audit: inline checks for not needing to collect aux records
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70
71 #include "audit.h"
72
73 /* flags stating the success for a syscall */
74 #define AUDITSC_INVALID 0
75 #define AUDITSC_SUCCESS 1
76 #define AUDITSC_FAILURE 2
77
78 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
81 #define AUDIT_NAMES 5
82
83 /* Indicates that audit should log the full pathname. */
84 #define AUDIT_NAME_FULL -1
85
86 /* no execve audit message should be longer than this (userspace limits) */
87 #define MAX_EXECVE_AUDIT_LEN 7500
88
89 /* number of audit rules */
90 int audit_n_rules;
91
92 /* determines whether we collect data for signals sent */
93 int audit_signals;
94
95 struct audit_cap_data {
96 kernel_cap_t permitted;
97 kernel_cap_t inheritable;
98 union {
99 unsigned int fE; /* effective bit of a file capability */
100 kernel_cap_t effective; /* effective set of a process */
101 };
102 };
103
104 /* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
107 *
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109 struct audit_names {
110 struct list_head list; /* audit_context->names_list */
111 const char *name;
112 unsigned long ino;
113 dev_t dev;
114 umode_t mode;
115 uid_t uid;
116 gid_t gid;
117 dev_t rdev;
118 u32 osid;
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
121 int name_len; /* number of name's characters to log */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
129 };
130
131 struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134 };
135
136 #define AUDIT_AUX_IPCPERM 0
137
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
140
141 struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
145 struct mm_struct *mm;
146 };
147
148 struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
151 uid_t target_auid[AUDIT_AUX_PIDS];
152 uid_t target_uid[AUDIT_AUX_PIDS];
153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
154 u32 target_sid[AUDIT_AUX_PIDS];
155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 int pid_count;
157 };
158
159 struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165 };
166
167 struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171 };
172
173 struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176 };
177
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state, current_state;
183 unsigned int serial; /* serial number for record */
184 int major; /* syscall number */
185 struct timespec ctime; /* time of syscall entry */
186 unsigned long argv[4]; /* syscall arguments */
187 long return_code;/* syscall return code */
188 u64 prio;
189 int return_valid; /* return code is valid */
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
201 char * filterkey; /* key for rule that triggered record */
202 struct path pwd;
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
205 struct audit_aux_data *aux_pids;
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
208 /* Save things to print about task_struct */
209 pid_t pid, ppid;
210 uid_t uid, euid, suid, fsuid;
211 gid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
213 int arch;
214
215 pid_t target_pid;
216 uid_t target_auid;
217 uid_t target_uid;
218 unsigned int target_sessionid;
219 u32 target_sid;
220 char target_comm[TASK_COMM_LEN];
221
222 struct audit_tree_refs *trees, *first_trees;
223 struct list_head killed_trees;
224 int tree_count;
225
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
232 struct {
233 uid_t uid;
234 gid_t gid;
235 umode_t mode;
236 u32 osid;
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
240 umode_t perm_mode;
241 unsigned long qbytes;
242 } ipc;
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
257 struct {
258 int oflag;
259 umode_t mode;
260 struct mq_attr attr;
261 } mq_open;
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
266 struct {
267 int fd;
268 int flags;
269 } mmap;
270 };
271 int fds[2];
272
273 #if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276 #endif
277 };
278
279 static inline int open_arg(int flags, int mask)
280 {
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
285 }
286
287 static int audit_match_perm(struct audit_context *ctx, int mask)
288 {
289 unsigned n;
290 if (unlikely(!ctx))
291 return 0;
292 n = ctx->major;
293
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
327 }
328 }
329
330 static int audit_match_filetype(struct audit_context *ctx, int val)
331 {
332 struct audit_names *n;
333 umode_t mode = (umode_t)val;
334
335 if (unlikely(!ctx))
336 return 0;
337
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
341 return 1;
342 }
343
344 return 0;
345 }
346
347 /*
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
355 */
356
357 #ifdef CONFIG_AUDIT_TREE
358 static void audit_set_auditable(struct audit_context *ctx)
359 {
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
363 }
364 }
365
366 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367 {
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
374 }
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
383 }
384 return 0;
385 }
386
387 static int grow_tree_refs(struct audit_context *ctx)
388 {
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
394 }
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
401 }
402 #endif
403
404 static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
406 {
407 #ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
417 }
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
423 }
424 }
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
428 }
429 ctx->trees = p;
430 ctx->tree_count = count;
431 #endif
432 }
433
434 static void free_tree_refs(struct audit_context *ctx)
435 {
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
440 }
441 }
442
443 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444 {
445 #ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
455 }
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
461 }
462 #endif
463 return 0;
464 }
465
466 /* Determine if any context name data matches a rule's watch data */
467 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
468 * otherwise.
469 *
470 * If task_creation is true, this is an explicit indication that we are
471 * filtering a task rule at task creation time. This and tsk == current are
472 * the only situations where tsk->cred may be accessed without an rcu read lock.
473 */
474 static int audit_filter_rules(struct task_struct *tsk,
475 struct audit_krule *rule,
476 struct audit_context *ctx,
477 struct audit_names *name,
478 enum audit_state *state,
479 bool task_creation)
480 {
481 const struct cred *cred;
482 int i, need_sid = 1;
483 u32 sid;
484
485 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
486
487 for (i = 0; i < rule->field_count; i++) {
488 struct audit_field *f = &rule->fields[i];
489 struct audit_names *n;
490 int result = 0;
491
492 switch (f->type) {
493 case AUDIT_PID:
494 result = audit_comparator(tsk->pid, f->op, f->val);
495 break;
496 case AUDIT_PPID:
497 if (ctx) {
498 if (!ctx->ppid)
499 ctx->ppid = sys_getppid();
500 result = audit_comparator(ctx->ppid, f->op, f->val);
501 }
502 break;
503 case AUDIT_UID:
504 result = audit_comparator(cred->uid, f->op, f->val);
505 break;
506 case AUDIT_EUID:
507 result = audit_comparator(cred->euid, f->op, f->val);
508 break;
509 case AUDIT_SUID:
510 result = audit_comparator(cred->suid, f->op, f->val);
511 break;
512 case AUDIT_FSUID:
513 result = audit_comparator(cred->fsuid, f->op, f->val);
514 break;
515 case AUDIT_GID:
516 result = audit_comparator(cred->gid, f->op, f->val);
517 break;
518 case AUDIT_EGID:
519 result = audit_comparator(cred->egid, f->op, f->val);
520 break;
521 case AUDIT_SGID:
522 result = audit_comparator(cred->sgid, f->op, f->val);
523 break;
524 case AUDIT_FSGID:
525 result = audit_comparator(cred->fsgid, f->op, f->val);
526 break;
527 case AUDIT_PERS:
528 result = audit_comparator(tsk->personality, f->op, f->val);
529 break;
530 case AUDIT_ARCH:
531 if (ctx)
532 result = audit_comparator(ctx->arch, f->op, f->val);
533 break;
534
535 case AUDIT_EXIT:
536 if (ctx && ctx->return_valid)
537 result = audit_comparator(ctx->return_code, f->op, f->val);
538 break;
539 case AUDIT_SUCCESS:
540 if (ctx && ctx->return_valid) {
541 if (f->val)
542 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
543 else
544 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
545 }
546 break;
547 case AUDIT_DEVMAJOR:
548 if (name) {
549 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
550 audit_comparator(MAJOR(name->rdev), f->op, f->val))
551 ++result;
552 } else if (ctx) {
553 list_for_each_entry(n, &ctx->names_list, list) {
554 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
555 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
556 ++result;
557 break;
558 }
559 }
560 }
561 break;
562 case AUDIT_DEVMINOR:
563 if (name) {
564 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
565 audit_comparator(MINOR(name->rdev), f->op, f->val))
566 ++result;
567 } else if (ctx) {
568 list_for_each_entry(n, &ctx->names_list, list) {
569 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
570 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
571 ++result;
572 break;
573 }
574 }
575 }
576 break;
577 case AUDIT_INODE:
578 if (name)
579 result = (name->ino == f->val);
580 else if (ctx) {
581 list_for_each_entry(n, &ctx->names_list, list) {
582 if (audit_comparator(n->ino, f->op, f->val)) {
583 ++result;
584 break;
585 }
586 }
587 }
588 break;
589 case AUDIT_WATCH:
590 if (name)
591 result = audit_watch_compare(rule->watch, name->ino, name->dev);
592 break;
593 case AUDIT_DIR:
594 if (ctx)
595 result = match_tree_refs(ctx, rule->tree);
596 break;
597 case AUDIT_LOGINUID:
598 result = 0;
599 if (ctx)
600 result = audit_comparator(tsk->loginuid, f->op, f->val);
601 break;
602 case AUDIT_SUBJ_USER:
603 case AUDIT_SUBJ_ROLE:
604 case AUDIT_SUBJ_TYPE:
605 case AUDIT_SUBJ_SEN:
606 case AUDIT_SUBJ_CLR:
607 /* NOTE: this may return negative values indicating
608 a temporary error. We simply treat this as a
609 match for now to avoid losing information that
610 may be wanted. An error message will also be
611 logged upon error */
612 if (f->lsm_rule) {
613 if (need_sid) {
614 security_task_getsecid(tsk, &sid);
615 need_sid = 0;
616 }
617 result = security_audit_rule_match(sid, f->type,
618 f->op,
619 f->lsm_rule,
620 ctx);
621 }
622 break;
623 case AUDIT_OBJ_USER:
624 case AUDIT_OBJ_ROLE:
625 case AUDIT_OBJ_TYPE:
626 case AUDIT_OBJ_LEV_LOW:
627 case AUDIT_OBJ_LEV_HIGH:
628 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
629 also applies here */
630 if (f->lsm_rule) {
631 /* Find files that match */
632 if (name) {
633 result = security_audit_rule_match(
634 name->osid, f->type, f->op,
635 f->lsm_rule, ctx);
636 } else if (ctx) {
637 list_for_each_entry(n, &ctx->names_list, list) {
638 if (security_audit_rule_match(n->osid, f->type,
639 f->op, f->lsm_rule,
640 ctx)) {
641 ++result;
642 break;
643 }
644 }
645 }
646 /* Find ipc objects that match */
647 if (!ctx || ctx->type != AUDIT_IPC)
648 break;
649 if (security_audit_rule_match(ctx->ipc.osid,
650 f->type, f->op,
651 f->lsm_rule, ctx))
652 ++result;
653 }
654 break;
655 case AUDIT_ARG0:
656 case AUDIT_ARG1:
657 case AUDIT_ARG2:
658 case AUDIT_ARG3:
659 if (ctx)
660 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
661 break;
662 case AUDIT_FILTERKEY:
663 /* ignore this field for filtering */
664 result = 1;
665 break;
666 case AUDIT_PERM:
667 result = audit_match_perm(ctx, f->val);
668 break;
669 case AUDIT_FILETYPE:
670 result = audit_match_filetype(ctx, f->val);
671 break;
672 }
673
674 if (!result)
675 return 0;
676 }
677
678 if (ctx) {
679 if (rule->prio <= ctx->prio)
680 return 0;
681 if (rule->filterkey) {
682 kfree(ctx->filterkey);
683 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
684 }
685 ctx->prio = rule->prio;
686 }
687 switch (rule->action) {
688 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
689 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
690 }
691 return 1;
692 }
693
694 /* At process creation time, we can determine if system-call auditing is
695 * completely disabled for this task. Since we only have the task
696 * structure at this point, we can only check uid and gid.
697 */
698 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
699 {
700 struct audit_entry *e;
701 enum audit_state state;
702
703 rcu_read_lock();
704 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
705 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
706 &state, true)) {
707 if (state == AUDIT_RECORD_CONTEXT)
708 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
709 rcu_read_unlock();
710 return state;
711 }
712 }
713 rcu_read_unlock();
714 return AUDIT_BUILD_CONTEXT;
715 }
716
717 /* At syscall entry and exit time, this filter is called if the
718 * audit_state is not low enough that auditing cannot take place, but is
719 * also not high enough that we already know we have to write an audit
720 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
721 */
722 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
723 struct audit_context *ctx,
724 struct list_head *list)
725 {
726 struct audit_entry *e;
727 enum audit_state state;
728
729 if (audit_pid && tsk->tgid == audit_pid)
730 return AUDIT_DISABLED;
731
732 rcu_read_lock();
733 if (!list_empty(list)) {
734 int word = AUDIT_WORD(ctx->major);
735 int bit = AUDIT_BIT(ctx->major);
736
737 list_for_each_entry_rcu(e, list, list) {
738 if ((e->rule.mask[word] & bit) == bit &&
739 audit_filter_rules(tsk, &e->rule, ctx, NULL,
740 &state, false)) {
741 rcu_read_unlock();
742 ctx->current_state = state;
743 return state;
744 }
745 }
746 }
747 rcu_read_unlock();
748 return AUDIT_BUILD_CONTEXT;
749 }
750
751 /*
752 * Given an audit_name check the inode hash table to see if they match.
753 * Called holding the rcu read lock to protect the use of audit_inode_hash
754 */
755 static int audit_filter_inode_name(struct task_struct *tsk,
756 struct audit_names *n,
757 struct audit_context *ctx) {
758 int word, bit;
759 int h = audit_hash_ino((u32)n->ino);
760 struct list_head *list = &audit_inode_hash[h];
761 struct audit_entry *e;
762 enum audit_state state;
763
764 word = AUDIT_WORD(ctx->major);
765 bit = AUDIT_BIT(ctx->major);
766
767 if (list_empty(list))
768 return 0;
769
770 list_for_each_entry_rcu(e, list, list) {
771 if ((e->rule.mask[word] & bit) == bit &&
772 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
773 ctx->current_state = state;
774 return 1;
775 }
776 }
777
778 return 0;
779 }
780
781 /* At syscall exit time, this filter is called if any audit_names have been
782 * collected during syscall processing. We only check rules in sublists at hash
783 * buckets applicable to the inode numbers in audit_names.
784 * Regarding audit_state, same rules apply as for audit_filter_syscall().
785 */
786 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
787 {
788 struct audit_names *n;
789
790 if (audit_pid && tsk->tgid == audit_pid)
791 return;
792
793 rcu_read_lock();
794
795 list_for_each_entry(n, &ctx->names_list, list) {
796 if (audit_filter_inode_name(tsk, n, ctx))
797 break;
798 }
799 rcu_read_unlock();
800 }
801
802 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
803 int return_valid,
804 long return_code)
805 {
806 struct audit_context *context = tsk->audit_context;
807
808 if (!context)
809 return NULL;
810 context->return_valid = return_valid;
811
812 /*
813 * we need to fix up the return code in the audit logs if the actual
814 * return codes are later going to be fixed up by the arch specific
815 * signal handlers
816 *
817 * This is actually a test for:
818 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
819 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
820 *
821 * but is faster than a bunch of ||
822 */
823 if (unlikely(return_code <= -ERESTARTSYS) &&
824 (return_code >= -ERESTART_RESTARTBLOCK) &&
825 (return_code != -ENOIOCTLCMD))
826 context->return_code = -EINTR;
827 else
828 context->return_code = return_code;
829
830 if (context->in_syscall && !context->dummy) {
831 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
832 audit_filter_inodes(tsk, context);
833 }
834
835 tsk->audit_context = NULL;
836 return context;
837 }
838
839 static inline void audit_free_names(struct audit_context *context)
840 {
841 struct audit_names *n, *next;
842
843 #if AUDIT_DEBUG == 2
844 if (context->put_count + context->ino_count != context->name_count) {
845 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
846 " name_count=%d put_count=%d"
847 " ino_count=%d [NOT freeing]\n",
848 __FILE__, __LINE__,
849 context->serial, context->major, context->in_syscall,
850 context->name_count, context->put_count,
851 context->ino_count);
852 list_for_each_entry(n, &context->names_list, list) {
853 printk(KERN_ERR "names[%d] = %p = %s\n", i,
854 n->name, n->name ?: "(null)");
855 }
856 dump_stack();
857 return;
858 }
859 #endif
860 #if AUDIT_DEBUG
861 context->put_count = 0;
862 context->ino_count = 0;
863 #endif
864
865 list_for_each_entry_safe(n, next, &context->names_list, list) {
866 list_del(&n->list);
867 if (n->name && n->name_put)
868 __putname(n->name);
869 if (n->should_free)
870 kfree(n);
871 }
872 context->name_count = 0;
873 path_put(&context->pwd);
874 context->pwd.dentry = NULL;
875 context->pwd.mnt = NULL;
876 }
877
878 static inline void audit_free_aux(struct audit_context *context)
879 {
880 struct audit_aux_data *aux;
881
882 while ((aux = context->aux)) {
883 context->aux = aux->next;
884 kfree(aux);
885 }
886 while ((aux = context->aux_pids)) {
887 context->aux_pids = aux->next;
888 kfree(aux);
889 }
890 }
891
892 static inline void audit_zero_context(struct audit_context *context,
893 enum audit_state state)
894 {
895 memset(context, 0, sizeof(*context));
896 context->state = state;
897 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
898 }
899
900 static inline struct audit_context *audit_alloc_context(enum audit_state state)
901 {
902 struct audit_context *context;
903
904 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
905 return NULL;
906 audit_zero_context(context, state);
907 INIT_LIST_HEAD(&context->killed_trees);
908 INIT_LIST_HEAD(&context->names_list);
909 return context;
910 }
911
912 /**
913 * audit_alloc - allocate an audit context block for a task
914 * @tsk: task
915 *
916 * Filter on the task information and allocate a per-task audit context
917 * if necessary. Doing so turns on system call auditing for the
918 * specified task. This is called from copy_process, so no lock is
919 * needed.
920 */
921 int audit_alloc(struct task_struct *tsk)
922 {
923 struct audit_context *context;
924 enum audit_state state;
925 char *key = NULL;
926
927 if (likely(!audit_ever_enabled))
928 return 0; /* Return if not auditing. */
929
930 state = audit_filter_task(tsk, &key);
931 if (state == AUDIT_DISABLED)
932 return 0;
933
934 if (!(context = audit_alloc_context(state))) {
935 kfree(key);
936 audit_log_lost("out of memory in audit_alloc");
937 return -ENOMEM;
938 }
939 context->filterkey = key;
940
941 tsk->audit_context = context;
942 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
943 return 0;
944 }
945
946 static inline void audit_free_context(struct audit_context *context)
947 {
948 struct audit_context *previous;
949 int count = 0;
950
951 do {
952 previous = context->previous;
953 if (previous || (count && count < 10)) {
954 ++count;
955 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
956 " freeing multiple contexts (%d)\n",
957 context->serial, context->major,
958 context->name_count, count);
959 }
960 audit_free_names(context);
961 unroll_tree_refs(context, NULL, 0);
962 free_tree_refs(context);
963 audit_free_aux(context);
964 kfree(context->filterkey);
965 kfree(context->sockaddr);
966 kfree(context);
967 context = previous;
968 } while (context);
969 if (count >= 10)
970 printk(KERN_ERR "audit: freed %d contexts\n", count);
971 }
972
973 void audit_log_task_context(struct audit_buffer *ab)
974 {
975 char *ctx = NULL;
976 unsigned len;
977 int error;
978 u32 sid;
979
980 security_task_getsecid(current, &sid);
981 if (!sid)
982 return;
983
984 error = security_secid_to_secctx(sid, &ctx, &len);
985 if (error) {
986 if (error != -EINVAL)
987 goto error_path;
988 return;
989 }
990
991 audit_log_format(ab, " subj=%s", ctx);
992 security_release_secctx(ctx, len);
993 return;
994
995 error_path:
996 audit_panic("error in audit_log_task_context");
997 return;
998 }
999
1000 EXPORT_SYMBOL(audit_log_task_context);
1001
1002 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1003 {
1004 char name[sizeof(tsk->comm)];
1005 struct mm_struct *mm = tsk->mm;
1006 struct vm_area_struct *vma;
1007
1008 /* tsk == current */
1009
1010 get_task_comm(name, tsk);
1011 audit_log_format(ab, " comm=");
1012 audit_log_untrustedstring(ab, name);
1013
1014 if (mm) {
1015 down_read(&mm->mmap_sem);
1016 vma = mm->mmap;
1017 while (vma) {
1018 if ((vma->vm_flags & VM_EXECUTABLE) &&
1019 vma->vm_file) {
1020 audit_log_d_path(ab, "exe=",
1021 &vma->vm_file->f_path);
1022 break;
1023 }
1024 vma = vma->vm_next;
1025 }
1026 up_read(&mm->mmap_sem);
1027 }
1028 audit_log_task_context(ab);
1029 }
1030
1031 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1032 uid_t auid, uid_t uid, unsigned int sessionid,
1033 u32 sid, char *comm)
1034 {
1035 struct audit_buffer *ab;
1036 char *ctx = NULL;
1037 u32 len;
1038 int rc = 0;
1039
1040 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1041 if (!ab)
1042 return rc;
1043
1044 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1045 uid, sessionid);
1046 if (security_secid_to_secctx(sid, &ctx, &len)) {
1047 audit_log_format(ab, " obj=(none)");
1048 rc = 1;
1049 } else {
1050 audit_log_format(ab, " obj=%s", ctx);
1051 security_release_secctx(ctx, len);
1052 }
1053 audit_log_format(ab, " ocomm=");
1054 audit_log_untrustedstring(ab, comm);
1055 audit_log_end(ab);
1056
1057 return rc;
1058 }
1059
1060 /*
1061 * to_send and len_sent accounting are very loose estimates. We aren't
1062 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1063 * within about 500 bytes (next page boundary)
1064 *
1065 * why snprintf? an int is up to 12 digits long. if we just assumed when
1066 * logging that a[%d]= was going to be 16 characters long we would be wasting
1067 * space in every audit message. In one 7500 byte message we can log up to
1068 * about 1000 min size arguments. That comes down to about 50% waste of space
1069 * if we didn't do the snprintf to find out how long arg_num_len was.
1070 */
1071 static int audit_log_single_execve_arg(struct audit_context *context,
1072 struct audit_buffer **ab,
1073 int arg_num,
1074 size_t *len_sent,
1075 const char __user *p,
1076 char *buf)
1077 {
1078 char arg_num_len_buf[12];
1079 const char __user *tmp_p = p;
1080 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1081 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1082 size_t len, len_left, to_send;
1083 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1084 unsigned int i, has_cntl = 0, too_long = 0;
1085 int ret;
1086
1087 /* strnlen_user includes the null we don't want to send */
1088 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1089
1090 /*
1091 * We just created this mm, if we can't find the strings
1092 * we just copied into it something is _very_ wrong. Similar
1093 * for strings that are too long, we should not have created
1094 * any.
1095 */
1096 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1097 WARN_ON(1);
1098 send_sig(SIGKILL, current, 0);
1099 return -1;
1100 }
1101
1102 /* walk the whole argument looking for non-ascii chars */
1103 do {
1104 if (len_left > MAX_EXECVE_AUDIT_LEN)
1105 to_send = MAX_EXECVE_AUDIT_LEN;
1106 else
1107 to_send = len_left;
1108 ret = copy_from_user(buf, tmp_p, to_send);
1109 /*
1110 * There is no reason for this copy to be short. We just
1111 * copied them here, and the mm hasn't been exposed to user-
1112 * space yet.
1113 */
1114 if (ret) {
1115 WARN_ON(1);
1116 send_sig(SIGKILL, current, 0);
1117 return -1;
1118 }
1119 buf[to_send] = '\0';
1120 has_cntl = audit_string_contains_control(buf, to_send);
1121 if (has_cntl) {
1122 /*
1123 * hex messages get logged as 2 bytes, so we can only
1124 * send half as much in each message
1125 */
1126 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1127 break;
1128 }
1129 len_left -= to_send;
1130 tmp_p += to_send;
1131 } while (len_left > 0);
1132
1133 len_left = len;
1134
1135 if (len > max_execve_audit_len)
1136 too_long = 1;
1137
1138 /* rewalk the argument actually logging the message */
1139 for (i = 0; len_left > 0; i++) {
1140 int room_left;
1141
1142 if (len_left > max_execve_audit_len)
1143 to_send = max_execve_audit_len;
1144 else
1145 to_send = len_left;
1146
1147 /* do we have space left to send this argument in this ab? */
1148 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1149 if (has_cntl)
1150 room_left -= (to_send * 2);
1151 else
1152 room_left -= to_send;
1153 if (room_left < 0) {
1154 *len_sent = 0;
1155 audit_log_end(*ab);
1156 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1157 if (!*ab)
1158 return 0;
1159 }
1160
1161 /*
1162 * first record needs to say how long the original string was
1163 * so we can be sure nothing was lost.
1164 */
1165 if ((i == 0) && (too_long))
1166 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1167 has_cntl ? 2*len : len);
1168
1169 /*
1170 * normally arguments are small enough to fit and we already
1171 * filled buf above when we checked for control characters
1172 * so don't bother with another copy_from_user
1173 */
1174 if (len >= max_execve_audit_len)
1175 ret = copy_from_user(buf, p, to_send);
1176 else
1177 ret = 0;
1178 if (ret) {
1179 WARN_ON(1);
1180 send_sig(SIGKILL, current, 0);
1181 return -1;
1182 }
1183 buf[to_send] = '\0';
1184
1185 /* actually log it */
1186 audit_log_format(*ab, " a%d", arg_num);
1187 if (too_long)
1188 audit_log_format(*ab, "[%d]", i);
1189 audit_log_format(*ab, "=");
1190 if (has_cntl)
1191 audit_log_n_hex(*ab, buf, to_send);
1192 else
1193 audit_log_string(*ab, buf);
1194
1195 p += to_send;
1196 len_left -= to_send;
1197 *len_sent += arg_num_len;
1198 if (has_cntl)
1199 *len_sent += to_send * 2;
1200 else
1201 *len_sent += to_send;
1202 }
1203 /* include the null we didn't log */
1204 return len + 1;
1205 }
1206
1207 static void audit_log_execve_info(struct audit_context *context,
1208 struct audit_buffer **ab,
1209 struct audit_aux_data_execve *axi)
1210 {
1211 int i;
1212 size_t len, len_sent = 0;
1213 const char __user *p;
1214 char *buf;
1215
1216 if (axi->mm != current->mm)
1217 return; /* execve failed, no additional info */
1218
1219 p = (const char __user *)axi->mm->arg_start;
1220
1221 audit_log_format(*ab, "argc=%d", axi->argc);
1222
1223 /*
1224 * we need some kernel buffer to hold the userspace args. Just
1225 * allocate one big one rather than allocating one of the right size
1226 * for every single argument inside audit_log_single_execve_arg()
1227 * should be <8k allocation so should be pretty safe.
1228 */
1229 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1230 if (!buf) {
1231 audit_panic("out of memory for argv string\n");
1232 return;
1233 }
1234
1235 for (i = 0; i < axi->argc; i++) {
1236 len = audit_log_single_execve_arg(context, ab, i,
1237 &len_sent, p, buf);
1238 if (len <= 0)
1239 break;
1240 p += len;
1241 }
1242 kfree(buf);
1243 }
1244
1245 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1246 {
1247 int i;
1248
1249 audit_log_format(ab, " %s=", prefix);
1250 CAP_FOR_EACH_U32(i) {
1251 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1252 }
1253 }
1254
1255 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1256 {
1257 kernel_cap_t *perm = &name->fcap.permitted;
1258 kernel_cap_t *inh = &name->fcap.inheritable;
1259 int log = 0;
1260
1261 if (!cap_isclear(*perm)) {
1262 audit_log_cap(ab, "cap_fp", perm);
1263 log = 1;
1264 }
1265 if (!cap_isclear(*inh)) {
1266 audit_log_cap(ab, "cap_fi", inh);
1267 log = 1;
1268 }
1269
1270 if (log)
1271 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1272 }
1273
1274 static void show_special(struct audit_context *context, int *call_panic)
1275 {
1276 struct audit_buffer *ab;
1277 int i;
1278
1279 ab = audit_log_start(context, GFP_KERNEL, context->type);
1280 if (!ab)
1281 return;
1282
1283 switch (context->type) {
1284 case AUDIT_SOCKETCALL: {
1285 int nargs = context->socketcall.nargs;
1286 audit_log_format(ab, "nargs=%d", nargs);
1287 for (i = 0; i < nargs; i++)
1288 audit_log_format(ab, " a%d=%lx", i,
1289 context->socketcall.args[i]);
1290 break; }
1291 case AUDIT_IPC: {
1292 u32 osid = context->ipc.osid;
1293
1294 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1295 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1296 if (osid) {
1297 char *ctx = NULL;
1298 u32 len;
1299 if (security_secid_to_secctx(osid, &ctx, &len)) {
1300 audit_log_format(ab, " osid=%u", osid);
1301 *call_panic = 1;
1302 } else {
1303 audit_log_format(ab, " obj=%s", ctx);
1304 security_release_secctx(ctx, len);
1305 }
1306 }
1307 if (context->ipc.has_perm) {
1308 audit_log_end(ab);
1309 ab = audit_log_start(context, GFP_KERNEL,
1310 AUDIT_IPC_SET_PERM);
1311 audit_log_format(ab,
1312 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1313 context->ipc.qbytes,
1314 context->ipc.perm_uid,
1315 context->ipc.perm_gid,
1316 context->ipc.perm_mode);
1317 if (!ab)
1318 return;
1319 }
1320 break; }
1321 case AUDIT_MQ_OPEN: {
1322 audit_log_format(ab,
1323 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1324 "mq_msgsize=%ld mq_curmsgs=%ld",
1325 context->mq_open.oflag, context->mq_open.mode,
1326 context->mq_open.attr.mq_flags,
1327 context->mq_open.attr.mq_maxmsg,
1328 context->mq_open.attr.mq_msgsize,
1329 context->mq_open.attr.mq_curmsgs);
1330 break; }
1331 case AUDIT_MQ_SENDRECV: {
1332 audit_log_format(ab,
1333 "mqdes=%d msg_len=%zd msg_prio=%u "
1334 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1335 context->mq_sendrecv.mqdes,
1336 context->mq_sendrecv.msg_len,
1337 context->mq_sendrecv.msg_prio,
1338 context->mq_sendrecv.abs_timeout.tv_sec,
1339 context->mq_sendrecv.abs_timeout.tv_nsec);
1340 break; }
1341 case AUDIT_MQ_NOTIFY: {
1342 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1343 context->mq_notify.mqdes,
1344 context->mq_notify.sigev_signo);
1345 break; }
1346 case AUDIT_MQ_GETSETATTR: {
1347 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1348 audit_log_format(ab,
1349 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1350 "mq_curmsgs=%ld ",
1351 context->mq_getsetattr.mqdes,
1352 attr->mq_flags, attr->mq_maxmsg,
1353 attr->mq_msgsize, attr->mq_curmsgs);
1354 break; }
1355 case AUDIT_CAPSET: {
1356 audit_log_format(ab, "pid=%d", context->capset.pid);
1357 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1358 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1359 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1360 break; }
1361 case AUDIT_MMAP: {
1362 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1363 context->mmap.flags);
1364 break; }
1365 }
1366 audit_log_end(ab);
1367 }
1368
1369 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1370 int record_num, int *call_panic)
1371 {
1372 struct audit_buffer *ab;
1373 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1374 if (!ab)
1375 return; /* audit_panic has been called */
1376
1377 audit_log_format(ab, "item=%d", record_num);
1378
1379 if (n->name) {
1380 switch (n->name_len) {
1381 case AUDIT_NAME_FULL:
1382 /* log the full path */
1383 audit_log_format(ab, " name=");
1384 audit_log_untrustedstring(ab, n->name);
1385 break;
1386 case 0:
1387 /* name was specified as a relative path and the
1388 * directory component is the cwd */
1389 audit_log_d_path(ab, "name=", &context->pwd);
1390 break;
1391 default:
1392 /* log the name's directory component */
1393 audit_log_format(ab, " name=");
1394 audit_log_n_untrustedstring(ab, n->name,
1395 n->name_len);
1396 }
1397 } else
1398 audit_log_format(ab, " name=(null)");
1399
1400 if (n->ino != (unsigned long)-1) {
1401 audit_log_format(ab, " inode=%lu"
1402 " dev=%02x:%02x mode=%#ho"
1403 " ouid=%u ogid=%u rdev=%02x:%02x",
1404 n->ino,
1405 MAJOR(n->dev),
1406 MINOR(n->dev),
1407 n->mode,
1408 n->uid,
1409 n->gid,
1410 MAJOR(n->rdev),
1411 MINOR(n->rdev));
1412 }
1413 if (n->osid != 0) {
1414 char *ctx = NULL;
1415 u32 len;
1416 if (security_secid_to_secctx(
1417 n->osid, &ctx, &len)) {
1418 audit_log_format(ab, " osid=%u", n->osid);
1419 *call_panic = 2;
1420 } else {
1421 audit_log_format(ab, " obj=%s", ctx);
1422 security_release_secctx(ctx, len);
1423 }
1424 }
1425
1426 audit_log_fcaps(ab, n);
1427
1428 audit_log_end(ab);
1429 }
1430
1431 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1432 {
1433 const struct cred *cred;
1434 int i, call_panic = 0;
1435 struct audit_buffer *ab;
1436 struct audit_aux_data *aux;
1437 const char *tty;
1438 struct audit_names *n;
1439
1440 /* tsk == current */
1441 context->pid = tsk->pid;
1442 if (!context->ppid)
1443 context->ppid = sys_getppid();
1444 cred = current_cred();
1445 context->uid = cred->uid;
1446 context->gid = cred->gid;
1447 context->euid = cred->euid;
1448 context->suid = cred->suid;
1449 context->fsuid = cred->fsuid;
1450 context->egid = cred->egid;
1451 context->sgid = cred->sgid;
1452 context->fsgid = cred->fsgid;
1453 context->personality = tsk->personality;
1454
1455 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1456 if (!ab)
1457 return; /* audit_panic has been called */
1458 audit_log_format(ab, "arch=%x syscall=%d",
1459 context->arch, context->major);
1460 if (context->personality != PER_LINUX)
1461 audit_log_format(ab, " per=%lx", context->personality);
1462 if (context->return_valid)
1463 audit_log_format(ab, " success=%s exit=%ld",
1464 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1465 context->return_code);
1466
1467 spin_lock_irq(&tsk->sighand->siglock);
1468 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1469 tty = tsk->signal->tty->name;
1470 else
1471 tty = "(none)";
1472 spin_unlock_irq(&tsk->sighand->siglock);
1473
1474 audit_log_format(ab,
1475 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1476 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1477 " euid=%u suid=%u fsuid=%u"
1478 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1479 context->argv[0],
1480 context->argv[1],
1481 context->argv[2],
1482 context->argv[3],
1483 context->name_count,
1484 context->ppid,
1485 context->pid,
1486 tsk->loginuid,
1487 context->uid,
1488 context->gid,
1489 context->euid, context->suid, context->fsuid,
1490 context->egid, context->sgid, context->fsgid, tty,
1491 tsk->sessionid);
1492
1493
1494 audit_log_task_info(ab, tsk);
1495 audit_log_key(ab, context->filterkey);
1496 audit_log_end(ab);
1497
1498 for (aux = context->aux; aux; aux = aux->next) {
1499
1500 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1501 if (!ab)
1502 continue; /* audit_panic has been called */
1503
1504 switch (aux->type) {
1505
1506 case AUDIT_EXECVE: {
1507 struct audit_aux_data_execve *axi = (void *)aux;
1508 audit_log_execve_info(context, &ab, axi);
1509 break; }
1510
1511 case AUDIT_BPRM_FCAPS: {
1512 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1513 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1514 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1515 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1516 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1517 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1518 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1519 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1520 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1521 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1522 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1523 break; }
1524
1525 }
1526 audit_log_end(ab);
1527 }
1528
1529 if (context->type)
1530 show_special(context, &call_panic);
1531
1532 if (context->fds[0] >= 0) {
1533 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1534 if (ab) {
1535 audit_log_format(ab, "fd0=%d fd1=%d",
1536 context->fds[0], context->fds[1]);
1537 audit_log_end(ab);
1538 }
1539 }
1540
1541 if (context->sockaddr_len) {
1542 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1543 if (ab) {
1544 audit_log_format(ab, "saddr=");
1545 audit_log_n_hex(ab, (void *)context->sockaddr,
1546 context->sockaddr_len);
1547 audit_log_end(ab);
1548 }
1549 }
1550
1551 for (aux = context->aux_pids; aux; aux = aux->next) {
1552 struct audit_aux_data_pids *axs = (void *)aux;
1553
1554 for (i = 0; i < axs->pid_count; i++)
1555 if (audit_log_pid_context(context, axs->target_pid[i],
1556 axs->target_auid[i],
1557 axs->target_uid[i],
1558 axs->target_sessionid[i],
1559 axs->target_sid[i],
1560 axs->target_comm[i]))
1561 call_panic = 1;
1562 }
1563
1564 if (context->target_pid &&
1565 audit_log_pid_context(context, context->target_pid,
1566 context->target_auid, context->target_uid,
1567 context->target_sessionid,
1568 context->target_sid, context->target_comm))
1569 call_panic = 1;
1570
1571 if (context->pwd.dentry && context->pwd.mnt) {
1572 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1573 if (ab) {
1574 audit_log_d_path(ab, "cwd=", &context->pwd);
1575 audit_log_end(ab);
1576 }
1577 }
1578
1579 i = 0;
1580 list_for_each_entry(n, &context->names_list, list)
1581 audit_log_name(context, n, i++, &call_panic);
1582
1583 /* Send end of event record to help user space know we are finished */
1584 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1585 if (ab)
1586 audit_log_end(ab);
1587 if (call_panic)
1588 audit_panic("error converting sid to string");
1589 }
1590
1591 /**
1592 * audit_free - free a per-task audit context
1593 * @tsk: task whose audit context block to free
1594 *
1595 * Called from copy_process and do_exit
1596 */
1597 void audit_free(struct task_struct *tsk)
1598 {
1599 struct audit_context *context;
1600
1601 context = audit_get_context(tsk, 0, 0);
1602 if (!context)
1603 return;
1604
1605 /* Check for system calls that do not go through the exit
1606 * function (e.g., exit_group), then free context block.
1607 * We use GFP_ATOMIC here because we might be doing this
1608 * in the context of the idle thread */
1609 /* that can happen only if we are called from do_exit() */
1610 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1611 audit_log_exit(context, tsk);
1612 if (!list_empty(&context->killed_trees))
1613 audit_kill_trees(&context->killed_trees);
1614
1615 audit_free_context(context);
1616 }
1617
1618 /**
1619 * audit_syscall_entry - fill in an audit record at syscall entry
1620 * @arch: architecture type
1621 * @major: major syscall type (function)
1622 * @a1: additional syscall register 1
1623 * @a2: additional syscall register 2
1624 * @a3: additional syscall register 3
1625 * @a4: additional syscall register 4
1626 *
1627 * Fill in audit context at syscall entry. This only happens if the
1628 * audit context was created when the task was created and the state or
1629 * filters demand the audit context be built. If the state from the
1630 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1631 * then the record will be written at syscall exit time (otherwise, it
1632 * will only be written if another part of the kernel requests that it
1633 * be written).
1634 */
1635 void __audit_syscall_entry(int arch, int major,
1636 unsigned long a1, unsigned long a2,
1637 unsigned long a3, unsigned long a4)
1638 {
1639 struct task_struct *tsk = current;
1640 struct audit_context *context = tsk->audit_context;
1641 enum audit_state state;
1642
1643 if (!context)
1644 return;
1645
1646 /*
1647 * This happens only on certain architectures that make system
1648 * calls in kernel_thread via the entry.S interface, instead of
1649 * with direct calls. (If you are porting to a new
1650 * architecture, hitting this condition can indicate that you
1651 * got the _exit/_leave calls backward in entry.S.)
1652 *
1653 * i386 no
1654 * x86_64 no
1655 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1656 *
1657 * This also happens with vm86 emulation in a non-nested manner
1658 * (entries without exits), so this case must be caught.
1659 */
1660 if (context->in_syscall) {
1661 struct audit_context *newctx;
1662
1663 #if AUDIT_DEBUG
1664 printk(KERN_ERR
1665 "audit(:%d) pid=%d in syscall=%d;"
1666 " entering syscall=%d\n",
1667 context->serial, tsk->pid, context->major, major);
1668 #endif
1669 newctx = audit_alloc_context(context->state);
1670 if (newctx) {
1671 newctx->previous = context;
1672 context = newctx;
1673 tsk->audit_context = newctx;
1674 } else {
1675 /* If we can't alloc a new context, the best we
1676 * can do is to leak memory (any pending putname
1677 * will be lost). The only other alternative is
1678 * to abandon auditing. */
1679 audit_zero_context(context, context->state);
1680 }
1681 }
1682 BUG_ON(context->in_syscall || context->name_count);
1683
1684 if (!audit_enabled)
1685 return;
1686
1687 context->arch = arch;
1688 context->major = major;
1689 context->argv[0] = a1;
1690 context->argv[1] = a2;
1691 context->argv[2] = a3;
1692 context->argv[3] = a4;
1693
1694 state = context->state;
1695 context->dummy = !audit_n_rules;
1696 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1697 context->prio = 0;
1698 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1699 }
1700 if (state == AUDIT_DISABLED)
1701 return;
1702
1703 context->serial = 0;
1704 context->ctime = CURRENT_TIME;
1705 context->in_syscall = 1;
1706 context->current_state = state;
1707 context->ppid = 0;
1708 }
1709
1710 void audit_finish_fork(struct task_struct *child)
1711 {
1712 struct audit_context *ctx = current->audit_context;
1713 struct audit_context *p = child->audit_context;
1714 if (!p || !ctx)
1715 return;
1716 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1717 return;
1718 p->arch = ctx->arch;
1719 p->major = ctx->major;
1720 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1721 p->ctime = ctx->ctime;
1722 p->dummy = ctx->dummy;
1723 p->in_syscall = ctx->in_syscall;
1724 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1725 p->ppid = current->pid;
1726 p->prio = ctx->prio;
1727 p->current_state = ctx->current_state;
1728 }
1729
1730 /**
1731 * audit_syscall_exit - deallocate audit context after a system call
1732 * @pt_regs: syscall registers
1733 *
1734 * Tear down after system call. If the audit context has been marked as
1735 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1736 * filtering, or because some other part of the kernel write an audit
1737 * message), then write out the syscall information. In call cases,
1738 * free the names stored from getname().
1739 */
1740 void __audit_syscall_exit(int success, long return_code)
1741 {
1742 struct task_struct *tsk = current;
1743 struct audit_context *context;
1744
1745 if (success)
1746 success = AUDITSC_SUCCESS;
1747 else
1748 success = AUDITSC_FAILURE;
1749
1750 context = audit_get_context(tsk, success, return_code);
1751 if (!context)
1752 return;
1753
1754 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1755 audit_log_exit(context, tsk);
1756
1757 context->in_syscall = 0;
1758 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1759
1760 if (!list_empty(&context->killed_trees))
1761 audit_kill_trees(&context->killed_trees);
1762
1763 if (context->previous) {
1764 struct audit_context *new_context = context->previous;
1765 context->previous = NULL;
1766 audit_free_context(context);
1767 tsk->audit_context = new_context;
1768 } else {
1769 audit_free_names(context);
1770 unroll_tree_refs(context, NULL, 0);
1771 audit_free_aux(context);
1772 context->aux = NULL;
1773 context->aux_pids = NULL;
1774 context->target_pid = 0;
1775 context->target_sid = 0;
1776 context->sockaddr_len = 0;
1777 context->type = 0;
1778 context->fds[0] = -1;
1779 if (context->state != AUDIT_RECORD_CONTEXT) {
1780 kfree(context->filterkey);
1781 context->filterkey = NULL;
1782 }
1783 tsk->audit_context = context;
1784 }
1785 }
1786
1787 static inline void handle_one(const struct inode *inode)
1788 {
1789 #ifdef CONFIG_AUDIT_TREE
1790 struct audit_context *context;
1791 struct audit_tree_refs *p;
1792 struct audit_chunk *chunk;
1793 int count;
1794 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1795 return;
1796 context = current->audit_context;
1797 p = context->trees;
1798 count = context->tree_count;
1799 rcu_read_lock();
1800 chunk = audit_tree_lookup(inode);
1801 rcu_read_unlock();
1802 if (!chunk)
1803 return;
1804 if (likely(put_tree_ref(context, chunk)))
1805 return;
1806 if (unlikely(!grow_tree_refs(context))) {
1807 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1808 audit_set_auditable(context);
1809 audit_put_chunk(chunk);
1810 unroll_tree_refs(context, p, count);
1811 return;
1812 }
1813 put_tree_ref(context, chunk);
1814 #endif
1815 }
1816
1817 static void handle_path(const struct dentry *dentry)
1818 {
1819 #ifdef CONFIG_AUDIT_TREE
1820 struct audit_context *context;
1821 struct audit_tree_refs *p;
1822 const struct dentry *d, *parent;
1823 struct audit_chunk *drop;
1824 unsigned long seq;
1825 int count;
1826
1827 context = current->audit_context;
1828 p = context->trees;
1829 count = context->tree_count;
1830 retry:
1831 drop = NULL;
1832 d = dentry;
1833 rcu_read_lock();
1834 seq = read_seqbegin(&rename_lock);
1835 for(;;) {
1836 struct inode *inode = d->d_inode;
1837 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1838 struct audit_chunk *chunk;
1839 chunk = audit_tree_lookup(inode);
1840 if (chunk) {
1841 if (unlikely(!put_tree_ref(context, chunk))) {
1842 drop = chunk;
1843 break;
1844 }
1845 }
1846 }
1847 parent = d->d_parent;
1848 if (parent == d)
1849 break;
1850 d = parent;
1851 }
1852 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1853 rcu_read_unlock();
1854 if (!drop) {
1855 /* just a race with rename */
1856 unroll_tree_refs(context, p, count);
1857 goto retry;
1858 }
1859 audit_put_chunk(drop);
1860 if (grow_tree_refs(context)) {
1861 /* OK, got more space */
1862 unroll_tree_refs(context, p, count);
1863 goto retry;
1864 }
1865 /* too bad */
1866 printk(KERN_WARNING
1867 "out of memory, audit has lost a tree reference\n");
1868 unroll_tree_refs(context, p, count);
1869 audit_set_auditable(context);
1870 return;
1871 }
1872 rcu_read_unlock();
1873 #endif
1874 }
1875
1876 static struct audit_names *audit_alloc_name(struct audit_context *context)
1877 {
1878 struct audit_names *aname;
1879
1880 if (context->name_count < AUDIT_NAMES) {
1881 aname = &context->preallocated_names[context->name_count];
1882 memset(aname, 0, sizeof(*aname));
1883 } else {
1884 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1885 if (!aname)
1886 return NULL;
1887 aname->should_free = true;
1888 }
1889
1890 aname->ino = (unsigned long)-1;
1891 list_add_tail(&aname->list, &context->names_list);
1892
1893 context->name_count++;
1894 #if AUDIT_DEBUG
1895 context->ino_count++;
1896 #endif
1897 return aname;
1898 }
1899
1900 /**
1901 * audit_getname - add a name to the list
1902 * @name: name to add
1903 *
1904 * Add a name to the list of audit names for this context.
1905 * Called from fs/namei.c:getname().
1906 */
1907 void __audit_getname(const char *name)
1908 {
1909 struct audit_context *context = current->audit_context;
1910 struct audit_names *n;
1911
1912 if (IS_ERR(name) || !name)
1913 return;
1914
1915 if (!context->in_syscall) {
1916 #if AUDIT_DEBUG == 2
1917 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1918 __FILE__, __LINE__, context->serial, name);
1919 dump_stack();
1920 #endif
1921 return;
1922 }
1923
1924 n = audit_alloc_name(context);
1925 if (!n)
1926 return;
1927
1928 n->name = name;
1929 n->name_len = AUDIT_NAME_FULL;
1930 n->name_put = true;
1931
1932 if (!context->pwd.dentry)
1933 get_fs_pwd(current->fs, &context->pwd);
1934 }
1935
1936 /* audit_putname - intercept a putname request
1937 * @name: name to intercept and delay for putname
1938 *
1939 * If we have stored the name from getname in the audit context,
1940 * then we delay the putname until syscall exit.
1941 * Called from include/linux/fs.h:putname().
1942 */
1943 void audit_putname(const char *name)
1944 {
1945 struct audit_context *context = current->audit_context;
1946
1947 BUG_ON(!context);
1948 if (!context->in_syscall) {
1949 #if AUDIT_DEBUG == 2
1950 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1951 __FILE__, __LINE__, context->serial, name);
1952 if (context->name_count) {
1953 struct audit_names *n;
1954 int i;
1955
1956 list_for_each_entry(n, &context->names_list, list)
1957 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1958 n->name, n->name ?: "(null)");
1959 }
1960 #endif
1961 __putname(name);
1962 }
1963 #if AUDIT_DEBUG
1964 else {
1965 ++context->put_count;
1966 if (context->put_count > context->name_count) {
1967 printk(KERN_ERR "%s:%d(:%d): major=%d"
1968 " in_syscall=%d putname(%p) name_count=%d"
1969 " put_count=%d\n",
1970 __FILE__, __LINE__,
1971 context->serial, context->major,
1972 context->in_syscall, name, context->name_count,
1973 context->put_count);
1974 dump_stack();
1975 }
1976 }
1977 #endif
1978 }
1979
1980 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1981 {
1982 struct cpu_vfs_cap_data caps;
1983 int rc;
1984
1985 if (!dentry)
1986 return 0;
1987
1988 rc = get_vfs_caps_from_disk(dentry, &caps);
1989 if (rc)
1990 return rc;
1991
1992 name->fcap.permitted = caps.permitted;
1993 name->fcap.inheritable = caps.inheritable;
1994 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1995 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1996
1997 return 0;
1998 }
1999
2000
2001 /* Copy inode data into an audit_names. */
2002 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2003 const struct inode *inode)
2004 {
2005 name->ino = inode->i_ino;
2006 name->dev = inode->i_sb->s_dev;
2007 name->mode = inode->i_mode;
2008 name->uid = inode->i_uid;
2009 name->gid = inode->i_gid;
2010 name->rdev = inode->i_rdev;
2011 security_inode_getsecid(inode, &name->osid);
2012 audit_copy_fcaps(name, dentry);
2013 }
2014
2015 /**
2016 * audit_inode - store the inode and device from a lookup
2017 * @name: name being audited
2018 * @dentry: dentry being audited
2019 *
2020 * Called from fs/namei.c:path_lookup().
2021 */
2022 void __audit_inode(const char *name, const struct dentry *dentry)
2023 {
2024 struct audit_context *context = current->audit_context;
2025 const struct inode *inode = dentry->d_inode;
2026 struct audit_names *n;
2027
2028 if (!context->in_syscall)
2029 return;
2030
2031 list_for_each_entry_reverse(n, &context->names_list, list) {
2032 if (n->name && (n->name == name))
2033 goto out;
2034 }
2035
2036 /* unable to find the name from a previous getname() */
2037 n = audit_alloc_name(context);
2038 if (!n)
2039 return;
2040 out:
2041 handle_path(dentry);
2042 audit_copy_inode(n, dentry, inode);
2043 }
2044
2045 /**
2046 * audit_inode_child - collect inode info for created/removed objects
2047 * @dentry: dentry being audited
2048 * @parent: inode of dentry parent
2049 *
2050 * For syscalls that create or remove filesystem objects, audit_inode
2051 * can only collect information for the filesystem object's parent.
2052 * This call updates the audit context with the child's information.
2053 * Syscalls that create a new filesystem object must be hooked after
2054 * the object is created. Syscalls that remove a filesystem object
2055 * must be hooked prior, in order to capture the target inode during
2056 * unsuccessful attempts.
2057 */
2058 void __audit_inode_child(const struct dentry *dentry,
2059 const struct inode *parent)
2060 {
2061 struct audit_context *context = current->audit_context;
2062 const char *found_parent = NULL, *found_child = NULL;
2063 const struct inode *inode = dentry->d_inode;
2064 const char *dname = dentry->d_name.name;
2065 struct audit_names *n;
2066 int dirlen = 0;
2067
2068 if (!context->in_syscall)
2069 return;
2070
2071 if (inode)
2072 handle_one(inode);
2073
2074 /* parent is more likely, look for it first */
2075 list_for_each_entry(n, &context->names_list, list) {
2076 if (!n->name)
2077 continue;
2078
2079 if (n->ino == parent->i_ino &&
2080 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2081 n->name_len = dirlen; /* update parent data in place */
2082 found_parent = n->name;
2083 goto add_names;
2084 }
2085 }
2086
2087 /* no matching parent, look for matching child */
2088 list_for_each_entry(n, &context->names_list, list) {
2089 if (!n->name)
2090 continue;
2091
2092 /* strcmp() is the more likely scenario */
2093 if (!strcmp(dname, n->name) ||
2094 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2095 if (inode)
2096 audit_copy_inode(n, NULL, inode);
2097 else
2098 n->ino = (unsigned long)-1;
2099 found_child = n->name;
2100 goto add_names;
2101 }
2102 }
2103
2104 add_names:
2105 if (!found_parent) {
2106 n = audit_alloc_name(context);
2107 if (!n)
2108 return;
2109 audit_copy_inode(n, NULL, parent);
2110 }
2111
2112 if (!found_child) {
2113 n = audit_alloc_name(context);
2114 if (!n)
2115 return;
2116
2117 /* Re-use the name belonging to the slot for a matching parent
2118 * directory. All names for this context are relinquished in
2119 * audit_free_names() */
2120 if (found_parent) {
2121 n->name = found_parent;
2122 n->name_len = AUDIT_NAME_FULL;
2123 /* don't call __putname() */
2124 n->name_put = false;
2125 }
2126
2127 if (inode)
2128 audit_copy_inode(n, NULL, inode);
2129 }
2130 }
2131 EXPORT_SYMBOL_GPL(__audit_inode_child);
2132
2133 /**
2134 * auditsc_get_stamp - get local copies of audit_context values
2135 * @ctx: audit_context for the task
2136 * @t: timespec to store time recorded in the audit_context
2137 * @serial: serial value that is recorded in the audit_context
2138 *
2139 * Also sets the context as auditable.
2140 */
2141 int auditsc_get_stamp(struct audit_context *ctx,
2142 struct timespec *t, unsigned int *serial)
2143 {
2144 if (!ctx->in_syscall)
2145 return 0;
2146 if (!ctx->serial)
2147 ctx->serial = audit_serial();
2148 t->tv_sec = ctx->ctime.tv_sec;
2149 t->tv_nsec = ctx->ctime.tv_nsec;
2150 *serial = ctx->serial;
2151 if (!ctx->prio) {
2152 ctx->prio = 1;
2153 ctx->current_state = AUDIT_RECORD_CONTEXT;
2154 }
2155 return 1;
2156 }
2157
2158 /* global counter which is incremented every time something logs in */
2159 static atomic_t session_id = ATOMIC_INIT(0);
2160
2161 /**
2162 * audit_set_loginuid - set a task's audit_context loginuid
2163 * @task: task whose audit context is being modified
2164 * @loginuid: loginuid value
2165 *
2166 * Returns 0.
2167 *
2168 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2169 */
2170 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2171 {
2172 unsigned int sessionid = atomic_inc_return(&session_id);
2173 struct audit_context *context = task->audit_context;
2174
2175 if (context && context->in_syscall) {
2176 struct audit_buffer *ab;
2177
2178 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2179 if (ab) {
2180 audit_log_format(ab, "login pid=%d uid=%u "
2181 "old auid=%u new auid=%u"
2182 " old ses=%u new ses=%u",
2183 task->pid, task_uid(task),
2184 task->loginuid, loginuid,
2185 task->sessionid, sessionid);
2186 audit_log_end(ab);
2187 }
2188 }
2189 task->sessionid = sessionid;
2190 task->loginuid = loginuid;
2191 return 0;
2192 }
2193
2194 /**
2195 * __audit_mq_open - record audit data for a POSIX MQ open
2196 * @oflag: open flag
2197 * @mode: mode bits
2198 * @attr: queue attributes
2199 *
2200 */
2201 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2202 {
2203 struct audit_context *context = current->audit_context;
2204
2205 if (attr)
2206 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2207 else
2208 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2209
2210 context->mq_open.oflag = oflag;
2211 context->mq_open.mode = mode;
2212
2213 context->type = AUDIT_MQ_OPEN;
2214 }
2215
2216 /**
2217 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2218 * @mqdes: MQ descriptor
2219 * @msg_len: Message length
2220 * @msg_prio: Message priority
2221 * @abs_timeout: Message timeout in absolute time
2222 *
2223 */
2224 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2225 const struct timespec *abs_timeout)
2226 {
2227 struct audit_context *context = current->audit_context;
2228 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2229
2230 if (abs_timeout)
2231 memcpy(p, abs_timeout, sizeof(struct timespec));
2232 else
2233 memset(p, 0, sizeof(struct timespec));
2234
2235 context->mq_sendrecv.mqdes = mqdes;
2236 context->mq_sendrecv.msg_len = msg_len;
2237 context->mq_sendrecv.msg_prio = msg_prio;
2238
2239 context->type = AUDIT_MQ_SENDRECV;
2240 }
2241
2242 /**
2243 * __audit_mq_notify - record audit data for a POSIX MQ notify
2244 * @mqdes: MQ descriptor
2245 * @notification: Notification event
2246 *
2247 */
2248
2249 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2250 {
2251 struct audit_context *context = current->audit_context;
2252
2253 if (notification)
2254 context->mq_notify.sigev_signo = notification->sigev_signo;
2255 else
2256 context->mq_notify.sigev_signo = 0;
2257
2258 context->mq_notify.mqdes = mqdes;
2259 context->type = AUDIT_MQ_NOTIFY;
2260 }
2261
2262 /**
2263 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2264 * @mqdes: MQ descriptor
2265 * @mqstat: MQ flags
2266 *
2267 */
2268 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2269 {
2270 struct audit_context *context = current->audit_context;
2271 context->mq_getsetattr.mqdes = mqdes;
2272 context->mq_getsetattr.mqstat = *mqstat;
2273 context->type = AUDIT_MQ_GETSETATTR;
2274 }
2275
2276 /**
2277 * audit_ipc_obj - record audit data for ipc object
2278 * @ipcp: ipc permissions
2279 *
2280 */
2281 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2282 {
2283 struct audit_context *context = current->audit_context;
2284 context->ipc.uid = ipcp->uid;
2285 context->ipc.gid = ipcp->gid;
2286 context->ipc.mode = ipcp->mode;
2287 context->ipc.has_perm = 0;
2288 security_ipc_getsecid(ipcp, &context->ipc.osid);
2289 context->type = AUDIT_IPC;
2290 }
2291
2292 /**
2293 * audit_ipc_set_perm - record audit data for new ipc permissions
2294 * @qbytes: msgq bytes
2295 * @uid: msgq user id
2296 * @gid: msgq group id
2297 * @mode: msgq mode (permissions)
2298 *
2299 * Called only after audit_ipc_obj().
2300 */
2301 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2302 {
2303 struct audit_context *context = current->audit_context;
2304
2305 context->ipc.qbytes = qbytes;
2306 context->ipc.perm_uid = uid;
2307 context->ipc.perm_gid = gid;
2308 context->ipc.perm_mode = mode;
2309 context->ipc.has_perm = 1;
2310 }
2311
2312 int __audit_bprm(struct linux_binprm *bprm)
2313 {
2314 struct audit_aux_data_execve *ax;
2315 struct audit_context *context = current->audit_context;
2316
2317 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2318 if (!ax)
2319 return -ENOMEM;
2320
2321 ax->argc = bprm->argc;
2322 ax->envc = bprm->envc;
2323 ax->mm = bprm->mm;
2324 ax->d.type = AUDIT_EXECVE;
2325 ax->d.next = context->aux;
2326 context->aux = (void *)ax;
2327 return 0;
2328 }
2329
2330
2331 /**
2332 * audit_socketcall - record audit data for sys_socketcall
2333 * @nargs: number of args
2334 * @args: args array
2335 *
2336 */
2337 void __audit_socketcall(int nargs, unsigned long *args)
2338 {
2339 struct audit_context *context = current->audit_context;
2340
2341 context->type = AUDIT_SOCKETCALL;
2342 context->socketcall.nargs = nargs;
2343 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2344 }
2345
2346 /**
2347 * __audit_fd_pair - record audit data for pipe and socketpair
2348 * @fd1: the first file descriptor
2349 * @fd2: the second file descriptor
2350 *
2351 */
2352 void __audit_fd_pair(int fd1, int fd2)
2353 {
2354 struct audit_context *context = current->audit_context;
2355 context->fds[0] = fd1;
2356 context->fds[1] = fd2;
2357 }
2358
2359 /**
2360 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2361 * @len: data length in user space
2362 * @a: data address in kernel space
2363 *
2364 * Returns 0 for success or NULL context or < 0 on error.
2365 */
2366 int __audit_sockaddr(int len, void *a)
2367 {
2368 struct audit_context *context = current->audit_context;
2369
2370 if (!context->sockaddr) {
2371 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2372 if (!p)
2373 return -ENOMEM;
2374 context->sockaddr = p;
2375 }
2376
2377 context->sockaddr_len = len;
2378 memcpy(context->sockaddr, a, len);
2379 return 0;
2380 }
2381
2382 void __audit_ptrace(struct task_struct *t)
2383 {
2384 struct audit_context *context = current->audit_context;
2385
2386 context->target_pid = t->pid;
2387 context->target_auid = audit_get_loginuid(t);
2388 context->target_uid = task_uid(t);
2389 context->target_sessionid = audit_get_sessionid(t);
2390 security_task_getsecid(t, &context->target_sid);
2391 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2392 }
2393
2394 /**
2395 * audit_signal_info - record signal info for shutting down audit subsystem
2396 * @sig: signal value
2397 * @t: task being signaled
2398 *
2399 * If the audit subsystem is being terminated, record the task (pid)
2400 * and uid that is doing that.
2401 */
2402 int __audit_signal_info(int sig, struct task_struct *t)
2403 {
2404 struct audit_aux_data_pids *axp;
2405 struct task_struct *tsk = current;
2406 struct audit_context *ctx = tsk->audit_context;
2407 uid_t uid = current_uid(), t_uid = task_uid(t);
2408
2409 if (audit_pid && t->tgid == audit_pid) {
2410 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2411 audit_sig_pid = tsk->pid;
2412 if (tsk->loginuid != -1)
2413 audit_sig_uid = tsk->loginuid;
2414 else
2415 audit_sig_uid = uid;
2416 security_task_getsecid(tsk, &audit_sig_sid);
2417 }
2418 if (!audit_signals || audit_dummy_context())
2419 return 0;
2420 }
2421
2422 /* optimize the common case by putting first signal recipient directly
2423 * in audit_context */
2424 if (!ctx->target_pid) {
2425 ctx->target_pid = t->tgid;
2426 ctx->target_auid = audit_get_loginuid(t);
2427 ctx->target_uid = t_uid;
2428 ctx->target_sessionid = audit_get_sessionid(t);
2429 security_task_getsecid(t, &ctx->target_sid);
2430 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2431 return 0;
2432 }
2433
2434 axp = (void *)ctx->aux_pids;
2435 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2436 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2437 if (!axp)
2438 return -ENOMEM;
2439
2440 axp->d.type = AUDIT_OBJ_PID;
2441 axp->d.next = ctx->aux_pids;
2442 ctx->aux_pids = (void *)axp;
2443 }
2444 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2445
2446 axp->target_pid[axp->pid_count] = t->tgid;
2447 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2448 axp->target_uid[axp->pid_count] = t_uid;
2449 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2450 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2451 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2452 axp->pid_count++;
2453
2454 return 0;
2455 }
2456
2457 /**
2458 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2459 * @bprm: pointer to the bprm being processed
2460 * @new: the proposed new credentials
2461 * @old: the old credentials
2462 *
2463 * Simply check if the proc already has the caps given by the file and if not
2464 * store the priv escalation info for later auditing at the end of the syscall
2465 *
2466 * -Eric
2467 */
2468 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2469 const struct cred *new, const struct cred *old)
2470 {
2471 struct audit_aux_data_bprm_fcaps *ax;
2472 struct audit_context *context = current->audit_context;
2473 struct cpu_vfs_cap_data vcaps;
2474 struct dentry *dentry;
2475
2476 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2477 if (!ax)
2478 return -ENOMEM;
2479
2480 ax->d.type = AUDIT_BPRM_FCAPS;
2481 ax->d.next = context->aux;
2482 context->aux = (void *)ax;
2483
2484 dentry = dget(bprm->file->f_dentry);
2485 get_vfs_caps_from_disk(dentry, &vcaps);
2486 dput(dentry);
2487
2488 ax->fcap.permitted = vcaps.permitted;
2489 ax->fcap.inheritable = vcaps.inheritable;
2490 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2491 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2492
2493 ax->old_pcap.permitted = old->cap_permitted;
2494 ax->old_pcap.inheritable = old->cap_inheritable;
2495 ax->old_pcap.effective = old->cap_effective;
2496
2497 ax->new_pcap.permitted = new->cap_permitted;
2498 ax->new_pcap.inheritable = new->cap_inheritable;
2499 ax->new_pcap.effective = new->cap_effective;
2500 return 0;
2501 }
2502
2503 /**
2504 * __audit_log_capset - store information about the arguments to the capset syscall
2505 * @pid: target pid of the capset call
2506 * @new: the new credentials
2507 * @old: the old (current) credentials
2508 *
2509 * Record the aguments userspace sent to sys_capset for later printing by the
2510 * audit system if applicable
2511 */
2512 void __audit_log_capset(pid_t pid,
2513 const struct cred *new, const struct cred *old)
2514 {
2515 struct audit_context *context = current->audit_context;
2516 context->capset.pid = pid;
2517 context->capset.cap.effective = new->cap_effective;
2518 context->capset.cap.inheritable = new->cap_effective;
2519 context->capset.cap.permitted = new->cap_permitted;
2520 context->type = AUDIT_CAPSET;
2521 }
2522
2523 void __audit_mmap_fd(int fd, int flags)
2524 {
2525 struct audit_context *context = current->audit_context;
2526 context->mmap.fd = fd;
2527 context->mmap.flags = flags;
2528 context->type = AUDIT_MMAP;
2529 }
2530
2531 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2532 {
2533 uid_t auid, uid;
2534 gid_t gid;
2535 unsigned int sessionid;
2536
2537 auid = audit_get_loginuid(current);
2538 sessionid = audit_get_sessionid(current);
2539 current_uid_gid(&uid, &gid);
2540
2541 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2542 auid, uid, gid, sessionid);
2543 audit_log_task_context(ab);
2544 audit_log_format(ab, " pid=%d comm=", current->pid);
2545 audit_log_untrustedstring(ab, current->comm);
2546 audit_log_format(ab, " reason=");
2547 audit_log_string(ab, reason);
2548 audit_log_format(ab, " sig=%ld", signr);
2549 }
2550 /**
2551 * audit_core_dumps - record information about processes that end abnormally
2552 * @signr: signal value
2553 *
2554 * If a process ends with a core dump, something fishy is going on and we
2555 * should record the event for investigation.
2556 */
2557 void audit_core_dumps(long signr)
2558 {
2559 struct audit_buffer *ab;
2560
2561 if (!audit_enabled)
2562 return;
2563
2564 if (signr == SIGQUIT) /* don't care for those */
2565 return;
2566
2567 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2568 audit_log_abend(ab, "memory violation", signr);
2569 audit_log_end(ab);
2570 }
2571
2572 void __audit_seccomp(unsigned long syscall)
2573 {
2574 struct audit_buffer *ab;
2575
2576 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2577 audit_log_abend(ab, "seccomp", SIGKILL);
2578 audit_log_format(ab, " syscall=%ld", syscall);
2579 audit_log_end(ab);
2580 }
2581
2582 struct list_head *audit_killed_trees(void)
2583 {
2584 struct audit_context *ctx = current->audit_context;
2585 if (likely(!ctx || !ctx->in_syscall))
2586 return NULL;
2587 return &ctx->killed_trees;
2588 }
This page took 0.080207 seconds and 6 git commands to generate.