audit: remove task argument to audit_set_loginuid
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70
71 #include "audit.h"
72
73 /* flags stating the success for a syscall */
74 #define AUDITSC_INVALID 0
75 #define AUDITSC_SUCCESS 1
76 #define AUDITSC_FAILURE 2
77
78 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
81 #define AUDIT_NAMES 5
82
83 /* Indicates that audit should log the full pathname. */
84 #define AUDIT_NAME_FULL -1
85
86 /* no execve audit message should be longer than this (userspace limits) */
87 #define MAX_EXECVE_AUDIT_LEN 7500
88
89 /* number of audit rules */
90 int audit_n_rules;
91
92 /* determines whether we collect data for signals sent */
93 int audit_signals;
94
95 struct audit_cap_data {
96 kernel_cap_t permitted;
97 kernel_cap_t inheritable;
98 union {
99 unsigned int fE; /* effective bit of a file capability */
100 kernel_cap_t effective; /* effective set of a process */
101 };
102 };
103
104 /* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
107 *
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109 struct audit_names {
110 struct list_head list; /* audit_context->names_list */
111 const char *name;
112 unsigned long ino;
113 dev_t dev;
114 umode_t mode;
115 uid_t uid;
116 gid_t gid;
117 dev_t rdev;
118 u32 osid;
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
121 int name_len; /* number of name's characters to log */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
129 };
130
131 struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134 };
135
136 #define AUDIT_AUX_IPCPERM 0
137
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
140
141 struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
145 struct mm_struct *mm;
146 };
147
148 struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
151 uid_t target_auid[AUDIT_AUX_PIDS];
152 uid_t target_uid[AUDIT_AUX_PIDS];
153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
154 u32 target_sid[AUDIT_AUX_PIDS];
155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 int pid_count;
157 };
158
159 struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165 };
166
167 struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171 };
172
173 struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176 };
177
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state, current_state;
183 unsigned int serial; /* serial number for record */
184 int major; /* syscall number */
185 struct timespec ctime; /* time of syscall entry */
186 unsigned long argv[4]; /* syscall arguments */
187 long return_code;/* syscall return code */
188 u64 prio;
189 int return_valid; /* return code is valid */
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
201 char * filterkey; /* key for rule that triggered record */
202 struct path pwd;
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
205 struct audit_aux_data *aux_pids;
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
208 /* Save things to print about task_struct */
209 pid_t pid, ppid;
210 uid_t uid, euid, suid, fsuid;
211 gid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
213 int arch;
214
215 pid_t target_pid;
216 uid_t target_auid;
217 uid_t target_uid;
218 unsigned int target_sessionid;
219 u32 target_sid;
220 char target_comm[TASK_COMM_LEN];
221
222 struct audit_tree_refs *trees, *first_trees;
223 struct list_head killed_trees;
224 int tree_count;
225
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
232 struct {
233 uid_t uid;
234 gid_t gid;
235 umode_t mode;
236 u32 osid;
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
240 umode_t perm_mode;
241 unsigned long qbytes;
242 } ipc;
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
257 struct {
258 int oflag;
259 umode_t mode;
260 struct mq_attr attr;
261 } mq_open;
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
266 struct {
267 int fd;
268 int flags;
269 } mmap;
270 };
271 int fds[2];
272
273 #if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276 #endif
277 };
278
279 static inline int open_arg(int flags, int mask)
280 {
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
285 }
286
287 static int audit_match_perm(struct audit_context *ctx, int mask)
288 {
289 unsigned n;
290 if (unlikely(!ctx))
291 return 0;
292 n = ctx->major;
293
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
327 }
328 }
329
330 static int audit_match_filetype(struct audit_context *ctx, int val)
331 {
332 struct audit_names *n;
333 umode_t mode = (umode_t)val;
334
335 if (unlikely(!ctx))
336 return 0;
337
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
341 return 1;
342 }
343
344 return 0;
345 }
346
347 /*
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
355 */
356
357 #ifdef CONFIG_AUDIT_TREE
358 static void audit_set_auditable(struct audit_context *ctx)
359 {
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
363 }
364 }
365
366 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367 {
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
374 }
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
383 }
384 return 0;
385 }
386
387 static int grow_tree_refs(struct audit_context *ctx)
388 {
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
394 }
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
401 }
402 #endif
403
404 static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
406 {
407 #ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
417 }
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
423 }
424 }
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
428 }
429 ctx->trees = p;
430 ctx->tree_count = count;
431 #endif
432 }
433
434 static void free_tree_refs(struct audit_context *ctx)
435 {
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
440 }
441 }
442
443 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444 {
445 #ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
455 }
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
461 }
462 #endif
463 return 0;
464 }
465
466 /* Determine if any context name data matches a rule's watch data */
467 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
468 * otherwise.
469 *
470 * If task_creation is true, this is an explicit indication that we are
471 * filtering a task rule at task creation time. This and tsk == current are
472 * the only situations where tsk->cred may be accessed without an rcu read lock.
473 */
474 static int audit_filter_rules(struct task_struct *tsk,
475 struct audit_krule *rule,
476 struct audit_context *ctx,
477 struct audit_names *name,
478 enum audit_state *state,
479 bool task_creation)
480 {
481 const struct cred *cred;
482 int i, need_sid = 1;
483 u32 sid;
484
485 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
486
487 for (i = 0; i < rule->field_count; i++) {
488 struct audit_field *f = &rule->fields[i];
489 struct audit_names *n;
490 int result = 0;
491
492 switch (f->type) {
493 case AUDIT_PID:
494 result = audit_comparator(tsk->pid, f->op, f->val);
495 break;
496 case AUDIT_PPID:
497 if (ctx) {
498 if (!ctx->ppid)
499 ctx->ppid = sys_getppid();
500 result = audit_comparator(ctx->ppid, f->op, f->val);
501 }
502 break;
503 case AUDIT_UID:
504 result = audit_comparator(cred->uid, f->op, f->val);
505 break;
506 case AUDIT_EUID:
507 result = audit_comparator(cred->euid, f->op, f->val);
508 break;
509 case AUDIT_SUID:
510 result = audit_comparator(cred->suid, f->op, f->val);
511 break;
512 case AUDIT_FSUID:
513 result = audit_comparator(cred->fsuid, f->op, f->val);
514 break;
515 case AUDIT_GID:
516 result = audit_comparator(cred->gid, f->op, f->val);
517 break;
518 case AUDIT_EGID:
519 result = audit_comparator(cred->egid, f->op, f->val);
520 break;
521 case AUDIT_SGID:
522 result = audit_comparator(cred->sgid, f->op, f->val);
523 break;
524 case AUDIT_FSGID:
525 result = audit_comparator(cred->fsgid, f->op, f->val);
526 break;
527 case AUDIT_PERS:
528 result = audit_comparator(tsk->personality, f->op, f->val);
529 break;
530 case AUDIT_ARCH:
531 if (ctx)
532 result = audit_comparator(ctx->arch, f->op, f->val);
533 break;
534
535 case AUDIT_EXIT:
536 if (ctx && ctx->return_valid)
537 result = audit_comparator(ctx->return_code, f->op, f->val);
538 break;
539 case AUDIT_SUCCESS:
540 if (ctx && ctx->return_valid) {
541 if (f->val)
542 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
543 else
544 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
545 }
546 break;
547 case AUDIT_DEVMAJOR:
548 if (name) {
549 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
550 audit_comparator(MAJOR(name->rdev), f->op, f->val))
551 ++result;
552 } else if (ctx) {
553 list_for_each_entry(n, &ctx->names_list, list) {
554 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
555 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
556 ++result;
557 break;
558 }
559 }
560 }
561 break;
562 case AUDIT_DEVMINOR:
563 if (name) {
564 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
565 audit_comparator(MINOR(name->rdev), f->op, f->val))
566 ++result;
567 } else if (ctx) {
568 list_for_each_entry(n, &ctx->names_list, list) {
569 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
570 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
571 ++result;
572 break;
573 }
574 }
575 }
576 break;
577 case AUDIT_INODE:
578 if (name)
579 result = (name->ino == f->val);
580 else if (ctx) {
581 list_for_each_entry(n, &ctx->names_list, list) {
582 if (audit_comparator(n->ino, f->op, f->val)) {
583 ++result;
584 break;
585 }
586 }
587 }
588 break;
589 case AUDIT_OBJ_UID:
590 if (name) {
591 result = audit_comparator(name->uid, f->op, f->val);
592 } else if (ctx) {
593 list_for_each_entry(n, &ctx->names_list, list) {
594 if (audit_comparator(n->uid, f->op, f->val)) {
595 ++result;
596 break;
597 }
598 }
599 }
600 break;
601 case AUDIT_OBJ_GID:
602 if (name) {
603 result = audit_comparator(name->gid, f->op, f->val);
604 } else if (ctx) {
605 list_for_each_entry(n, &ctx->names_list, list) {
606 if (audit_comparator(n->gid, f->op, f->val)) {
607 ++result;
608 break;
609 }
610 }
611 }
612 break;
613 case AUDIT_WATCH:
614 if (name)
615 result = audit_watch_compare(rule->watch, name->ino, name->dev);
616 break;
617 case AUDIT_DIR:
618 if (ctx)
619 result = match_tree_refs(ctx, rule->tree);
620 break;
621 case AUDIT_LOGINUID:
622 result = 0;
623 if (ctx)
624 result = audit_comparator(tsk->loginuid, f->op, f->val);
625 break;
626 case AUDIT_SUBJ_USER:
627 case AUDIT_SUBJ_ROLE:
628 case AUDIT_SUBJ_TYPE:
629 case AUDIT_SUBJ_SEN:
630 case AUDIT_SUBJ_CLR:
631 /* NOTE: this may return negative values indicating
632 a temporary error. We simply treat this as a
633 match for now to avoid losing information that
634 may be wanted. An error message will also be
635 logged upon error */
636 if (f->lsm_rule) {
637 if (need_sid) {
638 security_task_getsecid(tsk, &sid);
639 need_sid = 0;
640 }
641 result = security_audit_rule_match(sid, f->type,
642 f->op,
643 f->lsm_rule,
644 ctx);
645 }
646 break;
647 case AUDIT_OBJ_USER:
648 case AUDIT_OBJ_ROLE:
649 case AUDIT_OBJ_TYPE:
650 case AUDIT_OBJ_LEV_LOW:
651 case AUDIT_OBJ_LEV_HIGH:
652 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
653 also applies here */
654 if (f->lsm_rule) {
655 /* Find files that match */
656 if (name) {
657 result = security_audit_rule_match(
658 name->osid, f->type, f->op,
659 f->lsm_rule, ctx);
660 } else if (ctx) {
661 list_for_each_entry(n, &ctx->names_list, list) {
662 if (security_audit_rule_match(n->osid, f->type,
663 f->op, f->lsm_rule,
664 ctx)) {
665 ++result;
666 break;
667 }
668 }
669 }
670 /* Find ipc objects that match */
671 if (!ctx || ctx->type != AUDIT_IPC)
672 break;
673 if (security_audit_rule_match(ctx->ipc.osid,
674 f->type, f->op,
675 f->lsm_rule, ctx))
676 ++result;
677 }
678 break;
679 case AUDIT_ARG0:
680 case AUDIT_ARG1:
681 case AUDIT_ARG2:
682 case AUDIT_ARG3:
683 if (ctx)
684 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
685 break;
686 case AUDIT_FILTERKEY:
687 /* ignore this field for filtering */
688 result = 1;
689 break;
690 case AUDIT_PERM:
691 result = audit_match_perm(ctx, f->val);
692 break;
693 case AUDIT_FILETYPE:
694 result = audit_match_filetype(ctx, f->val);
695 break;
696 }
697
698 if (!result)
699 return 0;
700 }
701
702 if (ctx) {
703 if (rule->prio <= ctx->prio)
704 return 0;
705 if (rule->filterkey) {
706 kfree(ctx->filterkey);
707 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
708 }
709 ctx->prio = rule->prio;
710 }
711 switch (rule->action) {
712 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
713 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
714 }
715 return 1;
716 }
717
718 /* At process creation time, we can determine if system-call auditing is
719 * completely disabled for this task. Since we only have the task
720 * structure at this point, we can only check uid and gid.
721 */
722 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
723 {
724 struct audit_entry *e;
725 enum audit_state state;
726
727 rcu_read_lock();
728 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
729 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
730 &state, true)) {
731 if (state == AUDIT_RECORD_CONTEXT)
732 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
733 rcu_read_unlock();
734 return state;
735 }
736 }
737 rcu_read_unlock();
738 return AUDIT_BUILD_CONTEXT;
739 }
740
741 /* At syscall entry and exit time, this filter is called if the
742 * audit_state is not low enough that auditing cannot take place, but is
743 * also not high enough that we already know we have to write an audit
744 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
745 */
746 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
747 struct audit_context *ctx,
748 struct list_head *list)
749 {
750 struct audit_entry *e;
751 enum audit_state state;
752
753 if (audit_pid && tsk->tgid == audit_pid)
754 return AUDIT_DISABLED;
755
756 rcu_read_lock();
757 if (!list_empty(list)) {
758 int word = AUDIT_WORD(ctx->major);
759 int bit = AUDIT_BIT(ctx->major);
760
761 list_for_each_entry_rcu(e, list, list) {
762 if ((e->rule.mask[word] & bit) == bit &&
763 audit_filter_rules(tsk, &e->rule, ctx, NULL,
764 &state, false)) {
765 rcu_read_unlock();
766 ctx->current_state = state;
767 return state;
768 }
769 }
770 }
771 rcu_read_unlock();
772 return AUDIT_BUILD_CONTEXT;
773 }
774
775 /*
776 * Given an audit_name check the inode hash table to see if they match.
777 * Called holding the rcu read lock to protect the use of audit_inode_hash
778 */
779 static int audit_filter_inode_name(struct task_struct *tsk,
780 struct audit_names *n,
781 struct audit_context *ctx) {
782 int word, bit;
783 int h = audit_hash_ino((u32)n->ino);
784 struct list_head *list = &audit_inode_hash[h];
785 struct audit_entry *e;
786 enum audit_state state;
787
788 word = AUDIT_WORD(ctx->major);
789 bit = AUDIT_BIT(ctx->major);
790
791 if (list_empty(list))
792 return 0;
793
794 list_for_each_entry_rcu(e, list, list) {
795 if ((e->rule.mask[word] & bit) == bit &&
796 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
797 ctx->current_state = state;
798 return 1;
799 }
800 }
801
802 return 0;
803 }
804
805 /* At syscall exit time, this filter is called if any audit_names have been
806 * collected during syscall processing. We only check rules in sublists at hash
807 * buckets applicable to the inode numbers in audit_names.
808 * Regarding audit_state, same rules apply as for audit_filter_syscall().
809 */
810 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
811 {
812 struct audit_names *n;
813
814 if (audit_pid && tsk->tgid == audit_pid)
815 return;
816
817 rcu_read_lock();
818
819 list_for_each_entry(n, &ctx->names_list, list) {
820 if (audit_filter_inode_name(tsk, n, ctx))
821 break;
822 }
823 rcu_read_unlock();
824 }
825
826 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
827 int return_valid,
828 long return_code)
829 {
830 struct audit_context *context = tsk->audit_context;
831
832 if (!context)
833 return NULL;
834 context->return_valid = return_valid;
835
836 /*
837 * we need to fix up the return code in the audit logs if the actual
838 * return codes are later going to be fixed up by the arch specific
839 * signal handlers
840 *
841 * This is actually a test for:
842 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
843 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
844 *
845 * but is faster than a bunch of ||
846 */
847 if (unlikely(return_code <= -ERESTARTSYS) &&
848 (return_code >= -ERESTART_RESTARTBLOCK) &&
849 (return_code != -ENOIOCTLCMD))
850 context->return_code = -EINTR;
851 else
852 context->return_code = return_code;
853
854 if (context->in_syscall && !context->dummy) {
855 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
856 audit_filter_inodes(tsk, context);
857 }
858
859 tsk->audit_context = NULL;
860 return context;
861 }
862
863 static inline void audit_free_names(struct audit_context *context)
864 {
865 struct audit_names *n, *next;
866
867 #if AUDIT_DEBUG == 2
868 if (context->put_count + context->ino_count != context->name_count) {
869 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
870 " name_count=%d put_count=%d"
871 " ino_count=%d [NOT freeing]\n",
872 __FILE__, __LINE__,
873 context->serial, context->major, context->in_syscall,
874 context->name_count, context->put_count,
875 context->ino_count);
876 list_for_each_entry(n, &context->names_list, list) {
877 printk(KERN_ERR "names[%d] = %p = %s\n", i,
878 n->name, n->name ?: "(null)");
879 }
880 dump_stack();
881 return;
882 }
883 #endif
884 #if AUDIT_DEBUG
885 context->put_count = 0;
886 context->ino_count = 0;
887 #endif
888
889 list_for_each_entry_safe(n, next, &context->names_list, list) {
890 list_del(&n->list);
891 if (n->name && n->name_put)
892 __putname(n->name);
893 if (n->should_free)
894 kfree(n);
895 }
896 context->name_count = 0;
897 path_put(&context->pwd);
898 context->pwd.dentry = NULL;
899 context->pwd.mnt = NULL;
900 }
901
902 static inline void audit_free_aux(struct audit_context *context)
903 {
904 struct audit_aux_data *aux;
905
906 while ((aux = context->aux)) {
907 context->aux = aux->next;
908 kfree(aux);
909 }
910 while ((aux = context->aux_pids)) {
911 context->aux_pids = aux->next;
912 kfree(aux);
913 }
914 }
915
916 static inline void audit_zero_context(struct audit_context *context,
917 enum audit_state state)
918 {
919 memset(context, 0, sizeof(*context));
920 context->state = state;
921 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
922 }
923
924 static inline struct audit_context *audit_alloc_context(enum audit_state state)
925 {
926 struct audit_context *context;
927
928 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
929 return NULL;
930 audit_zero_context(context, state);
931 INIT_LIST_HEAD(&context->killed_trees);
932 INIT_LIST_HEAD(&context->names_list);
933 return context;
934 }
935
936 /**
937 * audit_alloc - allocate an audit context block for a task
938 * @tsk: task
939 *
940 * Filter on the task information and allocate a per-task audit context
941 * if necessary. Doing so turns on system call auditing for the
942 * specified task. This is called from copy_process, so no lock is
943 * needed.
944 */
945 int audit_alloc(struct task_struct *tsk)
946 {
947 struct audit_context *context;
948 enum audit_state state;
949 char *key = NULL;
950
951 if (likely(!audit_ever_enabled))
952 return 0; /* Return if not auditing. */
953
954 state = audit_filter_task(tsk, &key);
955 if (state == AUDIT_DISABLED)
956 return 0;
957
958 if (!(context = audit_alloc_context(state))) {
959 kfree(key);
960 audit_log_lost("out of memory in audit_alloc");
961 return -ENOMEM;
962 }
963 context->filterkey = key;
964
965 tsk->audit_context = context;
966 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
967 return 0;
968 }
969
970 static inline void audit_free_context(struct audit_context *context)
971 {
972 struct audit_context *previous;
973 int count = 0;
974
975 do {
976 previous = context->previous;
977 if (previous || (count && count < 10)) {
978 ++count;
979 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
980 " freeing multiple contexts (%d)\n",
981 context->serial, context->major,
982 context->name_count, count);
983 }
984 audit_free_names(context);
985 unroll_tree_refs(context, NULL, 0);
986 free_tree_refs(context);
987 audit_free_aux(context);
988 kfree(context->filterkey);
989 kfree(context->sockaddr);
990 kfree(context);
991 context = previous;
992 } while (context);
993 if (count >= 10)
994 printk(KERN_ERR "audit: freed %d contexts\n", count);
995 }
996
997 void audit_log_task_context(struct audit_buffer *ab)
998 {
999 char *ctx = NULL;
1000 unsigned len;
1001 int error;
1002 u32 sid;
1003
1004 security_task_getsecid(current, &sid);
1005 if (!sid)
1006 return;
1007
1008 error = security_secid_to_secctx(sid, &ctx, &len);
1009 if (error) {
1010 if (error != -EINVAL)
1011 goto error_path;
1012 return;
1013 }
1014
1015 audit_log_format(ab, " subj=%s", ctx);
1016 security_release_secctx(ctx, len);
1017 return;
1018
1019 error_path:
1020 audit_panic("error in audit_log_task_context");
1021 return;
1022 }
1023
1024 EXPORT_SYMBOL(audit_log_task_context);
1025
1026 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1027 {
1028 char name[sizeof(tsk->comm)];
1029 struct mm_struct *mm = tsk->mm;
1030 struct vm_area_struct *vma;
1031
1032 /* tsk == current */
1033
1034 get_task_comm(name, tsk);
1035 audit_log_format(ab, " comm=");
1036 audit_log_untrustedstring(ab, name);
1037
1038 if (mm) {
1039 down_read(&mm->mmap_sem);
1040 vma = mm->mmap;
1041 while (vma) {
1042 if ((vma->vm_flags & VM_EXECUTABLE) &&
1043 vma->vm_file) {
1044 audit_log_d_path(ab, "exe=",
1045 &vma->vm_file->f_path);
1046 break;
1047 }
1048 vma = vma->vm_next;
1049 }
1050 up_read(&mm->mmap_sem);
1051 }
1052 audit_log_task_context(ab);
1053 }
1054
1055 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1056 uid_t auid, uid_t uid, unsigned int sessionid,
1057 u32 sid, char *comm)
1058 {
1059 struct audit_buffer *ab;
1060 char *ctx = NULL;
1061 u32 len;
1062 int rc = 0;
1063
1064 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1065 if (!ab)
1066 return rc;
1067
1068 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1069 uid, sessionid);
1070 if (security_secid_to_secctx(sid, &ctx, &len)) {
1071 audit_log_format(ab, " obj=(none)");
1072 rc = 1;
1073 } else {
1074 audit_log_format(ab, " obj=%s", ctx);
1075 security_release_secctx(ctx, len);
1076 }
1077 audit_log_format(ab, " ocomm=");
1078 audit_log_untrustedstring(ab, comm);
1079 audit_log_end(ab);
1080
1081 return rc;
1082 }
1083
1084 /*
1085 * to_send and len_sent accounting are very loose estimates. We aren't
1086 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1087 * within about 500 bytes (next page boundary)
1088 *
1089 * why snprintf? an int is up to 12 digits long. if we just assumed when
1090 * logging that a[%d]= was going to be 16 characters long we would be wasting
1091 * space in every audit message. In one 7500 byte message we can log up to
1092 * about 1000 min size arguments. That comes down to about 50% waste of space
1093 * if we didn't do the snprintf to find out how long arg_num_len was.
1094 */
1095 static int audit_log_single_execve_arg(struct audit_context *context,
1096 struct audit_buffer **ab,
1097 int arg_num,
1098 size_t *len_sent,
1099 const char __user *p,
1100 char *buf)
1101 {
1102 char arg_num_len_buf[12];
1103 const char __user *tmp_p = p;
1104 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1105 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1106 size_t len, len_left, to_send;
1107 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1108 unsigned int i, has_cntl = 0, too_long = 0;
1109 int ret;
1110
1111 /* strnlen_user includes the null we don't want to send */
1112 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1113
1114 /*
1115 * We just created this mm, if we can't find the strings
1116 * we just copied into it something is _very_ wrong. Similar
1117 * for strings that are too long, we should not have created
1118 * any.
1119 */
1120 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1121 WARN_ON(1);
1122 send_sig(SIGKILL, current, 0);
1123 return -1;
1124 }
1125
1126 /* walk the whole argument looking for non-ascii chars */
1127 do {
1128 if (len_left > MAX_EXECVE_AUDIT_LEN)
1129 to_send = MAX_EXECVE_AUDIT_LEN;
1130 else
1131 to_send = len_left;
1132 ret = copy_from_user(buf, tmp_p, to_send);
1133 /*
1134 * There is no reason for this copy to be short. We just
1135 * copied them here, and the mm hasn't been exposed to user-
1136 * space yet.
1137 */
1138 if (ret) {
1139 WARN_ON(1);
1140 send_sig(SIGKILL, current, 0);
1141 return -1;
1142 }
1143 buf[to_send] = '\0';
1144 has_cntl = audit_string_contains_control(buf, to_send);
1145 if (has_cntl) {
1146 /*
1147 * hex messages get logged as 2 bytes, so we can only
1148 * send half as much in each message
1149 */
1150 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1151 break;
1152 }
1153 len_left -= to_send;
1154 tmp_p += to_send;
1155 } while (len_left > 0);
1156
1157 len_left = len;
1158
1159 if (len > max_execve_audit_len)
1160 too_long = 1;
1161
1162 /* rewalk the argument actually logging the message */
1163 for (i = 0; len_left > 0; i++) {
1164 int room_left;
1165
1166 if (len_left > max_execve_audit_len)
1167 to_send = max_execve_audit_len;
1168 else
1169 to_send = len_left;
1170
1171 /* do we have space left to send this argument in this ab? */
1172 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1173 if (has_cntl)
1174 room_left -= (to_send * 2);
1175 else
1176 room_left -= to_send;
1177 if (room_left < 0) {
1178 *len_sent = 0;
1179 audit_log_end(*ab);
1180 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1181 if (!*ab)
1182 return 0;
1183 }
1184
1185 /*
1186 * first record needs to say how long the original string was
1187 * so we can be sure nothing was lost.
1188 */
1189 if ((i == 0) && (too_long))
1190 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1191 has_cntl ? 2*len : len);
1192
1193 /*
1194 * normally arguments are small enough to fit and we already
1195 * filled buf above when we checked for control characters
1196 * so don't bother with another copy_from_user
1197 */
1198 if (len >= max_execve_audit_len)
1199 ret = copy_from_user(buf, p, to_send);
1200 else
1201 ret = 0;
1202 if (ret) {
1203 WARN_ON(1);
1204 send_sig(SIGKILL, current, 0);
1205 return -1;
1206 }
1207 buf[to_send] = '\0';
1208
1209 /* actually log it */
1210 audit_log_format(*ab, " a%d", arg_num);
1211 if (too_long)
1212 audit_log_format(*ab, "[%d]", i);
1213 audit_log_format(*ab, "=");
1214 if (has_cntl)
1215 audit_log_n_hex(*ab, buf, to_send);
1216 else
1217 audit_log_string(*ab, buf);
1218
1219 p += to_send;
1220 len_left -= to_send;
1221 *len_sent += arg_num_len;
1222 if (has_cntl)
1223 *len_sent += to_send * 2;
1224 else
1225 *len_sent += to_send;
1226 }
1227 /* include the null we didn't log */
1228 return len + 1;
1229 }
1230
1231 static void audit_log_execve_info(struct audit_context *context,
1232 struct audit_buffer **ab,
1233 struct audit_aux_data_execve *axi)
1234 {
1235 int i;
1236 size_t len, len_sent = 0;
1237 const char __user *p;
1238 char *buf;
1239
1240 if (axi->mm != current->mm)
1241 return; /* execve failed, no additional info */
1242
1243 p = (const char __user *)axi->mm->arg_start;
1244
1245 audit_log_format(*ab, "argc=%d", axi->argc);
1246
1247 /*
1248 * we need some kernel buffer to hold the userspace args. Just
1249 * allocate one big one rather than allocating one of the right size
1250 * for every single argument inside audit_log_single_execve_arg()
1251 * should be <8k allocation so should be pretty safe.
1252 */
1253 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1254 if (!buf) {
1255 audit_panic("out of memory for argv string\n");
1256 return;
1257 }
1258
1259 for (i = 0; i < axi->argc; i++) {
1260 len = audit_log_single_execve_arg(context, ab, i,
1261 &len_sent, p, buf);
1262 if (len <= 0)
1263 break;
1264 p += len;
1265 }
1266 kfree(buf);
1267 }
1268
1269 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1270 {
1271 int i;
1272
1273 audit_log_format(ab, " %s=", prefix);
1274 CAP_FOR_EACH_U32(i) {
1275 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1276 }
1277 }
1278
1279 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1280 {
1281 kernel_cap_t *perm = &name->fcap.permitted;
1282 kernel_cap_t *inh = &name->fcap.inheritable;
1283 int log = 0;
1284
1285 if (!cap_isclear(*perm)) {
1286 audit_log_cap(ab, "cap_fp", perm);
1287 log = 1;
1288 }
1289 if (!cap_isclear(*inh)) {
1290 audit_log_cap(ab, "cap_fi", inh);
1291 log = 1;
1292 }
1293
1294 if (log)
1295 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1296 }
1297
1298 static void show_special(struct audit_context *context, int *call_panic)
1299 {
1300 struct audit_buffer *ab;
1301 int i;
1302
1303 ab = audit_log_start(context, GFP_KERNEL, context->type);
1304 if (!ab)
1305 return;
1306
1307 switch (context->type) {
1308 case AUDIT_SOCKETCALL: {
1309 int nargs = context->socketcall.nargs;
1310 audit_log_format(ab, "nargs=%d", nargs);
1311 for (i = 0; i < nargs; i++)
1312 audit_log_format(ab, " a%d=%lx", i,
1313 context->socketcall.args[i]);
1314 break; }
1315 case AUDIT_IPC: {
1316 u32 osid = context->ipc.osid;
1317
1318 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1319 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1320 if (osid) {
1321 char *ctx = NULL;
1322 u32 len;
1323 if (security_secid_to_secctx(osid, &ctx, &len)) {
1324 audit_log_format(ab, " osid=%u", osid);
1325 *call_panic = 1;
1326 } else {
1327 audit_log_format(ab, " obj=%s", ctx);
1328 security_release_secctx(ctx, len);
1329 }
1330 }
1331 if (context->ipc.has_perm) {
1332 audit_log_end(ab);
1333 ab = audit_log_start(context, GFP_KERNEL,
1334 AUDIT_IPC_SET_PERM);
1335 audit_log_format(ab,
1336 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1337 context->ipc.qbytes,
1338 context->ipc.perm_uid,
1339 context->ipc.perm_gid,
1340 context->ipc.perm_mode);
1341 if (!ab)
1342 return;
1343 }
1344 break; }
1345 case AUDIT_MQ_OPEN: {
1346 audit_log_format(ab,
1347 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1348 "mq_msgsize=%ld mq_curmsgs=%ld",
1349 context->mq_open.oflag, context->mq_open.mode,
1350 context->mq_open.attr.mq_flags,
1351 context->mq_open.attr.mq_maxmsg,
1352 context->mq_open.attr.mq_msgsize,
1353 context->mq_open.attr.mq_curmsgs);
1354 break; }
1355 case AUDIT_MQ_SENDRECV: {
1356 audit_log_format(ab,
1357 "mqdes=%d msg_len=%zd msg_prio=%u "
1358 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1359 context->mq_sendrecv.mqdes,
1360 context->mq_sendrecv.msg_len,
1361 context->mq_sendrecv.msg_prio,
1362 context->mq_sendrecv.abs_timeout.tv_sec,
1363 context->mq_sendrecv.abs_timeout.tv_nsec);
1364 break; }
1365 case AUDIT_MQ_NOTIFY: {
1366 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1367 context->mq_notify.mqdes,
1368 context->mq_notify.sigev_signo);
1369 break; }
1370 case AUDIT_MQ_GETSETATTR: {
1371 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1372 audit_log_format(ab,
1373 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1374 "mq_curmsgs=%ld ",
1375 context->mq_getsetattr.mqdes,
1376 attr->mq_flags, attr->mq_maxmsg,
1377 attr->mq_msgsize, attr->mq_curmsgs);
1378 break; }
1379 case AUDIT_CAPSET: {
1380 audit_log_format(ab, "pid=%d", context->capset.pid);
1381 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1382 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1383 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1384 break; }
1385 case AUDIT_MMAP: {
1386 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1387 context->mmap.flags);
1388 break; }
1389 }
1390 audit_log_end(ab);
1391 }
1392
1393 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1394 int record_num, int *call_panic)
1395 {
1396 struct audit_buffer *ab;
1397 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1398 if (!ab)
1399 return; /* audit_panic has been called */
1400
1401 audit_log_format(ab, "item=%d", record_num);
1402
1403 if (n->name) {
1404 switch (n->name_len) {
1405 case AUDIT_NAME_FULL:
1406 /* log the full path */
1407 audit_log_format(ab, " name=");
1408 audit_log_untrustedstring(ab, n->name);
1409 break;
1410 case 0:
1411 /* name was specified as a relative path and the
1412 * directory component is the cwd */
1413 audit_log_d_path(ab, "name=", &context->pwd);
1414 break;
1415 default:
1416 /* log the name's directory component */
1417 audit_log_format(ab, " name=");
1418 audit_log_n_untrustedstring(ab, n->name,
1419 n->name_len);
1420 }
1421 } else
1422 audit_log_format(ab, " name=(null)");
1423
1424 if (n->ino != (unsigned long)-1) {
1425 audit_log_format(ab, " inode=%lu"
1426 " dev=%02x:%02x mode=%#ho"
1427 " ouid=%u ogid=%u rdev=%02x:%02x",
1428 n->ino,
1429 MAJOR(n->dev),
1430 MINOR(n->dev),
1431 n->mode,
1432 n->uid,
1433 n->gid,
1434 MAJOR(n->rdev),
1435 MINOR(n->rdev));
1436 }
1437 if (n->osid != 0) {
1438 char *ctx = NULL;
1439 u32 len;
1440 if (security_secid_to_secctx(
1441 n->osid, &ctx, &len)) {
1442 audit_log_format(ab, " osid=%u", n->osid);
1443 *call_panic = 2;
1444 } else {
1445 audit_log_format(ab, " obj=%s", ctx);
1446 security_release_secctx(ctx, len);
1447 }
1448 }
1449
1450 audit_log_fcaps(ab, n);
1451
1452 audit_log_end(ab);
1453 }
1454
1455 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1456 {
1457 const struct cred *cred;
1458 int i, call_panic = 0;
1459 struct audit_buffer *ab;
1460 struct audit_aux_data *aux;
1461 const char *tty;
1462 struct audit_names *n;
1463
1464 /* tsk == current */
1465 context->pid = tsk->pid;
1466 if (!context->ppid)
1467 context->ppid = sys_getppid();
1468 cred = current_cred();
1469 context->uid = cred->uid;
1470 context->gid = cred->gid;
1471 context->euid = cred->euid;
1472 context->suid = cred->suid;
1473 context->fsuid = cred->fsuid;
1474 context->egid = cred->egid;
1475 context->sgid = cred->sgid;
1476 context->fsgid = cred->fsgid;
1477 context->personality = tsk->personality;
1478
1479 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1480 if (!ab)
1481 return; /* audit_panic has been called */
1482 audit_log_format(ab, "arch=%x syscall=%d",
1483 context->arch, context->major);
1484 if (context->personality != PER_LINUX)
1485 audit_log_format(ab, " per=%lx", context->personality);
1486 if (context->return_valid)
1487 audit_log_format(ab, " success=%s exit=%ld",
1488 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1489 context->return_code);
1490
1491 spin_lock_irq(&tsk->sighand->siglock);
1492 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1493 tty = tsk->signal->tty->name;
1494 else
1495 tty = "(none)";
1496 spin_unlock_irq(&tsk->sighand->siglock);
1497
1498 audit_log_format(ab,
1499 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1500 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1501 " euid=%u suid=%u fsuid=%u"
1502 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1503 context->argv[0],
1504 context->argv[1],
1505 context->argv[2],
1506 context->argv[3],
1507 context->name_count,
1508 context->ppid,
1509 context->pid,
1510 tsk->loginuid,
1511 context->uid,
1512 context->gid,
1513 context->euid, context->suid, context->fsuid,
1514 context->egid, context->sgid, context->fsgid, tty,
1515 tsk->sessionid);
1516
1517
1518 audit_log_task_info(ab, tsk);
1519 audit_log_key(ab, context->filterkey);
1520 audit_log_end(ab);
1521
1522 for (aux = context->aux; aux; aux = aux->next) {
1523
1524 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1525 if (!ab)
1526 continue; /* audit_panic has been called */
1527
1528 switch (aux->type) {
1529
1530 case AUDIT_EXECVE: {
1531 struct audit_aux_data_execve *axi = (void *)aux;
1532 audit_log_execve_info(context, &ab, axi);
1533 break; }
1534
1535 case AUDIT_BPRM_FCAPS: {
1536 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1537 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1538 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1539 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1540 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1541 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1542 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1543 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1544 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1545 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1546 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1547 break; }
1548
1549 }
1550 audit_log_end(ab);
1551 }
1552
1553 if (context->type)
1554 show_special(context, &call_panic);
1555
1556 if (context->fds[0] >= 0) {
1557 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1558 if (ab) {
1559 audit_log_format(ab, "fd0=%d fd1=%d",
1560 context->fds[0], context->fds[1]);
1561 audit_log_end(ab);
1562 }
1563 }
1564
1565 if (context->sockaddr_len) {
1566 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1567 if (ab) {
1568 audit_log_format(ab, "saddr=");
1569 audit_log_n_hex(ab, (void *)context->sockaddr,
1570 context->sockaddr_len);
1571 audit_log_end(ab);
1572 }
1573 }
1574
1575 for (aux = context->aux_pids; aux; aux = aux->next) {
1576 struct audit_aux_data_pids *axs = (void *)aux;
1577
1578 for (i = 0; i < axs->pid_count; i++)
1579 if (audit_log_pid_context(context, axs->target_pid[i],
1580 axs->target_auid[i],
1581 axs->target_uid[i],
1582 axs->target_sessionid[i],
1583 axs->target_sid[i],
1584 axs->target_comm[i]))
1585 call_panic = 1;
1586 }
1587
1588 if (context->target_pid &&
1589 audit_log_pid_context(context, context->target_pid,
1590 context->target_auid, context->target_uid,
1591 context->target_sessionid,
1592 context->target_sid, context->target_comm))
1593 call_panic = 1;
1594
1595 if (context->pwd.dentry && context->pwd.mnt) {
1596 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1597 if (ab) {
1598 audit_log_d_path(ab, "cwd=", &context->pwd);
1599 audit_log_end(ab);
1600 }
1601 }
1602
1603 i = 0;
1604 list_for_each_entry(n, &context->names_list, list)
1605 audit_log_name(context, n, i++, &call_panic);
1606
1607 /* Send end of event record to help user space know we are finished */
1608 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1609 if (ab)
1610 audit_log_end(ab);
1611 if (call_panic)
1612 audit_panic("error converting sid to string");
1613 }
1614
1615 /**
1616 * audit_free - free a per-task audit context
1617 * @tsk: task whose audit context block to free
1618 *
1619 * Called from copy_process and do_exit
1620 */
1621 void __audit_free(struct task_struct *tsk)
1622 {
1623 struct audit_context *context;
1624
1625 context = audit_get_context(tsk, 0, 0);
1626 if (!context)
1627 return;
1628
1629 /* Check for system calls that do not go through the exit
1630 * function (e.g., exit_group), then free context block.
1631 * We use GFP_ATOMIC here because we might be doing this
1632 * in the context of the idle thread */
1633 /* that can happen only if we are called from do_exit() */
1634 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1635 audit_log_exit(context, tsk);
1636 if (!list_empty(&context->killed_trees))
1637 audit_kill_trees(&context->killed_trees);
1638
1639 audit_free_context(context);
1640 }
1641
1642 /**
1643 * audit_syscall_entry - fill in an audit record at syscall entry
1644 * @arch: architecture type
1645 * @major: major syscall type (function)
1646 * @a1: additional syscall register 1
1647 * @a2: additional syscall register 2
1648 * @a3: additional syscall register 3
1649 * @a4: additional syscall register 4
1650 *
1651 * Fill in audit context at syscall entry. This only happens if the
1652 * audit context was created when the task was created and the state or
1653 * filters demand the audit context be built. If the state from the
1654 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1655 * then the record will be written at syscall exit time (otherwise, it
1656 * will only be written if another part of the kernel requests that it
1657 * be written).
1658 */
1659 void __audit_syscall_entry(int arch, int major,
1660 unsigned long a1, unsigned long a2,
1661 unsigned long a3, unsigned long a4)
1662 {
1663 struct task_struct *tsk = current;
1664 struct audit_context *context = tsk->audit_context;
1665 enum audit_state state;
1666
1667 if (!context)
1668 return;
1669
1670 /*
1671 * This happens only on certain architectures that make system
1672 * calls in kernel_thread via the entry.S interface, instead of
1673 * with direct calls. (If you are porting to a new
1674 * architecture, hitting this condition can indicate that you
1675 * got the _exit/_leave calls backward in entry.S.)
1676 *
1677 * i386 no
1678 * x86_64 no
1679 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1680 *
1681 * This also happens with vm86 emulation in a non-nested manner
1682 * (entries without exits), so this case must be caught.
1683 */
1684 if (context->in_syscall) {
1685 struct audit_context *newctx;
1686
1687 #if AUDIT_DEBUG
1688 printk(KERN_ERR
1689 "audit(:%d) pid=%d in syscall=%d;"
1690 " entering syscall=%d\n",
1691 context->serial, tsk->pid, context->major, major);
1692 #endif
1693 newctx = audit_alloc_context(context->state);
1694 if (newctx) {
1695 newctx->previous = context;
1696 context = newctx;
1697 tsk->audit_context = newctx;
1698 } else {
1699 /* If we can't alloc a new context, the best we
1700 * can do is to leak memory (any pending putname
1701 * will be lost). The only other alternative is
1702 * to abandon auditing. */
1703 audit_zero_context(context, context->state);
1704 }
1705 }
1706 BUG_ON(context->in_syscall || context->name_count);
1707
1708 if (!audit_enabled)
1709 return;
1710
1711 context->arch = arch;
1712 context->major = major;
1713 context->argv[0] = a1;
1714 context->argv[1] = a2;
1715 context->argv[2] = a3;
1716 context->argv[3] = a4;
1717
1718 state = context->state;
1719 context->dummy = !audit_n_rules;
1720 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1721 context->prio = 0;
1722 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1723 }
1724 if (state == AUDIT_DISABLED)
1725 return;
1726
1727 context->serial = 0;
1728 context->ctime = CURRENT_TIME;
1729 context->in_syscall = 1;
1730 context->current_state = state;
1731 context->ppid = 0;
1732 }
1733
1734 /**
1735 * audit_syscall_exit - deallocate audit context after a system call
1736 * @pt_regs: syscall registers
1737 *
1738 * Tear down after system call. If the audit context has been marked as
1739 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1740 * filtering, or because some other part of the kernel write an audit
1741 * message), then write out the syscall information. In call cases,
1742 * free the names stored from getname().
1743 */
1744 void __audit_syscall_exit(int success, long return_code)
1745 {
1746 struct task_struct *tsk = current;
1747 struct audit_context *context;
1748
1749 if (success)
1750 success = AUDITSC_SUCCESS;
1751 else
1752 success = AUDITSC_FAILURE;
1753
1754 context = audit_get_context(tsk, success, return_code);
1755 if (!context)
1756 return;
1757
1758 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1759 audit_log_exit(context, tsk);
1760
1761 context->in_syscall = 0;
1762 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1763
1764 if (!list_empty(&context->killed_trees))
1765 audit_kill_trees(&context->killed_trees);
1766
1767 if (context->previous) {
1768 struct audit_context *new_context = context->previous;
1769 context->previous = NULL;
1770 audit_free_context(context);
1771 tsk->audit_context = new_context;
1772 } else {
1773 audit_free_names(context);
1774 unroll_tree_refs(context, NULL, 0);
1775 audit_free_aux(context);
1776 context->aux = NULL;
1777 context->aux_pids = NULL;
1778 context->target_pid = 0;
1779 context->target_sid = 0;
1780 context->sockaddr_len = 0;
1781 context->type = 0;
1782 context->fds[0] = -1;
1783 if (context->state != AUDIT_RECORD_CONTEXT) {
1784 kfree(context->filterkey);
1785 context->filterkey = NULL;
1786 }
1787 tsk->audit_context = context;
1788 }
1789 }
1790
1791 static inline void handle_one(const struct inode *inode)
1792 {
1793 #ifdef CONFIG_AUDIT_TREE
1794 struct audit_context *context;
1795 struct audit_tree_refs *p;
1796 struct audit_chunk *chunk;
1797 int count;
1798 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1799 return;
1800 context = current->audit_context;
1801 p = context->trees;
1802 count = context->tree_count;
1803 rcu_read_lock();
1804 chunk = audit_tree_lookup(inode);
1805 rcu_read_unlock();
1806 if (!chunk)
1807 return;
1808 if (likely(put_tree_ref(context, chunk)))
1809 return;
1810 if (unlikely(!grow_tree_refs(context))) {
1811 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1812 audit_set_auditable(context);
1813 audit_put_chunk(chunk);
1814 unroll_tree_refs(context, p, count);
1815 return;
1816 }
1817 put_tree_ref(context, chunk);
1818 #endif
1819 }
1820
1821 static void handle_path(const struct dentry *dentry)
1822 {
1823 #ifdef CONFIG_AUDIT_TREE
1824 struct audit_context *context;
1825 struct audit_tree_refs *p;
1826 const struct dentry *d, *parent;
1827 struct audit_chunk *drop;
1828 unsigned long seq;
1829 int count;
1830
1831 context = current->audit_context;
1832 p = context->trees;
1833 count = context->tree_count;
1834 retry:
1835 drop = NULL;
1836 d = dentry;
1837 rcu_read_lock();
1838 seq = read_seqbegin(&rename_lock);
1839 for(;;) {
1840 struct inode *inode = d->d_inode;
1841 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1842 struct audit_chunk *chunk;
1843 chunk = audit_tree_lookup(inode);
1844 if (chunk) {
1845 if (unlikely(!put_tree_ref(context, chunk))) {
1846 drop = chunk;
1847 break;
1848 }
1849 }
1850 }
1851 parent = d->d_parent;
1852 if (parent == d)
1853 break;
1854 d = parent;
1855 }
1856 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1857 rcu_read_unlock();
1858 if (!drop) {
1859 /* just a race with rename */
1860 unroll_tree_refs(context, p, count);
1861 goto retry;
1862 }
1863 audit_put_chunk(drop);
1864 if (grow_tree_refs(context)) {
1865 /* OK, got more space */
1866 unroll_tree_refs(context, p, count);
1867 goto retry;
1868 }
1869 /* too bad */
1870 printk(KERN_WARNING
1871 "out of memory, audit has lost a tree reference\n");
1872 unroll_tree_refs(context, p, count);
1873 audit_set_auditable(context);
1874 return;
1875 }
1876 rcu_read_unlock();
1877 #endif
1878 }
1879
1880 static struct audit_names *audit_alloc_name(struct audit_context *context)
1881 {
1882 struct audit_names *aname;
1883
1884 if (context->name_count < AUDIT_NAMES) {
1885 aname = &context->preallocated_names[context->name_count];
1886 memset(aname, 0, sizeof(*aname));
1887 } else {
1888 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1889 if (!aname)
1890 return NULL;
1891 aname->should_free = true;
1892 }
1893
1894 aname->ino = (unsigned long)-1;
1895 list_add_tail(&aname->list, &context->names_list);
1896
1897 context->name_count++;
1898 #if AUDIT_DEBUG
1899 context->ino_count++;
1900 #endif
1901 return aname;
1902 }
1903
1904 /**
1905 * audit_getname - add a name to the list
1906 * @name: name to add
1907 *
1908 * Add a name to the list of audit names for this context.
1909 * Called from fs/namei.c:getname().
1910 */
1911 void __audit_getname(const char *name)
1912 {
1913 struct audit_context *context = current->audit_context;
1914 struct audit_names *n;
1915
1916 if (IS_ERR(name) || !name)
1917 return;
1918
1919 if (!context->in_syscall) {
1920 #if AUDIT_DEBUG == 2
1921 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1922 __FILE__, __LINE__, context->serial, name);
1923 dump_stack();
1924 #endif
1925 return;
1926 }
1927
1928 n = audit_alloc_name(context);
1929 if (!n)
1930 return;
1931
1932 n->name = name;
1933 n->name_len = AUDIT_NAME_FULL;
1934 n->name_put = true;
1935
1936 if (!context->pwd.dentry)
1937 get_fs_pwd(current->fs, &context->pwd);
1938 }
1939
1940 /* audit_putname - intercept a putname request
1941 * @name: name to intercept and delay for putname
1942 *
1943 * If we have stored the name from getname in the audit context,
1944 * then we delay the putname until syscall exit.
1945 * Called from include/linux/fs.h:putname().
1946 */
1947 void audit_putname(const char *name)
1948 {
1949 struct audit_context *context = current->audit_context;
1950
1951 BUG_ON(!context);
1952 if (!context->in_syscall) {
1953 #if AUDIT_DEBUG == 2
1954 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1955 __FILE__, __LINE__, context->serial, name);
1956 if (context->name_count) {
1957 struct audit_names *n;
1958 int i;
1959
1960 list_for_each_entry(n, &context->names_list, list)
1961 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1962 n->name, n->name ?: "(null)");
1963 }
1964 #endif
1965 __putname(name);
1966 }
1967 #if AUDIT_DEBUG
1968 else {
1969 ++context->put_count;
1970 if (context->put_count > context->name_count) {
1971 printk(KERN_ERR "%s:%d(:%d): major=%d"
1972 " in_syscall=%d putname(%p) name_count=%d"
1973 " put_count=%d\n",
1974 __FILE__, __LINE__,
1975 context->serial, context->major,
1976 context->in_syscall, name, context->name_count,
1977 context->put_count);
1978 dump_stack();
1979 }
1980 }
1981 #endif
1982 }
1983
1984 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1985 {
1986 struct cpu_vfs_cap_data caps;
1987 int rc;
1988
1989 if (!dentry)
1990 return 0;
1991
1992 rc = get_vfs_caps_from_disk(dentry, &caps);
1993 if (rc)
1994 return rc;
1995
1996 name->fcap.permitted = caps.permitted;
1997 name->fcap.inheritable = caps.inheritable;
1998 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1999 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2000
2001 return 0;
2002 }
2003
2004
2005 /* Copy inode data into an audit_names. */
2006 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2007 const struct inode *inode)
2008 {
2009 name->ino = inode->i_ino;
2010 name->dev = inode->i_sb->s_dev;
2011 name->mode = inode->i_mode;
2012 name->uid = inode->i_uid;
2013 name->gid = inode->i_gid;
2014 name->rdev = inode->i_rdev;
2015 security_inode_getsecid(inode, &name->osid);
2016 audit_copy_fcaps(name, dentry);
2017 }
2018
2019 /**
2020 * audit_inode - store the inode and device from a lookup
2021 * @name: name being audited
2022 * @dentry: dentry being audited
2023 *
2024 * Called from fs/namei.c:path_lookup().
2025 */
2026 void __audit_inode(const char *name, const struct dentry *dentry)
2027 {
2028 struct audit_context *context = current->audit_context;
2029 const struct inode *inode = dentry->d_inode;
2030 struct audit_names *n;
2031
2032 if (!context->in_syscall)
2033 return;
2034
2035 list_for_each_entry_reverse(n, &context->names_list, list) {
2036 if (n->name && (n->name == name))
2037 goto out;
2038 }
2039
2040 /* unable to find the name from a previous getname() */
2041 n = audit_alloc_name(context);
2042 if (!n)
2043 return;
2044 out:
2045 handle_path(dentry);
2046 audit_copy_inode(n, dentry, inode);
2047 }
2048
2049 /**
2050 * audit_inode_child - collect inode info for created/removed objects
2051 * @dentry: dentry being audited
2052 * @parent: inode of dentry parent
2053 *
2054 * For syscalls that create or remove filesystem objects, audit_inode
2055 * can only collect information for the filesystem object's parent.
2056 * This call updates the audit context with the child's information.
2057 * Syscalls that create a new filesystem object must be hooked after
2058 * the object is created. Syscalls that remove a filesystem object
2059 * must be hooked prior, in order to capture the target inode during
2060 * unsuccessful attempts.
2061 */
2062 void __audit_inode_child(const struct dentry *dentry,
2063 const struct inode *parent)
2064 {
2065 struct audit_context *context = current->audit_context;
2066 const char *found_parent = NULL, *found_child = NULL;
2067 const struct inode *inode = dentry->d_inode;
2068 const char *dname = dentry->d_name.name;
2069 struct audit_names *n;
2070 int dirlen = 0;
2071
2072 if (!context->in_syscall)
2073 return;
2074
2075 if (inode)
2076 handle_one(inode);
2077
2078 /* parent is more likely, look for it first */
2079 list_for_each_entry(n, &context->names_list, list) {
2080 if (!n->name)
2081 continue;
2082
2083 if (n->ino == parent->i_ino &&
2084 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2085 n->name_len = dirlen; /* update parent data in place */
2086 found_parent = n->name;
2087 goto add_names;
2088 }
2089 }
2090
2091 /* no matching parent, look for matching child */
2092 list_for_each_entry(n, &context->names_list, list) {
2093 if (!n->name)
2094 continue;
2095
2096 /* strcmp() is the more likely scenario */
2097 if (!strcmp(dname, n->name) ||
2098 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2099 if (inode)
2100 audit_copy_inode(n, NULL, inode);
2101 else
2102 n->ino = (unsigned long)-1;
2103 found_child = n->name;
2104 goto add_names;
2105 }
2106 }
2107
2108 add_names:
2109 if (!found_parent) {
2110 n = audit_alloc_name(context);
2111 if (!n)
2112 return;
2113 audit_copy_inode(n, NULL, parent);
2114 }
2115
2116 if (!found_child) {
2117 n = audit_alloc_name(context);
2118 if (!n)
2119 return;
2120
2121 /* Re-use the name belonging to the slot for a matching parent
2122 * directory. All names for this context are relinquished in
2123 * audit_free_names() */
2124 if (found_parent) {
2125 n->name = found_parent;
2126 n->name_len = AUDIT_NAME_FULL;
2127 /* don't call __putname() */
2128 n->name_put = false;
2129 }
2130
2131 if (inode)
2132 audit_copy_inode(n, NULL, inode);
2133 }
2134 }
2135 EXPORT_SYMBOL_GPL(__audit_inode_child);
2136
2137 /**
2138 * auditsc_get_stamp - get local copies of audit_context values
2139 * @ctx: audit_context for the task
2140 * @t: timespec to store time recorded in the audit_context
2141 * @serial: serial value that is recorded in the audit_context
2142 *
2143 * Also sets the context as auditable.
2144 */
2145 int auditsc_get_stamp(struct audit_context *ctx,
2146 struct timespec *t, unsigned int *serial)
2147 {
2148 if (!ctx->in_syscall)
2149 return 0;
2150 if (!ctx->serial)
2151 ctx->serial = audit_serial();
2152 t->tv_sec = ctx->ctime.tv_sec;
2153 t->tv_nsec = ctx->ctime.tv_nsec;
2154 *serial = ctx->serial;
2155 if (!ctx->prio) {
2156 ctx->prio = 1;
2157 ctx->current_state = AUDIT_RECORD_CONTEXT;
2158 }
2159 return 1;
2160 }
2161
2162 /* global counter which is incremented every time something logs in */
2163 static atomic_t session_id = ATOMIC_INIT(0);
2164
2165 /**
2166 * audit_set_loginuid - set current task's audit_context loginuid
2167 * @loginuid: loginuid value
2168 *
2169 * Returns 0.
2170 *
2171 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2172 */
2173 int audit_set_loginuid(uid_t loginuid)
2174 {
2175 struct task_struct *task = current;
2176 unsigned int sessionid = atomic_inc_return(&session_id);
2177 struct audit_context *context = task->audit_context;
2178
2179 if (context && context->in_syscall) {
2180 struct audit_buffer *ab;
2181
2182 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2183 if (ab) {
2184 audit_log_format(ab, "login pid=%d uid=%u "
2185 "old auid=%u new auid=%u"
2186 " old ses=%u new ses=%u",
2187 task->pid, task_uid(task),
2188 task->loginuid, loginuid,
2189 task->sessionid, sessionid);
2190 audit_log_end(ab);
2191 }
2192 }
2193 task->sessionid = sessionid;
2194 task->loginuid = loginuid;
2195 return 0;
2196 }
2197
2198 /**
2199 * __audit_mq_open - record audit data for a POSIX MQ open
2200 * @oflag: open flag
2201 * @mode: mode bits
2202 * @attr: queue attributes
2203 *
2204 */
2205 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2206 {
2207 struct audit_context *context = current->audit_context;
2208
2209 if (attr)
2210 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2211 else
2212 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2213
2214 context->mq_open.oflag = oflag;
2215 context->mq_open.mode = mode;
2216
2217 context->type = AUDIT_MQ_OPEN;
2218 }
2219
2220 /**
2221 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2222 * @mqdes: MQ descriptor
2223 * @msg_len: Message length
2224 * @msg_prio: Message priority
2225 * @abs_timeout: Message timeout in absolute time
2226 *
2227 */
2228 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2229 const struct timespec *abs_timeout)
2230 {
2231 struct audit_context *context = current->audit_context;
2232 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2233
2234 if (abs_timeout)
2235 memcpy(p, abs_timeout, sizeof(struct timespec));
2236 else
2237 memset(p, 0, sizeof(struct timespec));
2238
2239 context->mq_sendrecv.mqdes = mqdes;
2240 context->mq_sendrecv.msg_len = msg_len;
2241 context->mq_sendrecv.msg_prio = msg_prio;
2242
2243 context->type = AUDIT_MQ_SENDRECV;
2244 }
2245
2246 /**
2247 * __audit_mq_notify - record audit data for a POSIX MQ notify
2248 * @mqdes: MQ descriptor
2249 * @notification: Notification event
2250 *
2251 */
2252
2253 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2254 {
2255 struct audit_context *context = current->audit_context;
2256
2257 if (notification)
2258 context->mq_notify.sigev_signo = notification->sigev_signo;
2259 else
2260 context->mq_notify.sigev_signo = 0;
2261
2262 context->mq_notify.mqdes = mqdes;
2263 context->type = AUDIT_MQ_NOTIFY;
2264 }
2265
2266 /**
2267 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2268 * @mqdes: MQ descriptor
2269 * @mqstat: MQ flags
2270 *
2271 */
2272 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2273 {
2274 struct audit_context *context = current->audit_context;
2275 context->mq_getsetattr.mqdes = mqdes;
2276 context->mq_getsetattr.mqstat = *mqstat;
2277 context->type = AUDIT_MQ_GETSETATTR;
2278 }
2279
2280 /**
2281 * audit_ipc_obj - record audit data for ipc object
2282 * @ipcp: ipc permissions
2283 *
2284 */
2285 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2286 {
2287 struct audit_context *context = current->audit_context;
2288 context->ipc.uid = ipcp->uid;
2289 context->ipc.gid = ipcp->gid;
2290 context->ipc.mode = ipcp->mode;
2291 context->ipc.has_perm = 0;
2292 security_ipc_getsecid(ipcp, &context->ipc.osid);
2293 context->type = AUDIT_IPC;
2294 }
2295
2296 /**
2297 * audit_ipc_set_perm - record audit data for new ipc permissions
2298 * @qbytes: msgq bytes
2299 * @uid: msgq user id
2300 * @gid: msgq group id
2301 * @mode: msgq mode (permissions)
2302 *
2303 * Called only after audit_ipc_obj().
2304 */
2305 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2306 {
2307 struct audit_context *context = current->audit_context;
2308
2309 context->ipc.qbytes = qbytes;
2310 context->ipc.perm_uid = uid;
2311 context->ipc.perm_gid = gid;
2312 context->ipc.perm_mode = mode;
2313 context->ipc.has_perm = 1;
2314 }
2315
2316 int __audit_bprm(struct linux_binprm *bprm)
2317 {
2318 struct audit_aux_data_execve *ax;
2319 struct audit_context *context = current->audit_context;
2320
2321 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2322 if (!ax)
2323 return -ENOMEM;
2324
2325 ax->argc = bprm->argc;
2326 ax->envc = bprm->envc;
2327 ax->mm = bprm->mm;
2328 ax->d.type = AUDIT_EXECVE;
2329 ax->d.next = context->aux;
2330 context->aux = (void *)ax;
2331 return 0;
2332 }
2333
2334
2335 /**
2336 * audit_socketcall - record audit data for sys_socketcall
2337 * @nargs: number of args
2338 * @args: args array
2339 *
2340 */
2341 void __audit_socketcall(int nargs, unsigned long *args)
2342 {
2343 struct audit_context *context = current->audit_context;
2344
2345 context->type = AUDIT_SOCKETCALL;
2346 context->socketcall.nargs = nargs;
2347 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2348 }
2349
2350 /**
2351 * __audit_fd_pair - record audit data for pipe and socketpair
2352 * @fd1: the first file descriptor
2353 * @fd2: the second file descriptor
2354 *
2355 */
2356 void __audit_fd_pair(int fd1, int fd2)
2357 {
2358 struct audit_context *context = current->audit_context;
2359 context->fds[0] = fd1;
2360 context->fds[1] = fd2;
2361 }
2362
2363 /**
2364 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2365 * @len: data length in user space
2366 * @a: data address in kernel space
2367 *
2368 * Returns 0 for success or NULL context or < 0 on error.
2369 */
2370 int __audit_sockaddr(int len, void *a)
2371 {
2372 struct audit_context *context = current->audit_context;
2373
2374 if (!context->sockaddr) {
2375 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2376 if (!p)
2377 return -ENOMEM;
2378 context->sockaddr = p;
2379 }
2380
2381 context->sockaddr_len = len;
2382 memcpy(context->sockaddr, a, len);
2383 return 0;
2384 }
2385
2386 void __audit_ptrace(struct task_struct *t)
2387 {
2388 struct audit_context *context = current->audit_context;
2389
2390 context->target_pid = t->pid;
2391 context->target_auid = audit_get_loginuid(t);
2392 context->target_uid = task_uid(t);
2393 context->target_sessionid = audit_get_sessionid(t);
2394 security_task_getsecid(t, &context->target_sid);
2395 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2396 }
2397
2398 /**
2399 * audit_signal_info - record signal info for shutting down audit subsystem
2400 * @sig: signal value
2401 * @t: task being signaled
2402 *
2403 * If the audit subsystem is being terminated, record the task (pid)
2404 * and uid that is doing that.
2405 */
2406 int __audit_signal_info(int sig, struct task_struct *t)
2407 {
2408 struct audit_aux_data_pids *axp;
2409 struct task_struct *tsk = current;
2410 struct audit_context *ctx = tsk->audit_context;
2411 uid_t uid = current_uid(), t_uid = task_uid(t);
2412
2413 if (audit_pid && t->tgid == audit_pid) {
2414 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2415 audit_sig_pid = tsk->pid;
2416 if (tsk->loginuid != -1)
2417 audit_sig_uid = tsk->loginuid;
2418 else
2419 audit_sig_uid = uid;
2420 security_task_getsecid(tsk, &audit_sig_sid);
2421 }
2422 if (!audit_signals || audit_dummy_context())
2423 return 0;
2424 }
2425
2426 /* optimize the common case by putting first signal recipient directly
2427 * in audit_context */
2428 if (!ctx->target_pid) {
2429 ctx->target_pid = t->tgid;
2430 ctx->target_auid = audit_get_loginuid(t);
2431 ctx->target_uid = t_uid;
2432 ctx->target_sessionid = audit_get_sessionid(t);
2433 security_task_getsecid(t, &ctx->target_sid);
2434 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2435 return 0;
2436 }
2437
2438 axp = (void *)ctx->aux_pids;
2439 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2440 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2441 if (!axp)
2442 return -ENOMEM;
2443
2444 axp->d.type = AUDIT_OBJ_PID;
2445 axp->d.next = ctx->aux_pids;
2446 ctx->aux_pids = (void *)axp;
2447 }
2448 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2449
2450 axp->target_pid[axp->pid_count] = t->tgid;
2451 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2452 axp->target_uid[axp->pid_count] = t_uid;
2453 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2454 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2455 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2456 axp->pid_count++;
2457
2458 return 0;
2459 }
2460
2461 /**
2462 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2463 * @bprm: pointer to the bprm being processed
2464 * @new: the proposed new credentials
2465 * @old: the old credentials
2466 *
2467 * Simply check if the proc already has the caps given by the file and if not
2468 * store the priv escalation info for later auditing at the end of the syscall
2469 *
2470 * -Eric
2471 */
2472 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2473 const struct cred *new, const struct cred *old)
2474 {
2475 struct audit_aux_data_bprm_fcaps *ax;
2476 struct audit_context *context = current->audit_context;
2477 struct cpu_vfs_cap_data vcaps;
2478 struct dentry *dentry;
2479
2480 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2481 if (!ax)
2482 return -ENOMEM;
2483
2484 ax->d.type = AUDIT_BPRM_FCAPS;
2485 ax->d.next = context->aux;
2486 context->aux = (void *)ax;
2487
2488 dentry = dget(bprm->file->f_dentry);
2489 get_vfs_caps_from_disk(dentry, &vcaps);
2490 dput(dentry);
2491
2492 ax->fcap.permitted = vcaps.permitted;
2493 ax->fcap.inheritable = vcaps.inheritable;
2494 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2495 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2496
2497 ax->old_pcap.permitted = old->cap_permitted;
2498 ax->old_pcap.inheritable = old->cap_inheritable;
2499 ax->old_pcap.effective = old->cap_effective;
2500
2501 ax->new_pcap.permitted = new->cap_permitted;
2502 ax->new_pcap.inheritable = new->cap_inheritable;
2503 ax->new_pcap.effective = new->cap_effective;
2504 return 0;
2505 }
2506
2507 /**
2508 * __audit_log_capset - store information about the arguments to the capset syscall
2509 * @pid: target pid of the capset call
2510 * @new: the new credentials
2511 * @old: the old (current) credentials
2512 *
2513 * Record the aguments userspace sent to sys_capset for later printing by the
2514 * audit system if applicable
2515 */
2516 void __audit_log_capset(pid_t pid,
2517 const struct cred *new, const struct cred *old)
2518 {
2519 struct audit_context *context = current->audit_context;
2520 context->capset.pid = pid;
2521 context->capset.cap.effective = new->cap_effective;
2522 context->capset.cap.inheritable = new->cap_effective;
2523 context->capset.cap.permitted = new->cap_permitted;
2524 context->type = AUDIT_CAPSET;
2525 }
2526
2527 void __audit_mmap_fd(int fd, int flags)
2528 {
2529 struct audit_context *context = current->audit_context;
2530 context->mmap.fd = fd;
2531 context->mmap.flags = flags;
2532 context->type = AUDIT_MMAP;
2533 }
2534
2535 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2536 {
2537 uid_t auid, uid;
2538 gid_t gid;
2539 unsigned int sessionid;
2540
2541 auid = audit_get_loginuid(current);
2542 sessionid = audit_get_sessionid(current);
2543 current_uid_gid(&uid, &gid);
2544
2545 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2546 auid, uid, gid, sessionid);
2547 audit_log_task_context(ab);
2548 audit_log_format(ab, " pid=%d comm=", current->pid);
2549 audit_log_untrustedstring(ab, current->comm);
2550 audit_log_format(ab, " reason=");
2551 audit_log_string(ab, reason);
2552 audit_log_format(ab, " sig=%ld", signr);
2553 }
2554 /**
2555 * audit_core_dumps - record information about processes that end abnormally
2556 * @signr: signal value
2557 *
2558 * If a process ends with a core dump, something fishy is going on and we
2559 * should record the event for investigation.
2560 */
2561 void audit_core_dumps(long signr)
2562 {
2563 struct audit_buffer *ab;
2564
2565 if (!audit_enabled)
2566 return;
2567
2568 if (signr == SIGQUIT) /* don't care for those */
2569 return;
2570
2571 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2572 audit_log_abend(ab, "memory violation", signr);
2573 audit_log_end(ab);
2574 }
2575
2576 void __audit_seccomp(unsigned long syscall)
2577 {
2578 struct audit_buffer *ab;
2579
2580 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2581 audit_log_abend(ab, "seccomp", SIGKILL);
2582 audit_log_format(ab, " syscall=%ld", syscall);
2583 audit_log_end(ab);
2584 }
2585
2586 struct list_head *audit_killed_trees(void)
2587 {
2588 struct audit_context *ctx = current->audit_context;
2589 if (likely(!ctx || !ctx->in_syscall))
2590 return NULL;
2591 return &ctx->killed_trees;
2592 }
This page took 0.077918 seconds and 6 git commands to generate.