (!p) {
384 /* we started with empty chain */
385 p = ctx->first_trees;
386 count = 31;
387 /* if the very first allocation has failed, nothing to do */
388 if (!p)
389 return;
390 }
391 n = count;
392 for (q = p; q != ctx->trees; q = q->next, n = 31) {
393 while (n--) {
394 audit_put_chunk(q->c[n]);
395 q->c[n] = NULL;
396 }
397 }
398 while (n-- > ctx->tree_count) {
399 audit_put_chunk(q->c[n]);
400 q->c[n] = NULL;
401 }
402 ctx->trees = p;
403 ctx->tree_count = count;
404 #endif
405 }
406
407 static void free_tree_refs(struct audit_context *ctx)
408 {
409 struct audit_tree_refs *p, *q;
410 for (p = ctx->first_trees; p; p = q) {
411 q = p->next;
412 kfree(p);
413 }
414 }
415
416 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
417 {
418 #ifdef CONFIG_AUDIT_TREE
419 struct audit_tree_refs *p;
420 int n;
421 if (!tree)
422 return 0;
423 /* full ones */
424 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
425 for (n = 0; n < 31; n++)
426 if (audit_tree_match(p->c[n], tree))
427 return 1;
428 }
429 /* partial */
430 if (p) {
431 for (n = ctx->tree_count; n < 31; n++)
432 if (audit_tree_match(p->c[n], tree))
433 return 1;
434 }
435 #endif
436 return 0;
437 }
438
439 /* Determine if any context name data matches a rule's watch data */
440 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
441 * otherwise. */
442 static int audit_filter_rules(struct task_struct *tsk,
443 struct audit_krule *rule,
444 struct audit_context *ctx,
445 struct audit_names *name,
446 enum audit_state *state)
447 {
448 const struct cred *cred = get_task_cred(tsk);
449 int i, j, need_sid = 1;
450 u32 sid;
451
452 for (i = 0; i < rule->field_count; i++) {
453 struct audit_field *f = &rule->fields[i];
454 int result = 0;
455
456 switch (f->type) {
457 case AUDIT_PID:
458 result = audit_comparator(tsk->pid, f->op, f->val);
459 break;
460 case AUDIT_PPID:
461 if (ctx) {
462 if (!ctx->ppid)
463 ctx->ppid = sys_getppid();
464 result = audit_comparator(ctx->ppid, f->op, f->val);
465 }
466 break;
467 case AUDIT_UID:
468 result = audit_comparator(cred->uid, f->op, f->val);
469 break;
470 case AUDIT_EUID:
471 result = audit_comparator(cred->euid, f->op, f->val);
472 break;
473 case AUDIT_SUID:
474 result = audit_comparator(cred->suid, f->op, f->val);
475 break;
476 case AUDIT_FSUID:
477 result = audit_comparator(cred->fsuid, f->op, f->val);
478 break;
479 case AUDIT_GID:
480 result = audit_comparator(cred->gid, f->op, f->val);
481 break;
482 case AUDIT_EGID:
483 result = audit_comparator(cred->egid, f->op, f->val);
484 break;
485 case AUDIT_SGID:
486 result = audit_comparator(cred->sgid, f->op, f->val);
487 break;
488 case AUDIT_FSGID:
489 result = audit_comparator(cred->fsgid, f->op, f->val);
490 break;
491 case AUDIT_PERS:
492 result = audit_comparator(tsk->personality, f->op, f->val);
493 break;
494 case AUDIT_ARCH:
495 if (ctx)
496 result = audit_comparator(ctx->arch, f->op, f->val);
497 break;
498
499 case AUDIT_EXIT:
500 if (ctx && ctx->return_valid)
501 result = audit_comparator(ctx->return_code, f->op, f->val);
502 break;
503 case AUDIT_SUCCESS:
504 if (ctx && ctx->return_valid) {
505 if (f->val)
506 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
507 else
508 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
509 }
510 break;
511 case AUDIT_DEVMAJOR:
512 if (name)
513 result = audit_comparator(MAJOR(name->dev),
514 f->op, f->val);
515 else if (ctx) {
516 for (j = 0; j < ctx->name_count; j++) {
517 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
518 ++result;
519 break;
520 }
521 }
522 }
523 break;
524 case AUDIT_DEVMINOR:
525 if (name)
526 result = audit_comparator(MINOR(name->dev),
527 f->op, f->val);
528 else if (ctx) {
529 for (j = 0; j < ctx->name_count; j++) {
530 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
531 ++result;
532 break;
533 }
534 }
535 }
536 break;
537 case AUDIT_INODE:
538 if (name)
539 result = (name->ino == f->val);
540 else if (ctx) {
541 for (j = 0; j < ctx->name_count; j++) {
542 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
543 ++result;
544 break;
545 }
546 }
547 }
548 break;
549 case AUDIT_WATCH:
550 if (name && rule->watch->ino != (unsigned long)-1)
551 result = (name->dev == rule->watch->dev &&
552 name->ino == rule->watch->ino);
553 break;
554 case AUDIT_DIR:
555 if (ctx)
556 result = match_tree_refs(ctx, rule->tree);
557 break;
558 case AUDIT_LOGINUID:
559 result = 0;
560 if (ctx)
561 result = audit_comparator(tsk->loginuid, f->op, f->val);
562 break;
563 case AUDIT_SUBJ_USER:
564 case AUDIT_SUBJ_ROLE:
565 case AUDIT_SUBJ_TYPE:
566 case AUDIT_SUBJ_SEN:
567 case AUDIT_SUBJ_CLR:
568 /* NOTE: this may return negative values indicating
569 a temporary error. We simply treat this as a
570 match for now to avoid losing information that
571 may be wanted. An error message will also be
572 logged upon error */
573 if (f->lsm_rule) {
574 if (need_sid) {
575 security_task_getsecid(tsk, &sid);
576 need_sid = 0;
577 }
578 result = security_audit_rule_match(sid, f->type,
579 f->op,
580 f->lsm_rule,
581 ctx);
582 }
583 break;
584 case AUDIT_OBJ_USER:
585 case AUDIT_OBJ_ROLE:
586 case AUDIT_OBJ_TYPE:
587 case AUDIT_OBJ_LEV_LOW:
588 case AUDIT_OBJ_LEV_HIGH:
589 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
590 also applies here */
591 if (f->lsm_rule) {
592 /* Find files that match */
593 if (name) {
594 result = security_audit_rule_match(
595 name->osid, f->type, f->op,
596 f->lsm_rule, ctx);
597 } else if (ctx) {
598 for (j = 0; j < ctx->name_count; j++) {
599 if (security_audit_rule_match(
600 ctx->names[j].osid,
601 f->type, f->op,
602 f->lsm_rule, ctx)) {
603 ++result;
604 break;
605 }
606 }
607 }
608 /* Find ipc objects that match */
609 if (!ctx || ctx->type != AUDIT_IPC)
610 break;
611 if (security_audit_rule_match(ctx->ipc.osid,
612 f->type, f->op,
613 f->lsm_rule, ctx))
614 ++result;
615 }
616 break;
617 case AUDIT_ARG0:
618 case AUDIT_ARG1:
619 case AUDIT_ARG2:
620 case AUDIT_ARG3:
621 if (ctx)
622 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
623 break;
624 case AUDIT_FILTERKEY:
625 /* ignore this field for filtering */
626 result = 1;
627 break;
628 case AUDIT_PERM:
629 result = audit_match_perm(ctx, f->val);
630 break;
631 case AUDIT_FILETYPE:
632 result = audit_match_filetype(ctx, f->val);
633 break;
634 }
635
636 if (!result) {
637 put_cred(cred);
638 return 0;
639 }
640 }
641 if (rule->filterkey && ctx)
642 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
643 switch (rule->action) {
644 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
645 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
646 }
647 put_cred(cred);
648 return 1;
649 }
650
651 /* At process creation time, we can determine if system-call auditing is
652 * completely disabled for this task. Since we only have the task
653 * structure at this point, we can only check uid and gid.
654 */
655 static enum audit_state audit_filter_task(struct task_struct *tsk)
656 {
657 struct audit_entry *e;
658 enum audit_state state;
659
660 rcu_read_lock();
661 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
662 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
663 rcu_read_unlock();
664 return state;
665 }
666 }
667 rcu_read_unlock();
668 return AUDIT_BUILD_CONTEXT;
669 }
670
671 /* At syscall entry and exit time, this filter is called if the
672 * audit_state is not low enough that auditing cannot take place, but is
673 * also not high enough that we already know we have to write an audit
674 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
675 */
676 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
677 struct audit_context *ctx,
678 struct list_head *list)
679 {
680 struct audit_entry *e;
681 enum audit_state state;
682
683 if (audit_pid && tsk->tgid == audit_pid)
684 return AUDIT_DISABLED;
685
686 rcu_read_lock();
687 if (!list_empty(list)) {
688 int word = AUDIT_WORD(ctx->major);
689 int bit = AUDIT_BIT(ctx->major);
690
691 list_for_each_entry_rcu(e, list, list) {
692 if ((e->rule.mask[word] & bit) == bit &&
693 audit_filter_rules(tsk, &e->rule, ctx, NULL,
694 &state)) {
695 rcu_read_unlock();
696 return state;
697 }
698 }
699 }
700 rcu_read_unlock();
701 return AUDIT_BUILD_CONTEXT;
702 }
703
704 /* At syscall exit time, this filter is called if any audit_names[] have been
705 * collected during syscall processing. We only check rules in sublists at hash
706 * buckets applicable to the inode numbers in audit_names[].
707 * Regarding audit_state, same rules apply as for audit_filter_syscall().
708 */
709 enum audit_state audit_filter_inodes(struct task_struct *tsk,
710 struct audit_context *ctx)
711 {
712 int i;
713 struct audit_entry *e;
714 enum audit_state state;
715
716 if (audit_pid && tsk->tgid == audit_pid)
717 return AUDIT_DISABLED;
718
719 rcu_read_lock();
720 for (i = 0; i < ctx->name_count; i++) {
721 int word = AUDIT_WORD(ctx->major);
722 int bit = AUDIT_BIT(ctx->major);
723 struct audit_names *n = &ctx->names[i];
724 int h = audit_hash_ino((u32)n->ino);
725 struct list_head *list = &audit_inode_hash[h];
726
727 if (list_empty(list))
728 continue;
729
730 list_for_each_entry_rcu(e, list, list) {
731 if ((e->rule.mask[word] & bit) == bit &&
732 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
733 rcu_read_unlock();
734 return state;
735 }
736 }
737 }
738 rcu_read_unlock();
739 return AUDIT_BUILD_CONTEXT;
740 }
741
742 void audit_set_auditable(struct audit_context *ctx)
743 {
744 ctx->auditable = 1;
745 }
746
747 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
748 int return_valid,
749 int return_code)
750 {
751 struct audit_context *context = tsk->audit_context;
752
753 if (likely(!context))
754 return NULL;
755 context->return_valid = return_valid;
756
757 /*
758 * we need to fix up the return code in the audit logs if the actual
759 * return codes are later going to be fixed up by the arch specific
760 * signal handlers
761 *
762 * This is actually a test for:
763 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
764 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
765 *
766 * but is faster than a bunch of ||
767 */
768 if (unlikely(return_code <= -ERESTARTSYS) &&
769 (return_code >= -ERESTART_RESTARTBLOCK) &&
770 (return_code != -ENOIOCTLCMD))
771 context->return_code = -EINTR;
772 else
773 context->return_code = return_code;
774
775 if (context->in_syscall && !context->dummy && !context->auditable) {
776 enum audit_state state;
777
778 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
779 if (state == AUDIT_RECORD_CONTEXT) {
780 context->auditable = 1;
781 goto get_context;
782 }
783
784 state = audit_filter_inodes(tsk, context);
785 if (state == AUDIT_RECORD_CONTEXT)
786 context->auditable = 1;
787
788 }
789
790 get_context:
791
792 tsk->audit_context = NULL;
793 return context;
794 }
795
796 static inline void audit_free_names(struct audit_context *context)
797 {
798 int i;
799
800 #if AUDIT_DEBUG == 2
801 if (context->auditable
802 ||context->put_count + context->ino_count != context->name_count) {
803 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
804 " name_count=%d put_count=%d"
805 " ino_count=%d [NOT freeing]\n",
806 __FILE__, __LINE__,
807 context->serial, context->major, context->in_syscall,
808 context->name_count, context->put_count,
809 context->ino_count);
810 for (i = 0; i < context->name_count; i++) {
811 printk(KERN_ERR "names[%d] = %p = %s\n", i,
812 context->names[i].name,
813 context->names[i].name ?: "(null)");
814 }
815 dump_stack();
816 return;
817 }
818 #endif
819 #if AUDIT_DEBUG
820 context->put_count = 0;
821 context->ino_count = 0;
822 #endif
823
824 for (i = 0; i < context->name_count; i++) {
825 if (context->names[i].name && context->names[i].name_put)
826 __putname(context->names[i].name);
827 }
828 context->name_count = 0;
829 path_put(&context->pwd);
830 context->pwd.dentry = NULL;
831 context->pwd.mnt = NULL;
832 }
833
834 static inline void audit_free_aux(struct audit_context *context)
835 {
836 struct audit_aux_data *aux;
837
838 while ((aux = context->aux)) {
839 context->aux = aux->next;
840 kfree(aux);
841 }
842 while ((aux = context->aux_pids)) {
843 context->aux_pids = aux->next;
844 kfree(aux);
845 }
846 }
847
848 static inline void audit_zero_context(struct audit_context *context,
849 enum audit_state state)
850 {
851 memset(context, 0, sizeof(*context));
852 context->state = state;
853 }
854
855 static inline struct audit_context *audit_alloc_context(enum audit_state state)
856 {
857 struct audit_context *context;
858
859 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
860 return NULL;
861 audit_zero_context(context, state);
862 return context;
863 }
864
865 /**
866 * audit_alloc - allocate an audit context block for a task
867 * @tsk: task
868 *
869 * Filter on the task information and allocate a per-task audit context
870 * if necessary. Doing so turns on system call auditing for the
871 * specified task. This is called from copy_process, so no lock is
872 * needed.
873 */
874 int audit_alloc(struct task_struct *tsk)
875 {
876 struct audit_context *context;
877 enum audit_state state;
878
879 if (likely(!audit_ever_enabled))
880 return 0; /* Return if not auditing. */
881
882 state = audit_filter_task(tsk);
883 if (likely(state == AUDIT_DISABLED))
884 return 0;
885
886 if (!(context = audit_alloc_context(state))) {
887 audit_log_lost("out of memory in audit_alloc");
888 return -ENOMEM;
889 }
890
891 tsk->audit_context = context;
892 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
893 return 0;
894 }
895
896 static inline void audit_free_context(struct audit_context *context)
897 {
898 struct audit_context *previous;
899 int count = 0;
900
901 do {
902 previous = context->previous;
903 if (previous || (count && count < 10)) {
904 ++count;
905 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
906 " freeing multiple contexts (%d)\n",
907 context->serial, context->major,
908 context->name_count, count);
909 }
910 audit_free_names(context);
911 unroll_tree_refs(context, NULL, 0);
912 free_tree_refs(context);
913 audit_free_aux(context);
914 kfree(context->filterkey);
915 kfree(context->sockaddr);
916 kfree(context);
917 context = previous;
918 } while (context);
919 if (count >= 10)
920 printk(KERN_ERR "audit: freed %d contexts\n", count);
921 }
922
923 void audit_log_task_context(struct audit_buffer *ab)
924 {
925 char *ctx = NULL;
926 unsigned len;
927 int error;
928 u32 sid;
929
930 security_task_getsecid(current, &sid);
931 if (!sid)
932 return;
933
934 error = security_secid_to_secctx(sid, &ctx, &len);
935 if (error) {
936 if (error != -EINVAL)
937 goto error_path;
938 return;
939 }
940
941 audit_log_format(ab, " subj=%s", ctx);
942 security_release_secctx(ctx, len);
943 return;
944
945 error_path:
946 audit_panic("error in audit_log_task_context");
947 return;
948 }
949
950 EXPORT_SYMBOL(audit_log_task_context);
951
952 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
953 {
954 char name[sizeof(tsk->comm)];
955 struct mm_struct *mm = tsk->mm;
956 struct vm_area_struct *vma;
957
958 /* tsk == current */
959
960 get_task_comm(name, tsk);
961 audit_log_format(ab, " comm=");
962 audit_log_untrustedstring(ab, name);
963
964 if (mm) {
965 down_read(&mm->mmap_sem);
966 vma = mm->mmap;
967 while (vma) {
968 if ((vma->vm_flags & VM_EXECUTABLE) &&
969 vma->vm_file) {
970 audit_log_d_path(ab, "exe=",
971 &vma->vm_file->f_path);
972 break;
973 }
974 vma = vma->vm_next;
975 }
976 up_read(&mm->mmap_sem);
977 }
978 audit_log_task_context(ab);
979 }
980
981 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
982 uid_t auid, uid_t uid, unsigned int sessionid,
983 u32 sid, char *comm)
984 {
985 struct audit_buffer *ab;
986 char *ctx = NULL;
987 u32 len;
988 int rc = 0;
989
990 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
991 if (!ab)
992 return rc;
993
994 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
995 uid, sessionid);
996 if (security_secid_to_secctx(sid, &ctx, &len)) {
997 audit_log_format(ab, " obj=(none)");
998 rc = 1;
999 } else {
1000 audit_log_format(ab, " obj=%s", ctx);
1001 security_release_secctx(ctx, len);
1002 }
1003 audit_log_format(ab, " ocomm=");
1004 audit_log_untrustedstring(ab, comm);
1005 audit_log_end(ab);
1006
1007 return rc;
1008 }
1009
1010 /*
1011 * to_send and len_sent accounting are very loose estimates. We aren't
1012 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1013 * within about 500 bytes (next page boundry)
1014 *
1015 * why snprintf? an int is up to 12 digits long. if we just assumed when
1016 * logging that a[%d]= was going to be 16 characters long we would be wasting
1017 * space in every audit message. In one 7500 byte message we can log up to
1018 * about 1000 min size arguments. That comes down to about 50% waste of space
1019 * if we didn't do the snprintf to find out how long arg_num_len was.
1020 */
1021 static int audit_log_single_execve_arg(struct audit_context *context,
1022 struct audit_buffer **ab,
1023 int arg_num,
1024 size_t *len_sent,
1025 const char __user *p,
1026 char *buf)
1027 {
1028 char arg_num_len_buf[12];
1029 const char __user *tmp_p = p;
1030 /* how many digits are in arg_num? 3 is the length of a=\n */
1031 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1032 size_t len, len_left, to_send;
1033 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1034 unsigned int i, has_cntl = 0, too_long = 0;
1035 int ret;
1036
1037 /* strnlen_user includes the null we don't want to send */
1038 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1039
1040 /*
1041 * We just created this mm, if we can't find the strings
1042 * we just copied into it something is _very_ wrong. Similar
1043 * for strings that are too long, we should not have created
1044 * any.
1045 */
1046 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1047 WARN_ON(1);
1048 send_sig(SIGKILL, current, 0);
1049 return -1;
1050 }
1051
1052 /* walk the whole argument looking for non-ascii chars */
1053 do {
1054 if (len_left > MAX_EXECVE_AUDIT_LEN)
1055 to_send = MAX_EXECVE_AUDIT_LEN;
1056 else
1057 to_send = len_left;
1058 ret = copy_from_user(buf, tmp_p, to_send);
1059 /*
1060 * There is no reason for this copy to be short. We just
1061 * copied them here, and the mm hasn't been exposed to user-
1062 * space yet.
1063 */
1064 if (ret) {
1065 WARN_ON(1);
1066 send_sig(SIGKILL, current, 0);
1067 return -1;
1068 }
1069 buf[to_send] = '\0';
1070 has_cntl = audit_string_contains_control(buf, to_send);
1071 if (has_cntl) {
1072 /*
1073 * hex messages get logged as 2 bytes, so we can only
1074 * send half as much in each message
1075 */
1076 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1077 break;
1078 }
1079 len_left -= to_send;
1080 tmp_p += to_send;
1081 } while (len_left > 0);
1082
1083 len_left = len;
1084
1085 if (len > max_execve_audit_len)
1086 too_long = 1;
1087
1088 /* rewalk the argument actually logging the message */
1089 for (i = 0; len_left > 0; i++) {
1090 int room_left;
1091
1092 if (len_left > max_execve_audit_len)
1093 to_send = max_execve_audit_len;
1094 else
1095 to_send = len_left;
1096
1097 /* do we have space left to send this argument in this ab? */
1098 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1099 if (has_cntl)
1100 room_left -= (to_send * 2);
1101 else
1102 room_left -= to_send;
1103 if (room_left < 0) {
1104 *len_sent = 0;
1105 audit_log_end(*ab);
1106 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1107 if (!*ab)
1108 return 0;
1109 }
1110
1111 /*
1112 * first record needs to say how long the original string was
1113 * so we can be sure nothing was lost.
1114 */
1115 if ((i == 0) && (too_long))
1116 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1117 has_cntl ? 2*len : len);
1118
1119 /*
1120 * normally arguments are small enough to fit and we already
1121 * filled buf above when we checked for control characters
1122 * so don't bother with another copy_from_user
1123 */
1124 if (len >= max_execve_audit_len)
1125 ret = copy_from_user(buf, p, to_send);
1126 else
1127 ret = 0;
1128 if (ret) {
1129 WARN_ON(1);
1130 send_sig(SIGKILL, current, 0);
1131 return -1;
1132 }
1133 buf[to_send] = '\0';
1134
1135 /* actually log it */
1136 audit_log_format(*ab, "a%d", arg_num);
1137 if (too_long)
1138 audit_log_format(*ab, "[%d]", i);
1139 audit_log_format(*ab, "=");
1140 if (has_cntl)
1141 audit_log_n_hex(*ab, buf, to_send);
1142 else
1143 audit_log_format(*ab, "\"%s\"", buf);
1144 audit_log_format(*ab, "\n");
1145
1146 p += to_send;
1147 len_left -= to_send;
1148 *len_sent += arg_num_len;
1149 if (has_cntl)
1150 *len_sent += to_send * 2;
1151 else
1152 *len_sent += to_send;
1153 }
1154 /* include the null we didn't log */
1155 return len + 1;
1156 }
1157
1158 static void audit_log_execve_info(struct audit_context *context,
1159 struct audit_buffer **ab,
1160 struct audit_aux_data_execve *axi)
1161 {
1162 int i;
1163 size_t len, len_sent = 0;
1164 const char __user *p;
1165 char *buf;
1166
1167 if (axi->mm != current->mm)
1168 return; /* execve failed, no additional info */
1169
1170 p = (const char __user *)axi->mm->arg_start;
1171
1172 audit_log_format(*ab, "argc=%d ", axi->argc);
1173
1174 /*
1175 * we need some kernel buffer to hold the userspace args. Just
1176 * allocate one big one rather than allocating one of the right size
1177 * for every single argument inside audit_log_single_execve_arg()
1178 * should be <8k allocation so should be pretty safe.
1179 */
1180 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1181 if (!buf) {
1182 audit_panic("out of memory for argv string\n");
1183 return;
1184 }
1185
1186 for (i = 0; i < axi->argc; i++) {
1187 len = audit_log_single_execve_arg(context, ab, i,
1188 &len_sent, p, buf);
1189 if (len <= 0)
1190 break;
1191 p += len;
1192 }
1193 kfree(buf);
1194 }
1195
1196 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1197 {
1198 int i;
1199
1200 audit_log_format(ab, " %s=", prefix);
1201 CAP_FOR_EACH_U32(i) {
1202 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1203 }
1204 }
1205
1206 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1207 {
1208 kernel_cap_t *perm = &name->fcap.permitted;
1209 kernel_cap_t *inh = &name->fcap.inheritable;
1210 int log = 0;
1211
1212 if (!cap_isclear(*perm)) {
1213 audit_log_cap(ab, "cap_fp", perm);
1214 log = 1;
1215 }
1216 if (!cap_isclear(*inh)) {
1217 audit_log_cap(ab, "cap_fi", inh);
1218 log = 1;
1219 }
1220
1221 if (log)
1222 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1223 }
1224
1225 static void show_special(struct audit_context *context, int *call_panic)
1226 {
1227 struct audit_buffer *ab;
1228 int i;
1229
1230 ab = audit_log_start(context, GFP_KERNEL, context->type);
1231 if (!ab)
1232 return;
1233
1234 switch (context->type) {
1235 case AUDIT_SOCKETCALL: {
1236 int nargs = context->socketcall.nargs;
1237 audit_log_format(ab, "nargs=%d", nargs);
1238 for (i = 0; i < nargs; i++)
1239 audit_log_format(ab, " a%d=%lx", i,
1240 context->socketcall.args[i]);
1241 break; }
1242 case AUDIT_IPC: {
1243 u32 osid = context->ipc.osid;
1244
1245 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1246 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1247 if (osid) {
1248 char *ctx = NULL;
1249 u32 len;
1250 if (security_secid_to_secctx(osid, &ctx, &len)) {
1251 audit_log_format(ab, " osid=%u", osid);
1252 *call_panic = 1;
1253 } else {
1254 audit_log_format(ab, " obj=%s", ctx);
1255 security_release_secctx(ctx, len);
1256 }
1257 }
1258 if (context->ipc.has_perm) {
1259 audit_log_end(ab);
1260 ab = audit_log_start(context, GFP_KERNEL,
1261 AUDIT_IPC_SET_PERM);
1262 audit_log_format(ab,
1263 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1264 context->ipc.qbytes,
1265 context->ipc.perm_uid,
1266 context->ipc.perm_gid,
1267 context->ipc.perm_mode);
1268 if (!ab)
1269 return;
1270 }
1271 break; }
1272 }
1273 audit_log_end(ab);
1274 }
1275
1276 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1277 {
1278 const struct cred *cred;
1279 int i, call_panic = 0;
1280 struct audit_buffer *ab;
1281 struct audit_aux_data *aux;
1282 const char *tty;
1283
1284 /* tsk == current */
1285 context->pid = tsk->pid;
1286 if (!context->ppid)
1287 context->ppid = sys_getppid();
1288 cred = current_cred();
1289 context->uid = cred->uid;
1290 context->gid = cred->gid;
1291 context->euid = cred->euid;
1292 context->suid = cred->suid;
1293 context->fsuid = cred->fsuid;
1294 context->egid = cred->egid;
1295 context->sgid = cred->sgid;
1296 context->fsgid = cred->fsgid;
1297 context->personality = tsk->personality;
1298
1299 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1300 if (!ab)
1301 return; /* audit_panic has been called */
1302 audit_log_format(ab, "arch=%x syscall=%d",
1303 context->arch, context->major);
1304 if (context->personality != PER_LINUX)
1305 audit_log_format(ab, " per=%lx", context->personality);
1306 if (context->return_valid)
1307 audit_log_format(ab, " success=%s exit=%ld",
1308 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1309 context->return_code);
1310
1311 spin_lock_irq(&tsk->sighand->siglock);
1312 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1313 tty = tsk->signal->tty->name;
1314 else
1315 tty = "(none)";
1316 spin_unlock_irq(&tsk->sighand->siglock);
1317
1318 audit_log_format(ab,
1319 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1320 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1321 " euid=%u suid=%u fsuid=%u"
1322 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1323 context->argv[0],
1324 context->argv[1],
1325 context->argv[2],
1326 context->argv[3],
1327 context->name_count,
1328 context->ppid,
1329 context->pid,
1330 tsk->loginuid,
1331 context->uid,
1332 context->gid,
1333 context->euid, context->suid, context->fsuid,
1334 context->egid, context->sgid, context->fsgid, tty,
1335 tsk->sessionid);
1336
1337
1338 audit_log_task_info(ab, tsk);
1339 if (context->filterkey) {
1340 audit_log_format(ab, " key=");
1341 audit_log_untrustedstring(ab, context->filterkey);
1342 } else
1343 audit_log_format(ab, " key=(null)");
1344 audit_log_end(ab);
1345
1346 for (aux = context->aux; aux; aux = aux->next) {
1347
1348 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1349 if (!ab)
1350 continue; /* audit_panic has been called */
1351
1352 switch (aux->type) {
1353 case AUDIT_MQ_OPEN: {
1354 struct audit_aux_data_mq_open *axi = (void *)aux;
1355 audit_log_format(ab,
1356 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1357 "mq_msgsize=%ld mq_curmsgs=%ld",
1358 axi->oflag, axi->mode, axi->attr.mq_flags,
1359 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1360 axi->attr.mq_curmsgs);
1361 break; }
1362
1363 case AUDIT_MQ_SENDRECV: {
1364 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1365 audit_log_format(ab,
1366 "mqdes=%d msg_len=%zd msg_prio=%u "
1367 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1368 axi->mqdes, axi->msg_len, axi->msg_prio,
1369 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1370 break; }
1371
1372 case AUDIT_MQ_NOTIFY: {
1373 struct audit_aux_data_mq_notify *axi = (void *)aux;
1374 audit_log_format(ab,
1375 "mqdes=%d sigev_signo=%d",
1376 axi->mqdes,
1377 axi->notification.sigev_signo);
1378 break; }
1379
1380 case AUDIT_MQ_GETSETATTR: {
1381 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1382 audit_log_format(ab,
1383 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1384 "mq_curmsgs=%ld ",
1385 axi->mqdes,
1386 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1387 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1388 break; }
1389
1390 case AUDIT_EXECVE: {
1391 struct audit_aux_data_execve *axi = (void *)aux;
1392 audit_log_execve_info(context, &ab, axi);
1393 break; }
1394
1395 case AUDIT_FD_PAIR: {
1396 struct audit_aux_data_fd_pair *axs = (void *)aux;
1397 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1398 break; }
1399
1400 case AUDIT_BPRM_FCAPS: {
1401 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1402 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1403 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1404 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1405 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1406 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1407 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1408 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1409 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1410 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1411 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1412 break; }
1413
1414 case AUDIT_CAPSET: {
1415 struct audit_aux_data_capset *axs = (void *)aux;
1416 audit_log_format(ab, "pid=%d", axs->pid);
1417 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1418 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1419 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1420 break; }
1421
1422 }
1423 audit_log_end(ab);
1424 }
1425
1426 if (context->type)
1427 show_special(context, &call_panic);
1428
1429 if (context->sockaddr_len) {
1430 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1431 if (ab) {
1432 audit_log_format(ab, "saddr=");
1433 audit_log_n_hex(ab, (void *)context->sockaddr,
1434 context->sockaddr_len);
1435 audit_log_end(ab);
1436 }
1437 }
1438
1439 for (aux = context->aux_pids; aux; aux = aux->next) {
1440 struct audit_aux_data_pids *axs = (void *)aux;
1441
1442 for (i = 0; i < axs->pid_count; i++)
1443 if (audit_log_pid_context(context, axs->target_pid[i],
1444 axs->target_auid[i],
1445 axs->target_uid[i],
1446 axs->target_sessionid[i],
1447 axs->target_sid[i],
1448 axs->target_comm[i]))
1449 call_panic = 1;
1450 }
1451
1452 if (context->target_pid &&
1453 audit_log_pid_context(context, context->target_pid,
1454 context->target_auid, context->target_uid,
1455 context->target_sessionid,
1456 context->target_sid, context->target_comm))
1457 call_panic = 1;
1458
1459 if (context->pwd.dentry && context->pwd.mnt) {
1460 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1461 if (ab) {
1462 audit_log_d_path(ab, "cwd=", &context->pwd);
1463 audit_log_end(ab);
1464 }
1465 }
1466 for (i = 0; i < context->name_count; i++) {
1467 struct audit_names *n = &context->names[i];
1468
1469 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1470 if (!ab)
1471 continue; /* audit_panic has been called */
1472
1473 audit_log_format(ab, "item=%d", i);
1474
1475 if (n->name) {
1476 switch(n->name_len) {
1477 case AUDIT_NAME_FULL:
1478 /* log the full path */
1479 audit_log_format(ab, " name=");
1480 audit_log_untrustedstring(ab, n->name);
1481 break;
1482 case 0:
1483 /* name was specified as a relative path and the
1484 * directory component is the cwd */
1485 audit_log_d_path(ab, " name=", &context->pwd);
1486 break;
1487 default:
1488 /* log the name's directory component */
1489 audit_log_format(ab, " name=");
1490 audit_log_n_untrustedstring(ab, n->name,
1491 n->name_len);
1492 }
1493 } else
1494 audit_log_format(ab, " name=(null)");
1495
1496 if (n->ino != (unsigned long)-1) {
1497 audit_log_format(ab, " inode=%lu"
1498 " dev=%02x:%02x mode=%#o"
1499 " ouid=%u ogid=%u rdev=%02x:%02x",
1500 n->ino,
1501 MAJOR(n->dev),
1502 MINOR(n->dev),
1503 n->mode,
1504 n->uid,
1505 n->gid,
1506 MAJOR(n->rdev),
1507 MINOR(n->rdev));
1508 }
1509 if (n->osid != 0) {
1510 char *ctx = NULL;
1511 u32 len;
1512 if (security_secid_to_secctx(
1513 n->osid, &ctx, &len)) {
1514 audit_log_format(ab, " osid=%u", n->osid);
1515 call_panic = 2;
1516 } else {
1517 audit_log_format(ab, " obj=%s", ctx);
1518 security_release_secctx(ctx, len);
1519 }
1520 }
1521
1522 audit_log_fcaps(ab, n);
1523
1524 audit_log_end(ab);
1525 }
1526
1527 /* Send end of event record to help user space know we are finished */
1528 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1529 if (ab)
1530 audit_log_end(ab);
1531 if (call_panic)
1532 audit_panic("error converting sid to string");
1533 }
1534
1535 /**
1536 * audit_free - free a per-task audit context
1537 * @tsk: task whose audit context block to free
1538 *
1539 * Called from copy_process and do_exit
1540 */
1541 void audit_free(struct task_struct *tsk)
1542 {
1543 struct audit_context *context;
1544
1545 context = audit_get_context(tsk, 0, 0);
1546 if (likely(!context))
1547 return;
1548
1549 /* Check for system calls that do not go through the exit
1550 * function (e.g., exit_group), then free context block.
1551 * We use GFP_ATOMIC here because we might be doing this
1552 * in the context of the idle thread */
1553 /* that can happen only if we are called from do_exit() */
1554 if (context->in_syscall && context->auditable)
1555 audit_log_exit(context, tsk);
1556
1557 audit_free_context(context);
1558 }
1559
1560 /**
1561 * audit_syscall_entry - fill in an audit record at syscall entry
1562 * @arch: architecture type
1563 * @major: major syscall type (function)
1564 * @a1: additional syscall register 1
1565 * @a2: additional syscall register 2
1566 * @a3: additional syscall register 3
1567 * @a4: additional syscall register 4
1568 *
1569 * Fill in audit context at syscall entry. This only happens if the
1570 * audit context was created when the task was created and the state or
1571 * filters demand the audit context be built. If the state from the
1572 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1573 * then the record will be written at syscall exit time (otherwise, it
1574 * will only be written if another part of the kernel requests that it
1575 * be written).
1576 */
1577 void audit_syscall_entry(int arch, int major,
1578 unsigned long a1, unsigned long a2,
1579 unsigned long a3, unsigned long a4)
1580 {
1581 struct task_struct *tsk = current;
1582 struct audit_context *context = tsk->audit_context;
1583 enum audit_state state;
1584
1585 if (unlikely(!context))
1586 return;
1587
1588 /*
1589 * This happens only on certain architectures that make system
1590 * calls in kernel_thread via the entry.S interface, instead of
1591 * with direct calls. (If you are porting to a new
1592 * architecture, hitting this condition can indicate that you
1593 * got the _exit/_leave calls backward in entry.S.)
1594 *
1595 * i386 no
1596 * x86_64 no
1597 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1598 *
1599 * This also happens with vm86 emulation in a non-nested manner
1600 * (entries without exits), so this case must be caught.
1601 */
1602 if (context->in_syscall) {
1603 struct audit_context *newctx;
1604
1605 #if AUDIT_DEBUG
1606 printk(KERN_ERR
1607 "audit(:%d) pid=%d in syscall=%d;"
1608 " entering syscall=%d\n",
1609 context->serial, tsk->pid, context->major, major);
1610 #endif
1611 newctx = audit_alloc_context(context->state);
1612 if (newctx) {
1613 newctx->previous = context;
1614 context = newctx;
1615 tsk->audit_context = newctx;
1616 } else {
1617 /* If we can't alloc a new context, the best we
1618 * can do is to leak memory (any pending putname
1619 * will be lost). The only other alternative is
1620 * to abandon auditing. */
1621 audit_zero_context(context, context->state);
1622 }
1623 }
1624 BUG_ON(context->in_syscall || context->name_count);
1625
1626 if (!audit_enabled)
1627 return;
1628
1629 context->arch = arch;
1630 context->major = major;
1631 context->argv[0] = a1;
1632 context->argv[1] = a2;
1633 context->argv[2] = a3;
1634 context->argv[3] = a4;
1635
1636 state = context->state;
1637 context->dummy = !audit_n_rules;
1638 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1639 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1640 if (likely(state == AUDIT_DISABLED))
1641 return;
1642
1643 context->serial = 0;
1644 context->ctime = CURRENT_TIME;
1645 context->in_syscall = 1;
1646 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1647 context->ppid = 0;
1648 }
1649
1650 void audit_finish_fork(struct task_struct *child)
1651 {
1652 struct audit_context *ctx = current->audit_context;
1653 struct audit_context *p = child->audit_context;
1654 if (!p || !ctx || !ctx->auditable)
1655 return;
1656 p->arch = ctx->arch;
1657 p->major = ctx->major;
1658 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1659 p->ctime = ctx->ctime;
1660 p->dummy = ctx->dummy;
1661 p->auditable = ctx->auditable;
1662 p->in_syscall = ctx->in_syscall;
1663 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1664 p->ppid = current->pid;
1665 }
1666
1667 /**
1668 * audit_syscall_exit - deallocate audit context after a system call
1669 * @valid: success/failure flag
1670 * @return_code: syscall return value
1671 *
1672 * Tear down after system call. If the audit context has been marked as
1673 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1674 * filtering, or because some other part of the kernel write an audit
1675 * message), then write out the syscall information. In call cases,
1676 * free the names stored from getname().
1677 */
1678 void audit_syscall_exit(int valid, long return_code)
1679 {
1680 struct task_struct *tsk = current;
1681 struct audit_context *context;
1682
1683 context = audit_get_context(tsk, valid, return_code);
1684
1685 if (likely(!context))
1686 return;
1687
1688 if (context->in_syscall && context->auditable)
1689 audit_log_exit(context, tsk);
1690
1691 context->in_syscall = 0;
1692 context->auditable = 0;
1693
1694 if (context->previous) {
1695 struct audit_context *new_context = context->previous;
1696 context->previous = NULL;
1697 audit_free_context(context);
1698 tsk->audit_context = new_context;
1699 } else {
1700 audit_free_names(context);
1701 unroll_tree_refs(context, NULL, 0);
1702 audit_free_aux(context);
1703 context->aux = NULL;
1704 context->aux_pids = NULL;
1705 context->target_pid = 0;
1706 context->target_sid = 0;
1707 context->sockaddr_len = 0;
1708 context->type = 0;
1709 kfree(context->filterkey);
1710 context->filterkey = NULL;
1711 tsk->audit_context = context;
1712 }
1713 }
1714
1715 static inline void handle_one(const struct inode *inode)
1716 {
1717 #ifdef CONFIG_AUDIT_TREE
1718 struct audit_context *context;
1719 struct audit_tree_refs *p;
1720 struct audit_chunk *chunk;
1721 int count;
1722 if (likely(list_empty(&inode->inotify_watches)))
1723 return;
1724 context = current->audit_context;
1725 p = context->trees;
1726 count = context->tree_count;
1727 rcu_read_lock();
1728 chunk = audit_tree_lookup(inode);
1729 rcu_read_unlock();
1730 if (!chunk)
1731 return;
1732 if (likely(put_tree_ref(context, chunk)))
1733 return;
1734 if (unlikely(!grow_tree_refs(context))) {
1735 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1736 audit_set_auditable(context);
1737 audit_put_chunk(chunk);
1738 unroll_tree_refs(context, p, count);
1739 return;
1740 }
1741 put_tree_ref(context, chunk);
1742 #endif
1743 }
1744
1745 static void handle_path(const struct dentry *dentry)
1746 {
1747 #ifdef CONFIG_AUDIT_TREE
1748 struct audit_context *context;
1749 struct audit_tree_refs *p;
1750 const struct dentry *d, *parent;
1751 struct audit_chunk *drop;
1752 unsigned long seq;
1753 int count;
1754
1755 context = current->audit_context;
1756 p = context->trees;
1757 count = context->tree_count;
1758 retry:
1759 drop = NULL;
1760 d = dentry;
1761 rcu_read_lock();
1762 seq = read_seqbegin(&rename_lock);
1763 for(;;) {
1764 struct inode *inode = d->d_inode;
1765 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1766 struct audit_chunk *chunk;
1767 chunk = audit_tree_lookup(inode);
1768 if (chunk) {
1769 if (unlikely(!put_tree_ref(context, chunk))) {
1770 drop = chunk;
1771 break;
1772 }
1773 }
1774 }
1775 parent = d->d_parent;
1776 if (parent == d)
1777 break;
1778 d = parent;
1779 }
1780 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1781 rcu_read_unlock();
1782 if (!drop) {
1783 /* just a race with rename */
1784 unroll_tree_refs(context, p, count);
1785 goto retry;
1786 }
1787 audit_put_chunk(drop);
1788 if (grow_tree_refs(context)) {
1789 /* OK, got more space */
1790 unroll_tree_refs(context, p, count);
1791 goto retry;
1792 }
1793 /* too bad */
1794 printk(KERN_WARNING
1795 "out of memory, audit has lost a tree reference\n");
1796 unroll_tree_refs(context, p, count);
1797 audit_set_auditable(context);
1798 return;
1799 }
1800 rcu_read_unlock();
1801 #endif
1802 }
1803
1804 /**
1805 * audit_getname - add a name to the list
1806 * @name: name to add
1807 *
1808 * Add a name to the list of audit names for this context.
1809 * Called from fs/namei.c:getname().
1810 */
1811 void __audit_getname(const char *name)
1812 {
1813 struct audit_context *context = current->audit_context;
1814
1815 if (IS_ERR(name) || !name)
1816 return;
1817
1818 if (!context->in_syscall) {
1819 #if AUDIT_DEBUG == 2
1820 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1821 __FILE__, __LINE__, context->serial, name);
1822 dump_stack();
1823 #endif
1824 return;
1825 }
1826 BUG_ON(context->name_count >= AUDIT_NAMES);
1827 context->names[context->name_count].name = name;
1828 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1829 context->names[context->name_count].name_put = 1;
1830 context->names[context->name_count].ino = (unsigned long)-1;
1831 context->names[context->name_count].osid = 0;
1832 ++context->name_count;
1833 if (!context->pwd.dentry) {
1834 read_lock(&current->fs->lock);
1835 context->pwd = current->fs->pwd;
1836 path_get(&current->fs->pwd);
1837 read_unlock(&current->fs->lock);
1838 }
1839
1840 }
1841
1842 /* audit_putname - intercept a putname request
1843 * @name: name to intercept and delay for putname
1844 *
1845 * If we have stored the name from getname in the audit context,
1846 * then we delay the putname until syscall exit.
1847 * Called from include/linux/fs.h:putname().
1848 */
1849 void audit_putname(const char *name)
1850 {
1851 struct audit_context *context = current->audit_context;
1852
1853 BUG_ON(!context);
1854 if (!context->in_syscall) {
1855 #if AUDIT_DEBUG == 2
1856 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1857 __FILE__, __LINE__, context->serial, name);
1858 if (context->name_count) {
1859 int i;
1860 for (i = 0; i < context->name_count; i++)
1861 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1862 context->names[i].name,
1863 context->names[i].name ?: "(null)");
1864 }
1865 #endif
1866 __putname(name);
1867 }
1868 #if AUDIT_DEBUG
1869 else {
1870 ++context->put_count;
1871 if (context->put_count > context->name_count) {
1872 printk(KERN_ERR "%s:%d(:%d): major=%d"
1873 " in_syscall=%d putname(%p) name_count=%d"
1874 " put_count=%d\n",
1875 __FILE__, __LINE__,
1876 context->serial, context->major,
1877 context->in_syscall, name, context->name_count,
1878 context->put_count);
1879 dump_stack();
1880 }
1881 }
1882 #endif
1883 }
1884
1885 static int audit_inc_name_count(struct audit_context *context,
1886 const struct inode *inode)
1887 {
1888 if (context->name_count >= AUDIT_NAMES) {
1889 if (inode)
1890 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1891 "dev=%02x:%02x, inode=%lu\n",
1892 MAJOR(inode->i_sb->s_dev),
1893 MINOR(inode->i_sb->s_dev),
1894 inode->i_ino);
1895
1896 else
1897 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1898 return 1;
1899 }
1900 context->name_count++;
1901 #if AUDIT_DEBUG
1902 context->ino_count++;
1903 #endif
1904 return 0;
1905 }
1906
1907
1908 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1909 {
1910 struct cpu_vfs_cap_data caps;
1911 int rc;
1912
1913 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1914 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1915 name->fcap.fE = 0;
1916 name->fcap_ver = 0;
1917
1918 if (!dentry)
1919 return 0;
1920
1921 rc = get_vfs_caps_from_disk(dentry, &caps);
1922 if (rc)
1923 return rc;
1924
1925 name->fcap.permitted = caps.permitted;
1926 name->fcap.inheritable = caps.inheritable;
1927 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1928 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1929
1930 return 0;
1931 }
1932
1933
1934 /* Copy inode data into an audit_names. */
1935 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1936 const struct inode *inode)
1937 {
1938 name->ino = inode->i_ino;
1939 name->dev = inode->i_sb->s_dev;
1940 name->mode = inode->i_mode;
1941 name->uid = inode->i_uid;
1942 name->gid = inode->i_gid;
1943 name->rdev = inode->i_rdev;
1944 security_inode_getsecid(inode, &name->osid);
1945 audit_copy_fcaps(name, dentry);
1946 }
1947
1948 /**
1949 * audit_inode - store the inode and device from a lookup
1950 * @name: name being audited
1951 * @dentry: dentry being audited
1952 *
1953 * Called from fs/namei.c:path_lookup().
1954 */
1955 void __audit_inode(const char *name, const struct dentry *dentry)
1956 {
1957 int idx;
1958 struct audit_context *context = current->audit_context;
1959 const struct inode *inode = dentry->d_inode;
1960
1961 if (!context->in_syscall)
1962 return;
1963 if (context->name_count
1964 && context->names[context->name_count-1].name
1965 && context->names[context->name_count-1].name == name)
1966 idx = context->name_count - 1;
1967 else if (context->name_count > 1
1968 && context->names[context->name_count-2].name
1969 && context->names[context->name_count-2].name == name)
1970 idx = context->name_count - 2;
1971 else {
1972 /* FIXME: how much do we care about inodes that have no
1973 * associated name? */
1974 if (audit_inc_name_count(context, inode))
1975 return;
1976 idx = context->name_count - 1;
1977 context->names[idx].name = NULL;
1978 }
1979 handle_path(dentry);
1980 audit_copy_inode(&context->names[idx], dentry, inode);
1981 }
1982
1983 /**
1984 * audit_inode_child - collect inode info for created/removed objects
1985 * @dname: inode's dentry name
1986 * @dentry: dentry being audited
1987 * @parent: inode of dentry parent
1988 *
1989 * For syscalls that create or remove filesystem objects, audit_inode
1990 * can only collect information for the filesystem object's parent.
1991 * This call updates the audit context with the child's information.
1992 * Syscalls that create a new filesystem object must be hooked after
1993 * the object is created. Syscalls that remove a filesystem object
1994 * must be hooked prior, in order to capture the target inode during
1995 * unsuccessful attempts.
1996 */
1997 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1998 const struct inode *parent)
1999 {
2000 int idx;
2001 struct audit_context *context = current->audit_context;
2002 const char *found_parent = NULL, *found_child = NULL;
2003 const struct inode *inode = dentry->d_inode;
2004 int dirlen = 0;
2005
2006 if (!context->in_syscall)
2007 return;
2008
2009 if (inode)
2010 handle_one(inode);
2011 /* determine matching parent */
2012 if (!dname)
2013 goto add_names;
2014
2015 /* parent is more likely, look for it first */
2016 for (idx = 0; idx < context->name_count; idx++) {
2017 struct audit_names *n = &context->names[idx];
2018
2019 if (!n->name)
2020 continue;
2021
2022 if (n->ino == parent->i_ino &&
2023 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2024 n->name_len = dirlen; /* update parent data in place */
2025 found_parent = n->name;
2026 goto add_names;
2027 }
2028 }
2029
2030 /* no matching parent, look for matching child */
2031 for (idx = 0; idx < context->name_count; idx++) {
2032 struct audit_names *n = &context->names[idx];
2033
2034 if (!n->name)
2035 continue;
2036
2037 /* strcmp() is the more likely scenario */
2038 if (!strcmp(dname, n->name) ||
2039 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2040 if (inode)
2041 audit_copy_inode(n, NULL, inode);
2042 else
2043 n->ino = (unsigned long)-1;
2044 found_child = n->name;
2045 goto add_names;
2046 }
2047 }
2048
2049 add_names:
2050 if (!found_parent) {
2051 if (audit_inc_name_count(context, parent))
2052 return;
2053 idx = context->name_count - 1;
2054 context->names[idx].name = NULL;
2055 audit_copy_inode(&context->names[idx], NULL, parent);
2056 }
2057
2058 if (!found_child) {
2059 if (audit_inc_name_count(context, inode))
2060 return;
2061 idx = context->name_count - 1;
2062
2063 /* Re-use the name belonging to the slot for a matching parent
2064 * directory. All names for this context are relinquished in
2065 * audit_free_names() */
2066 if (found_parent) {
2067 context->names[idx].name = found_parent;
2068 context->names[idx].name_len = AUDIT_NAME_FULL;
2069 /* don't call __putname() */
2070 context->names[idx].name_put = 0;
2071 } else {
2072 context->names[idx].name = NULL;
2073 }
2074
2075 if (inode)
2076 audit_copy_inode(&context->names[idx], NULL, inode);
2077 else
2078 context->names[idx].ino = (unsigned long)-1;
2079 }
2080 }
2081 EXPORT_SYMBOL_GPL(__audit_inode_child);
2082
2083 /**
2084 * auditsc_get_stamp - get local copies of audit_context values
2085 * @ctx: audit_context for the task
2086 * @t: timespec to store time recorded in the audit_context
2087 * @serial: serial value that is recorded in the audit_context
2088 *
2089 * Also sets the context as auditable.
2090 */
2091 int auditsc_get_stamp(struct audit_context *ctx,
2092 struct timespec *t, unsigned int *serial)
2093 {
2094 if (!ctx->in_syscall)
2095 return 0;
2096 if (!ctx->serial)
2097 ctx->serial = audit_serial();
2098 t->tv_sec = ctx->ctime.tv_sec;
2099 t->tv_nsec = ctx->ctime.tv_nsec;
2100 *serial = ctx->serial;
2101 ctx->auditable = 1;
2102 return 1;
2103 }
2104
2105 /* global counter which is incremented every time something logs in */
2106 static atomic_t session_id = ATOMIC_INIT(0);
2107
2108 /**
2109 * audit_set_loginuid - set a task's audit_context loginuid
2110 * @task: task whose audit context is being modified
2111 * @loginuid: loginuid value
2112 *
2113 * Returns 0.
2114 *
2115 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2116 */
2117 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2118 {
2119 unsigned int sessionid = atomic_inc_return(&session_id);
2120 struct audit_context *context = task->audit_context;
2121
2122 if (context && context->in_syscall) {
2123 struct audit_buffer *ab;
2124
2125 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2126 if (ab) {
2127 audit_log_format(ab, "login pid=%d uid=%u "
2128 "old auid=%u new auid=%u"
2129 " old ses=%u new ses=%u",
2130 task->pid, task_uid(task),
2131 task->loginuid, loginuid,
2132 task->sessionid, sessionid);
2133 audit_log_end(ab);
2134 }
2135 }
2136 task->sessionid = sessionid;
2137 task->loginuid = loginuid;
2138 return 0;
2139 }
2140
2141 /**
2142 * __audit_mq_open - record audit data for a POSIX MQ open
2143 * @oflag: open flag
2144 * @mode: mode bits
2145 * @u_attr: queue attributes
2146 *
2147 * Returns 0 for success or NULL context or < 0 on error.
2148 */
2149 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2150 {
2151 struct audit_aux_data_mq_open *ax;
2152 struct audit_context *context = current->audit_context;
2153
2154 if (!audit_enabled)
2155 return 0;
2156
2157 if (likely(!context))
2158 return 0;
2159
2160 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2161 if (!ax)
2162 return -ENOMEM;
2163
2164 if (u_attr != NULL) {
2165 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2166 kfree(ax);
2167 return -EFAULT;
2168 }
2169 } else
2170 memset(&ax->attr, 0, sizeof(ax->attr));
2171
2172 ax->oflag = oflag;
2173 ax->mode = mode;
2174
2175 ax->d.type = AUDIT_MQ_OPEN;
2176 ax->d.next = context->aux;
2177 context->aux = (void *)ax;
2178 return 0;
2179 }
2180
2181 /**
2182 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2183 * @mqdes: MQ descriptor
2184 * @msg_len: Message length
2185 * @msg_prio: Message priority
2186 * @u_abs_timeout: Message timeout in absolute time
2187 *
2188 * Returns 0 for success or NULL context or < 0 on error.
2189 */
2190 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2191 const struct timespec __user *u_abs_timeout)
2192 {
2193 struct audit_aux_data_mq_sendrecv *ax;
2194 struct audit_context *context = current->audit_context;
2195
2196 if (!audit_enabled)
2197 return 0;
2198
2199 if (likely(!context))
2200 return 0;
2201
2202 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2203 if (!ax)
2204 return -ENOMEM;
2205
2206 if (u_abs_timeout != NULL) {
2207 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2208 kfree(ax);
2209 return -EFAULT;
2210 }
2211 } else
2212 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2213
2214 ax->mqdes = mqdes;
2215 ax->msg_len = msg_len;
2216 ax->msg_prio = msg_prio;
2217
2218 ax->d.type = AUDIT_MQ_SENDRECV;
2219 ax->d.next = context->aux;
2220 context->aux = (void *)ax;
2221 return 0;
2222 }
2223
2224 /**
2225 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2226 * @mqdes: MQ descriptor
2227 * @msg_len: Message length
2228 * @u_msg_prio: Message priority
2229 * @u_abs_timeout: Message timeout in absolute time
2230 *
2231 * Returns 0 for success or NULL context or < 0 on error.
2232 */
2233 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2234 unsigned int __user *u_msg_prio,
2235 const struct timespec __user *u_abs_timeout)
2236 {
2237 struct audit_aux_data_mq_sendrecv *ax;
2238 struct audit_context *context = current->audit_context;
2239
2240 if (!audit_enabled)
2241 return 0;
2242
2243 if (likely(!context))
2244 return 0;
2245
2246 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2247 if (!ax)
2248 return -ENOMEM;
2249
2250 if (u_msg_prio != NULL) {
2251 if (get_user(ax->msg_prio, u_msg_prio)) {
2252 kfree(ax);
2253 return -EFAULT;
2254 }
2255 } else
2256 ax->msg_prio = 0;
2257
2258 if (u_abs_timeout != NULL) {
2259 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2260 kfree(ax);
2261 return -EFAULT;
2262 }
2263 } else
2264 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2265
2266 ax->mqdes = mqdes;
2267 ax->msg_len = msg_len;
2268
2269 ax->d.type = AUDIT_MQ_SENDRECV;
2270 ax->d.next = context->aux;
2271 context->aux = (void *)ax;
2272 return 0;
2273 }
2274
2275 /**
2276 * __audit_mq_notify - record audit data for a POSIX MQ notify
2277 * @mqdes: MQ descriptor
2278 * @u_notification: Notification event
2279 *
2280 * Returns 0 for success or NULL context or < 0 on error.
2281 */
2282
2283 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2284 {
2285 struct audit_aux_data_mq_notify *ax;
2286 struct audit_context *context = current->audit_context;
2287
2288 if (!audit_enabled)
2289 return 0;
2290
2291 if (likely(!context))
2292 return 0;
2293
2294 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2295 if (!ax)
2296 return -ENOMEM;
2297
2298 if (u_notification != NULL) {
2299 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2300 kfree(ax);
2301 return -EFAULT;
2302 }
2303 } else
2304 memset(&ax->notification, 0, sizeof(ax->notification));
2305
2306 ax->mqdes = mqdes;
2307
2308 ax->d.type = AUDIT_MQ_NOTIFY;
2309 ax->d.next = context->aux;
2310 context->aux = (void *)ax;
2311 return 0;
2312 }
2313
2314 /**
2315 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2316 * @mqdes: MQ descriptor
2317 * @mqstat: MQ flags
2318 *
2319 * Returns 0 for success or NULL context or < 0 on error.
2320 */
2321 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2322 {
2323 struct audit_aux_data_mq_getsetattr *ax;
2324 struct audit_context *context = current->audit_context;
2325
2326 if (!audit_enabled)
2327 return 0;
2328
2329 if (likely(!context))
2330 return 0;
2331
2332 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2333 if (!ax)
2334 return -ENOMEM;
2335
2336 ax->mqdes = mqdes;
2337 ax->mqstat = *mqstat;
2338
2339 ax->d.type = AUDIT_MQ_GETSETATTR;
2340 ax->d.next = context->aux;
2341 context->aux = (void *)ax;
2342 return 0;
2343 }
2344
2345 /**
2346 * audit_ipc_obj - record audit data for ipc object
2347 * @ipcp: ipc permissions
2348 *
2349 */
2350 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2351 {
2352 struct audit_context *context = current->audit_context;
2353 context->ipc.uid = ipcp->uid;
2354 context->ipc.gid = ipcp->gid;
2355 context->ipc.mode = ipcp->mode;
2356 context->ipc.has_perm = 0;
2357 security_ipc_getsecid(ipcp, &context->ipc.osid);
2358 context->type = AUDIT_IPC;
2359 }
2360
2361 /**
2362 * audit_ipc_set_perm - record audit data for new ipc permissions
2363 * @qbytes: msgq bytes
2364 * @uid: msgq user id
2365 * @gid: msgq group id
2366 * @mode: msgq mode (permissions)
2367 *
2368 * Called only after audit_ipc_obj().
2369 */
2370 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2371 {
2372 struct audit_context *context = current->audit_context;
2373
2374 context->ipc.qbytes = qbytes;
2375 context->ipc.perm_uid = uid;
2376 context->ipc.perm_gid = gid;
2377 context->ipc.perm_mode = mode;
2378 context->ipc.has_perm = 1;
2379 }
2380
2381 int audit_bprm(struct linux_binprm *bprm)
2382 {
2383 struct audit_aux_data_execve *ax;
2384 struct audit_context *context = current->audit_context;
2385
2386 if (likely(!audit_enabled || !context || context->dummy))
2387 return 0;
2388
2389 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2390 if (!ax)
2391 return -ENOMEM;
2392
2393 ax->argc = bprm->argc;
2394 ax->envc = bprm->envc;
2395 ax->mm = bprm->mm;
2396 ax->d.type = AUDIT_EXECVE;
2397 ax->d.next = context->aux;
2398 context->aux = (void *)ax;
2399 return 0;
2400 }
2401
2402
2403 /**
2404 * audit_socketcall - record audit data for sys_socketcall
2405 * @nargs: number of args
2406 * @args: args array
2407 *
2408 */
2409 void audit_socketcall(int nargs, unsigned long *args)
2410 {
2411 struct audit_context *context = current->audit_context;
2412
2413 if (likely(!context || context->dummy))
2414 return;
2415
2416 context->type = AUDIT_SOCKETCALL;
2417 context->socketcall.nargs = nargs;
2418 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2419 }
2420
2421 /**
2422 * __audit_fd_pair - record audit data for pipe and socketpair
2423 * @fd1: the first file descriptor
2424 * @fd2: the second file descriptor
2425 *
2426 * Returns 0 for success or NULL context or < 0 on error.
2427 */
2428 int __audit_fd_pair(int fd1, int fd2)
2429 {
2430 struct audit_context *context = current->audit_context;
2431 struct audit_aux_data_fd_pair *ax;
2432
2433 if (likely(!context)) {
2434 return 0;
2435 }
2436
2437 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2438 if (!ax) {
2439 return -ENOMEM;
2440 }
2441
2442 ax->fd[0] = fd1;
2443 ax->fd[1] = fd2;
2444
2445 ax->d.type = AUDIT_FD_PAIR;
2446 ax->d.next = context->aux;
2447 context->aux = (void *)ax;
2448 return 0;
2449 }
2450
2451 /**
2452 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2453 * @len: data length in user space
2454 * @a: data address in kernel space
2455 *
2456 * Returns 0 for success or NULL context or < 0 on error.
2457 */
2458 int audit_sockaddr(int len, void *a)
2459 {
2460 struct audit_context *context = current->audit_context;
2461
2462 if (likely(!context || context->dummy))
2463 return 0;
2464
2465 if (!context->sockaddr) {
2466 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2467 if (!p)
2468 return -ENOMEM;
2469 context->sockaddr = p;
2470 }
2471
2472 context->sockaddr_len = len;
2473 memcpy(context->sockaddr, a, len);
2474 return 0;
2475 }
2476
2477 void __audit_ptrace(struct task_struct *t)
2478 {
2479 struct audit_context *context = current->audit_context;
2480
2481 context->target_pid = t->pid;
2482 context->target_auid = audit_get_loginuid(t);
2483 context->target_uid = task_uid(t);
2484 context->target_sessionid = audit_get_sessionid(t);
2485 security_task_getsecid(t, &context->target_sid);
2486 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2487 }
2488
2489 /**
2490 * audit_signal_info - record signal info for shutting down audit subsystem
2491 * @sig: signal value
2492 * @t: task being signaled
2493 *
2494 * If the audit subsystem is being terminated, record the task (pid)
2495 * and uid that is doing that.
2496 */
2497 int __audit_signal_info(int sig, struct task_struct *t)
2498 {
2499 struct audit_aux_data_pids *axp;
2500 struct task_struct *tsk = current;
2501 struct audit_context *ctx = tsk->audit_context;
2502 uid_t uid = current_uid(), t_uid = task_uid(t);
2503
2504 if (audit_pid && t->tgid == audit_pid) {
2505 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2506 audit_sig_pid = tsk->pid;
2507 if (tsk->loginuid != -1)
2508 audit_sig_uid = tsk->loginuid;
2509 else
2510 audit_sig_uid = uid;
2511 security_task_getsecid(tsk, &audit_sig_sid);
2512 }
2513 if (!audit_signals || audit_dummy_context())
2514 return 0;
2515 }
2516
2517 /* optimize the common case by putting first signal recipient directly
2518 * in audit_context */
2519 if (!ctx->target_pid) {
2520 ctx->target_pid = t->tgid;
2521 ctx->target_auid = audit_get_loginuid(t);
2522 ctx->target_uid = t_uid;
2523 ctx->target_sessionid = audit_get_sessionid(t);
2524 security_task_getsecid(t, &ctx->target_sid);
2525 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2526 return 0;
2527 }
2528
2529 axp = (void *)ctx->aux_pids;
2530 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2531 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2532 if (!axp)
2533 return -ENOMEM;
2534
2535 axp->d.type = AUDIT_OBJ_PID;
2536 axp->d.next = ctx->aux_pids;
2537 ctx->aux_pids = (void *)axp;
2538 }
2539 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2540
2541 axp->target_pid[axp->pid_count] = t->tgid;
2542 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2543 axp->target_uid[axp->pid_count] = t_uid;
2544 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2545 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2546 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2547 axp->pid_count++;
2548
2549 return 0;
2550 }
2551
2552 /**
2553 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2554 * @bprm: pointer to the bprm being processed
2555 * @new: the proposed new credentials
2556 * @old: the old credentials
2557 *
2558 * Simply check if the proc already has the caps given by the file and if not
2559 * store the priv escalation info for later auditing at the end of the syscall
2560 *
2561 * -Eric
2562 */
2563 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2564 const struct cred *new, const struct cred *old)
2565 {
2566 struct audit_aux_data_bprm_fcaps *ax;
2567 struct audit_context *context = current->audit_context;
2568 struct cpu_vfs_cap_data vcaps;
2569 struct dentry *dentry;
2570
2571 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2572 if (!ax)
2573 return -ENOMEM;
2574
2575 ax->d.type = AUDIT_BPRM_FCAPS;
2576 ax->d.next = context->aux;
2577 context->aux = (void *)ax;
2578
2579 dentry = dget(bprm->file->f_dentry);
2580 get_vfs_caps_from_disk(dentry, &vcaps);
2581 dput(dentry);
2582
2583 ax->fcap.permitted = vcaps.permitted;
2584 ax->fcap.inheritable = vcaps.inheritable;
2585 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2586 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2587
2588 ax->old_pcap.permitted = old->cap_permitted;
2589 ax->old_pcap.inheritable = old->cap_inheritable;
2590 ax->old_pcap.effective = old->cap_effective;
2591
2592 ax->new_pcap.permitted = new->cap_permitted;
2593 ax->new_pcap.inheritable = new->cap_inheritable;
2594 ax->new_pcap.effective = new->cap_effective;
2595 return 0;
2596 }
2597
2598 /**
2599 * __audit_log_capset - store information about the arguments to the capset syscall
2600 * @pid: target pid of the capset call
2601 * @new: the new credentials
2602 * @old: the old (current) credentials
2603 *
2604 * Record the aguments userspace sent to sys_capset for later printing by the
2605 * audit system if applicable
2606 */
2607 int __audit_log_capset(pid_t pid,
2608 const struct cred *new, const struct cred *old)
2609 {
2610 struct audit_aux_data_capset *ax;
2611 struct audit_context *context = current->audit_context;
2612
2613 if (likely(!audit_enabled || !context || context->dummy))
2614 return 0;
2615
2616 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2617 if (!ax)
2618 return -ENOMEM;
2619
2620 ax->d.type = AUDIT_CAPSET;
2621 ax->d.next = context->aux;
2622 context->aux = (void *)ax;
2623
2624 ax->pid = pid;
2625 ax->cap.effective = new->cap_effective;
2626 ax->cap.inheritable = new->cap_effective;
2627 ax->cap.permitted = new->cap_permitted;
2628
2629 return 0;
2630 }
2631
2632 /**
2633 * audit_core_dumps - record information about processes that end abnormally
2634 * @signr: signal value
2635 *
2636 * If a process ends with a core dump, something fishy is going on and we
2637 * should record the event for investigation.
2638 */
2639 void audit_core_dumps(long signr)
2640 {
2641 struct audit_buffer *ab;
2642 u32 sid;
2643 uid_t auid = audit_get_loginuid(current), uid;
2644 gid_t gid;
2645 unsigned int sessionid = audit_get_sessionid(current);
2646
2647 if (!audit_enabled)
2648 return;
2649
2650 if (signr == SIGQUIT) /* don't care for those */
2651 return;
2652
2653 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2654 current_uid_gid(&uid, &gid);
2655 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2656 auid, uid, gid, sessionid);
2657 security_task_getsecid(current, &sid);
2658 if (sid) {
2659 char *ctx = NULL;
2660 u32 len;
2661
2662 if (security_secid_to_secctx(sid, &ctx, &len))
2663 audit_log_format(ab, " ssid=%u", sid);
2664 else {
2665 audit_log_format(ab, " subj=%s", ctx);
2666 security_release_secctx(ctx, len);
2667 }
2668 }
2669 audit_log_format(ab, " pid=%d comm=", current->pid);
2670 audit_log_untrustedstring(ab, current->comm);
2671 audit_log_format(ab, " sig=%ld", signr);
2672 audit_log_end(ab);
2673 }
This page took 0.088215 seconds and 5 git commands to generate.